Home | History | Annotate | Line # | Download | only in kern
subr_kmem.c revision 1.62.4.1
      1 /*	$NetBSD: subr_kmem.c,v 1.62.4.1 2017/04/21 16:54:02 bouyer Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2009-2015 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran and Maxime Villard.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*-
     33  * Copyright (c)2006 YAMAMOTO Takashi,
     34  * All rights reserved.
     35  *
     36  * Redistribution and use in source and binary forms, with or without
     37  * modification, are permitted provided that the following conditions
     38  * are met:
     39  * 1. Redistributions of source code must retain the above copyright
     40  *    notice, this list of conditions and the following disclaimer.
     41  * 2. Redistributions in binary form must reproduce the above copyright
     42  *    notice, this list of conditions and the following disclaimer in the
     43  *    documentation and/or other materials provided with the distribution.
     44  *
     45  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     46  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     47  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     48  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     49  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     50  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     51  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     52  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     53  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     54  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     55  * SUCH DAMAGE.
     56  */
     57 
     58 /*
     59  * Allocator of kernel wired memory. This allocator has some debug features
     60  * enabled with "option DIAGNOSTIC" and "option DEBUG".
     61  */
     62 
     63 /*
     64  * KMEM_SIZE: detect alloc/free size mismatch bugs.
     65  *	Prefix each allocations with a fixed-sized, aligned header and record
     66  *	the exact user-requested allocation size in it. When freeing, compare
     67  *	it with kmem_free's "size" argument.
     68  *
     69  * KMEM_REDZONE: detect overrun bugs.
     70  *	Add a 2-byte pattern (allocate one more memory chunk if needed) at the
     71  *	end of each allocated buffer. Check this pattern on kmem_free.
     72  *
     73  * These options are enabled on DIAGNOSTIC.
     74  *
     75  *  |CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|
     76  *  +-----+-----+-----+-----+-----+-----+-----+-----+-----+---+-+--+--+
     77  *  |/////|     |     |     |     |     |     |     |     |   |*|**|UU|
     78  *  |/HSZ/|     |     |     |     |     |     |     |     |   |*|**|UU|
     79  *  |/////|     |     |     |     |     |     |     |     |   |*|**|UU|
     80  *  +-----+-----+-----+-----+-----+-----+-----+-----+-----+---+-+--+--+
     81  *  |Size |    Buffer usable by the caller (requested size)   |RedZ|Unused\
     82  */
     83 
     84 /*
     85  * KMEM_POISON: detect modify-after-free bugs.
     86  *	Fill freed (in the sense of kmem_free) memory with a garbage pattern.
     87  *	Check the pattern on allocation.
     88  *
     89  * KMEM_GUARD
     90  *	A kernel with "option DEBUG" has "kmem_guard" debugging feature compiled
     91  *	in. See the comment below for what kind of bugs it tries to detect. Even
     92  *	if compiled in, it's disabled by default because it's very expensive.
     93  *	You can enable it on boot by:
     94  *		boot -d
     95  *		db> w kmem_guard_depth 0t30000
     96  *		db> c
     97  *
     98  *	The default value of kmem_guard_depth is 0, which means disabled.
     99  *	It can be changed by KMEM_GUARD_DEPTH kernel config option.
