Home | History | Annotate | Line # | Download | only in kern
subr_kmem.c revision 1.59
      1 /*	$NetBSD: subr_kmem.c,v 1.59 2014/07/03 08:43:49 maxv Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2009 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*-
     33  * Copyright (c)2006 YAMAMOTO Takashi,
     34  * All rights reserved.
     35  *
     36  * Redistribution and use in source and binary forms, with or without
     37  * modification, are permitted provided that the following conditions
     38  * are met:
     39  * 1. Redistributions of source code must retain the above copyright
     40  *    notice, this list of conditions and the following disclaimer.
     41  * 2. Redistributions in binary form must reproduce the above copyright
     42  *    notice, this list of conditions and the following disclaimer in the
     43  *    documentation and/or other materials provided with the distribution.
     44  *
     45  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     46  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     47  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     48  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     49  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     50  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     51  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     52  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     53  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     54  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     55  * SUCH DAMAGE.
     56  */
     57 
     58 /*
     59  * Allocator of kernel wired memory. This allocator has some debug features
     60  * enabled with "option DIAGNOSTIC" and "option DEBUG".
     61  */
     62 
     63 /*
     64  * KMEM_SIZE: detect alloc/free size mismatch bugs.
     65  *	Prefix each allocations with a fixed-sized, aligned header and record
     66  *	the exact user-requested allocation size in it. When freeing, compare
     67  *	it with kmem_free's "size" argument.
     68  */
     69 
     70 /*
     71  * KMEM_REDZONE: detect overrun bugs.
     72  *	Add a 2-byte pattern (allocate one more memory chunk if needed) at the
     73  *	end of each allocated buffer. Check this pattern on kmem_free.
     74  *
     75  * KMEM_POISON: detect modify-after-free bugs.
     76  *	Fill freed (in the sense of kmem_free) memory with a garbage pattern.
     77  *	Check the pattern on allocation.
     78  *
     79  * KMEM_GUARD
     80  *	A kernel with "option DEBUG" has "kmguard" debugging feature compiled
     81  *	in. See the comment in uvm/uvm_kmguard.c for what kind of bugs it tries
     82  *	to detect.  Even if compiled in, it's disabled by default because it's
     83  *	very expensive.  You can enable it on boot by:
     84  *		boot -d
     85  *		db> w kmem_guard_depth 0t30000
     86  *		db> c
     87  *
     88  *	The default value of kmem_guard_depth is 0, which means disabled.
     89  *	It can be changed by KMEM_GUARD_DEPTH kernel config option.
     90  */
     91 
     92 #include <sys/cdefs.h>
     93 __KERNEL_RCSID(0, "$NetBSD: subr_kmem.c,v 1.59 2014/07/03 08:43:49 maxv Exp $");
     94 
     95 #include <sys/param.h>
     96 #include <sys/callback.h>
     97 #include <sys/kmem.h>
     98 #include <sys/pool.h>
     99 #include <sys/debug.h>
    100 #include <sys/lockdebug.h>
    101 #include <sys/cpu.h>
    102 
    103 #include <uvm/uvm_extern.h>
    104 #include <uvm/uvm_map.h>
    105 #include <uvm/uvm_kmguard.h>
    106 
    107 #include <lib/libkern/libkern.h>
    108 
    109 struct kmem_cache_info {
    110 	size_t		kc_size;
    111 	const char *	kc_name;
    112 };
    113 
    114 static const struct kmem_cache_info kmem_cache_sizes[] = {
    115 	{  8, "kmem-8" },
    116 	{ 16, "kmem-16" },
    117 	{ 24, "kmem-24" },
    118 	{ 32, "kmem-32" },
    119 	{ 40, "kmem-40" },
    120 	{ 48, "kmem-48" },
    121 	{ 56, "kmem-56" },
    122 	{ 64, "kmem-64" },
    123 	{ 80, "kmem-80" },
    124 	{ 96, "kmem-96" },
    125 	{ 112, "kmem-112" },
    126 	{ 128, "kmem-128" },
    127 	{ 160, "kmem-160" },
    128 	{ 192, "kmem-192" },
    129 	{ 224, "kmem-224" },
    130 	{ 256, "kmem-256" },
    131 	{ 320, "kmem-320" },
    132 	{ 384, "kmem-384" },
    133 	{ 448, "kmem-448" },
    134 	{ 512, "kmem-512" },
    135 	{ 768, "kmem-768" },
    136 	{ 1024, "kmem-1024" },
    137 	{ 0, NULL }
    138 };
    139 
    140 static const struct kmem_cache_info kmem_cache_big_sizes[] = {
    141 	{ 2048, "kmem-2048" },
    142 	{ 4096, "kmem-4096" },
    143 	{ 8192, "kmem-8192" },
    144 	{ 16384, "kmem-16384" },
    145 	{ 0, NULL }
    146 };
    147 
    148 /*
    149  * KMEM_ALIGN is the smallest guaranteed alignment and also the
    150  * smallest allocateable quantum.
