Home | History | Annotate | Line # | Download | only in kern
subr_kmem.c revision 1.53
      1 /*	$NetBSD: subr_kmem.c,v 1.53 2014/06/23 17:43:42 maxv Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2009 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*-
     33  * Copyright (c)2006 YAMAMOTO Takashi,
     34  * All rights reserved.
     35  *
     36  * Redistribution and use in source and binary forms, with or without
     37  * modification, are permitted provided that the following conditions
     38  * are met:
     39  * 1. Redistributions of source code must retain the above copyright
     40  *    notice, this list of conditions and the following disclaimer.
     41  * 2. Redistributions in binary form must reproduce the above copyright
     42  *    notice, this list of conditions and the following disclaimer in the
     43  *    documentation and/or other materials provided with the distribution.
     44  *
     45  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     46  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     47  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     48  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     49  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     50  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     51  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     52  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     53  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     54  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     55  * SUCH DAMAGE.
     56  */
     57 
     58 /*
     59  * Allocator of kernel wired memory.
     60  */
     61 
     62 /*
     63  * This allocator has some debug features enabled with "option DEBUG" and
     64  * "option DIAGNOSTIC".
     65  *
     66  * KMEM_POISON
     67  *	Try to detect modify-after-free bugs.
     68  *
     69  *	Fill freed (in the sense of kmem_free) memory with a garbage pattern.
     70  *	Check the pattern on allocation.
     71  *
     72  * KMEM_REDZONE
     73  *	Try to detect overrun bugs.
     74  *
     75  *	Allocate some more bytes for each allocation.
     76  *	The extra bytes are checked by KMEM_POISON on kmem_free.
     77  *
     78  * KMEM_SIZE
     79  *	Try to detect alloc/free size mismatch bugs.
     80  *
     81  *	Prefix each allocations with a fixed-sized header and record
     82  *	the exact user-requested allocation size in it.
     83  *	When freeing, compare it with kmem_free's "size" argument.
     84  *
     85  * KMEM_GUARD
     86  *	See the below "kmguard" section.
     87  */
     88 
     89 /*
     90  * kmguard
     91  *
     92  * A kernel with "option DEBUG" has "kmguard" debugging feature compiled in.
     93  * See the comment in uvm/uvm_kmguard.c for what kind of bugs it tries to
     94  * detect.  Even if compiled in, it's disabled by default because it's very
     95  * expensive.  You can enable it on boot by:
     96  *
     97  * 	boot -d
     98  * 	db> w kmem_guard_depth 0t30000
     99  * 	db> c
    100  *
    101  * The default value of kmem_guard_depth is 0, which means disabled.
    102  * It can be changed by KMEM_GUARD_DEPTH kernel config option.
    103  */
    104 
    105 #include <sys/cdefs.h>
    106 __KERNEL_RCSID(0, "$NetBSD: subr_kmem.c,v 1.53 2014/06/23 17:43:42 maxv Exp $");
    107 
    108 #include <sys/param.h>
    109 #include <sys/callback.h>
    110 #include <sys/kmem.h>
    111 #include <sys/pool.h>
    112 #include <sys/debug.h>
    113 #include <sys/lockdebug.h>
    114 #include <sys/cpu.h>
    115 
    116 #include <uvm/uvm_extern.h>
    117 #include <uvm/uvm_map.h>
    118 #include <uvm/uvm_kmguard.h>
    119 
    120 #include <lib/libkern/libkern.h>
    121 
    122 struct kmem_cache_info {
    123 	size_t		kc_size;
    124 	const char *	kc_name;
    125 };
    126 
    127 static const struct kmem_cache_info kmem_cache_sizes[] = {
    128 	{  8, "kmem-8" },
    129 	{ 16, "kmem-16" },
    130 	{ 24, "kmem-24" },
    131 	{ 32, "kmem-32" },
    132 	{ 40, "kmem-40" },
    133 	{ 48, "kmem-48" },
    134 	{ 56, "kmem-56" },
    135 	{ 64, "kmem-64" },
    136 	{ 80, "kmem-80" },
    137 	{ 96, "kmem-96" },
    138 	{ 112, "kmem-112" },
    139 	{ 128, "kmem-128" },
    140 	{ 160, "kmem-160" },
    141 	{ 192, "kmem-192" },
    142 	{ 224, "kmem-224" },
    143 	{ 256, "kmem-256" },
    144 	{ 320, "kmem-320" },
    145 	{ 384, "kmem-384" },
    146 	{ 448, "kmem-448" },
    147 	{ 512, "kmem-512" },
    148 	{ 768, "kmem-768" },
    149 	{ 1024, "kmem-1024" },
    150 	{ 0, NULL }
    151 };
    152 
    153 static const struct kmem_cache_info kmem_cache_big_sizes[] = {
    154 	{ 2048, "kmem-2048" },
    155 	{ 4096, "kmem-4096" },
    156 	{ 8192, "kmem-8192" },
    157 	{ 16384, "kmem-16384" },
    158 	{ 0, NULL }
    159 };
    160 
    161 /*
    162  * KMEM_ALIGN is the smallest guaranteed alignment and also the
    163  * smallest allocateable quantum.