    100  */
    101 
    102 #include <sys/cdefs.h>
    103 __KERNEL_RCSID(0, "$NetBSD: subr_kmem.c,v 1.62.4.1 2017/04/21 16:54:02 bouyer Exp $");
    104 
    105 #ifdef _KERNEL_OPT
    106 #include "opt_kmem.h"
    107 #endif
    108 
    109 #include <sys/param.h>
    110 #include <sys/callback.h>
    111 #include <sys/kmem.h>
    112 #include <sys/pool.h>
    113 #include <sys/debug.h>
    114 #include <sys/lockdebug.h>
    115 #include <sys/cpu.h>
    116 
    117 #include <uvm/uvm_extern.h>
    118 #include <uvm/uvm_map.h>
    119 
    120 #include <lib/libkern/libkern.h>
    121 
    122 struct kmem_cache_info {
    123 	size_t		kc_size;
    124 	const char *	kc_name;
    125 };
    126 
    127 static const struct kmem_cache_info kmem_cache_sizes[] = {
    128 	{  8, "kmem-8" },
    129 	{ 16, "kmem-16" },
    130 	{ 24, "kmem-24" },
    131 	{ 32, "kmem-32" },
    132 	{ 40, "kmem-40" },
    133 	{ 48, "kmem-48" },
    134 	{ 56, "kmem-56" },
    135 	{ 64, "kmem-64" },
    136 	{ 80, "kmem-80" },
    137 	{ 96, "kmem-96" },
    138 	{ 112, "kmem-112" },
    139 	{ 128, "kmem-128" },
    140 	{ 160, "kmem-160" },
    141 	{ 192, "kmem-192" },
    142 	{ 224, "kmem-224" },
    143 	{ 256, "kmem-256" },
    144 	{ 320, "kmem-320" },
    145 	{ 384, "kmem-384" },
    146 	{ 448, "kmem-448" },
    147 	{ 512, "kmem-512" },
    148 	{ 768, "kmem-768" },
    149 	{ 1024, "kmem-1024" },
    150 	{ 0, NULL }
    151 };
    152 
    153 static const struct kmem_cache_info kmem_cache_big_sizes[] = {
    154 	{ 2048, "kmem-2048" },
    155 	{ 4096, "kmem-4096" },
    156 	{ 8192, "kmem-8192" },
    157 	{ 16384, "kmem-16384" },
    158 	{ 0, NULL }
    159 };
    160 
    161 /*
    162  * KMEM_ALIGN is the smallest guaranteed alignment and also the
    163  * smallest allocateable quantum.
    164  * Every cache size >= CACHE_LINE_SIZE gets CACHE_LINE_SIZE alignment.
    165  */
    166 #define	KMEM_ALIGN		8
    167 #define	KMEM_SHIFT		3
    168 #define	KMEM_MAXSIZE		1024
    169 #define	KMEM_CACHE_COUNT	(KMEM_MAXSIZE >> KMEM_SHIFT)
    170 
    171 static pool_cache_t kmem_cache[KMEM_CACHE_COUNT] __cacheline_aligned;
    172 static size_t kmem_cache_maxidx __read_mostly;
    173 
    174 #define	KMEM_BIG_ALIGN		2048
    175 #define	KMEM_BIG_SHIFT		11
    176 #define	KMEM_BIG_MAXSIZE	16384
    177 #define	KMEM_CACHE_BIG_COUNT	(KMEM_BIG_MAXSIZE >> KMEM_BIG_SHIFT)
    178 
    179 static pool_cache_t kmem_cache_big[KMEM_CACHE_BIG_COUNT] __cacheline_aligned;
    180 static size_t kmem_cache_big_maxidx __read_mostly;
    181 
    182 #if defined(DIAGNOSTIC) && defined(_HARDKERNEL)
    183 #define	KMEM_SIZE
    184 #define	KMEM_REDZONE
    185 #endif /* defined(DIAGNOSTIC) */
    186 
    187 #if defined(DEBUG) && defined(_HARDKERNEL)
    188 #define	KMEM_SIZE
    189 #define	KMEM_POISON
    190 #define	KMEM_GUARD
    191 static void *kmem_freecheck;
    192 #endif /* defined(DEBUG) */
    193 
    194 #if defined(KMEM_POISON)
    195 static int kmem_poison_ctor(void *, void *, int);
    196 static void kmem_poison_fill(void *, size_t);
    197 static void kmem_poison_check(void *, size_t);
    198 #else /* defined(KMEM_POISON) */
    199 #define	kmem_poison_fill(p, sz)		/* nothing */
    200 #define	kmem_poison_check(p, sz)	/* nothing */
    201 #endif /* defined(KMEM_POISON) */
    202 
    203 #if defined(KMEM_REDZONE)
    204 #define	REDZONE_SIZE	2
    205 static void kmem_redzone_fill(void *, size_t);