    151  * Every cache size >= CACHE_LINE_SIZE gets CACHE_LINE_SIZE alignment.
    152  */
    153 #define	KMEM_ALIGN		8
    154 #define	KMEM_SHIFT		3
    155 #define	KMEM_MAXSIZE		1024
    156 #define	KMEM_CACHE_COUNT	(KMEM_MAXSIZE >> KMEM_SHIFT)
    157 
    158 static pool_cache_t kmem_cache[KMEM_CACHE_COUNT] __cacheline_aligned;
    159 static size_t kmem_cache_maxidx __read_mostly;
    160 
    161 #define	KMEM_BIG_ALIGN		2048
    162 #define	KMEM_BIG_SHIFT		11
    163 #define	KMEM_BIG_MAXSIZE	16384
    164 #define	KMEM_CACHE_BIG_COUNT	(KMEM_BIG_MAXSIZE >> KMEM_BIG_SHIFT)
    165 
    166 static pool_cache_t kmem_cache_big[KMEM_CACHE_BIG_COUNT] __cacheline_aligned;
    167 static size_t kmem_cache_big_maxidx __read_mostly;
    168 
    169 #if defined(DIAGNOSTIC) && defined(_HARDKERNEL)
    170 #define	KMEM_SIZE
    171 #endif /* defined(DIAGNOSTIC) */
    172 
    173 #if defined(DEBUG) && defined(_HARDKERNEL)
    174 #define	KMEM_POISON
    175 #define	KMEM_REDZONE
    176 #define	KMEM_GUARD
    177 #endif /* defined(DEBUG) */
    178 
    179 #if defined(KMEM_POISON)
    180 static int kmem_poison_ctor(void *, void *, int);
    181 static void kmem_poison_fill(void *, size_t);
    182 static void kmem_poison_check(void *, size_t);
    183 #else /* defined(KMEM_POISON) */
    184 #define	kmem_poison_fill(p, sz)		/* nothing */
    185 #define	kmem_poison_check(p, sz)	/* nothing */
    186 #endif /* defined(KMEM_POISON) */
    187 
    188 #if defined(KMEM_REDZONE)
    189 #define	REDZONE_SIZE	2
    190 static void kmem_redzone_fill(void *, size_t);
    191 static void kmem_redzone_check(void *, size_t);
    192 #else /* defined(KMEM_REDZONE) */
    193 #define	REDZONE_SIZE	0
    194 #define	kmem_redzone_fill(p, sz)		/* nothing */
    195 #define	kmem_redzone_check(p, sz)	/* nothing */
    196 #endif /* defined(KMEM_REDZONE) */
    197 
    198 #if defined(KMEM_SIZE)
    199 struct kmem_header {
    200 	size_t		size;
    201 } __aligned(KMEM_ALIGN);
    202 #define	SIZE_SIZE	sizeof(struct kmem_header)
    203 static void kmem_size_set(void *, size_t);
    204 static void kmem_size_check(void *, size_t);
    205 #else
    206 #define	SIZE_SIZE	0
    207 #define	kmem_size_set(p, sz)	/* nothing */
    208 #define	kmem_size_check(p, sz)	/* nothing */
    209 #endif
    210 
    211 #if defined(KMEM_GUARD)
    212 #ifndef KMEM_GUARD_DEPTH
    213 #define KMEM_GUARD_DEPTH 0
    214 #endif
    215 int kmem_guard_depth = KMEM_GUARD_DEPTH;
    216 size_t kmem_guard_size;
    217 static struct uvm_kmguard kmem_guard;
    218 static void *kmem_freecheck;
    219 #endif /* defined(KMEM_GUARD) */
    220 
    221 CTASSERT(KM_SLEEP == PR_WAITOK);
    222 CTASSERT(KM_NOSLEEP == PR_NOWAIT);
    223 
    224 /*
    225  * kmem_intr_alloc: allocate wired memory.
