Home | History | Annotate | Line # | Download | only in kern
subr_kmem.c revision 1.55
      1 /*	$NetBSD: subr_kmem.c,v 1.55 2014/06/25 16:05:22 maxv Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2009 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*-
     33  * Copyright (c)2006 YAMAMOTO Takashi,
     34  * All rights reserved.
     35  *
     36  * Redistribution and use in source and binary forms, with or without
     37  * modification, are permitted provided that the following conditions
     38  * are met:
     39  * 1. Redistributions of source code must retain the above copyright
     40  *    notice, this list of conditions and the following disclaimer.
     41  * 2. Redistributions in binary form must reproduce the above copyright
     42  *    notice, this list of conditions and the following disclaimer in the
     43  *    documentation and/or other materials provided with the distribution.
     44  *
     45  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     46  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     47  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     48  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     49  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     50  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     51  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     52  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     53  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     54  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     55  * SUCH DAMAGE.
     56  */
     57 
     58 /*
     59  * Allocator of kernel wired memory. This allocator has some debug features
     60  * enabled with "option DIAGNOSTIC" and "option DEBUG".
     61  */
     62 
     63 /*
     64  * KMEM_SIZE: detect alloc/free size mismatch bugs.
     65  *	Prefix each allocations with a fixed-sized header and record the exact
     66  *	user-requested allocation size in it. When freeing, compare it with
     67  *	kmem_free's "size" argument.
     68  */
     69 
     70 /*
     71  * KMEM_REDZONE: detect overrun bugs.
     72  *	Add a 2-byte pattern (allocate some more bytes if needed) at the end
     73  *	of each allocated buffer. Check this pattern on kmem_free.
     74  *
     75  * KMEM_POISON: detect modify-after-free bugs.
     76  *	Fill freed (in the sense of kmem_free) memory with a garbage pattern.
     77  *	Check the pattern on allocation.
     78  *
     79  * KMEM_GUARD
     80  *	A kernel with "option DEBUG" has "kmguard" debugging feature compiled
     81  *	in. See the comment in uvm/uvm_kmguard.c for what kind of bugs it tries
     82  *	to detect.  Even if compiled in, it's disabled by default because it's
     83  *	very expensive.  You can enable it on boot by:
     84  *		boot -d
     85  *		db> w kmem_guard_depth 0t30000
     86  *		db> c
     87  *
     88  *	The default value of kmem_guard_depth is 0, which means disabled.
     89  *	It can be changed by KMEM_GUARD_DEPTH kernel config option.
     90  */
     91 
     92 #include <sys/cdefs.h>
     93 __KERNEL_RCSID(0, "$NetBSD: subr_kmem.c,v 1.55 2014/06/25 16:05:22 maxv Exp $");
     94 
     95 #include <sys/param.h>
     96 #include <sys/callback.h>
     97 #include <sys/kmem.h>
     98 #include <sys/pool.h>
     99 #include <sys/debug.h>
    100 #include <sys/lockdebug.h>
    101 #include <sys/cpu.h>
    102 
    103 #include <uvm/uvm_extern.h>
    104 #include <uvm/uvm_map.h>
    105 #include <uvm/uvm_kmguard.h>
    106 
    107 #include <lib/libkern/libkern.h>
    108 
    109 struct kmem_cache_info {
    110 	size_t		kc_size;
    111 	const char *	kc_name;
    112 };
    113 
    114 static const struct kmem_cache_info kmem_cache_sizes[] = {
    115 	{  8, "kmem-8" },
    116 	{ 16, "kmem-16" },
    117 	{ 24, "kmem-24" },
    118 	{ 32, "kmem-32" },
    119 	{ 40, "kmem-40" },
    120 	{ 48, "kmem-48" },
    121 	{ 56, "kmem-56" },
    122 	{ 64, "kmem-64" },
    123 	{ 80, "kmem-80" },
    124 	{ 96, "kmem-96" },
    125 	{ 112, "kmem-112" },
    126 	{ 128, "kmem-128" },
    127 	{ 160, "kmem-160" },
    128 	{ 192, "kmem-192" },
    129 	{ 224, "kmem-224" },
    130 	{ 256, "kmem-256" },
    131 	{ 320, "kmem-320" },
    132 	{ 384, "kmem-384" },
    133 	{ 448, "kmem-448" },
    134 	{ 512, "kmem-512" },
    135 	{ 768, "kmem-768" },
    136 	{ 1024, "kmem-1024" },
    137 	{ 0, NULL }
    138 };
    139 
    140 static const struct kmem_cache_info kmem_cache_big_sizes[] = {
    141 	{ 2048, "kmem-2048" },
    142 	{ 4096, "kmem-4096" },
    143 	{ 8192, "kmem-8192" },
    144 	{ 16384, "kmem-16384" },
    145 	{ 0, NULL }
    146 };
    147 
    148 /*
    149  * KMEM_ALIGN is the smallest guaranteed alignment and also the
    150  * smallest allocateable quantum.
