subr_kmem.c revision 1.60.4.3 1 /* $NetBSD: subr_kmem.c,v 1.60.4.3 2017/08/28 17:53:07 skrll Exp $ */
2
3 /*-
4 * Copyright (c) 2009-2015 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran and Maxime Villard.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c)2006 YAMAMOTO Takashi,
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 *
45 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
46 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
49 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55 * SUCH DAMAGE.
56 */
57
58 /*
59 * Allocator of kernel wired memory. This allocator has some debug features
60 * enabled with "option DIAGNOSTIC" and "option DEBUG".
61 */
62
63 /*
64 * KMEM_SIZE: detect alloc/free size mismatch bugs.
65 * Prefix each allocations with a fixed-sized, aligned header and record
66 * the exact user-requested allocation size in it. When freeing, compare
67 * it with kmem_free's "size" argument.
68 *
69 * KMEM_REDZONE: detect overrun bugs.
70 * Add a 2-byte pattern (allocate one more memory chunk if needed) at the
71 * end of each allocated buffer. Check this pattern on kmem_free.
72 *
73 * These options are enabled on DIAGNOSTIC.
74 *
75 * |CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|
76 * +-----+-----+-----+-----+-----+-----+-----+-----+-----+---+-+--+--+
77 * |/////| | | | | | | | | |*|**|UU|
78 * |/HSZ/| | | | | | | | | |*|**|UU|
79 * |/////| | | | | | | | | |*|**|UU|
80 * +-----+-----+-----+-----+-----+-----+-----+-----+-----+---+-+--+--+
81 * |Size | Buffer usable by the caller (requested size) |RedZ|Unused\
82 */
83
84 /*
85 * KMEM_POISON: detect modify-after-free bugs.
86 * Fill freed (in the sense of kmem_free) memory with a garbage pattern.
87 * Check the pattern on allocation.
88 *
89 * KMEM_GUARD
90 * A kernel with "option DEBUG" has "kmem_guard" debugging feature compiled
91 * in. See the comment below for what kind of bugs it tries to detect. Even
92 * if compiled in, it's disabled by default because it's very expensive.
93 * You can enable it on boot by:
94 * boot -d
95 * db> w kmem_guard_depth 0t30000
96 * db> c
97 *
98 * The default value of kmem_guard_depth is 0, which means disabled.
99 * It can be changed by KMEM_GUARD_DEPTH kernel config option.
100 */
101
102 #include <sys/cdefs.h>
103 __KERNEL_RCSID(0, "$NetBSD: subr_kmem.c,v 1.60.4.3 2017/08/28 17:53:07 skrll Exp $");
104 #ifdef _KERNEL_OPT
105 #include "opt_kmem.h"
106 #endif
107
108 #include <sys/param.h>
109 #include <sys/callback.h>
110 #include <sys/kmem.h>
111 #include <sys/pool.h>
112 #include <sys/debug.h>
113 #include <sys/lockdebug.h>
114 #include <sys/cpu.h>
115
116 #include <uvm/uvm_extern.h>
117 #include <uvm/uvm_map.h>
118
119 #include <lib/libkern/libkern.h>
120
121 struct kmem_cache_info {
122 size_t kc_size;
123 const char * kc_name;
124 };
125
126 static const struct kmem_cache_info kmem_cache_sizes[] = {
127 { 8, "kmem-8" },
128 { 16, "kmem-16" },
129 { 24, "kmem-24" },
130 { 32, "kmem-32" },
131 { 40, "kmem-40" },
132 { 48, "kmem-48" },
133 { 56, "kmem-56" },
134 { 64, "kmem-64" },
135 { 80, "kmem-80" },
136 { 96, "kmem-96" },
137 { 112, "kmem-112" },
138 { 128, "kmem-128" },
139 { 160, "kmem-160" },
140 { 192, "kmem-192" },
141 { 224, "kmem-224" },
142 { 256, "kmem-256" },
143 { 320, "kmem-320" },
144 { 384, "kmem-384" },
145 { 448, "kmem-448" },
146 { 512, "kmem-512" },
147 { 768, "kmem-768" },
148 { 1024, "kmem-1024" },
149 { 0, NULL }
150 };
151
152 static const struct kmem_cache_info kmem_cache_big_sizes[] = {
153 { 2048, "kmem-2048" },
154 { 4096, "kmem-4096" },
155 { 8192, "kmem-8192" },
156 { 16384, "kmem-16384" },
157 { 0, NULL }
158 };
159
160 /*
161 * KMEM_ALIGN is the smallest guaranteed alignment and also the
162 * smallest allocateable quantum.
