Home | History | Annotate | Line # | Download | only in kern
subr_kmem.c revision 1.62
      1 /*	$NetBSD: subr_kmem.c,v 1.62 2016/02/29 00:34:17 chs Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2009-2015 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran and Maxime Villard.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*-
     33  * Copyright (c)2006 YAMAMOTO Takashi,
     34  * All rights reserved.
     35  *
     36  * Redistribution and use in source and binary forms, with or without
     37  * modification, are permitted provided that the following conditions
     38  * are met:
     39  * 1. Redistributions of source code must retain the above copyright
     40  *    notice, this list of conditions and the following disclaimer.
     41  * 2. Redistributions in binary form must reproduce the above copyright
     42  *    notice, this list of conditions and the following disclaimer in the
     43  *    documentation and/or other materials provided with the distribution.
     44  *
     45  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     46  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     47  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     48  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     49  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     50  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     51  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     52  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     53  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     54  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     55  * SUCH DAMAGE.
     56  */
     57 
     58 /*
     59  * Allocator of kernel wired memory. This allocator has some debug features
     60  * enabled with "option DIAGNOSTIC" and "option DEBUG".
     61  */
     62 
     63 /*
     64  * KMEM_SIZE: detect alloc/free size mismatch bugs.
     65  *	Prefix each allocations with a fixed-sized, aligned header and record
     66  *	the exact user-requested allocation size in it. When freeing, compare
     67  *	it with kmem_free's "size" argument.
     68  *
     69  * KMEM_REDZONE: detect overrun bugs.
     70  *	Add a 2-byte pattern (allocate one more memory chunk if needed) at the
     71  *	end of each allocated buffer. Check this pattern on kmem_free.
     72  *
     73  * These options are enabled on DIAGNOSTIC.
     74  *
     75  *  |CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|
     76  *  +-----+-----+-----+-----+-----+-----+-----+-----+-----+---+-+--+--+
     77  *  |/////|     |     |     |     |     |     |     |     |   |*|**|UU|
     78  *  |/HSZ/|     |     |     |     |     |     |     |     |   |*|**|UU|
     79  *  |/////|     |     |     |     |     |     |     |     |   |*|**|UU|
     80  *  +-----+-----+-----+-----+-----+-----+-----+-----+-----+---+-+--+--+
     81  *  |Size |    Buffer usable by the caller (requested size)   |RedZ|Unused\
     82  */
     83 
     84 /*
     85  * KMEM_POISON: detect modify-after-free bugs.
     86  *	Fill freed (in the sense of kmem_free) memory with a garbage pattern.
     87  *	Check the pattern on allocation.
     88  *
     89  * KMEM_GUARD
     90  *	A kernel with "option DEBUG" has "kmem_guard" debugging feature compiled
     91  *	in. See the comment below for what kind of bugs it tries to detect. Even
     92  *	if compiled in, it's disabled by default because it's very expensive.
     93  *	You can enable it on boot by:
     94  *		boot -d
     95  *		db> w kmem_guard_depth 0t30000
     96  *		db> c
     97  *
     98  *	The default value of kmem_guard_depth is 0, which means disabled.
     99  *	It can be changed by KMEM_GUARD_DEPTH kernel config option.