    206 static void kmem_redzone_check(void *, size_t);
    207 #else /* defined(KMEM_REDZONE) */
    208 #define	REDZONE_SIZE	0
    209 #define	kmem_redzone_fill(p, sz)		/* nothing */
    210 #define	kmem_redzone_check(p, sz)	/* nothing */
    211 #endif /* defined(KMEM_REDZONE) */
    212 
    213 #if defined(KMEM_SIZE)
    214 struct kmem_header {
    215 	size_t		size;
    216 } __aligned(KMEM_ALIGN);
    217 #define	SIZE_SIZE	sizeof(struct kmem_header)
    218 static void kmem_size_set(void *, size_t);
    219 static void kmem_size_check(void *, size_t);
    220 #else
    221 #define	SIZE_SIZE	0
    222 #define	kmem_size_set(p, sz)	/* nothing */
    223 #define	kmem_size_check(p, sz)	/* nothing */
    224 #endif
    225 
    226 #if defined(KMEM_GUARD)
    227 #ifndef KMEM_GUARD_DEPTH
    228 #define KMEM_GUARD_DEPTH 0
    229 #endif
    230 struct kmem_guard {
    231 	u_int		kg_depth;
    232 	intptr_t *	kg_fifo;
    233 	u_int		kg_rotor;
    234 	vmem_t *	kg_vmem;
    235 };
    236 
    237 static bool	kmem_guard_init(struct kmem_guard *, u_int, vmem_t *);
    238 static void *kmem_guard_alloc(struct kmem_guard *, size_t, bool);
    239 static void kmem_guard_free(struct kmem_guard *, size_t, void *);
    240 
    241 int kmem_guard_depth = KMEM_GUARD_DEPTH;
    242 static bool kmem_guard_enabled;
    243 static struct kmem_guard kmem_guard;
    244 #endif /* defined(KMEM_GUARD) */
    245 
    246 CTASSERT(KM_SLEEP == PR_WAITOK);
    247 CTASSERT(KM_NOSLEEP == PR_NOWAIT);
    248 
    249 /*
    250  * kmem_intr_alloc: allocate wired memory.
    251  */
    252 
    253 void *
    254 kmem_intr_alloc(size_t requested_size, km_flag_t kmflags)
    255 {
    256 	size_t allocsz, index;
    257 	size_t size;
    258 	pool_cache_t pc;
    259 	uint8_t *p;
    260 
    261 	KASSERT(requested_size > 0);
    262 
    263 #ifdef KMEM_GUARD
    264 	if (kmem_guard_enabled) {
    265 		return kmem_guard_alloc(&kmem_guard, requested_size,
    266 		    (kmflags & KM_SLEEP) != 0);
    267 	}
    268 #endif
    269 	size = kmem_roundup_size(requested_size);
    270 	allocsz = size + SIZE_SIZE;
    271 
    272 #ifdef KMEM_REDZONE
    273 	if (size - requested_size < REDZONE_SIZE) {
    274 		/* If there isn't enough space in the padding, allocate
    275 		 * one more memory chunk for the red zone. */
    276 		allocsz += kmem_roundup_size(REDZONE_SIZE);
    277 	}
    278 #endif
    279 
    280 	if ((index = ((allocsz -1) >> KMEM_SHIFT))
    281 	    < kmem_cache_maxidx) {
    282 		pc = kmem_cache[index];
    283 	} else if ((index = ((allocsz - 1) >> KMEM_BIG_SHIFT))
    284 	    < kmem_cache_big_maxidx) {
    285 		pc = kmem_cache_big[index];
    286 	} else {
    287 		int ret = uvm_km_kmem_alloc(kmem_va_arena,
    288 		    (vsize_t)round_page(size),
    289 		    ((kmflags & KM_SLEEP) ? VM_SLEEP : VM_NOSLEEP)
    290 		     | VM_INSTANTFIT, (vmem_addr_t *)&p);
    291 		if (ret) {
    292 			return NULL;
    293 		}
    294 		FREECHECK_OUT(&kmem_freecheck, p);
    295 		return p;
    296 	}
    297 
    298 	p = pool_cache_get(pc, kmflags);
    299 
    300 	if (__predict_true(p != NULL)) {
    301 		kmem_poison_check(p, allocsz);
    302 		FREECHECK_OUT(&kmem_freecheck, p);
    303 		kmem_size_set(p, requested_size);
    304 		kmem_redzone_fill(p, requested_size + SIZE_SIZE);
    305 
    306 		return p + SIZE_SIZE;
    307 	}
    308 	return p;
    309 }
    310 
    311 /*
    312  * kmem_intr_zalloc: allocate zeroed wired memory.
