subr_kmem.c revision 1.67 1 /* $NetBSD: subr_kmem.c,v 1.67 2018/08/20 11:35:28 maxv Exp $ */
2
3 /*-
4 * Copyright (c) 2009-2015 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran and Maxime Villard.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c)2006 YAMAMOTO Takashi,
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 *
45 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
46 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
49 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55 * SUCH DAMAGE.
56 */
57
58 /*
59 * Allocator of kernel wired memory. This allocator has some debug features
60 * enabled with "option DIAGNOSTIC" and "option DEBUG".
61 */
62
63 /*
64 * KMEM_SIZE: detect alloc/free size mismatch bugs.
65 * Prefix each allocations with a fixed-sized, aligned header and record
66 * the exact user-requested allocation size in it. When freeing, compare
67 * it with kmem_free's "size" argument.
68 *
69 * This option enabled on DIAGNOSTIC.
70 *
71 * |CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|
72 * +-----+-----+-----+-----+-----+-----+-----+-----+-----+---+-+
73 * |/////| | | | | | | | | |U|
74 * |/HSZ/| | | | | | | | | |U|
75 * |/////| | | | | | | | | |U|
76 * +-----+-----+-----+-----+-----+-----+-----+-----+-----+---+-+
77 * |Size | Buffer usable by the caller (requested size) |Unused\
78 */
79
80 /*
81 * KMEM_GUARD
82 * A kernel with "option DEBUG" has "kmem_guard" debugging feature compiled
83 * in. See the comment below for what kind of bugs it tries to detect. Even
84 * if compiled in, it's disabled by default because it's very expensive.
85 * You can enable it on boot by:
86 * boot -d
87 * db> w kmem_guard_depth 0t30000
88 * db> c
89 *
90 * The default value of kmem_guard_depth is 0, which means disabled.
91 * It can be changed by KMEM_GUARD_DEPTH kernel config option.
92 */
93
94 #include <sys/cdefs.h>
95 __KERNEL_RCSID(0, "$NetBSD: subr_kmem.c,v 1.67 2018/08/20 11:35:28 maxv Exp $");
96
97 #ifdef _KERNEL_OPT
98 #include "opt_kmem.h"
99 #endif
100
101 #include <sys/param.h>
102 #include <sys/callback.h>
103 #include <sys/kmem.h>
104 #include <sys/pool.h>
105 #include <sys/debug.h>
106 #include <sys/lockdebug.h>
107 #include <sys/cpu.h>
108
109 #include <uvm/uvm_extern.h>
110 #include <uvm/uvm_map.h>
111
112 #include <lib/libkern/libkern.h>
113
114 struct kmem_cache_info {
115 size_t kc_size;
116 const char * kc_name;
117 };
118
119 static const struct kmem_cache_info kmem_cache_sizes[] = {
120 { 8, "kmem-8" },
121 { 16, "kmem-16" },
122 { 24, "kmem-24" },
123 { 32, "kmem-32" },
124 { 40, "kmem-40" },
125 { 48, "kmem-48" },
126 { 56, "kmem-56" },
127 { 64, "kmem-64" },
128 { 80, "kmem-80" },
129 { 96, "kmem-96" },
130 { 112, "kmem-112" },
131 { 128, "kmem-128" },
132 { 160, "kmem-160" },
133 { 192, "kmem-192" },
134 { 224, "kmem-224" },
135 { 256, "kmem-256" },
136 { 320, "kmem-320" },
137 { 384, "kmem-384" },
138 { 448, "kmem-448" },
139 { 512, "kmem-512" },
140 { 768, "kmem-768" },
141 { 1024, "kmem-1024" },
142 { 0, NULL }
143 };
144
145 static const struct kmem_cache_info kmem_cache_big_sizes[] = {
146 { 2048, "kmem-2048" },
147 { 4096, "kmem-4096" },
148 { 8192, "kmem-8192" },
149 { 16384, "kmem-16384" },
150 { 0, NULL }
151 };
152
153 /*
154 * KMEM_ALIGN is the smallest guaranteed alignment and also the
155 * smallest allocateable quantum.
156 * Every cache size >= CACHE_LINE_SIZE gets CACHE_LINE_SIZE alignment.
