Home | History | Annotate | Line # | Download | only in kern
subr_kmem.c revision 1.70
      1 /*	$NetBSD: subr_kmem.c,v 1.70 2018/08/22 09:38:21 maxv Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2009-2015 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran and Maxime Villard.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*-
     33  * Copyright (c)2006 YAMAMOTO Takashi,
     34  * All rights reserved.
     35  *
     36  * Redistribution and use in source and binary forms, with or without
     37  * modification, are permitted provided that the following conditions
     38  * are met:
     39  * 1. Redistributions of source code must retain the above copyright
     40  *    notice, this list of conditions and the following disclaimer.
     41  * 2. Redistributions in binary form must reproduce the above copyright
     42  *    notice, this list of conditions and the following disclaimer in the
     43  *    documentation and/or other materials provided with the distribution.
     44  *
     45  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     46  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     47  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     48  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     49  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     50  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     51  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     52  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     53  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     54  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     55  * SUCH DAMAGE.
     56  */
     57 
     58 /*
     59  * Allocator of kernel wired memory. This allocator has some debug features
     60  * enabled with "option DIAGNOSTIC" and "option DEBUG".
     61  */
     62 
     63 /*
     64  * KMEM_SIZE: detect alloc/free size mismatch bugs.
     65  *	Prefix each allocations with a fixed-sized, aligned header and record
     66  *	the exact user-requested allocation size in it. When freeing, compare
     67  *	it with kmem_free's "size" argument.
     68  *
     69  * This option enabled on DIAGNOSTIC.
     70  *
     71  *  |CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|
     72  *  +-----+-----+-----+-----+-----+-----+-----+-----+-----+---+-+
     73  *  |/////|     |     |     |     |     |     |     |     |   |U|
     74  *  |/HSZ/|     |     |     |     |     |     |     |     |   |U|
     75  *  |/////|     |     |     |     |     |     |     |     |   |U|
     76  *  +-----+-----+-----+-----+-----+-----+-----+-----+-----+---+-+
     77  *  |Size |    Buffer usable by the caller (requested size)   |Unused\
     78  */
     79 
     80 /*
     81  * KMEM_GUARD
     82  *	A kernel with "option DEBUG" has "kmem_guard" debugging feature compiled
     83  *	in. See the comment below for what kind of bugs it tries to detect. Even
     84  *	if compiled in, it's disabled by default because it's very expensive.
     85  *	You can enable it on boot by:
     86  *		boot -d
     87  *		db> w kmem_guard_depth 0t30000
     88  *		db> c
     89  *
     90  *	The default value of kmem_guard_depth is 0, which means disabled.
     91  *	It can be changed by KMEM_GUARD_DEPTH kernel config option.
     92  */
     93 
     94 #include <sys/cdefs.h>
     95 __KERNEL_RCSID(0, "$NetBSD: subr_kmem.c,v 1.70 2018/08/22 09:38:21 maxv Exp $");
     96 
     97 #ifdef _KERNEL_OPT
     98 #include "opt_kmem.h"
     99 #include "opt_kasan.h"
    100 #endif
    101 
    102 #include <sys/param.h>
    103 #include <sys/callback.h>
    104 #include <sys/kmem.h>
    105 #include <sys/pool.h>
    106 #include <sys/debug.h>
    107 #include <sys/lockdebug.h>
    108 #include <sys/cpu.h>
    109 #include <sys/asan.h>
    110 
    111 #include <uvm/uvm_extern.h>
    112 #include <uvm/uvm_map.h>
    113 
    114 #include <lib/libkern/libkern.h>
    115 
    116 struct kmem_cache_info {
    117 	size_t		kc_size;
    118 	const char *	kc_name;
    119 };
    120 
    121 static const struct kmem_cache_info kmem_cache_sizes[] = {
    122 	{  8, "kmem-8" },
    123 	{ 16, "kmem-16" },
    124 	{ 24, "kmem-24" },
    125 	{ 32, "kmem-32" },
    126 	{ 40, "kmem-40" },
    127 	{ 48, "kmem-48" },
    128 	{ 56, "kmem-56" },
    129 	{ 64, "kmem-64" },
    130 	{ 80, "kmem-80" },
    131 	{ 96, "kmem-96" },
    132 	{ 112, "kmem-112" },
    133 	{ 128, "kmem-128" },
    134 	{ 160, "kmem-160" },
    135 	{ 192, "kmem-192" },
    136 	{ 224, "kmem-224" },
    137 	{ 256, "kmem-256" },
    138 	{ 320, "kmem-320" },
    139 	{ 384, "kmem-384" },
    140 	{ 448, "kmem-448" },
    141 	{ 512, "kmem-512" },
    142 	{ 768, "kmem-768" },
    143 	{ 1024, "kmem-1024" },
    144 	{ 0, NULL }
    145 };
    146 
    147 static const struct kmem_cache_info kmem_cache_big_sizes[] = {
    148 	{ 2048, "kmem-2048" },
    149 	{ 4096, "kmem-4096" },
    150 	{ 8192, "kmem-8192" },
    151 	{ 16384, "kmem-16384" },
    152 	{ 0, NULL }
    153 };
    154 
    155 /*
    156  * KMEM_ALIGN is the smallest guaranteed alignment and also the
    157  * smallest allocateable quantum.