163 * Every cache size >= CACHE_LINE_SIZE gets CACHE_LINE_SIZE alignment.
164 */
165 #define KMEM_ALIGN 8
166 #define KMEM_SHIFT 3
167 #define KMEM_MAXSIZE 1024
168 #define KMEM_CACHE_COUNT (KMEM_MAXSIZE >> KMEM_SHIFT)
169
170 static pool_cache_t kmem_cache[KMEM_CACHE_COUNT] __cacheline_aligned;
171 static size_t kmem_cache_maxidx __read_mostly;
172
173 #define KMEM_BIG_ALIGN 2048
174 #define KMEM_BIG_SHIFT 11
175 #define KMEM_BIG_MAXSIZE 16384
176 #define KMEM_CACHE_BIG_COUNT (KMEM_BIG_MAXSIZE >> KMEM_BIG_SHIFT)
177
178 static pool_cache_t kmem_cache_big[KMEM_CACHE_BIG_COUNT] __cacheline_aligned;
179 static size_t kmem_cache_big_maxidx __read_mostly;
180
181 #if defined(DIAGNOSTIC) && defined(_HARDKERNEL)
182 #define KMEM_SIZE
183 #define KMEM_REDZONE
184 #endif /* defined(DIAGNOSTIC) */
185
186 #if defined(DEBUG) && defined(_HARDKERNEL)
187 #define KMEM_SIZE
188 #define KMEM_POISON
189 #define KMEM_GUARD
190 static void *kmem_freecheck;
191 #endif /* defined(DEBUG) */
192
193 #if defined(KMEM_POISON)
194 static int kmem_poison_ctor(void *, void *, int);
195 static void kmem_poison_fill(void *, size_t);
196 static void kmem_poison_check(void *, size_t);
197 #else /* defined(KMEM_POISON) */
198 #define kmem_poison_fill(p, sz) /* nothing */
199 #define kmem_poison_check(p, sz) /* nothing */
200 #endif /* defined(KMEM_POISON) */
201
202 #if defined(KMEM_REDZONE)
203 #define REDZONE_SIZE 2
204 static void kmem_redzone_fill(void *, size_t);
205 static void kmem_redzone_check(void *, size_t);
206 #else /* defined(KMEM_REDZONE) */
207 #define REDZONE_SIZE 0
208 #define kmem_redzone_fill(p, sz) /* nothing */
209 #define kmem_redzone_check(p, sz) /* nothing */
210 #endif /* defined(KMEM_REDZONE) */
211
212 #if defined(KMEM_SIZE)
213 struct kmem_header {
214 size_t size;
215 } __aligned(KMEM_ALIGN);
216 #define SIZE_SIZE sizeof(struct kmem_header)
217 static void kmem_size_set(void *, size_t);
218 static void kmem_size_check(void *, size_t);
219 #else
220 #define SIZE_SIZE 0
221 #define kmem_size_set(p, sz) /* nothing */
222 #define kmem_size_check(p, sz) /* nothing */
223 #endif
224
225 #if defined(KMEM_GUARD)
226 #ifndef KMEM_GUARD_DEPTH
227 #define KMEM_GUARD_DEPTH 0
228 #endif
229 struct kmem_guard {
230 u_int kg_depth;
231 intptr_t * kg_fifo;
232 u_int kg_rotor;
233 vmem_t * kg_vmem;
234 };
235
236 static bool kmem_guard_init(struct kmem_guard *, u_int, vmem_t *);
237 static void *kmem_guard_alloc(struct kmem_guard *, size_t, bool);
238 static void kmem_guard_free(struct kmem_guard *, size_t, void *);
239
240 int kmem_guard_depth = KMEM_GUARD_DEPTH;
241 static bool kmem_guard_enabled;
242 static struct kmem_guard kmem_guard;
243 #endif /* defined(KMEM_GUARD) */
244
245 CTASSERT(KM_SLEEP == PR_WAITOK);
246 CTASSERT(KM_NOSLEEP == PR_NOWAIT);
247
248 /*
249 * kmem_intr_alloc: allocate wired memory.