    313  */
    314 
    315 void *
    316 kmem_intr_zalloc(size_t size, km_flag_t kmflags)
    317 {
    318 	void *p;
    319 
    320 	p = kmem_intr_alloc(size, kmflags);
    321 	if (p != NULL) {
    322 		memset(p, 0, size);
    323 	}
    324 	return p;
    325 }
    326 
    327 /*
    328  * kmem_intr_free: free wired memory allocated by kmem_alloc.
    329  */
    330 
    331 void
    332 kmem_intr_free(void *p, size_t requested_size)
    333 {
    334 	size_t allocsz, index;
    335 	size_t size;
    336 	pool_cache_t pc;
    337 
    338 	KASSERT(p != NULL);
    339 	KASSERT(requested_size > 0);
    340 
    341 #ifdef KMEM_GUARD
    342 	if (kmem_guard_enabled) {
    343 		kmem_guard_free(&kmem_guard, requested_size, p);
    344 		return;
    345 	}
    346 #endif
    347 
    348 	size = kmem_roundup_size(requested_size);
    349 	allocsz = size + SIZE_SIZE;
    350 
    351 #ifdef KMEM_REDZONE
    352 	if (size - requested_size < REDZONE_SIZE) {
    353 		allocsz += kmem_roundup_size(REDZONE_SIZE);
    354 	}
    355 #endif
    356 
    357 	if ((index = ((allocsz -1) >> KMEM_SHIFT))
    358 	    < kmem_cache_maxidx) {
    359 		pc = kmem_cache[index];
    360 	} else if ((index = ((allocsz - 1) >> KMEM_BIG_SHIFT))
    361 	    < kmem_cache_big_maxidx) {
    362 		pc = kmem_cache_big[index];
    363 	} else {
    364 		FREECHECK_IN(&kmem_freecheck, p);
    365 		uvm_km_kmem_free(kmem_va_arena, (vaddr_t)p,
    366 		    round_page(size));
    367 		return;
    368 	}
    369 
    370 	p = (uint8_t *)p - SIZE_SIZE;
    371 	kmem_size_check(p, requested_size);
    372 	kmem_redzone_check(p, requested_size + SIZE_SIZE);
    373 	FREECHECK_IN(&kmem_freecheck, p);
    374 	LOCKDEBUG_MEM_CHECK(p, size);
    375 	kmem_poison_fill(p, allocsz);
    376 
    377 	pool_cache_put(pc, p);
    378 }
    379 
    380 /* ---- kmem API */
    381 
    382 /*
    383  * kmem_alloc: allocate wired memory.
    384  * => must not be called from interrupt context.
    385  */
    386 
    387 void *
    388 kmem_alloc(size_t size, km_flag_t kmflags)
    389 {
    390 	void *v;
    391 
    392 	KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()),
    393 	    "kmem(9) should not be used from the interrupt context");
    394 	v = kmem_intr_alloc(size, kmflags);
    395 	KASSERT(v || (kmflags & KM_NOSLEEP) != 0);
    396 	return v;
    397 }
    398 
    399 /*
    400  * kmem_zalloc: allocate zeroed wired memory.
    401  * => must not be called from interrupt context.