    100  */
    101 
    102 #include <sys/cdefs.h>
    103 __KERNEL_RCSID(0, "$NetBSD: subr_kmem.c,v 1.62 2016/02/29 00:34:17 chs Exp $");
    104 
    105 #include <sys/param.h>
    106 #include <sys/callback.h>
    107 #include <sys/kmem.h>
    108 #include <sys/pool.h>
    109 #include <sys/debug.h>
    110 #include <sys/lockdebug.h>
    111 #include <sys/cpu.h>
    112 
    113 #include <uvm/uvm_extern.h>
    114 #include <uvm/uvm_map.h>
    115 
    116 #include <lib/libkern/libkern.h>
    117 
    118 struct kmem_cache_info {
    119 	size_t		kc_size;
    120 	const char *	kc_name;
    121 };
    122 
    123 static const struct kmem_cache_info kmem_cache_sizes[] = {
    124 	{  8, "kmem-8" },
    125 	{ 16, "kmem-16" },
    126 	{ 24, "kmem-24" },
    127 	{ 32, "kmem-32" },
    128 	{ 40, "kmem-40" },
    129 	{ 48, "kmem-48" },
    130 	{ 56, "kmem-56" },
    131 	{ 64, "kmem-64" },
    132 	{ 80, "kmem-80" },
    133 	{ 96, "kmem-96" },
    134 	{ 112, "kmem-112" },
    135 	{ 128, "kmem-128" },
    136 	{ 160, "kmem-160" },
    137 	{ 192, "kmem-192" },
    138 	{ 224, "kmem-224" },
    139 	{ 256, "kmem-256" },
    140 	{ 320, "kmem-320" },
    141 	{ 384, "kmem-384" },
    142 	{ 448, "kmem-448" },
    143 	{ 512, "kmem-512" },
    144 	{ 768, "kmem-768" },
    145 	{ 1024, "kmem-1024" },
    146 	{ 0, NULL }
    147 };
    148 
    149 static const struct kmem_cache_info kmem_cache_big_sizes[] = {
    150 	{ 2048, "kmem-2048" },
    151 	{ 4096, "kmem-4096" },
    152 	{ 8192, "kmem-8192" },
    153 	{ 16384, "kmem-16384" },
    154 	{ 0, NULL }
    155 };
    156 
    157 /*
    158  * KMEM_ALIGN is the smallest guaranteed alignment and also the
    159  * smallest allocateable quantum.
    160  * Every cache size >= CACHE_LINE_SIZE gets CACHE_LINE_SIZE alignment.
    161  */
    162 #define	KMEM_ALIGN		8
    163 #define	KMEM_SHIFT		3
    164 #define	KMEM_MAXSIZE		1024
    165 #define	KMEM_CACHE_COUNT	(KMEM_MAXSIZE >> KMEM_SHIFT)
    166 
    167 static pool_cache_t kmem_cache[KMEM_CACHE_COUNT] __cacheline_aligned;
    168 static size_t kmem_cache_maxidx __read_mostly;
    169 
    170 #define	KMEM_BIG_ALIGN		2048
    171 #define	KMEM_BIG_SHIFT		11
    172 #define	KMEM_BIG_MAXSIZE	16384
    173 #define	KMEM_CACHE_BIG_COUNT	(KMEM_BIG_MAXSIZE >> KMEM_BIG_SHIFT)
    174 
    175 static pool_cache_t kmem_cache_big[KMEM_CACHE_BIG_COUNT] __cacheline_aligned;
    176 static size_t kmem_cache_big_maxidx __read_mostly;
    177 
    178 #if defined(DIAGNOSTIC) && defined(_HARDKERNEL)
    179 #define	KMEM_SIZE
    180 #define	KMEM_REDZONE
    181 #endif /* defined(DIAGNOSTIC) */
    182 
    183 #if defined(DEBUG) && defined(_HARDKERNEL)
    184 #define	KMEM_SIZE
    185 #define	KMEM_POISON
    186 #define	KMEM_GUARD
    187 static void *kmem_freecheck;
    188 #endif /* defined(DEBUG) */
    189 
    190 #if defined(KMEM_POISON)
    191 static int kmem_poison_ctor(void *, void *, int);
    192 static void kmem_poison_fill(void *, size_t);
    193 static void kmem_poison_check(void *, size_t);
    194 #else /* defined(KMEM_POISON) */
    195 #define	kmem_poison_fill(p, sz)		/* nothing */
    196 #define	kmem_poison_check(p, sz)	/* nothing */
    197 #endif /* defined(KMEM_POISON) */
    198 
    199 #if defined(KMEM_REDZONE)
    200 #define	REDZONE_SIZE	2
    201 static void kmem_redzone_fill(void *, size_t);
    202 static void kmem_redzone_check(void *, size_t);