    164  * Every cache size >= CACHE_LINE_SIZE gets CACHE_LINE_SIZE alignment.
    165  */
    166 #define	KMEM_ALIGN		8
    167 #define	KMEM_SHIFT		3
    168 #define	KMEM_MAXSIZE		1024
    169 #define	KMEM_CACHE_COUNT	(KMEM_MAXSIZE >> KMEM_SHIFT)
    170 
    171 static pool_cache_t kmem_cache[KMEM_CACHE_COUNT] __cacheline_aligned;
    172 static size_t kmem_cache_maxidx __read_mostly;
    173 
    174 #define	KMEM_BIG_ALIGN		2048
    175 #define	KMEM_BIG_SHIFT		11
    176 #define	KMEM_BIG_MAXSIZE	16384
    177 #define	KMEM_CACHE_BIG_COUNT	(KMEM_BIG_MAXSIZE >> KMEM_BIG_SHIFT)
    178 
    179 static pool_cache_t kmem_cache_big[KMEM_CACHE_BIG_COUNT] __cacheline_aligned;
    180 static size_t kmem_cache_big_maxidx __read_mostly;
    181 
    182 #if defined(DIAGNOSTIC) && defined(_HARDKERNEL)
    183 #define KMEM_SIZE
    184 #endif /* defined(DIAGNOSTIC) */
    185 
    186 #if defined(DEBUG) && defined(_HARDKERNEL)
    187 #define	KMEM_POISON
    188 #define	KMEM_REDZONE
    189 #define	KMEM_GUARD
    190 #endif /* defined(DEBUG) */
    191 
    192 #if defined(KMEM_POISON)
    193 static int kmem_poison_ctor(void *, void *, int);
    194 static void kmem_poison_fill(void *, size_t);
    195 static void kmem_poison_check(void *, size_t);
    196 #else /* defined(KMEM_POISON) */
    197 #define	kmem_poison_fill(p, sz)		/* nothing */
    198 #define	kmem_poison_check(p, sz)	/* nothing */
    199 #endif /* defined(KMEM_POISON) */
    200 
    201 #if defined(KMEM_REDZONE)
    202 #define	REDZONE_SIZE	1
    203 #else /* defined(KMEM_REDZONE) */
    204 #define	REDZONE_SIZE	0
    205 #endif /* defined(KMEM_REDZONE) */
    206 
    207 #if defined(KMEM_SIZE)
    208 #define	SIZE_SIZE	(MAX(KMEM_ALIGN, sizeof(size_t)))
    209 static void kmem_size_set(void *, size_t);
    210 static void kmem_size_check(void *, size_t);
    211 #else
    212 #define	SIZE_SIZE	0
    213 #define	kmem_size_set(p, sz)	/* nothing */
    214 #define	kmem_size_check(p, sz)	/* nothing */
    215 #endif
    216 
    217 #if defined(KMEM_GUARD)
    218 #ifndef KMEM_GUARD_DEPTH
    219 #define KMEM_GUARD_DEPTH 0
    220 #endif
    221 int kmem_guard_depth = KMEM_GUARD_DEPTH;
    222 size_t kmem_guard_size;
    223 static struct uvm_kmguard kmem_guard;
    224 static void *kmem_freecheck;
    225 #endif /* defined(KMEM_GUARD) */
    226 
    227 CTASSERT(KM_SLEEP == PR_WAITOK);
    228 CTASSERT(KM_NOSLEEP == PR_NOWAIT);
    229 
    230 /*
    231  * kmem_intr_alloc: allocate wired memory.