    226  */
    227 
    228 void *
    229 kmem_intr_alloc(size_t requested_size, km_flag_t kmflags)
    230 {
    231 	size_t allocsz, index;
    232 	size_t size;
    233 	pool_cache_t pc;
    234 	uint8_t *p;
    235 
    236 	KASSERT(requested_size > 0);
    237 
    238 #ifdef KMEM_GUARD
    239 	if (requested_size <= kmem_guard_size) {
    240 		return uvm_kmguard_alloc(&kmem_guard, requested_size,
    241 		    (kmflags & KM_SLEEP) != 0);
    242 	}
    243 #endif
    244 	size = kmem_roundup_size(requested_size);
    245 	allocsz = size + SIZE_SIZE;
    246 
    247 #ifdef KMEM_REDZONE
    248 	if (size - requested_size < REDZONE_SIZE) {
    249 		/* If there isn't enough space in the padding, allocate
    250 		 * one more memory chunk for the red zone. */
    251 		allocsz += kmem_roundup_size(REDZONE_SIZE);
    252 	}
    253 #endif
    254 
    255 	if ((index = ((allocsz -1) >> KMEM_SHIFT))
    256 	    < kmem_cache_maxidx) {
    257 		pc = kmem_cache[index];
    258 	} else if ((index = ((allocsz - 1) >> KMEM_BIG_SHIFT))
    259 	    < kmem_cache_big_maxidx) {
    260 		pc = kmem_cache_big[index];
    261 	} else {
    262 		int ret = uvm_km_kmem_alloc(kmem_va_arena,
    263 		    (vsize_t)round_page(size),
    264 		    ((kmflags & KM_SLEEP) ? VM_SLEEP : VM_NOSLEEP)
    265 		     | VM_INSTANTFIT, (vmem_addr_t *)&p);
    266 		if (ret) {
    267 			return NULL;
    268 		}
    269 		FREECHECK_OUT(&kmem_freecheck, p);
    270 		return p;
    271 	}
    272 
    273 	p = pool_cache_get(pc, kmflags);
    274 
    275 	if (__predict_true(p != NULL)) {
    276 		kmem_poison_check(p, allocsz);
    277 		FREECHECK_OUT(&kmem_freecheck, p);
    278 		kmem_size_set(p, requested_size);
    279 		kmem_redzone_fill(p, requested_size + SIZE_SIZE);
    280 
    281 		return p + SIZE_SIZE;
    282 	}
    283 	return p;
    284 }
    285 
    286 /*
    287  * kmem_intr_zalloc: allocate zeroed wired memory.
    288  */
    289 
    290 void *
    291 kmem_intr_zalloc(size_t size, km_flag_t kmflags)
    292 {
    293 	void *p;
    294 
    295 	p = kmem_intr_alloc(size, kmflags);
    296 	if (p != NULL) {
    297 		memset(p, 0, size);
    298 	}
    299 	return p;
    300 }
    301 
    302 /*
    303  * kmem_intr_free: free wired memory allocated by kmem_alloc.