    203 #else /* defined(KMEM_REDZONE) */
    204 #define	REDZONE_SIZE	0
    205 #define	kmem_redzone_fill(p, sz)		/* nothing */
    206 #define	kmem_redzone_check(p, sz)	/* nothing */
    207 #endif /* defined(KMEM_REDZONE) */
    208 
    209 #if defined(KMEM_SIZE)
    210 struct kmem_header {
    211 	size_t		size;
    212 } __aligned(KMEM_ALIGN);
    213 #define	SIZE_SIZE	sizeof(struct kmem_header)
    214 static void kmem_size_set(void *, size_t);
    215 static void kmem_size_check(void *, size_t);
    216 #else
    217 #define	SIZE_SIZE	0
    218 #define	kmem_size_set(p, sz)	/* nothing */
    219 #define	kmem_size_check(p, sz)	/* nothing */
    220 #endif
    221 
    222 #if defined(KMEM_GUARD)
    223 #ifndef KMEM_GUARD_DEPTH
    224 #define KMEM_GUARD_DEPTH 0
    225 #endif
    226 struct kmem_guard {
    227 	u_int		kg_depth;
    228 	intptr_t *	kg_fifo;
    229 	u_int		kg_rotor;
    230 	vmem_t *	kg_vmem;
    231 };
    232 
    233 static bool	kmem_guard_init(struct kmem_guard *, u_int, vmem_t *);
    234 static void *kmem_guard_alloc(struct kmem_guard *, size_t, bool);
    235 static void kmem_guard_free(struct kmem_guard *, size_t, void *);
    236 
    237 int kmem_guard_depth = KMEM_GUARD_DEPTH;
    238 static bool kmem_guard_enabled;
    239 static struct kmem_guard kmem_guard;
    240 #endif /* defined(KMEM_GUARD) */
    241 
    242 CTASSERT(KM_SLEEP == PR_WAITOK);
    243 CTASSERT(KM_NOSLEEP == PR_NOWAIT);
    244 
    245 /*
    246  * kmem_intr_alloc: allocate wired memory.
    247  */
    248 
    249 void *
    250 kmem_intr_alloc(size_t requested_size, km_flag_t kmflags)
    251 {
    252 	size_t allocsz, index;
    253 	size_t size;
    254 	pool_cache_t pc;
    255 	uint8_t *p;
    256 
    257 	KASSERT(requested_size > 0);
    258 
    259 #ifdef KMEM_GUARD
    260 	if (kmem_guard_enabled) {
    261 		return kmem_guard_alloc(&kmem_guard, requested_size,
    262 		    (kmflags & KM_SLEEP) != 0);
    263 	}
    264 #endif
    265 	size = kmem_roundup_size(requested_size);
    266 	allocsz = size + SIZE_SIZE;
    267 
    268 #ifdef KMEM_REDZONE
    269 	if (size - requested_size < REDZONE_SIZE) {
    270 		/* If there isn't enough space in the padding, allocate
    271 		 * one more memory chunk for the red zone. */
    272 		allocsz += kmem_roundup_size(REDZONE_SIZE);
    273 	}
    274 #endif
    275 
    276 	if ((index = ((allocsz -1) >> KMEM_SHIFT))
    277 	    < kmem_cache_maxidx) {
    278 		pc = kmem_cache[index];
    279 	} else if ((index = ((allocsz - 1) >> KMEM_BIG_SHIFT))
    280 	    < kmem_cache_big_maxidx) {
    281 		pc = kmem_cache_big[index];
    282 	} else {
    283 		int ret = uvm_km_kmem_alloc(kmem_va_arena,
    284 		    (vsize_t)round_page(size),
    285 		    ((kmflags & KM_SLEEP) ? VM_SLEEP : VM_NOSLEEP)
    286 		     | VM_INSTANTFIT, (vmem_addr_t *)&p);
    287 		if (ret) {
    288 			return NULL;
    289 		}
    290 		FREECHECK_OUT(&kmem_freecheck, p);
    291 		return p;
    292 	}
    293 
    294 	p = pool_cache_get(pc, kmflags);
    295 
    296 	if (__predict_true(p != NULL)) {
    297 		kmem_poison_check(p, allocsz);
    298 		FREECHECK_OUT(&kmem_freecheck, p);
    299 		kmem_size_set(p, requested_size);
    300 		kmem_redzone_fill(p, requested_size + SIZE_SIZE);
    301 
    302 		return p + SIZE_SIZE;
    303 	}
    304 	return p;
    305 }
    306 
    307 /*
    308  * kmem_intr_zalloc: allocate zeroed wired memory.