157 */
158 #define KMEM_ALIGN 8
159 #define KMEM_SHIFT 3
160 #define KMEM_MAXSIZE 1024
161 #define KMEM_CACHE_COUNT (KMEM_MAXSIZE >> KMEM_SHIFT)
162
163 static pool_cache_t kmem_cache[KMEM_CACHE_COUNT] __cacheline_aligned;
164 static size_t kmem_cache_maxidx __read_mostly;
165
166 #define KMEM_BIG_ALIGN 2048
167 #define KMEM_BIG_SHIFT 11
168 #define KMEM_BIG_MAXSIZE 16384
169 #define KMEM_CACHE_BIG_COUNT (KMEM_BIG_MAXSIZE >> KMEM_BIG_SHIFT)
170
171 static pool_cache_t kmem_cache_big[KMEM_CACHE_BIG_COUNT] __cacheline_aligned;
172 static size_t kmem_cache_big_maxidx __read_mostly;
173
174 #if defined(DIAGNOSTIC) && defined(_HARDKERNEL)
175 #define KMEM_SIZE
176 #endif
177
178 #if defined(DEBUG) && defined(_HARDKERNEL)
179 #define KMEM_SIZE
180 #define KMEM_GUARD
181 static void *kmem_freecheck;
182 #endif
183
184 #if defined(KMEM_SIZE)
185 struct kmem_header {
186 size_t size;
187 } __aligned(KMEM_ALIGN);
188 #define SIZE_SIZE sizeof(struct kmem_header)
189 static void kmem_size_set(void *, size_t);
190 static void kmem_size_check(void *, size_t);
191 #else
192 #define SIZE_SIZE 0
193 #define kmem_size_set(p, sz) /* nothing */
194 #define kmem_size_check(p, sz) /* nothing */
195 #endif
196
197 #if defined(KMEM_GUARD)
198 #ifndef KMEM_GUARD_DEPTH
199 #define KMEM_GUARD_DEPTH 0
200 #endif
201 struct kmem_guard {
202 u_int kg_depth;
203 intptr_t * kg_fifo;
204 u_int kg_rotor;
205 vmem_t * kg_vmem;
206 };
207 static bool kmem_guard_init(struct kmem_guard *, u_int, vmem_t *);
208 static void *kmem_guard_alloc(struct kmem_guard *, size_t, bool);
209 static void kmem_guard_free(struct kmem_guard *, size_t, void *);
210 int kmem_guard_depth = KMEM_GUARD_DEPTH;
211 static bool kmem_guard_enabled;
212 static struct kmem_guard kmem_guard;
213 #endif /* defined(KMEM_GUARD) */
214
215 CTASSERT(KM_SLEEP == PR_WAITOK);
216 CTASSERT(KM_NOSLEEP == PR_NOWAIT);
217
218 /*
219 * kmem_intr_alloc: allocate wired memory.
220 */
221
222 void *
223 kmem_intr_alloc(size_t requested_size, km_flag_t kmflags)
224 {
225 size_t allocsz, index;
226 size_t size;
227 pool_cache_t pc;
228 uint8_t *p;
229
230 KASSERT(requested_size > 0);
231
232 KASSERT((kmflags & KM_SLEEP) || (kmflags & KM_NOSLEEP));
233 KASSERT(!(kmflags & KM_SLEEP) || !(kmflags & KM_NOSLEEP));
234
235 #ifdef KMEM_GUARD
236 if (kmem_guard_enabled) {
237 return kmem_guard_alloc(&kmem_guard, requested_size,
238 (kmflags & KM_SLEEP) != 0);
239 }
240 #endif
241
242 size = kmem_roundup_size(requested_size);
243 allocsz = size + SIZE_SIZE;
244
245 if ((index = ((allocsz -1) >> KMEM_SHIFT))
246 < kmem_cache_maxidx) {
247 pc = kmem_cache[index];
248 } else if ((index = ((allocsz - 1) >> KMEM_BIG_SHIFT))
249 < kmem_cache_big_maxidx) {
250 pc = kmem_cache_big[index];
251 } else {
252 int ret = uvm_km_kmem_alloc(kmem_va_arena,
253 (vsize_t)round_page(size),
254 ((kmflags & KM_SLEEP) ? VM_SLEEP : VM_NOSLEEP)
255 | VM_INSTANTFIT, (vmem_addr_t *)&p);
256 if (ret) {
257 return NULL;
258 }
259 FREECHECK_OUT(&kmem_freecheck, p);
260 return p;
261 }
262
263 p = pool_cache_get(pc, kmflags);
264
265 if (__predict_true(p != NULL)) {
266 FREECHECK_OUT(&kmem_freecheck, p);
267 kmem_size_set(p, requested_size);
268
269 return p + SIZE_SIZE;
270 }
271 return p;
272 }
273
274 /*
275 * kmem_intr_zalloc: allocate zeroed wired memory.