    304  */
    305 
    306 void
    307 kmem_intr_free(void *p, size_t requested_size)
    308 {
    309 	size_t allocsz, index;
    310 	size_t size;
    311 	pool_cache_t pc;
    312 
    313 	KASSERT(p != NULL);
    314 	KASSERT(requested_size > 0);
    315 
    316 #ifdef KMEM_GUARD
    317 	if (requested_size <= kmem_guard_size) {
    318 		uvm_kmguard_free(&kmem_guard, requested_size, p);
    319 		return;
    320 	}
    321 #endif
    322 
    323 	size = kmem_roundup_size(requested_size);
    324 	allocsz = size + SIZE_SIZE;
    325 
    326 #ifdef KMEM_REDZONE
    327 	if (size - requested_size < REDZONE_SIZE) {
    328 		allocsz += kmem_roundup_size(REDZONE_SIZE);
    329 	}
    330 #endif
    331 
    332 	if ((index = ((allocsz -1) >> KMEM_SHIFT))
    333 	    < kmem_cache_maxidx) {
    334 		pc = kmem_cache[index];
    335 	} else if ((index = ((allocsz - 1) >> KMEM_BIG_SHIFT))
    336 	    < kmem_cache_big_maxidx) {
    337 		pc = kmem_cache_big[index];
    338 	} else {
    339 		FREECHECK_IN(&kmem_freecheck, p);
    340 		uvm_km_kmem_free(kmem_va_arena, (vaddr_t)p,
    341 		    round_page(size));
    342 		return;
    343 	}
    344 
    345 	p = (uint8_t *)p - SIZE_SIZE;
    346 	kmem_size_check(p, requested_size);
    347 	kmem_redzone_check(p, requested_size + SIZE_SIZE);
    348 	FREECHECK_IN(&kmem_freecheck, p);
    349 	LOCKDEBUG_MEM_CHECK(p, size);
    350 	kmem_poison_fill(p, allocsz);
    351 
    352 	pool_cache_put(pc, p);
    353 }
    354 
    355 /* ---- kmem API */
    356 
    357 /*
    358  * kmem_alloc: allocate wired memory.
    359  * => must not be called from interrupt context.
    360  */
    361 
    362 void *
    363 kmem_alloc(size_t size, km_flag_t kmflags)
    364 {
    365 
    366 	KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()),
    367 	    "kmem(9) should not be used from the interrupt context");
    368 	return kmem_intr_alloc(size, kmflags);
    369 }
    370 
    371 /*
    372  * kmem_zalloc: allocate zeroed wired memory.
    373  * => must not be called from interrupt context.
    374  */
    375 
    376 void *
    377 kmem_zalloc(size_t size, km_flag_t kmflags)
    378 {
    379 
    380 	KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()),
    381 	    "kmem(9) should not be used from the interrupt context");
    382 	return kmem_intr_zalloc(size, kmflags);
    383 }
    384 
    385 /*
    386  * kmem_free: free wired memory allocated by kmem_alloc.
    387  * => must not be called from interrupt context.