    309  */
    310 
    311 void *
    312 kmem_intr_zalloc(size_t size, km_flag_t kmflags)
    313 {
    314 	void *p;
    315 
    316 	p = kmem_intr_alloc(size, kmflags);
    317 	if (p != NULL) {
    318 		memset(p, 0, size);
    319 	}
    320 	return p;
    321 }
    322 
    323 /*
    324  * kmem_intr_free: free wired memory allocated by kmem_alloc.
    325  */
    326 
    327 void
    328 kmem_intr_free(void *p, size_t requested_size)
    329 {
    330 	size_t allocsz, index;
    331 	size_t size;
    332 	pool_cache_t pc;
    333 
    334 	KASSERT(p != NULL);
    335 	KASSERT(requested_size > 0);
    336 
    337 #ifdef KMEM_GUARD
    338 	if (kmem_guard_enabled) {
    339 		kmem_guard_free(&kmem_guard, requested_size, p);
    340 		return;
    341 	}
    342 #endif
    343 
    344 	size = kmem_roundup_size(requested_size);
    345 	allocsz = size + SIZE_SIZE;
    346 
    347 #ifdef KMEM_REDZONE
    348 	if (size - requested_size < REDZONE_SIZE) {
    349 		allocsz += kmem_roundup_size(REDZONE_SIZE);
    350 	}
    351 #endif
    352 
    353 	if ((index = ((allocsz -1) >> KMEM_SHIFT))
    354 	    < kmem_cache_maxidx) {
    355 		pc = kmem_cache[index];
    356 	} else if ((index = ((allocsz - 1) >> KMEM_BIG_SHIFT))
    357 	    < kmem_cache_big_maxidx) {
    358 		pc = kmem_cache_big[index];
    359 	} else {
    360 		FREECHECK_IN(&kmem_freecheck, p);
    361 		uvm_km_kmem_free(kmem_va_arena, (vaddr_t)p,
    362 		    round_page(size));
    363 		return;
    364 	}
    365 
    366 	p = (uint8_t *)p - SIZE_SIZE;
    367 	kmem_size_check(p, requested_size);
    368 	kmem_redzone_check(p, requested_size + SIZE_SIZE);
    369 	FREECHECK_IN(&kmem_freecheck, p);
    370 	LOCKDEBUG_MEM_CHECK(p, size);
    371 	kmem_poison_fill(p, allocsz);
    372 
    373 	pool_cache_put(pc, p);
    374 }
    375 
    376 /* ---- kmem API */
    377 
    378 /*
    379  * kmem_alloc: allocate wired memory.
    380  * => must not be called from interrupt context.
    381  */
    382 
    383 void *
    384 kmem_alloc(size_t size, km_flag_t kmflags)
    385 {
    386 	void *v;
    387 
    388 	KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()),
    389 	    "kmem(9) should not be used from the interrupt context");
    390 	v = kmem_intr_alloc(size, kmflags);
    391 	KASSERT(v || (kmflags & KM_NOSLEEP) != 0);
    392 	return v;
    393 }
    394 
    395 /*
    396  * kmem_zalloc: allocate zeroed wired memory.
    397  * => must not be called from interrupt context.