    151  * Every cache size >= CACHE_LINE_SIZE gets CACHE_LINE_SIZE alignment.
    152  */
    153 #define	KMEM_ALIGN		8
    154 #define	KMEM_SHIFT		3
    155 #define	KMEM_MAXSIZE		1024
    156 #define	KMEM_CACHE_COUNT	(KMEM_MAXSIZE >> KMEM_SHIFT)
    157 
    158 static pool_cache_t kmem_cache[KMEM_CACHE_COUNT] __cacheline_aligned;
    159 static size_t kmem_cache_maxidx __read_mostly;
    160 
    161 #define	KMEM_BIG_ALIGN		2048
    162 #define	KMEM_BIG_SHIFT		11
    163 #define	KMEM_BIG_MAXSIZE	16384
    164 #define	KMEM_CACHE_BIG_COUNT	(KMEM_BIG_MAXSIZE >> KMEM_BIG_SHIFT)
    165 
    166 static pool_cache_t kmem_cache_big[KMEM_CACHE_BIG_COUNT] __cacheline_aligned;
    167 static size_t kmem_cache_big_maxidx __read_mostly;
    168 
    169 #if defined(DIAGNOSTIC) && defined(_HARDKERNEL)
    170 #define KMEM_SIZE
    171 #endif /* defined(DIAGNOSTIC) */
    172 
    173 #if defined(DEBUG) && defined(_HARDKERNEL)
    174 #define	KMEM_POISON
    175 #define	KMEM_REDZONE
    176 #define	KMEM_GUARD
    177 #endif /* defined(DEBUG) */
    178 
    179 #if defined(KMEM_POISON)
    180 static int kmem_poison_ctor(void *, void *, int);
    181 static void kmem_poison_fill(void *, size_t);
    182 static void kmem_poison_check(void *, size_t);
    183 #else /* defined(KMEM_POISON) */
    184 #define	kmem_poison_fill(p, sz)		/* nothing */
    185 #define	kmem_poison_check(p, sz)	/* nothing */
    186 #endif /* defined(KMEM_POISON) */
    187 
    188 #if defined(KMEM_REDZONE)
    189 #define	REDZONE_SIZE	2
    190 static void kmem_redzone_fill(void *p, size_t sz);
    191 static void kmem_redzone_check(void *p, size_t sz);
    192 #else /* defined(KMEM_REDZONE) */
    193 #define	REDZONE_SIZE	0
    194 #define	kmem_redzone_fill(p, sz)		/* nothing */
    195 #define	kmem_redzone_check(p, sz)	/* nothing */
    196 #endif /* defined(KMEM_REDZONE) */
    197 
    198 #if defined(KMEM_SIZE)
    199 #define	SIZE_SIZE	(MAX(KMEM_ALIGN, sizeof(size_t)))
    200 static void kmem_size_set(void *, size_t);
    201 static void kmem_size_check(void *, size_t);
    202 #else
    203 #define	SIZE_SIZE	0
    204 #define	kmem_size_set(p, sz)	/* nothing */
    205 #define	kmem_size_check(p, sz)	/* nothing */
    206 #endif
    207 
    208 #if defined(KMEM_GUARD)
    209 #ifndef KMEM_GUARD_DEPTH
    210 #define KMEM_GUARD_DEPTH 0
    211 #endif
    212 int kmem_guard_depth = KMEM_GUARD_DEPTH;
    213 size_t kmem_guard_size;
    214 static struct uvm_kmguard kmem_guard;
    215 static void *kmem_freecheck;
    216 #endif /* defined(KMEM_GUARD) */
    217 
    218 CTASSERT(KM_SLEEP == PR_WAITOK);
    219 CTASSERT(KM_NOSLEEP == PR_NOWAIT);
    220 
    221 /*
    222  * kmem_intr_alloc: allocate wired memory.