250 */
251
252 void *
253 kmem_intr_alloc(size_t requested_size, km_flag_t kmflags)
254 {
255 size_t allocsz, index;
256 size_t size;
257 pool_cache_t pc;
258 uint8_t *p;
259
260 KASSERT(requested_size > 0);
261
262 #ifdef KMEM_GUARD
263 if (kmem_guard_enabled) {
264 return kmem_guard_alloc(&kmem_guard, requested_size,
265 (kmflags & KM_SLEEP) != 0);
266 }
267 #endif
268 size = kmem_roundup_size(requested_size);
269 allocsz = size + SIZE_SIZE;
270
271 #ifdef KMEM_REDZONE
272 if (size - requested_size < REDZONE_SIZE) {
273 /* If there isn't enough space in the padding, allocate
274 * one more memory chunk for the red zone. */
275 allocsz += kmem_roundup_size(REDZONE_SIZE);
276 }
277 #endif
278
279 if ((index = ((allocsz -1) >> KMEM_SHIFT))
280 < kmem_cache_maxidx) {
281 pc = kmem_cache[index];
282 } else if ((index = ((allocsz - 1) >> KMEM_BIG_SHIFT))
283 < kmem_cache_big_maxidx) {
284 pc = kmem_cache_big[index];
285 } else {
286 int ret = uvm_km_kmem_alloc(kmem_va_arena,
287 (vsize_t)round_page(size),
288 ((kmflags & KM_SLEEP) ? VM_SLEEP : VM_NOSLEEP)
289 | VM_INSTANTFIT, (vmem_addr_t *)&p);
290 if (ret) {
291 return NULL;
292 }
293 FREECHECK_OUT(&kmem_freecheck, p);
294 return p;
295 }
296
297 p = pool_cache_get(pc, kmflags);
298
299 if (__predict_true(p != NULL)) {
300 kmem_poison_check(p, allocsz);
301 FREECHECK_OUT(&kmem_freecheck, p);
302 kmem_size_set(p, requested_size);
303 kmem_redzone_fill(p, requested_size + SIZE_SIZE);
304
305 return p + SIZE_SIZE;
306 }
307 return p;
308 }
309
310 /*
311 * kmem_intr_zalloc: allocate zeroed wired memory.
312 */
313
314 void *
315 kmem_intr_zalloc(size_t size, km_flag_t kmflags)
316 {
317 void *p;
318
319 p = kmem_intr_alloc(size, kmflags);
320 if (p != NULL) {
321 memset(p, 0, size);
322 }
323 return p;
324 }
325
326 /*
327 * kmem_intr_free: free wired memory allocated by kmem_alloc.