    388  */
    389 
    390 void
    391 kmem_free(void *p, size_t size)
    392 {
    393 
    394 	KASSERT(!cpu_intr_p());
    395 	KASSERT(!cpu_softintr_p());
    396 	kmem_intr_free(p, size);
    397 }
    398 
    399 static size_t
    400 kmem_create_caches(const struct kmem_cache_info *array,
    401     pool_cache_t alloc_table[], size_t maxsize, int shift, int ipl)
    402 {
    403 	size_t maxidx = 0;
    404 	size_t table_unit = (1 << shift);
    405 	size_t size = table_unit;
    406 	int i;
    407 
    408 	for (i = 0; array[i].kc_size != 0 ; i++) {
    409 		const char *name = array[i].kc_name;
    410 		size_t cache_size = array[i].kc_size;
    411 		struct pool_allocator *pa;
    412 		int flags = PR_NOALIGN;
    413 		pool_cache_t pc;
    414 		size_t align;
    415 
    416 		if ((cache_size & (CACHE_LINE_SIZE - 1)) == 0)
    417 			align = CACHE_LINE_SIZE;
    418 		else if ((cache_size & (PAGE_SIZE - 1)) == 0)
    419 			align = PAGE_SIZE;
    420 		else
    421 			align = KMEM_ALIGN;
    422 
    423 		if (cache_size < CACHE_LINE_SIZE)
    424 			flags |= PR_NOTOUCH;
    425 
    426 		/* check if we reached the requested size */
    427 		if (cache_size > maxsize || cache_size > PAGE_SIZE) {
    428 			break;
    429 		}
    430 		if ((cache_size >> shift) > maxidx) {
    431 			maxidx = cache_size >> shift;
    432 		}
    433 
    434 		if ((cache_size >> shift) > maxidx) {
    435 			maxidx = cache_size >> shift;
    436 		}
    437 
    438 		pa = &pool_allocator_kmem;
    439 #if defined(KMEM_POISON)
    440 		pc = pool_cache_init(cache_size, align, 0, flags,
    441 		    name, pa, ipl, kmem_poison_ctor,
    442 		    NULL, (void *)cache_size);
    443 #else /* defined(KMEM_POISON) */
    444 		pc = pool_cache_init(cache_size, align, 0, flags,
    445 		    name, pa, ipl, NULL, NULL, NULL);
    446 #endif /* defined(KMEM_POISON) */
    447 
    448 		while (size <= cache_size) {
    449 			alloc_table[(size - 1) >> shift] = pc;
    450 			size += table_unit;
    451 		}
    452 	}
    453 	return maxidx;
    454 }
    455 
    456 void
    457 kmem_init(void)
    458 {
    459 
    460 #ifdef KMEM_GUARD
    461 	uvm_kmguard_init(&kmem_guard, &kmem_guard_depth, &kmem_guard_size,
    462 	    kmem_va_arena);
    463 #endif
    464 	kmem_cache_maxidx = kmem_create_caches(kmem_cache_sizes,
    465 	    kmem_cache, KMEM_MAXSIZE, KMEM_SHIFT, IPL_VM);
    466 	kmem_cache_big_maxidx = kmem_create_caches(kmem_cache_big_sizes,
    467 	    kmem_cache_big, PAGE_SIZE, KMEM_BIG_SHIFT, IPL_VM);
    468 }
    469 
    470 size_t
    471 kmem_roundup_size(size_t size)
    472 {
    473 
    474 	return (size + (KMEM_ALIGN - 1)) & ~(KMEM_ALIGN - 1);
    475 }
    476 
    477 /* ------------------ DEBUG / DIAGNOSTIC ------------------ */
    478 
    479 #if defined(KMEM_POISON) || defined(KMEM_REDZONE)
    480 #if defined(_LP64)
    481 #define PRIME 0x9e37fffffffc0000UL
    482 #else /* defined(_LP64) */
    483 #define PRIME 0x9e3779b1
    484 #endif /* defined(_LP64) */
    485 
    486 static inline uint8_t
    487 kmem_pattern_generate(const void *p)
    488 {
    489 	return (uint8_t)(((uintptr_t)p) * PRIME
    490 	   >> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT);
    491 }
    492 #endif /* defined(KMEM_POISON) || defined(KMEM_REDZONE) */
    493 
    494 #if defined(KMEM_POISON)
    495 static int
    496 kmem_poison_ctor(void *arg, void *obj, int flag)
    497 {
    498 	size_t sz = (size_t)arg;
    499 
    500 	kmem_poison_fill(obj, sz);
    501 
    502 	return 0;