    223  */
    224 
    225 void *
    226 kmem_intr_alloc(size_t requested_size, km_flag_t kmflags)
    227 {
    228 	size_t allocsz, index;
    229 	size_t size;
    230 	pool_cache_t pc;
    231 	uint8_t *p;
    232 
    233 	KASSERT(requested_size > 0);
    234 
    235 #ifdef KMEM_GUARD
    236 	if (requested_size <= kmem_guard_size) {
    237 		return uvm_kmguard_alloc(&kmem_guard, requested_size,
    238 		    (kmflags & KM_SLEEP) != 0);
    239 	}
    240 #endif
    241 	size = kmem_roundup_size(requested_size);
    242 	allocsz = size + SIZE_SIZE;
    243 
    244 #ifdef KMEM_REDZONE
    245 	if (size - requested_size < REDZONE_SIZE) {
    246 		/* If there isn't enough space in the page padding,
    247 		 * allocate two more bytes for the red zone. */
    248 		allocsz += REDZONE_SIZE;
    249 	}
    250 #endif
    251 
    252 	if ((index = ((allocsz -1) >> KMEM_SHIFT))
    253 	    < kmem_cache_maxidx) {
    254 		pc = kmem_cache[index];
    255 	} else if ((index = ((allocsz - 1) >> KMEM_BIG_SHIFT))
    256 	    < kmem_cache_big_maxidx) {
    257 		pc = kmem_cache_big[index];
    258 	} else {
    259 		int ret = uvm_km_kmem_alloc(kmem_va_arena,
    260 		    (vsize_t)round_page(size),
    261 		    ((kmflags & KM_SLEEP) ? VM_SLEEP : VM_NOSLEEP)
    262 		     | VM_INSTANTFIT, (vmem_addr_t *)&p);
    263 		if (ret) {
    264 			return NULL;
    265 		}
    266 		FREECHECK_OUT(&kmem_freecheck, p);
    267 		return p;
    268 	}
    269 
    270 	p = pool_cache_get(pc, kmflags);
    271 
    272 	if (__predict_true(p != NULL)) {
    273 		kmem_poison_check(p, size);
    274 		FREECHECK_OUT(&kmem_freecheck, p);
    275 		kmem_size_set(p, requested_size);
    276 		kmem_redzone_fill(p, requested_size + SIZE_SIZE);
    277 
    278 		return p + SIZE_SIZE;
    279 	}
    280 	return p;
    281 }
    282 
    283 /*
    284  * kmem_intr_zalloc: allocate zeroed wired memory.
    285  */
    286 
    287 void *
    288 kmem_intr_zalloc(size_t size, km_flag_t kmflags)
    289 {
    290 	void *p;
    291 
    292 	p = kmem_intr_alloc(size, kmflags);
    293 	if (p != NULL) {
    294 		memset(p, 0, size);
    295 	}
    296 	return p;
    297 }
    298 
    299 /*
    300  * kmem_intr_free: free wired memory allocated by kmem_alloc.