328 */
329
330 void
331 kmem_intr_free(void *p, size_t requested_size)
332 {
333 size_t allocsz, index;
334 size_t size;
335 pool_cache_t pc;
336
337 KASSERT(p != NULL);
338 KASSERT(requested_size > 0);
339
340 #ifdef KMEM_GUARD
341 if (kmem_guard_enabled) {
342 kmem_guard_free(&kmem_guard, requested_size, p);
343 return;
344 }
345 #endif
346
347 size = kmem_roundup_size(requested_size);
348 allocsz = size + SIZE_SIZE;
349
350 #ifdef KMEM_REDZONE
351 if (size - requested_size < REDZONE_SIZE) {
352 allocsz += kmem_roundup_size(REDZONE_SIZE);
353 }
354 #endif
355
356 if ((index = ((allocsz -1) >> KMEM_SHIFT))
357 < kmem_cache_maxidx) {
358 pc = kmem_cache[index];
359 } else if ((index = ((allocsz - 1) >> KMEM_BIG_SHIFT))
360 < kmem_cache_big_maxidx) {
361 pc = kmem_cache_big[index];
362 } else {
363 FREECHECK_IN(&kmem_freecheck, p);
364 uvm_km_kmem_free(kmem_va_arena, (vaddr_t)p,
365 round_page(size));
366 return;
367 }
368
369 p = (uint8_t *)p - SIZE_SIZE;
370 kmem_size_check(p, requested_size);
371 kmem_redzone_check(p, requested_size + SIZE_SIZE);
372 FREECHECK_IN(&kmem_freecheck, p);
373 LOCKDEBUG_MEM_CHECK(p, size);
374 kmem_poison_fill(p, allocsz);
375
376 pool_cache_put(pc, p);
377 }
378
379 /* ---- kmem API */
380
381 /*
382 * kmem_alloc: allocate wired memory.
383 * => must not be called from interrupt context.
384 */
385
386 void *
387 kmem_alloc(size_t size, km_flag_t kmflags)
388 {
389 void *v;
390
391 KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()),
392 "kmem(9) should not be used from the interrupt context");
393 v = kmem_intr_alloc(size, kmflags);
394 KASSERT(v || (kmflags & KM_NOSLEEP) != 0);
395 return v;
396 }
397
398 /*
399 * kmem_zalloc: allocate zeroed wired memory.
400 * => must not be called from interrupt context.
401 */
402
403 void *
404 kmem_zalloc(size_t size, km_flag_t kmflags)
405 {
406 void *v;
407
408 KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()),
409 "kmem(9) should not be used from the interrupt context");
410 v = kmem_intr_zalloc(size, kmflags);
411 KASSERT(v || (kmflags & KM_NOSLEEP) != 0);
412 return v;
413 }
414
415 /*
416 * kmem_free: free wired memory allocated by kmem_alloc.
417 * => must not be called from interrupt context.
418 */
419
420 void
421 kmem_free(void *p, size_t size)
422 {
423 KASSERT(!cpu_intr_p());
424 KASSERT(!cpu_softintr_p());
425 kmem_intr_free(p, size);
426 }
427
428 static size_t
429 kmem_create_caches(const struct kmem_cache_info *array,
430 pool_cache_t alloc_table[], size_t maxsize, int shift, int ipl)
431 {
432 size_t maxidx = 0;
433 size_t table_unit = (1 << shift);
434 size_t size = table_unit;
435 int i;
436
437 for (i = 0; array[i].kc_size != 0 ; i++) {
438 const char *name = array[i].kc_name;
439 size_t cache_size = array[i].kc_size;
440 struct pool_allocator *pa;
441 int flags = PR_NOALIGN;
442 pool_cache_t pc;
443 size_t align;
444
445 if ((cache_size & (CACHE_LINE_SIZE - 1)) == 0)
446 align = CACHE_LINE_SIZE;
447 else if ((cache_size & (PAGE_SIZE - 1)) == 0)
448 align = PAGE_SIZE;
449 else
450 align = KMEM_ALIGN;
451
452 if (cache_size < CACHE_LINE_SIZE)
453 flags |= PR_NOTOUCH;
454
455 /* check if we reached the requested size */
456 if (cache_size > maxsize || cache_size > PAGE_SIZE) {
457 break;
458 }
459 if ((cache_size >> shift) > maxidx) {
460 maxidx = cache_size >> shift;
461 }
462
463 if ((cache_size >> shift) > maxidx) {
464 maxidx = cache_size >> shift;
465 }
466
467 pa = &pool_allocator_kmem;
468 #if defined(KMEM_POISON)
469 pc = pool_cache_init(cache_size, align, 0, flags,
470 name, pa, ipl, kmem_poison_ctor,
471 NULL, (void *)cache_size);