    402  */
    403 
    404 void *
    405 kmem_zalloc(size_t size, km_flag_t kmflags)
    406 {
    407 	void *v;
    408 
    409 	KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()),
    410 	    "kmem(9) should not be used from the interrupt context");
    411 	v = kmem_intr_zalloc(size, kmflags);
    412 	KASSERT(v || (kmflags & KM_NOSLEEP) != 0);
    413 	return v;
    414 }
    415 
    416 /*
    417  * kmem_free: free wired memory allocated by kmem_alloc.
    418  * => must not be called from interrupt context.
    419  */
    420 
    421 void
    422 kmem_free(void *p, size_t size)
    423 {
    424 	KASSERT(!cpu_intr_p());
    425 	KASSERT(!cpu_softintr_p());
    426 	kmem_intr_free(p, size);
    427 }
    428 
    429 static size_t
    430 kmem_create_caches(const struct kmem_cache_info *array,
    431     pool_cache_t alloc_table[], size_t maxsize, int shift, int ipl)
    432 {
    433 	size_t maxidx = 0;
    434 	size_t table_unit = (1 << shift);
    435 	size_t size = table_unit;
    436 	int i;
    437 
    438 	for (i = 0; array[i].kc_size != 0 ; i++) {
    439 		const char *name = array[i].kc_name;
    440 		size_t cache_size = array[i].kc_size;
    441 		struct pool_allocator *pa;
    442 		int flags = PR_NOALIGN;
    443 		pool_cache_t pc;
    444 		size_t align;
    445 
    446 		if ((cache_size & (CACHE_LINE_SIZE - 1)) == 0)
    447 			align = CACHE_LINE_SIZE;
    448 		else if ((cache_size & (PAGE_SIZE - 1)) == 0)
    449 			align = PAGE_SIZE;
    450 		else
    451 			align = KMEM_ALIGN;
    452 
    453 		if (cache_size < CACHE_LINE_SIZE)
    454 			flags |= PR_NOTOUCH;
    455 
    456 		/* check if we reached the requested size */
    457 		if (cache_size > maxsize || cache_size > PAGE_SIZE) {
    458 			break;
    459 		}
    460 		if ((cache_size >> shift) > maxidx) {
    461 			maxidx = cache_size >> shift;
    462 		}
    463 
    464 		if ((cache_size >> shift) > maxidx) {
    465 			maxidx = cache_size >> shift;
    466 		}
    467 
    468 		pa = &pool_allocator_kmem;
    469 #if defined(KMEM_POISON)
    470 		pc = pool_cache_init(cache_size, align, 0, flags,
    471 		    name, pa, ipl, kmem_poison_ctor,
    472 		    NULL, (void *)cache_size);
    473 #else /* defined(KMEM_POISON) */
    474 		pc = pool_cache_init(cache_size, align, 0, flags,
    475 		    name, pa, ipl, NULL, NULL, NULL);
    476 #endif /* defined(KMEM_POISON) */
    477 
    478 		while (size <= cache_size) {
    479 			alloc_table[(size - 1) >> shift] = pc;
    480 			size += table_unit;
    481 		}
    482 	}
    483 	return maxidx;
    484 }
    485 
    486 void
    487 kmem_init(void)
    488 {
    489 #ifdef KMEM_GUARD
    490 	kmem_guard_enabled = kmem_guard_init(&kmem_guard, kmem_guard_depth,
    491 	    kmem_va_arena);
    492 #endif
    493 	kmem_cache_maxidx = kmem_create_caches(kmem_cache_sizes,
    494 	    kmem_cache, KMEM_MAXSIZE, KMEM_SHIFT, IPL_VM);
    495 	kmem_cache_big_maxidx = kmem_create_caches(kmem_cache_big_sizes,
    496 	    kmem_cache_big, PAGE_SIZE, KMEM_BIG_SHIFT, IPL_VM);
    497 }
    498 
    499 size_t
    500 kmem_roundup_size(size_t size)
    501 {
    502 	return (size + (KMEM_ALIGN - 1)) & ~(KMEM_ALIGN - 1);
    503 }
    504 
    505 /*
    506  * Used to dynamically allocate string with kmem accordingly to format.