    398  */
    399 
    400 void *
    401 kmem_zalloc(size_t size, km_flag_t kmflags)
    402 {
    403 	void *v;
    404 
    405 	KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()),
    406 	    "kmem(9) should not be used from the interrupt context");
    407 	v = kmem_intr_zalloc(size, kmflags);
    408 	KASSERT(v || (kmflags & KM_NOSLEEP) != 0);
    409 	return v;
    410 }
    411 
    412 /*
    413  * kmem_free: free wired memory allocated by kmem_alloc.
    414  * => must not be called from interrupt context.
    415  */
    416 
    417 void
    418 kmem_free(void *p, size_t size)
    419 {
    420 	KASSERT(!cpu_intr_p());
    421 	KASSERT(!cpu_softintr_p());
    422 	kmem_intr_free(p, size);
    423 }
    424 
    425 static size_t
    426 kmem_create_caches(const struct kmem_cache_info *array,
    427     pool_cache_t alloc_table[], size_t maxsize, int shift, int ipl)
    428 {
    429 	size_t maxidx = 0;
    430 	size_t table_unit = (1 << shift);
    431 	size_t size = table_unit;
    432 	int i;
    433 
    434 	for (i = 0; array[i].kc_size != 0 ; i++) {
    435 		const char *name = array[i].kc_name;
    436 		size_t cache_size = array[i].kc_size;
    437 		struct pool_allocator *pa;
    438 		int flags = PR_NOALIGN;
    439 		pool_cache_t pc;
    440 		size_t align;
    441 
    442 		if ((cache_size & (CACHE_LINE_SIZE - 1)) == 0)
    443 			align = CACHE_LINE_SIZE;
    444 		else if ((cache_size & (PAGE_SIZE - 1)) == 0)
    445 			align = PAGE_SIZE;
    446 		else
    447 			align = KMEM_ALIGN;
    448 
    449 		if (cache_size < CACHE_LINE_SIZE)
    450 			flags |= PR_NOTOUCH;
    451 
    452 		/* check if we reached the requested size */
    453 		if (cache_size > maxsize || cache_size > PAGE_SIZE) {
    454 			break;
    455 		}
    456 		if ((cache_size >> shift) > maxidx) {
    457 			maxidx = cache_size >> shift;
    458 		}
    459 
    460 		if ((cache_size >> shift) > maxidx) {
    461 			maxidx = cache_size >> shift;
    462 		}
    463 
    464 		pa = &pool_allocator_kmem;
    465 #if defined(KMEM_POISON)
    466 		pc = pool_cache_init(cache_size, align, 0, flags,
    467 		    name, pa, ipl, kmem_poison_ctor,
    468 		    NULL, (void *)cache_size);
    469 #else /* defined(KMEM_POISON) */
    470 		pc = pool_cache_init(cache_size, align, 0, flags,
    471 		    name, pa, ipl, NULL, NULL, NULL);
    472 #endif /* defined(KMEM_POISON) */
    473 
    474 		while (size <= cache_size) {
    475 			alloc_table[(size - 1) >> shift] = pc;
    476 			size += table_unit;
    477 		}
    478 	}
    479 	return maxidx;
    480 }
    481 
    482 void
    483 kmem_init(void)
    484 {
    485 #ifdef KMEM_GUARD
    486 	kmem_guard_enabled = kmem_guard_init(&kmem_guard, kmem_guard_depth,
    487 	    kmem_va_arena);
    488 #endif
    489 	kmem_cache_maxidx = kmem_create_caches(kmem_cache_sizes,
    490 	    kmem_cache, KMEM_MAXSIZE, KMEM_SHIFT, IPL_VM);
    491 	kmem_cache_big_maxidx = kmem_create_caches(kmem_cache_big_sizes,
    492 	    kmem_cache_big, PAGE_SIZE, KMEM_BIG_SHIFT, IPL_VM);
    493 }
    494 
    495 size_t
    496 kmem_roundup_size(size_t size)
    497 {
    498 	return (size + (KMEM_ALIGN - 1)) & ~(KMEM_ALIGN - 1);
    499 }
    500 
    501 /*
    502  * Used to dynamically allocate string with kmem accordingly to format.