    503 }
    504 
    505 static void
    506 kmem_poison_fill(void *p, size_t sz)
    507 {
    508 	uint8_t *cp;
    509 	const uint8_t *ep;
    510 
    511 	cp = p;
    512 	ep = cp + sz;
    513 	while (cp < ep) {
    514 		*cp = kmem_pattern_generate(cp);
    515 		cp++;
    516 	}
    517 }
    518 
    519 static void
    520 kmem_poison_check(void *p, size_t sz)
    521 {
    522 	uint8_t *cp;
    523 	const uint8_t *ep;
    524 
    525 	cp = p;
    526 	ep = cp + sz;
    527 	while (cp < ep) {
    528 		const uint8_t expected = kmem_pattern_generate(cp);
    529 
    530 		if (*cp != expected) {
    531 			panic("%s: %p: 0x%02x != 0x%02x\n",
    532 			   __func__, cp, *cp, expected);
    533 		}
    534 		cp++;
    535 	}
    536 }
    537 #endif /* defined(KMEM_POISON) */
    538 
    539 #if defined(KMEM_SIZE)
    540 static void
    541 kmem_size_set(void *p, size_t sz)
    542 {
    543 	struct kmem_header *hd;
    544 	hd = (struct kmem_header *)p;
    545 	hd->size = sz;
    546 }
    547 
    548 static void
    549 kmem_size_check(void *p, size_t sz)
    550 {
    551 	struct kmem_header *hd;
    552 	size_t hsz;
    553 
    554 	hd = (struct kmem_header *)p;
    555 	hsz = hd->size;
    556 
    557 	if (hsz != sz) {
    558 		panic("kmem_free(%p, %zu) != allocated size %zu",
    559 		    (const uint8_t *)p + SIZE_SIZE, sz, hsz);
    560 	}
    561 }
    562 #endif /* defined(KMEM_SIZE) */
    563 
    564 #if defined(KMEM_REDZONE)
    565 #define STATIC_BYTE	0xFE
    566 CTASSERT(REDZONE_SIZE > 1);
    567 static void
    568 kmem_redzone_fill(void *p, size_t sz)
    569 {
    570 	uint8_t *cp, pat;
    571 	const uint8_t *ep;
    572 
    573 	cp = (uint8_t *)p + sz;
    574 	ep = cp + REDZONE_SIZE;
    575 
    576 	/*
    577 	 * We really don't want the first byte of the red zone to be '\0';
    578 	 * an off-by-one in a string may not be properly detected.
    579 	 */
    580 	pat = kmem_pattern_generate(cp);
    581 	*cp = (pat == '\0') ? STATIC_BYTE: pat;
    582 	cp++;
    583 
    584 	while (cp < ep) {
    585 		*cp = kmem_pattern_generate(cp);
    586 		cp++;
    587 	}
    588 }
    589 
    590 static void
    591 kmem_redzone_check(void *p, size_t sz)
    592 {
    593 	uint8_t *cp, pat, expected;
    594 	const uint8_t *ep;
    595 
    596 	cp = (uint8_t *)p + sz;
    597 	ep = cp + REDZONE_SIZE;
    598 
    599 	pat = kmem_pattern_generate(cp);
    600 	expected = (pat == '\0') ? STATIC_BYTE: pat;
    601 	if (expected != *cp) {
    602 		panic("%s: %p: 0x%02x != 0x%02x\n",
    603 		   __func__, cp, *cp, expected);
    604 	}
    605 	cp++;
    606 
    607 	while (cp < ep) {
    608 		expected = kmem_pattern_generate(cp);
    609 		if (*cp != expected) {
    610 			panic("%s: %p: 0x%02x != 0x%02x\n",
    611 			   __func__, cp, *cp, expected);
    612 		}
    613 		cp++;
    614 	}
    615 }
    616 #endif /* defined(KMEM_REDZONE) */
    617 
    618 
    619 /*
    620  * Used to dynamically allocate string with kmem accordingly to format.
    621  */
    622 char *
    623 kmem_asprintf(const char *fmt, ...)
    624 {
    625 	int size __diagused, len;
    626 	va_list va;
    627 	char *str;
    628 
    629 	va_start(va, fmt);
    630 	len = vsnprintf(NULL, 0, fmt, va);
    631 	va_end(va);
    632 
    633 	str = kmem_alloc(len + 1, KM_SLEEP);
    634 
    635 	va_start(va, fmt);
    636 	size = vsnprintf(str, len + 1, fmt, va);
    637 	va_end(va);
    638 
    639 	KASSERT(size == len);
    640 
    641 	return str;
    642 }
    643