    301  */
    302 
    303 void
    304 kmem_intr_free(void *p, size_t requested_size)
    305 {
    306 	size_t allocsz, index;
    307 	size_t size;
    308 	pool_cache_t pc;
    309 
    310 	KASSERT(p != NULL);
    311 	KASSERT(requested_size > 0);
    312 
    313 #ifdef KMEM_GUARD
    314 	if (requested_size <= kmem_guard_size) {
    315 		uvm_kmguard_free(&kmem_guard, requested_size, p);
    316 		return;
    317 	}
    318 #endif
    319 
    320 	size = kmem_roundup_size(requested_size);
    321 	allocsz = size + SIZE_SIZE;
    322 
    323 #ifdef KMEM_REDZONE
    324 	if (size - requested_size < REDZONE_SIZE) {
    325 		allocsz += REDZONE_SIZE;
    326 	}
    327 #endif
    328 
    329 	if ((index = ((allocsz -1) >> KMEM_SHIFT))
    330 	    < kmem_cache_maxidx) {
    331 		pc = kmem_cache[index];
    332 	} else if ((index = ((allocsz - 1) >> KMEM_BIG_SHIFT))
    333 	    < kmem_cache_big_maxidx) {
    334 		pc = kmem_cache_big[index];
    335 	} else {
    336 		FREECHECK_IN(&kmem_freecheck, p);
    337 		uvm_km_kmem_free(kmem_va_arena, (vaddr_t)p,
    338 		    round_page(size));
    339 		return;
    340 	}
    341 
    342 	p = (uint8_t *)p - SIZE_SIZE;
    343 	kmem_size_check(p, requested_size);
    344 	kmem_redzone_check(p, requested_size + SIZE_SIZE);
    345 	FREECHECK_IN(&kmem_freecheck, p);
    346 	LOCKDEBUG_MEM_CHECK(p, size);
    347 	kmem_poison_fill(p, allocsz);
    348 
    349 	pool_cache_put(pc, p);
    350 }
    351 
    352 /* ---- kmem API */
    353 
    354 /*
    355  * kmem_alloc: allocate wired memory.
    356  * => must not be called from interrupt context.
    357  */
    358 
    359 void *
    360 kmem_alloc(size_t size, km_flag_t kmflags)
    361 {
    362 
    363 	KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()),
    364 	    "kmem(9) should not be used from the interrupt context");
    365 	return kmem_intr_alloc(size, kmflags);
    366 }
    367 
    368 /*
    369  * kmem_zalloc: allocate zeroed wired memory.
    370  * => must not be called from interrupt context.
    371  */
    372 
    373 void *
    374 kmem_zalloc(size_t size, km_flag_t kmflags)
    375 {
    376 
    377 	KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()),
    378 	    "kmem(9) should not be used from the interrupt context");
    379 	return kmem_intr_zalloc(size, kmflags);
    380 }
    381 
    382 /*
    383  * kmem_free: free wired memory allocated by kmem_alloc.
    384  * => must not be called from interrupt context.