    232  */
    233 
    234 void *
    235 kmem_intr_alloc(size_t requested_size, km_flag_t kmflags)
    236 {
    237 	size_t allocsz, index;
    238 	size_t size;
    239 	pool_cache_t pc;
    240 	uint8_t *p;
    241 
    242 	KASSERT(requested_size > 0);
    243 
    244 #ifdef KMEM_GUARD
    245 	if (requested_size <= kmem_guard_size) {
    246 		return uvm_kmguard_alloc(&kmem_guard, requested_size,
    247 		    (kmflags & KM_SLEEP) != 0);
    248 	}
    249 #endif
    250 	size = kmem_roundup_size(requested_size);
    251 	allocsz = size + REDZONE_SIZE + SIZE_SIZE;
    252 
    253 	if ((index = ((allocsz -1) >> KMEM_SHIFT))
    254 	    < kmem_cache_maxidx) {
    255 		pc = kmem_cache[index];
    256 	} else if ((index = ((allocsz - 1) >> KMEM_BIG_SHIFT))
    257             < kmem_cache_big_maxidx) {
    258 		pc = kmem_cache_big[index];
    259 	} else {
    260 		int ret = uvm_km_kmem_alloc(kmem_va_arena,
    261 		    (vsize_t)round_page(size),
    262 		    ((kmflags & KM_SLEEP) ? VM_SLEEP : VM_NOSLEEP)
    263 		     | VM_INSTANTFIT, (vmem_addr_t *)&p);
    264 		if (ret) {
    265 			return NULL;
    266 		}
    267 		FREECHECK_OUT(&kmem_freecheck, p);
    268 		return p;
    269 	}
    270 
    271 	p = pool_cache_get(pc, kmflags);
    272 
    273 	if (__predict_true(p != NULL)) {
    274 		kmem_poison_check(p, size);
    275 		FREECHECK_OUT(&kmem_freecheck, p);
    276 		kmem_size_set(p, requested_size);
    277 
    278 		return p + SIZE_SIZE;
    279 	}
    280 	return p;
    281 }
    282 
    283 /*
    284  * kmem_intr_zalloc: allocate zeroed wired memory.
    285  */
    286 
    287 void *
    288 kmem_intr_zalloc(size_t size, km_flag_t kmflags)
    289 {
    290 	void *p;
    291 
    292 	p = kmem_intr_alloc(size, kmflags);
    293 	if (p != NULL) {
    294 		memset(p, 0, size);
    295 	}
    296 	return p;
    297 }
    298 
    299 /*
    300  * kmem_intr_free: free wired memory allocated by kmem_alloc.
    301  */
    302 
    303 void
    304 kmem_intr_free(void *p, size_t requested_size)
    305 {
    306 	size_t allocsz, index;
    307 	size_t size;
    308 	pool_cache_t pc;
    309 
    310 	KASSERT(p != NULL);
    311 	KASSERT(requested_size > 0);
    312 
    313 #ifdef KMEM_GUARD
    314 	if (requested_size <= kmem_guard_size) {
    315 		uvm_kmguard_free(&kmem_guard, requested_size, p);
    316 		return;
    317 	}
    318 #endif
    319 	size = kmem_roundup_size(requested_size);
    320 	allocsz = size + REDZONE_SIZE + SIZE_SIZE;
    321 
    322 	if ((index = ((allocsz -1) >> KMEM_SHIFT))
    323 	    < kmem_cache_maxidx) {
    324 		pc = kmem_cache[index];
    325 	} else if ((index = ((allocsz - 1) >> KMEM_BIG_SHIFT))
    326             < kmem_cache_big_maxidx) {
    327 		pc = kmem_cache_big[index];
    328 	} else {
    329 		FREECHECK_IN(&kmem_freecheck, p);
    330 		uvm_km_kmem_free(kmem_va_arena, (vaddr_t)p,
    331 		    round_page(size));
    332 		return;
    333 	}
    334 
    335 	p = (uint8_t *)p - SIZE_SIZE;
    336 	kmem_size_check(p, requested_size);
    337 	FREECHECK_IN(&kmem_freecheck, p);
    338 	LOCKDEBUG_MEM_CHECK(p, size);
    339 	kmem_poison_check((uint8_t *)p + SIZE_SIZE + size,
    340       	    allocsz - (SIZE_SIZE + size));
    341 	kmem_poison_fill(p, allocsz);
    342 
    343 	pool_cache_put(pc, p);
    344 }
    345 
    346 /* ---- kmem API */
    347 
    348 /*
    349  * kmem_alloc: allocate wired memory.