276 */
277
278 void *
279 kmem_intr_zalloc(size_t size, km_flag_t kmflags)
280 {
281 void *p;
282
283 p = kmem_intr_alloc(size, kmflags);
284 if (p != NULL) {
285 memset(p, 0, size);
286 }
287 return p;
288 }
289
290 /*
291 * kmem_intr_free: free wired memory allocated by kmem_alloc.
292 */
293
294 void
295 kmem_intr_free(void *p, size_t requested_size)
296 {
297 size_t allocsz, index;
298 size_t size;
299 pool_cache_t pc;
300
301 KASSERT(p != NULL);
302 KASSERT(requested_size > 0);
303
304 #ifdef KMEM_GUARD
305 if (kmem_guard_enabled) {
306 kmem_guard_free(&kmem_guard, requested_size, p);
307 return;
308 }
309 #endif
310
311 size = kmem_roundup_size(requested_size);
312 allocsz = size + SIZE_SIZE;
313
314 if ((index = ((allocsz -1) >> KMEM_SHIFT))
315 < kmem_cache_maxidx) {
316 pc = kmem_cache[index];
317 } else if ((index = ((allocsz - 1) >> KMEM_BIG_SHIFT))
318 < kmem_cache_big_maxidx) {
319 pc = kmem_cache_big[index];
320 } else {
321 FREECHECK_IN(&kmem_freecheck, p);
322 uvm_km_kmem_free(kmem_va_arena, (vaddr_t)p,
323 round_page(size));
324 return;
325 }
326
327 p = (uint8_t *)p - SIZE_SIZE;
328 kmem_size_check(p, requested_size);
329 FREECHECK_IN(&kmem_freecheck, p);
330 LOCKDEBUG_MEM_CHECK(p, size);
331
332 pool_cache_put(pc, p);
333 }
334
335 /* ---- kmem API */
336
337 /*
338 * kmem_alloc: allocate wired memory.
339 * => must not be called from interrupt context.
340 */
341
342 void *
343 kmem_alloc(size_t size, km_flag_t kmflags)
344 {
345 void *v;
346
347 KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()),
348 "kmem(9) should not be used from the interrupt context");
349 v = kmem_intr_alloc(size, kmflags);
350 KASSERT(v || (kmflags & KM_NOSLEEP) != 0);
351 return v;
352 }
353
354 /*
355 * kmem_zalloc: allocate zeroed wired memory.
356 * => must not be called from interrupt context.
357 */
358
359 void *
360 kmem_zalloc(size_t size, km_flag_t kmflags)
361 {
362 void *v;
363
364 KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()),
365 "kmem(9) should not be used from the interrupt context");
366 v = kmem_intr_zalloc(size, kmflags);
367 KASSERT(v || (kmflags & KM_NOSLEEP) != 0);
368 return v;
369 }
370
371 /*
372 * kmem_free: free wired memory allocated by kmem_alloc.
373 * => must not be called from interrupt context.
374 */
375
376 void
377 kmem_free(void *p, size_t size)
378 {
379 KASSERT(!cpu_intr_p());
380 KASSERT(!cpu_softintr_p());
381 kmem_intr_free(p, size);
382 }
383
384 static size_t
385 kmem_create_caches(const struct kmem_cache_info *array,
386 pool_cache_t alloc_table[], size_t maxsize, int shift, int ipl)
387 {
388 size_t maxidx = 0;
389 size_t table_unit = (1 << shift);
390 size_t size = table_unit;
391 int i;
392
393 for (i = 0; array[i].kc_size != 0 ; i++) {
394 const char *name = array[i].kc_name;
395 size_t cache_size = array[i].kc_size;
396 struct pool_allocator *pa;
397 int flags = PR_NOALIGN;
398 pool_cache_t pc;
399 size_t align;
400
401 if ((cache_size & (CACHE_LINE_SIZE - 1)) == 0)
402 align = CACHE_LINE_SIZE;
403 else if ((cache_size & (PAGE_SIZE - 1)) == 0)
404 align = PAGE_SIZE;
405 else
406 align = KMEM_ALIGN;
407
408 if (cache_size < CACHE_LINE_SIZE)
409 flags |= PR_NOTOUCH;
410
411 /* check if we reached the requested size */
412 if (cache_size > maxsize || cache_size > PAGE_SIZE) {
413 break;
414 }
415 if ((cache_size >> shift) > maxidx) {
416 maxidx = cache_size >> shift;
417 }
418
419 if ((cache_size >> shift) > maxidx) {
420 maxidx = cache_size >> shift;
421 }
422
423 pa = &pool_allocator_kmem;
424 pc = pool_cache_init(cache_size, align, 0, flags,
425 name, pa, ipl, NULL, NULL, NULL);
426
427 while (size <= cache_size) {
428 alloc_table[(size - 1) >> shift] = pc;
429 size += table_unit;
430 }
431 }
432 return maxidx;
433 }
434
435 void
436 kmem_init(void)
437 {
438 #ifdef KMEM_GUARD
439 kmem_guard_enabled = kmem_guard_init(&kmem_guard, kmem_guard_depth,
440 kmem_va_arena);
441 #endif
442 kmem_cache_maxidx = kmem_create_caches(kmem_cache_sizes,
443 kmem_cache, KMEM_MAXSIZE, KMEM_SHIFT, IPL_VM);
444 kmem_cache_big_maxidx = kmem_create_caches(kmem_cache_big_sizes,
445 kmem_cache_big, PAGE_SIZE, KMEM_BIG_SHIFT, IPL_VM);
446 }
447
448 size_t
449 kmem_roundup_size(size_t size)
450 {
451 return (size + (KMEM_ALIGN - 1)) & ~(KMEM_ALIGN - 1);
452 }
453
454 /*
455 * Used to dynamically allocate string with kmem accordingly to format.