    385  */
    386 
    387 void
    388 kmem_free(void *p, size_t size)
    389 {
    390 
    391 	KASSERT(!cpu_intr_p());
    392 	KASSERT(!cpu_softintr_p());
    393 	kmem_intr_free(p, size);
    394 }
    395 
    396 static size_t
    397 kmem_create_caches(const struct kmem_cache_info *array,
    398     pool_cache_t alloc_table[], size_t maxsize, int shift, int ipl)
    399 {
    400 	size_t maxidx = 0;
    401 	size_t table_unit = (1 << shift);
    402 	size_t size = table_unit;
    403 	int i;
    404 
    405 	for (i = 0; array[i].kc_size != 0 ; i++) {
    406 		const char *name = array[i].kc_name;
    407 		size_t cache_size = array[i].kc_size;
    408 		struct pool_allocator *pa;
    409 		int flags = PR_NOALIGN;
    410 		pool_cache_t pc;
    411 		size_t align;
    412 
    413 		if ((cache_size & (CACHE_LINE_SIZE - 1)) == 0)
    414 			align = CACHE_LINE_SIZE;
    415 		else if ((cache_size & (PAGE_SIZE - 1)) == 0)
    416 			align = PAGE_SIZE;
    417 		else
    418 			align = KMEM_ALIGN;
    419 
    420 		if (cache_size < CACHE_LINE_SIZE)
    421 			flags |= PR_NOTOUCH;
    422 
    423 		/* check if we reached the requested size */
    424 		if (cache_size > maxsize || cache_size > PAGE_SIZE) {
    425 			break;
    426 		}
    427 		if ((cache_size >> shift) > maxidx) {
    428 			maxidx = cache_size >> shift;
    429 		}
    430 
    431 		if ((cache_size >> shift) > maxidx) {
    432 			maxidx = cache_size >> shift;
    433 		}
    434 
    435 		pa = &pool_allocator_kmem;
    436 #if defined(KMEM_POISON)
    437 		pc = pool_cache_init(cache_size, align, 0, flags,
    438 		    name, pa, ipl, kmem_poison_ctor,
    439 		    NULL, (void *)cache_size);
    440 #else /* defined(KMEM_POISON) */
    441 		pc = pool_cache_init(cache_size, align, 0, flags,
    442 		    name, pa, ipl, NULL, NULL, NULL);
    443 #endif /* defined(KMEM_POISON) */
    444 
    445 		while (size <= cache_size) {
    446 			alloc_table[(size - 1) >> shift] = pc;
    447 			size += table_unit;
    448 		}
    449 	}
    450 	return maxidx;
    451 }
    452 
    453 void
    454 kmem_init(void)
    455 {
    456 
    457 #ifdef KMEM_GUARD
    458 	uvm_kmguard_init(&kmem_guard, &kmem_guard_depth, &kmem_guard_size,
    459 	    kmem_va_arena);
    460 #endif
    461 	kmem_cache_maxidx = kmem_create_caches(kmem_cache_sizes,
    462 	    kmem_cache, KMEM_MAXSIZE, KMEM_SHIFT, IPL_VM);
    463 	kmem_cache_big_maxidx = kmem_create_caches(kmem_cache_big_sizes,
    464 	    kmem_cache_big, PAGE_SIZE, KMEM_BIG_SHIFT, IPL_VM);
    465 }
    466 
    467 size_t
    468 kmem_roundup_size(size_t size)
    469 {
    470 
    471 	return (size + (KMEM_ALIGN - 1)) & ~(KMEM_ALIGN - 1);
    472 }
    473 
    474 /* ------------------ DEBUG / DIAGNOSTIC ------------------ */
    475 
    476 #if defined(KMEM_POISON) || defined(KMEM_REDZONE)
    477 #if defined(_LP64)
    478 #define PRIME 0x9e37fffffffc0000UL
    479 #else /* defined(_LP64) */
    480 #define PRIME 0x9e3779b1
    481 #endif /* defined(_LP64) */
    482 #endif /* defined(KMEM_POISON) || defined(KMEM_REDZONE) */
    483 
    484 #if defined(KMEM_POISON)
    485 static inline uint8_t
    486 kmem_poison_pattern(const void *p)
    487 {
    488 	return (uint8_t)(((uintptr_t)p) * PRIME