472 #else /* defined(KMEM_POISON) */
473 pc = pool_cache_init(cache_size, align, 0, flags,
474 name, pa, ipl, NULL, NULL, NULL);
475 #endif /* defined(KMEM_POISON) */
476
477 while (size <= cache_size) {
478 alloc_table[(size - 1) >> shift] = pc;
479 size += table_unit;
480 }
481 }
482 return maxidx;
483 }
484
485 void
486 kmem_init(void)
487 {
488 #ifdef KMEM_GUARD
489 kmem_guard_enabled = kmem_guard_init(&kmem_guard, kmem_guard_depth,
490 kmem_va_arena);
491 #endif
492 kmem_cache_maxidx = kmem_create_caches(kmem_cache_sizes,
493 kmem_cache, KMEM_MAXSIZE, KMEM_SHIFT, IPL_VM);
494 kmem_cache_big_maxidx = kmem_create_caches(kmem_cache_big_sizes,
495 kmem_cache_big, PAGE_SIZE, KMEM_BIG_SHIFT, IPL_VM);
496 }
497
498 size_t
499 kmem_roundup_size(size_t size)
500 {
501 return (size + (KMEM_ALIGN - 1)) & ~(KMEM_ALIGN - 1);
502 }
503
504 /*
505 * Used to dynamically allocate string with kmem accordingly to format.
506 */
507 char *
508 kmem_asprintf(const char *fmt, ...)
509 {
510 int size __diagused, len;
511 va_list va;
512 char *str;
513
514 va_start(va, fmt);
515 len = vsnprintf(NULL, 0, fmt, va);
516 va_end(va);
517
518 str = kmem_alloc(len + 1, KM_SLEEP);
519
520 va_start(va, fmt);
521 size = vsnprintf(str, len + 1, fmt, va);
522 va_end(va);
523
524 KASSERT(size == len);
525
526 return str;
527 }
528
529 /* ------------------ DEBUG / DIAGNOSTIC ------------------ */
530
531 #if defined(KMEM_POISON) || defined(KMEM_REDZONE)
532 #if defined(_LP64)
533 #define PRIME 0x9e37fffffffc0000UL
534 #else /* defined(_LP64) */
535 #define PRIME 0x9e3779b1
536 #endif /* defined(_LP64) */
537
538 static inline uint8_t
539 kmem_pattern_generate(const void *p)
540 {
541 return (uint8_t)(((uintptr_t)p) * PRIME
542 >> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT);
543 }
544 #endif /* defined(KMEM_POISON) || defined(KMEM_REDZONE) */
545
546 #if defined(KMEM_POISON)
547 static int
548 kmem_poison_ctor(void *arg, void *obj, int flag)
549 {
550 size_t sz = (size_t)arg;
551
552 kmem_poison_fill(obj, sz);
553
554 return 0;
555 }
556
557 static void
558 kmem_poison_fill(void *p, size_t sz)
559 {
560 uint8_t *cp;
561 const uint8_t *ep;
562
563 cp = p;
564 ep = cp + sz;
565 while (cp < ep) {
566 *cp = kmem_pattern_generate(cp);
567 cp++;
568 }
569 }
570
571 static void
572 kmem_poison_check(void *p, size_t sz)
573 {
574 uint8_t *cp;
575 const uint8_t *ep;
576
577 cp = p;
578 ep = cp + sz;
579 while (cp < ep) {
580 const uint8_t expected = kmem_pattern_generate(cp);
581
582 if (*cp != expected) {
583 panic("%s: %p: 0x%02x != 0x%02x\n",
584 __func__, cp, *cp, expected);
585 }
586 cp++;
587 }
588 }
589 #endif /* defined(KMEM_POISON) */
590
591 #if defined(KMEM_SIZE)
592 static void
593 kmem_size_set(void *p, size_t sz)
594 {
595 struct kmem_header *hd;
596 hd = (struct kmem_header *)p;
597 hd->size = sz;
598 }
599
600 static void
601 kmem_size_check(void *p, size_t sz)
602 {
603 struct kmem_header *hd;
604 size_t hsz;
605
606 hd = (struct kmem_header *)p;
607 hsz = hd->size;
608
609 if (hsz != sz) {
610 panic("kmem_free(%p, %zu) != allocated size %zu",
611 (const uint8_t *)p + SIZE_SIZE, sz, hsz);
612 }
613 }
614 #endif /* defined(KMEM_SIZE) */
615
616 #if defined(KMEM_REDZONE)
617 #define STATIC_BYTE 0xFE
618 CTASSERT(REDZONE_SIZE > 1);
619 static void
620 kmem_redzone_fill(void *p, size_t sz)
621 {
622 uint8_t *cp, pat;
623 const uint8_t *ep;
624
625 cp = (uint8_t *)p + sz;
626 ep = cp + REDZONE_SIZE;
627
628 /*
629 * We really don't want the first byte of the red zone to be '\0';
630 * an off-by-one in a string may not be properly detected.