    507  */
    508 char *
    509 kmem_asprintf(const char *fmt, ...)
    510 {
    511 	int size __diagused, len;
    512 	va_list va;
    513 	char *str;
    514 
    515 	va_start(va, fmt);
    516 	len = vsnprintf(NULL, 0, fmt, va);
    517 	va_end(va);
    518 
    519 	str = kmem_alloc(len + 1, KM_SLEEP);
    520 
    521 	va_start(va, fmt);
    522 	size = vsnprintf(str, len + 1, fmt, va);
    523 	va_end(va);
    524 
    525 	KASSERT(size == len);
    526 
    527 	return str;
    528 }
    529 
    530 /* ------------------ DEBUG / DIAGNOSTIC ------------------ */
    531 
    532 #if defined(KMEM_POISON) || defined(KMEM_REDZONE)
    533 #if defined(_LP64)
    534 #define PRIME 0x9e37fffffffc0000UL
    535 #else /* defined(_LP64) */
    536 #define PRIME 0x9e3779b1
    537 #endif /* defined(_LP64) */
    538 
    539 static inline uint8_t
    540 kmem_pattern_generate(const void *p)
    541 {
    542 	return (uint8_t)(((uintptr_t)p) * PRIME
    543 	   >> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT);
    544 }
    545 #endif /* defined(KMEM_POISON) || defined(KMEM_REDZONE) */
    546 
    547 #if defined(KMEM_POISON)
    548 static int
    549 kmem_poison_ctor(void *arg, void *obj, int flag)
    550 {
    551 	size_t sz = (size_t)arg;
    552 
    553 	kmem_poison_fill(obj, sz);
    554 
    555 	return 0;
    556 }
    557 
    558 static void
    559 kmem_poison_fill(void *p, size_t sz)
    560 {
    561 	uint8_t *cp;
    562 	const uint8_t *ep;
    563 
    564 	cp = p;
    565 	ep = cp + sz;
    566 	while (cp < ep) {
    567 		*cp = kmem_pattern_generate(cp);
    568 		cp++;
    569 	}
    570 }
    571 
    572 static void
    573 kmem_poison_check(void *p, size_t sz)
    574 {
    575 	uint8_t *cp;
    576 	const uint8_t *ep;
    577 
    578 	cp = p;
    579 	ep = cp + sz;
    580 	while (cp < ep) {
    581 		const uint8_t expected = kmem_pattern_generate(cp);
    582 
    583 		if (*cp != expected) {
    584 			panic("%s: %p: 0x%02x != 0x%02x\n",
    585 			   __func__, cp, *cp, expected);
    586 		}
    587 		cp++;
    588 	}
    589 }
    590 #endif /* defined(KMEM_POISON) */
    591 
    592 #if defined(KMEM_SIZE)
    593 static void
    594 kmem_size_set(void *p, size_t sz)
    595 {
    596 	struct kmem_header *hd;
    597 	hd = (struct kmem_header *)p;
    598 	hd->size = sz;
    599 }
    600 
    601 static void
    602 kmem_size_check(void *p, size_t sz)
    603 {
    604 	struct kmem_header *hd;
    605 	size_t hsz;
    606 
    607 	hd = (struct kmem_header *)p;
    608 	hsz = hd->size;
    609 
    610 	if (hsz != sz) {
    611 		panic("kmem_free(%p, %zu) != allocated size %zu",
    612 		    (const uint8_t *)p + SIZE_SIZE, sz, hsz);
    613 	}
    614 }
    615 #endif /* defined(KMEM_SIZE) */
    616 
    617 #if defined(KMEM_REDZONE)
    618 #define STATIC_BYTE	0xFE
    619 CTASSERT(REDZONE_SIZE > 1);
    620 static void
    621 kmem_redzone_fill(void *p, size_t sz)
    622 {
    623 	uint8_t *cp, pat;
    624 	const uint8_t *ep;
    625 
    626 	cp = (uint8_t *)p + sz;
    627 	ep = cp + REDZONE_SIZE;
    628 
    629 	/*
    630 	 * We really don't want the first byte of the red zone to be '\0';
    631 	 * an off-by-one in a string may not be properly detected.