    489 	   >> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT);
    490 }
    491 
    492 static int
    493 kmem_poison_ctor(void *arg, void *obj, int flag)
    494 {
    495 	size_t sz = (size_t)arg;
    496 
    497 	kmem_poison_fill(obj, sz);
    498 
    499 	return 0;
    500 }
    501 
    502 static void
    503 kmem_poison_fill(void *p, size_t sz)
    504 {
    505 	uint8_t *cp;
    506 	const uint8_t *ep;
    507 
    508 	cp = p;
    509 	ep = cp + sz;
    510 	while (cp < ep) {
    511 		*cp = kmem_poison_pattern(cp);
    512 		cp++;
    513 	}
    514 }
    515 
    516 static void
    517 kmem_poison_check(void *p, size_t sz)
    518 {
    519 	uint8_t *cp;
    520 	const uint8_t *ep;
    521 
    522 	cp = p;
    523 	ep = cp + sz;
    524 	while (cp < ep) {
    525 		const uint8_t expected = kmem_poison_pattern(cp);
    526 
    527 		if (*cp != expected) {
    528 			panic("%s: %p: 0x%02x != 0x%02x\n",
    529 			   __func__, cp, *cp, expected);
    530 		}
    531 		cp++;
    532 	}
    533 }
    534 #endif /* defined(KMEM_POISON) */
    535 
    536 #if defined(KMEM_SIZE)
    537 static void
    538 kmem_size_set(void *p, size_t sz)
    539 {
    540 	memcpy(p, &sz, sizeof(sz));
    541 }
    542 
    543 static void
    544 kmem_size_check(void *p, size_t sz)
    545 {
    546 	size_t psz;
    547 
    548 	memcpy(&psz, p, sizeof(psz));
    549 	if (psz != sz) {
    550 		panic("kmem_free(%p, %zu) != allocated size %zu",
    551 		    (const uint8_t *)p + SIZE_SIZE, sz, psz);
    552 	}
    553 }
    554 #endif /* defined(KMEM_SIZE) */
    555 
    556 #if defined(KMEM_REDZONE)
    557 static inline uint8_t
    558 kmem_redzone_pattern(const void *p)
    559 {
    560 	return (uint8_t)(((uintptr_t)p) * PRIME
    561 	   >> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT);
    562 }
    563 
    564 static void
    565 kmem_redzone_fill(void *p, size_t sz)
    566 {
    567 	uint8_t *cp;
    568 	const uint8_t *ep;
    569 
    570 	cp = (uint8_t *)p + sz;
    571 	ep = cp + REDZONE_SIZE;
    572 	while (cp < ep) {
    573 		*cp = kmem_redzone_pattern(cp);
    574 		cp++;
    575 	}
    576 }
    577 
    578 static void
    579 kmem_redzone_check(void *p, size_t sz)
    580 {
    581 	uint8_t *cp;
    582 	const uint8_t *ep;
    583 
    584 	cp = (uint8_t *)p + sz;
    585 	ep = (uint8_t *)p + sz + REDZONE_SIZE;
    586 	while (cp < ep) {
    587 		const uint8_t expected = kmem_redzone_pattern(cp);
    588 
    589 		if (*cp != expected) {
    590 			panic("%s: %p: 0x%02x != 0x%02x\n",
    591 			   __func__, cp, *cp, expected);
    592 		}
    593 		cp++;
    594 	}
    595 }
    596 #endif /* defined(KMEM_REDZONE) */
    597 
    598 
    599 /*
    600  * Used to dynamically allocate string with kmem accordingly to format.
    601  */
    602 char *
    603 kmem_asprintf(const char *fmt, ...)
    604 {
    605 	int size __diagused, len;
    606 	va_list va;
    607 	char *str;
    608 
    609 	va_start(va, fmt);
    610 	len = vsnprintf(NULL, 0, fmt, va);
    611 	va_end(va);
    612 
    613 	str = kmem_alloc(len + 1, KM_SLEEP);
    614 
    615 	va_start(va, fmt);
    616 	size = vsnprintf(str, len + 1, fmt, va);
    617 	va_end(va);
    618 
    619 	KASSERT(size == len);
    620 
    621 	return str;
    622 }
    623