456 */
457 char *
458 kmem_asprintf(const char *fmt, ...)
459 {
460 int size __diagused, len;
461 va_list va;
462 char *str;
463
464 va_start(va, fmt);
465 len = vsnprintf(NULL, 0, fmt, va);
466 va_end(va);
467
468 str = kmem_alloc(len + 1, KM_SLEEP);
469
470 va_start(va, fmt);
471 size = vsnprintf(str, len + 1, fmt, va);
472 va_end(va);
473
474 KASSERT(size == len);
475
476 return str;
477 }
478
479 char *
480 kmem_strdupsize(const char *str, size_t *lenp, km_flag_t flags)
481 {
482 size_t len = strlen(str) + 1;
483 char *ptr = kmem_alloc(len, flags);
484 if (ptr == NULL)
485 return NULL;
486
487 if (lenp)
488 *lenp = len;
489 memcpy(ptr, str, len);
490 return ptr;
491 }
492
493 char *
494 kmem_strndup(const char *str, size_t maxlen, km_flag_t flags)
495 {
496 KASSERT(str != NULL);
497 KASSERT(maxlen != 0);
498
499 size_t len = strnlen(str, maxlen);
500 char *ptr = kmem_alloc(len + 1, flags);
501 if (ptr == NULL)
502 return NULL;
503
504 memcpy(ptr, str, len);
505 ptr[len] = '\0';
506
507 return ptr;
508 }
509
510 void
511 kmem_strfree(char *str)
512 {
513 if (str == NULL)
514 return;
515
516 kmem_free(str, strlen(str) + 1);
517 }
518
519 /* ------------------ DEBUG / DIAGNOSTIC ------------------ */
520
521 #if defined(KMEM_SIZE)
522 static void
523 kmem_size_set(void *p, size_t sz)
524 {
525 struct kmem_header *hd;
526 hd = (struct kmem_header *)p;
527 hd->size = sz;
528 }
529
530 static void
531 kmem_size_check(void *p, size_t sz)
532 {
533 struct kmem_header *hd;
534 size_t hsz;
535
536 hd = (struct kmem_header *)p;
537 hsz = hd->size;
538
539 if (hsz != sz) {
540 panic("kmem_free(%p, %zu) != allocated size %zu",
541 (const uint8_t *)p + SIZE_SIZE, sz, hsz);
542 }
543 }
544 #endif /* defined(KMEM_SIZE) */
545
546 #if defined(KMEM_GUARD)
547 /*
548 * The ultimate memory allocator for debugging, baby. It tries to catch:
549 *
550 * 1. Overflow, in realtime. A guard page sits immediately after the
551 * requested area; a read/write overflow therefore triggers a page
552 * fault.
553 * 2. Invalid pointer/size passed, at free. A kmem_header structure sits
554 * just before the requested area, and holds the allocated size. Any
555 * difference with what is given at free triggers a panic.
556 * 3. Underflow, at free. If an underflow occurs, the kmem header will be
557 * modified, and 2. will trigger a panic.
558 * 4. Use-after-free. When freeing, the memory is unmapped, and depending
559 * on the value of kmem_guard_depth, the kernel will more or less delay
560 * the recycling of that memory. Which means that any ulterior read/write
561 * access to the memory will trigger a page fault, given it hasn't been
562 * recycled yet.