    632 	 */
    633 	pat = kmem_pattern_generate(cp);
    634 	*cp = (pat == '\0') ? STATIC_BYTE: pat;
    635 	cp++;
    636 
    637 	while (cp < ep) {
    638 		*cp = kmem_pattern_generate(cp);
    639 		cp++;
    640 	}
    641 }
    642 
    643 static void
    644 kmem_redzone_check(void *p, size_t sz)
    645 {
    646 	uint8_t *cp, pat, expected;
    647 	const uint8_t *ep;
    648 
    649 	cp = (uint8_t *)p + sz;
    650 	ep = cp + REDZONE_SIZE;
    651 
    652 	pat = kmem_pattern_generate(cp);
    653 	expected = (pat == '\0') ? STATIC_BYTE: pat;
    654 	if (expected != *cp) {
    655 		panic("%s: %p: 0x%02x != 0x%02x\n",
    656 		   __func__, cp, *cp, expected);
    657 	}
    658 	cp++;
    659 
    660 	while (cp < ep) {
    661 		expected = kmem_pattern_generate(cp);
    662 		if (*cp != expected) {
    663 			panic("%s: %p: 0x%02x != 0x%02x\n",
    664 			   __func__, cp, *cp, expected);
    665 		}
    666 		cp++;
    667 	}
    668 }
    669 #endif /* defined(KMEM_REDZONE) */
    670 
    671 
    672 #if defined(KMEM_GUARD)
    673 /*
    674  * The ultimate memory allocator for debugging, baby.  It tries to catch:
    675  *
    676  * 1. Overflow, in realtime. A guard page sits immediately after the
    677  *    requested area; a read/write overflow therefore triggers a page
    678  *    fault.
    679  * 2. Invalid pointer/size passed, at free. A kmem_header structure sits
    680  *    just before the requested area, and holds the allocated size. Any
    681  *    difference with what is given at free triggers a panic.
    682  * 3. Underflow, at free. If an underflow occurs, the kmem header will be
    683  *    modified, and 2. will trigger a panic.
    684  * 4. Use-after-free. When freeing, the memory is unmapped, and depending
    685  *    on the value of kmem_guard_depth, the kernel will more or less delay
    686  *    the recycling of that memory. Which means that any ulterior read/write
    687  *    access to the memory will trigger a page fault, given it hasn't been
    688  *    recycled yet.
    689  */
    690 
    691 #include <sys/atomic.h>
    692 #include <uvm/uvm.h>
    693 
    694 static bool
    695 kmem_guard_init(struct kmem_guard *kg, u_int depth, vmem_t *vm)
    696 {
    697 	vaddr_t va;
    698 
    699 	/* If not enabled, we have nothing to do. */
    700 	if (depth == 0) {
    701 		return false;
    702 	}
    703 	depth = roundup(depth, PAGE_SIZE / sizeof(void *));
    704 	KASSERT(depth != 0);
    705 
    706 	/*
    707 	 * Allocate fifo.
    708 	 */
    709 	va = uvm_km_alloc(kernel_map, depth * sizeof(void *), PAGE_SIZE,
    710 	    UVM_KMF_WIRED | UVM_KMF_ZERO);
    711 	if (va == 0) {
    712 		return false;
    713 	}
    714 
    715 	/*
    716 	 * Init object.
    717 	 */
    718 	kg->kg_vmem = vm;
    719 	kg->kg_fifo = (void *)va;
    720 	kg->kg_depth = depth;
    721 	kg->kg_rotor = 0;
    722 
    723 	printf("kmem_guard(%p): depth %d\n", kg, depth);
    724 	return true;
    725 }
    726 
    727 static void *
    728 kmem_guard_alloc(struct kmem_guard *kg, size_t requested_size, bool waitok)
    729 {
    730 	struct vm_page *pg;
    731 	vm_flag_t flags;
    732 	vmem_addr_t va;
    733 	vaddr_t loopva;
    734 	vsize_t loopsize;
    735 	size_t size;
    736 	void **p;
    737 
    738 	/*
    739 	 * Compute the size: take the kmem header into account, and add a guard
    740 	 * page at the end.