631 */
632 pat = kmem_pattern_generate(cp);
633 *cp = (pat == '\0') ? STATIC_BYTE: pat;
634 cp++;
635
636 while (cp < ep) {
637 *cp = kmem_pattern_generate(cp);
638 cp++;
639 }
640 }
641
642 static void
643 kmem_redzone_check(void *p, size_t sz)
644 {
645 uint8_t *cp, pat, expected;
646 const uint8_t *ep;
647
648 cp = (uint8_t *)p + sz;
649 ep = cp + REDZONE_SIZE;
650
651 pat = kmem_pattern_generate(cp);
652 expected = (pat == '\0') ? STATIC_BYTE: pat;
653 if (expected != *cp) {
654 panic("%s: %p: 0x%02x != 0x%02x\n",
655 __func__, cp, *cp, expected);
656 }
657 cp++;
658
659 while (cp < ep) {
660 expected = kmem_pattern_generate(cp);
661 if (*cp != expected) {
662 panic("%s: %p: 0x%02x != 0x%02x\n",
663 __func__, cp, *cp, expected);
664 }
665 cp++;
666 }
667 }
668 #endif /* defined(KMEM_REDZONE) */
669
670
671 #if defined(KMEM_GUARD)
672 /*
673 * The ultimate memory allocator for debugging, baby. It tries to catch:
674 *
675 * 1. Overflow, in realtime. A guard page sits immediately after the
676 * requested area; a read/write overflow therefore triggers a page
677 * fault.
678 * 2. Invalid pointer/size passed, at free. A kmem_header structure sits
679 * just before the requested area, and holds the allocated size. Any
680 * difference with what is given at free triggers a panic.
681 * 3. Underflow, at free. If an underflow occurs, the kmem header will be
682 * modified, and 2. will trigger a panic.
683 * 4. Use-after-free. When freeing, the memory is unmapped, and depending
684 * on the value of kmem_guard_depth, the kernel will more or less delay
685 * the recycling of that memory. Which means that any ulterior read/write
686 * access to the memory will trigger a page fault, given it hasn't been
687 * recycled yet.
688 */
689
690 #include <sys/atomic.h>
691 #include <uvm/uvm.h>
692
693 static bool
694 kmem_guard_init(struct kmem_guard *kg, u_int depth, vmem_t *vm)
695 {
696 vaddr_t va;
697
698 /* If not enabled, we have nothing to do. */
699 if (depth == 0) {
700 return false;
701 }
702 depth = roundup(depth, PAGE_SIZE / sizeof(void *));
703 KASSERT(depth != 0);
704
705 /*
706 * Allocate fifo.
707 */
708 va = uvm_km_alloc(kernel_map, depth * sizeof(void *), PAGE_SIZE,
709 UVM_KMF_WIRED | UVM_KMF_ZERO);
710 if (va == 0) {
711 return false;
712 }
713
714 /*
715 * Init object.