563 */
564
565 #include <sys/atomic.h>
566 #include <uvm/uvm.h>
567
568 static bool
569 kmem_guard_init(struct kmem_guard *kg, u_int depth, vmem_t *vm)
570 {
571 vaddr_t va;
572
573 /* If not enabled, we have nothing to do. */
574 if (depth == 0) {
575 return false;
576 }
577 depth = roundup(depth, PAGE_SIZE / sizeof(void *));
578 KASSERT(depth != 0);
579
580 /*
581 * Allocate fifo.
582 */
583 va = uvm_km_alloc(kernel_map, depth * sizeof(void *), PAGE_SIZE,
584 UVM_KMF_WIRED | UVM_KMF_ZERO);
585 if (va == 0) {
586 return false;
587 }
588
589 /*
590 * Init object.
591 */
592 kg->kg_vmem = vm;
593 kg->kg_fifo = (void *)va;
594 kg->kg_depth = depth;
595 kg->kg_rotor = 0;
596
597 printf("kmem_guard(%p): depth %d\n", kg, depth);
598 return true;
599 }
600
601 static void *
602 kmem_guard_alloc(struct kmem_guard *kg, size_t requested_size, bool waitok)
603 {
604 struct vm_page *pg;
605 vm_flag_t flags;
606 vmem_addr_t va;
607 vaddr_t loopva;
608 vsize_t loopsize;
609 size_t size;
610 void **p;
611
612 /*
613 * Compute the size: take the kmem header into account, and add a guard
614 * page at the end.
615 */
616 size = round_page(requested_size + SIZE_SIZE) + PAGE_SIZE;
617
618 /* Allocate pages of kernel VA, but do not map anything in yet. */
619 flags = VM_BESTFIT | (waitok ? VM_SLEEP : VM_NOSLEEP);
620 if (vmem_alloc(kg->kg_vmem, size, flags, &va) != 0) {
621 return NULL;
622 }
623
624 loopva = va;
625 loopsize = size - PAGE_SIZE;
626
627 while (loopsize) {
628 pg = uvm_pagealloc(NULL, loopva, NULL, 0);
629 if (__predict_false(pg == NULL)) {
630 if (waitok) {
631 uvm_wait("kmem_guard");
632 continue;
633 } else {
634 uvm_km_pgremove_intrsafe(kernel_map, va,
635 va + size);
636 vmem_free(kg->kg_vmem, va, size);
637 return NULL;
638 }
639 }
640
641 pg->flags &= ~PG_BUSY; /* new page */
642 UVM_PAGE_OWN(pg, NULL);
643 pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
644 VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE);
645
646 loopva += PAGE_SIZE;
647 loopsize -= PAGE_SIZE;
648 }
649
650 pmap_update(pmap_kernel());
651
652 /*
653 * Offset the returned pointer so that the unmapped guard page sits
654 * immediately after the returned object.
655 */
656 p = (void **)((va + (size - PAGE_SIZE) - requested_size) & ~(uintptr_t)ALIGNBYTES);
657 kmem_size_set((uint8_t *)p - SIZE_SIZE, requested_size);
658 return (void *)p;
659 }
660
661 static void
662 kmem_guard_free(struct kmem_guard *kg, size_t requested_size, void *p)
663 {
664 vaddr_t va;
665 u_int rotor;
666 size_t size;
667 uint8_t *ptr;
668
669 ptr = (uint8_t *)p - SIZE_SIZE;
670 kmem_size_check(ptr, requested_size);
671 va = trunc_page((vaddr_t)ptr);
672 size = round_page(requested_size + SIZE_SIZE) + PAGE_SIZE;
673
674 KASSERT(pmap_extract(pmap_kernel(), va, NULL));
675 KASSERT(!pmap_extract(pmap_kernel(), va + (size - PAGE_SIZE), NULL));
676
677 /*
678 * Unmap and free the pages. The last one is never allocated.
679 */
680 uvm_km_pgremove_intrsafe(kernel_map, va, va + size);
681 pmap_update(pmap_kernel());
682
683 #if 0
684 /*
685 * XXX: Here, we need to atomically register the va and its size in the
686 * fifo.
687 */
688
689 /*
690 * Put the VA allocation into the list and swap an old one out to free.
691 * This behaves mostly like a fifo.
692 */
693 rotor = atomic_inc_uint_nv(&kg->kg_rotor) % kg->kg_depth;
694 va = (vaddr_t)atomic_swap_ptr(&kg->kg_fifo[rotor], (void *)va);
695 if (va != 0) {
696 vmem_free(kg->kg_vmem, va, size);
697 }
698 #else
699 (void)rotor;
700 vmem_free(kg->kg_vmem, va, size);
701 #endif
702 }
703
704 #endif /* defined(KMEM_GUARD) */
705