    350  * => must not be called from interrupt context.
    351  */
    352 
    353 void *
    354 kmem_alloc(size_t size, km_flag_t kmflags)
    355 {
    356 
    357 	KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()),
    358 	    "kmem(9) should not be used from the interrupt context");
    359 	return kmem_intr_alloc(size, kmflags);
    360 }
    361 
    362 /*
    363  * kmem_zalloc: allocate zeroed wired memory.
    364  * => must not be called from interrupt context.
    365  */
    366 
    367 void *
    368 kmem_zalloc(size_t size, km_flag_t kmflags)
    369 {
    370 
    371 	KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()),
    372 	    "kmem(9) should not be used from the interrupt context");
    373 	return kmem_intr_zalloc(size, kmflags);
    374 }
    375 
    376 /*
    377  * kmem_free: free wired memory allocated by kmem_alloc.
    378  * => must not be called from interrupt context.
    379  */
    380 
    381 void
    382 kmem_free(void *p, size_t size)
    383 {
    384 
    385 	KASSERT(!cpu_intr_p());
    386 	KASSERT(!cpu_softintr_p());
    387 	kmem_intr_free(p, size);
    388 }
    389 
    390 static size_t
    391 kmem_create_caches(const struct kmem_cache_info *array,
    392     pool_cache_t alloc_table[], size_t maxsize, int shift, int ipl)
    393 {
    394 	size_t maxidx = 0;
    395 	size_t table_unit = (1 << shift);
    396 	size_t size = table_unit;
    397 	int i;
    398 
    399 	for (i = 0; array[i].kc_size != 0 ; i++) {
    400 		const char *name = array[i].kc_name;
    401 		size_t cache_size = array[i].kc_size;
    402 		struct pool_allocator *pa;
    403 		int flags = PR_NOALIGN;
    404 		pool_cache_t pc;
    405 		size_t align;
    406 
    407 		if ((cache_size & (CACHE_LINE_SIZE - 1)) == 0)
    408 			align = CACHE_LINE_SIZE;
    409 		else if ((cache_size & (PAGE_SIZE - 1)) == 0)
    410 			align = PAGE_SIZE;
    411 		else
    412 			align = KMEM_ALIGN;
    413 
    414 		if (cache_size < CACHE_LINE_SIZE)
    415 			flags |= PR_NOTOUCH;
    416 
    417 		/* check if we reached the requested size */
    418 		if (cache_size > maxsize || cache_size > PAGE_SIZE) {
    419 			break;
    420 		}
    421 		if ((cache_size >> shift) > maxidx) {
    422 			maxidx = cache_size >> shift;
    423 		}
    424 
    425 		if ((cache_size >> shift) > maxidx) {
    426 			maxidx = cache_size >> shift;
    427 		}
    428 
    429 		pa = &pool_allocator_kmem;
    430 #if defined(KMEM_POISON)
    431 		pc = pool_cache_init(cache_size, align, 0, flags,
    432 		    name, pa, ipl, kmem_poison_ctor,
    433 		    NULL, (void *)cache_size);
    434 #else /* defined(KMEM_POISON) */
    435 		pc = pool_cache_init(cache_size, align, 0, flags,
    436 		    name, pa, ipl, NULL, NULL, NULL);
    437 #endif /* defined(KMEM_POISON) */
    438 
    439 		while (size <= cache_size) {
    440 			alloc_table[(size - 1) >> shift] = pc;
    441 			size += table_unit;
    442 		}
    443 	}
    444 	return maxidx;
    445 }
    446 
    447 void
    448 kmem_init(void)
    449 {
    450 
    451 #ifdef KMEM_GUARD