716 */
717 kg->kg_vmem = vm;
718 kg->kg_fifo = (void *)va;
719 kg->kg_depth = depth;
720 kg->kg_rotor = 0;
721
722 printf("kmem_guard(%p): depth %d\n", kg, depth);
723 return true;
724 }
725
726 static void *
727 kmem_guard_alloc(struct kmem_guard *kg, size_t requested_size, bool waitok)
728 {
729 struct vm_page *pg;
730 vm_flag_t flags;
731 vmem_addr_t va;
732 vaddr_t loopva;
733 vsize_t loopsize;
734 size_t size;
735 void **p;
736
737 /*
738 * Compute the size: take the kmem header into account, and add a guard
739 * page at the end.
740 */
741 size = round_page(requested_size + SIZE_SIZE) + PAGE_SIZE;
742
743 /* Allocate pages of kernel VA, but do not map anything in yet. */
744 flags = VM_BESTFIT | (waitok ? VM_SLEEP : VM_NOSLEEP);
745 if (vmem_alloc(kg->kg_vmem, size, flags, &va) != 0) {
746 return NULL;
747 }
748
749 loopva = va;
750 loopsize = size - PAGE_SIZE;
751
752 while (loopsize) {
753 pg = uvm_pagealloc(NULL, loopva, NULL, 0);
754 if (__predict_false(pg == NULL)) {
755 if (waitok) {
756 uvm_wait("kmem_guard");
757 continue;
758 } else {
759 uvm_km_pgremove_intrsafe(kernel_map, va,
760 va + size);
761 vmem_free(kg->kg_vmem, va, size);
762 return NULL;
763 }
764 }
765
766 pg->flags &= ~PG_BUSY; /* new page */
767 UVM_PAGE_OWN(pg, NULL);
768 pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
769 VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE);
770
771 loopva += PAGE_SIZE;
772 loopsize -= PAGE_SIZE;
773 }
774
775 pmap_update(pmap_kernel());
776
777 /*
778 * Offset the returned pointer so that the unmapped guard page sits
779 * immediately after the returned object.
780 */
781 p = (void **)((va + (size - PAGE_SIZE) - requested_size) & ~(uintptr_t)ALIGNBYTES);
782 kmem_size_set((uint8_t *)p - SIZE_SIZE, requested_size);
783 return (void *)p;
784 }
785
786 static void
787 kmem_guard_free(struct kmem_guard *kg, size_t requested_size, void *p)
788 {
789 vaddr_t va;
790 u_int rotor;
791 size_t size;
792 uint8_t *ptr;
793
794 ptr = (uint8_t *)p - SIZE_SIZE;
795 kmem_size_check(ptr, requested_size);
796 va = trunc_page((vaddr_t)ptr);
797 size = round_page(requested_size + SIZE_SIZE) + PAGE_SIZE;
798
799 KASSERT(pmap_extract(pmap_kernel(), va, NULL));
800 KASSERT(!pmap_extract(pmap_kernel(), va + (size - PAGE_SIZE), NULL));
801
802 /*
803 * Unmap and free the pages. The last one is never allocated.
804 */
805 uvm_km_pgremove_intrsafe(kernel_map, va, va + size);
806 pmap_update(pmap_kernel());
807
808 #if 0
809 /*
810 * XXX: Here, we need to atomically register the va and its size in the
811 * fifo.
812 */
813
814 /*
815 * Put the VA allocation into the list and swap an old one out to free.
816 * This behaves mostly like a fifo.
817 */
818 rotor = atomic_inc_uint_nv(&kg->kg_rotor) % kg->kg_depth;
819 va = (vaddr_t)atomic_swap_ptr(&kg->kg_fifo[rotor], (void *)va);
820 if (va != 0) {
821 vmem_free(kg->kg_vmem, va, size);
822 }
823 #else
824 (void)rotor;
825 vmem_free(kg->kg_vmem, va, size);
826 #endif
827 }
828
829 #endif /* defined(KMEM_GUARD) */
830