    503  */
    504 char *
    505 kmem_asprintf(const char *fmt, ...)
    506 {
    507 	int size __diagused, len;
    508 	va_list va;
    509 	char *str;
    510 
    511 	va_start(va, fmt);
    512 	len = vsnprintf(NULL, 0, fmt, va);
    513 	va_end(va);
    514 
    515 	str = kmem_alloc(len + 1, KM_SLEEP);
    516 
    517 	va_start(va, fmt);
    518 	size = vsnprintf(str, len + 1, fmt, va);
    519 	va_end(va);
    520 
    521 	KASSERT(size == len);
    522 
    523 	return str;
    524 }
    525 
    526 /* ------------------ DEBUG / DIAGNOSTIC ------------------ */
    527 
    528 #if defined(KMEM_POISON) || defined(KMEM_REDZONE)
    529 #if defined(_LP64)
    530 #define PRIME 0x9e37fffffffc0000UL
    531 #else /* defined(_LP64) */
    532 #define PRIME 0x9e3779b1
    533 #endif /* defined(_LP64) */
    534 
    535 static inline uint8_t
    536 kmem_pattern_generate(const void *p)
    537 {
    538 	return (uint8_t)(((uintptr_t)p) * PRIME
    539 	   >> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT);
    540 }
    541 #endif /* defined(KMEM_POISON) || defined(KMEM_REDZONE) */
    542 
    543 #if defined(KMEM_POISON)
    544 static int
    545 kmem_poison_ctor(void *arg, void *obj, int flag)
    546 {
    547 	size_t sz = (size_t)arg;
    548 
    549 	kmem_poison_fill(obj, sz);
    550 
    551 	return 0;
    552 }
    553 
    554 static void
    555 kmem_poison_fill(void *p, size_t sz)
    556 {
    557 	uint8_t *cp;
    558 	const uint8_t *ep;
    559 
    560 	cp = p;
    561 	ep = cp + sz;
    562 	while (cp < ep) {
    563 		*cp = kmem_pattern_generate(cp);
    564 		cp++;
    565 	}
    566 }
    567 
    568 static void
    569 kmem_poison_check(void *p, size_t sz)
    570 {
    571 	uint8_t *cp;
    572 	const uint8_t *ep;
    573 
    574 	cp = p;
    575 	ep = cp + sz;
    576 	while (cp < ep) {
    577 		const uint8_t expected = kmem_pattern_generate(cp);
    578 
    579 		if (*cp != expected) {
    580 			panic("%s: %p: 0x%02x != 0x%02x\n",
    581 			   __func__, cp, *cp, expected);
    582 		}
    583 		cp++;
    584 	}
    585 }
    586 #endif /* defined(KMEM_POISON) */
    587 
    588 #if defined(KMEM_SIZE)
    589 static void
    590 kmem_size_set(void *p, size_t sz)
    591 {
    592 	struct kmem_header *hd;
    593 	hd = (struct kmem_header *)p;
    594 	hd->size = sz;
    595 }
    596 
    597 static void
    598 kmem_size_check(void *p, size_t sz)
    599 {
    600 	struct kmem_header *hd;
    601 	size_t hsz;
    602 
    603 	hd = (struct kmem_header *)p;
    604 	hsz = hd->size;
    605 
    606 	if (hsz != sz) {
    607 		panic("kmem_free(%p, %zu) != allocated size %zu",
    608 		    (const uint8_t *)p + SIZE_SIZE, sz, hsz);
    609 	}
    610 }
    611 #endif /* defined(KMEM_SIZE) */
    612 
    613 #if defined(KMEM_REDZONE)
    614 #define STATIC_BYTE	0xFE
    615 CTASSERT(REDZONE_SIZE > 1);
    616 static void
    617 kmem_redzone_fill(void *p, size_t sz)
    618 {
    619 	uint8_t *cp, pat;
    620 	const uint8_t *ep;
    621 
    622 	cp = (uint8_t *)p + sz;
    623 	ep = cp + REDZONE_SIZE;
    624 
    625 	/*
    626 	 * We really don't want the first byte of the red zone to be '\0';
    627 	 * an off-by-one in a string may not be properly detected.