    452 	uvm_kmguard_init(&kmem_guard, &kmem_guard_depth, &kmem_guard_size,
    453 	    kmem_va_arena);
    454 #endif
    455 	kmem_cache_maxidx = kmem_create_caches(kmem_cache_sizes,
    456 	    kmem_cache, KMEM_MAXSIZE, KMEM_SHIFT, IPL_VM);
    457        	kmem_cache_big_maxidx = kmem_create_caches(kmem_cache_big_sizes,
    458 	    kmem_cache_big, PAGE_SIZE, KMEM_BIG_SHIFT, IPL_VM);
    459 }
    460 
    461 size_t
    462 kmem_roundup_size(size_t size)
    463 {
    464 
    465 	return (size + (KMEM_ALIGN - 1)) & ~(KMEM_ALIGN - 1);
    466 }
    467 
    468 /* ---- debug */
    469 
    470 #if defined(KMEM_POISON)
    471 
    472 #if defined(_LP64)
    473 #define PRIME 0x9e37fffffffc0000UL
    474 #else /* defined(_LP64) */
    475 #define PRIME 0x9e3779b1
    476 #endif /* defined(_LP64) */
    477 
    478 static inline uint8_t
    479 kmem_poison_pattern(const void *p)
    480 {
    481 
    482 	return (uint8_t)(((uintptr_t)p) * PRIME
    483 	   >> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT);
    484 }
    485 
    486 static int
    487 kmem_poison_ctor(void *arg, void *obj, int flag)
    488 {
    489 	size_t sz = (size_t)arg;
    490 
    491 	kmem_poison_fill(obj, sz);
    492 
    493 	return 0;
    494 }
    495 
    496 static void
    497 kmem_poison_fill(void *p, size_t sz)
    498 {
    499 	uint8_t *cp;
    500 	const uint8_t *ep;
    501 
    502 	cp = p;
    503 	ep = cp + sz;
    504 	while (cp < ep) {
    505 		*cp = kmem_poison_pattern(cp);
    506 		cp++;
    507 	}
    508 }
    509 
    510 static void
    511 kmem_poison_check(void *p, size_t sz)
    512 {
    513 	uint8_t *cp;
    514 	const uint8_t *ep;
    515 
    516 	cp = p;
    517 	ep = cp + sz;
    518 	while (cp < ep) {
    519 		const uint8_t expected = kmem_poison_pattern(cp);
    520 
    521 		if (*cp != expected) {
    522 			panic("%s: %p: 0x%02x != 0x%02x\n",
    523 			   __func__, cp, *cp, expected);
    524 		}
    525 		cp++;
    526 	}
    527 }
    528 
    529 #endif /* defined(KMEM_POISON) */
    530 
    531 #if defined(KMEM_SIZE)
    532 static void
    533 kmem_size_set(void *p, size_t sz)
    534 {
    535 
    536 	memcpy(p, &sz, sizeof(sz));
    537 }
    538 
    539 static void
    540 kmem_size_check(void *p, size_t sz)
    541 {
    542 	size_t psz;
    543 
    544 	memcpy(&psz, p, sizeof(psz));
    545 	if (psz != sz) {
    546 		panic("kmem_free(%p, %zu) != allocated size %zu",
    547 		    (const uint8_t *)p + SIZE_SIZE, sz, psz);
    548 	}
    549 }
    550 #endif	/* defined(KMEM_SIZE) */
    551 
    552 /*
    553  * Used to dynamically allocate string with kmem accordingly to format.
    554  */
    555 char *
    556 kmem_asprintf(const char *fmt, ...)
    557 {
    558 	int size __diagused, len;
    559 	va_list va;
    560 	char *str;
    561 
    562 	va_start(va, fmt);
    563 	len = vsnprintf(NULL, 0, fmt, va);
    564 	va_end(va);
    565 
    566 	str = kmem_alloc(len + 1, KM_SLEEP);
    567 
    568 	va_start(va, fmt);
    569 	size = vsnprintf(str, len + 1, fmt, va);
    570 	va_end(va);
    571 
    572 	KASSERT(size == len);
    573 
    574 	return str;
    575 }
    576