    741 	 */
    742 	size = round_page(requested_size + SIZE_SIZE) + PAGE_SIZE;
    743 
    744 	/* Allocate pages of kernel VA, but do not map anything in yet. */
    745 	flags = VM_BESTFIT | (waitok ? VM_SLEEP : VM_NOSLEEP);
    746 	if (vmem_alloc(kg->kg_vmem, size, flags, &va) != 0) {
    747 		return NULL;
    748 	}
    749 
    750 	loopva = va;
    751 	loopsize = size - PAGE_SIZE;
    752 
    753 	while (loopsize) {
    754 		pg = uvm_pagealloc(NULL, loopva, NULL, 0);
    755 		if (__predict_false(pg == NULL)) {
    756 			if (waitok) {
    757 				uvm_wait("kmem_guard");
    758 				continue;
    759 			} else {
    760 				uvm_km_pgremove_intrsafe(kernel_map, va,
    761 				    va + size);
    762 				vmem_free(kg->kg_vmem, va, size);
    763 				return NULL;
    764 			}
    765 		}
    766 
    767 		pg->flags &= ~PG_BUSY;	/* new page */
    768 		UVM_PAGE_OWN(pg, NULL);
    769 		pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
    770 		    VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE);
    771 
    772 		loopva += PAGE_SIZE;
    773 		loopsize -= PAGE_SIZE;
    774 	}
    775 
    776 	pmap_update(pmap_kernel());
    777 
    778 	/*
    779 	 * Offset the returned pointer so that the unmapped guard page sits
    780 	 * immediately after the returned object.
    781 	 */
    782 	p = (void **)((va + (size - PAGE_SIZE) - requested_size) & ~(uintptr_t)ALIGNBYTES);
    783 	kmem_size_set((uint8_t *)p - SIZE_SIZE, requested_size);
    784 	return (void *)p;
    785 }
    786 
    787 static void
    788 kmem_guard_free(struct kmem_guard *kg, size_t requested_size, void *p)
    789 {
    790 	vaddr_t va;
    791 	u_int rotor;
    792 	size_t size;
    793 	uint8_t *ptr;
    794 
    795 	ptr = (uint8_t *)p - SIZE_SIZE;
    796 	kmem_size_check(ptr, requested_size);
    797 	va = trunc_page((vaddr_t)ptr);
    798 	size = round_page(requested_size + SIZE_SIZE) + PAGE_SIZE;
    799 
    800 	KASSERT(pmap_extract(pmap_kernel(), va, NULL));
    801 	KASSERT(!pmap_extract(pmap_kernel(), va + (size - PAGE_SIZE), NULL));
    802 
    803 	/*
    804 	 * Unmap and free the pages. The last one is never allocated.
    805 	 */
    806 	uvm_km_pgremove_intrsafe(kernel_map, va, va + size);
    807 	pmap_update(pmap_kernel());
    808 
    809 #if 0
    810 	/*
    811 	 * XXX: Here, we need to atomically register the va and its size in the
    812 	 * fifo.
    813 	 */
    814 
    815 	/*
    816 	 * Put the VA allocation into the list and swap an old one out to free.
    817 	 * This behaves mostly like a fifo.
    818 	 */
    819 	rotor = atomic_inc_uint_nv(&kg->kg_rotor) % kg->kg_depth;
    820 	va = (vaddr_t)atomic_swap_ptr(&kg->kg_fifo[rotor], (void *)va);
    821 	if (va != 0) {
    822 		vmem_free(kg->kg_vmem, va, size);
    823 	}
    824 #else
    825 	(void)rotor;
    826 	vmem_free(kg->kg_vmem, va, size);
    827 #endif
    828 }
    829 
    830 #endif /* defined(KMEM_GUARD) */
    831