    628 	 */
    629 	pat = kmem_pattern_generate(cp);
    630 	*cp = (pat == '\0') ? STATIC_BYTE: pat;
    631 	cp++;
    632 
    633 	while (cp < ep) {
    634 		*cp = kmem_pattern_generate(cp);
    635 		cp++;
    636 	}
    637 }
    638 
    639 static void
    640 kmem_redzone_check(void *p, size_t sz)
    641 {
    642 	uint8_t *cp, pat, expected;
    643 	const uint8_t *ep;
    644 
    645 	cp = (uint8_t *)p + sz;
    646 	ep = cp + REDZONE_SIZE;
    647 
    648 	pat = kmem_pattern_generate(cp);
    649 	expected = (pat == '\0') ? STATIC_BYTE: pat;
    650 	if (expected != *cp) {
    651 		panic("%s: %p: 0x%02x != 0x%02x\n",
    652 		   __func__, cp, *cp, expected);
    653 	}
    654 	cp++;
    655 
    656 	while (cp < ep) {
    657 		expected = kmem_pattern_generate(cp);
    658 		if (*cp != expected) {
    659 			panic("%s: %p: 0x%02x != 0x%02x\n",
    660 			   __func__, cp, *cp, expected);
    661 		}
    662 		cp++;
    663 	}
    664 }
    665 #endif /* defined(KMEM_REDZONE) */
    666 
    667 
    668 #if defined(KMEM_GUARD)
    669 /*
    670  * The ultimate memory allocator for debugging, baby.  It tries to catch:
    671  *
    672  * 1. Overflow, in realtime. A guard page sits immediately after the
    673  *    requested area; a read/write overflow therefore triggers a page
    674  *    fault.
    675  * 2. Invalid pointer/size passed, at free. A kmem_header structure sits
    676  *    just before the requested area, and holds the allocated size. Any
    677  *    difference with what is given at free triggers a panic.
    678  * 3. Underflow, at free. If an underflow occurs, the kmem header will be
    679  *    modified, and 2. will trigger a panic.
    680  * 4. Use-after-free. When freeing, the memory is unmapped, and depending
    681  *    on the value of kmem_guard_depth, the kernel will more or less delay
    682  *    the recycling of that memory. Which means that any ulterior read/write
    683  *    access to the memory will trigger a page fault, given it hasn't been
    684  *    recycled yet.
    685  */
    686 
    687 #include <sys/atomic.h>
    688 #include <uvm/uvm.h>
    689 
    690 static bool
    691 kmem_guard_init(struct kmem_guard *kg, u_int depth, vmem_t *vm)
    692 {
    693 	vaddr_t va;
    694 
    695 	/* If not enabled, we have nothing to do. */
    696 	if (depth == 0) {
    697 		return false;
    698 	}
    699 	depth = roundup(depth, PAGE_SIZE / sizeof(void *));
    700 	KASSERT(depth != 0);
    701 
    702 	/*
    703 	 * Allocate fifo.
    704 	 */
    705 	va = uvm_km_alloc(kernel_map, depth * sizeof(void *), PAGE_SIZE,
    706 	    UVM_KMF_WIRED | UVM_KMF_ZERO);
    707 	if (va == 0) {
    708 		return false;
    709 	}
    710 
    711 	/*
    712 	 * Init object.
    713 	 */
    714 	kg->kg_vmem = vm;
    715 	kg->kg_fifo = (void *)va;
    716 	kg->kg_depth = depth;
    717 	kg->kg_rotor = 0;
    718 
    719 	printf("kmem_guard(%p): depth %d\n", kg, depth);
    720 	return true;
    721 }
    722 
    723 static void *
    724 kmem_guard_alloc(struct kmem_guard *kg, size_t requested_size, bool waitok)
    725 {
    726 	struct vm_page *pg;
    727 	vm_flag_t flags;
    728 	vmem_addr_t va;
    729 	vaddr_t loopva;
    730 	vsize_t loopsize;
    731 	size_t size;
    732 	void **p;
    733 
    734 	/*
    735 	 * Compute the size: take the kmem header into account, and add a guard
    736 	 * page at the end.
    737 	 */
    738 	size = round_page(requested_size + SIZE_SIZE) + PAGE_SIZE;
    739 
    740 	/* Allocate pages of kernel VA, but do not map anything in yet. */
    741 	flags = VM_BESTFIT | (waitok ? VM_SLEEP : VM_NOSLEEP);
    742 	if (vmem_alloc(kg->kg_vmem, size, flags, &va) != 0) {
    743 		return NULL;
    744 	}
    745 
    746 	loopva = va;
    747 	loopsize = size - PAGE_SIZE;
    748 
    749 	while (loopsize) {
    750 		pg = uvm_pagealloc(NULL, loopva, NULL, 0);
    751 		if (__predict_false(pg == NULL)) {
    752 			if (waitok) {
    753 				uvm_wait("kmem_guard");
    754 				continue;
    755 			} else {
    756 				uvm_km_pgremove_intrsafe(kernel_map, va,
    757 				    va + size);
    758 				vmem_free(kg->kg_vmem, va, size);
    759 				return NULL;
    760 			}
    761 		}
    762 
    763 		pg->flags &= ~PG_BUSY;	/* new page */
    764 		UVM_PAGE_OWN(pg, NULL);
    765 		pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
    766 		    VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE);
    767 
    768 		loopva += PAGE_SIZE;
    769 		loopsize -= PAGE_SIZE;
    770 	}
    771 
    772 	pmap_update(pmap_kernel());
    773 
    774 	/*
    775 	 * Offset the returned pointer so that the unmapped guard page sits
    776 	 * immediately after the returned object.
    777 	 */
    778 	p = (void **)((va + (size - PAGE_SIZE) - requested_size) & ~(uintptr_t)ALIGNBYTES);
    779 	kmem_size_set((uint8_t *)p - SIZE_SIZE, requested_size);
    780 	return (void *)p;
    781 }
    782 
    783 static void
    784 kmem_guard_free(struct kmem_guard *kg, size_t requested_size, void *p)
    785 {
    786 	vaddr_t va;
    787 	u_int rotor;
    788 	size_t size;
    789 	uint8_t *ptr;
    790 
    791 	ptr = (uint8_t *)p - SIZE_SIZE;
    792 	kmem_size_check(ptr, requested_size);
    793 	va = trunc_page((vaddr_t)ptr);
    794 	size = round_page(requested_size + SIZE_SIZE) + PAGE_SIZE;
    795 
    796 	KASSERT(pmap_extract(pmap_kernel(), va, NULL));
    797 	KASSERT(!pmap_extract(pmap_kernel(), va + (size - PAGE_SIZE), NULL));
    798 
    799 	/*
    800 	 * Unmap and free the pages. The last one is never allocated.
    801 	 */
    802 	uvm_km_pgremove_intrsafe(kernel_map, va, va + size);
    803 	pmap_update(pmap_kernel());
    804 
    805 #if 0
    806 	/*
    807 	 * XXX: Here, we need to atomically register the va and its size in the
    808 	 * fifo.
    809 	 */
    810 
    811 	/*
    812 	 * Put the VA allocation into the list and swap an old one out to free.
    813 	 * This behaves mostly like a fifo.
    814 	 */
    815 	rotor = atomic_inc_uint_nv(&kg->kg_rotor) % kg->kg_depth;
    816 	va = (vaddr_t)atomic_swap_ptr(&kg->kg_fifo[rotor], (void *)va);
    817 	if (va != 0) {
    818 		vmem_free(kg->kg_vmem, va, size);
    819 	}
    820 #else
    821 	(void)rotor;
    822 	vmem_free(kg->kg_vmem, va, size);
    823 #endif
    824 }
    825 
    826 #endif /* defined(KMEM_GUARD) */
    827