    158  * Every cache size >= CACHE_LINE_SIZE gets CACHE_LINE_SIZE alignment.
    159  */
    160 #define	KMEM_ALIGN		8
    161 #define	KMEM_SHIFT		3
    162 #define	KMEM_MAXSIZE		1024
    163 #define	KMEM_CACHE_COUNT	(KMEM_MAXSIZE >> KMEM_SHIFT)
    164 
    165 static pool_cache_t kmem_cache[KMEM_CACHE_COUNT] __cacheline_aligned;
    166 static size_t kmem_cache_maxidx __read_mostly;
    167 
    168 #define	KMEM_BIG_ALIGN		2048
    169 #define	KMEM_BIG_SHIFT		11
    170 #define	KMEM_BIG_MAXSIZE	16384
    171 #define	KMEM_CACHE_BIG_COUNT	(KMEM_BIG_MAXSIZE >> KMEM_BIG_SHIFT)
    172 
    173 static pool_cache_t kmem_cache_big[KMEM_CACHE_BIG_COUNT] __cacheline_aligned;
    174 static size_t kmem_cache_big_maxidx __read_mostly;
    175 
    176 #if defined(DIAGNOSTIC) && defined(_HARDKERNEL)
    177 #define	KMEM_SIZE
    178 #endif
    179 
    180 #if defined(DEBUG) && defined(_HARDKERNEL)
    181 #define	KMEM_SIZE
    182 #define	KMEM_GUARD
    183 static void *kmem_freecheck;
    184 #endif
    185 
    186 #if defined(KMEM_SIZE)
    187 struct kmem_header {
    188 	size_t		size;
    189 } __aligned(KMEM_ALIGN);
    190 #define	SIZE_SIZE	sizeof(struct kmem_header)
    191 static void kmem_size_set(void *, size_t);
    192 static void kmem_size_check(void *, size_t);
    193 #else
    194 #define	SIZE_SIZE	0
    195 #define	kmem_size_set(p, sz)	/* nothing */
    196 #define	kmem_size_check(p, sz)	/* nothing */
    197 #endif
    198 
    199 #if defined(KMEM_GUARD)
    200 #ifndef KMEM_GUARD_DEPTH
    201 #define KMEM_GUARD_DEPTH 0
    202 #endif
    203 struct kmem_guard {
    204 	u_int		kg_depth;
    205 	intptr_t *	kg_fifo;
    206 	u_int		kg_rotor;
    207 	vmem_t *	kg_vmem;
    208 };
    209 static bool kmem_guard_init(struct kmem_guard *, u_int, vmem_t *);
    210 static void *kmem_guard_alloc(struct kmem_guard *, size_t, bool);
    211 static void kmem_guard_free(struct kmem_guard *, size_t, void *);
    212 int kmem_guard_depth = KMEM_GUARD_DEPTH;
    213 static bool kmem_guard_enabled;
    214 static struct kmem_guard kmem_guard;
    215 #endif /* defined(KMEM_GUARD) */
    216 
    217 CTASSERT(KM_SLEEP == PR_WAITOK);
    218 CTASSERT(KM_NOSLEEP == PR_NOWAIT);
    219 
    220 /*
    221  * kmem_intr_alloc: allocate wired memory.
    222  */
    223 
    224 void *
    225 kmem_intr_alloc(size_t requested_size, km_flag_t kmflags)
    226 {
    227 	const size_t origsize = requested_size;
    228 	size_t allocsz, index;
    229 	size_t size;
    230 	pool_cache_t pc;
    231 	uint8_t *p;
    232 
    233 	KASSERT(requested_size > 0);
    234 
    235 	KASSERT((kmflags & KM_SLEEP) || (kmflags & KM_NOSLEEP));
    236 	KASSERT(!(kmflags & KM_SLEEP) || !(kmflags & KM_NOSLEEP));
    237 
    238 #ifdef KMEM_GUARD
    239 	if (kmem_guard_enabled) {
    240 		return kmem_guard_alloc(&kmem_guard, requested_size,
    241 		    (kmflags & KM_SLEEP) != 0);
    242 	}
    243 #endif
    244 
    245 	kasan_add_redzone(&requested_size);
    246 	size = kmem_roundup_size(requested_size);
    247 	allocsz = size + SIZE_SIZE;
    248 
    249 	if ((index = ((allocsz -1) >> KMEM_SHIFT))
    250 	    < kmem_cache_maxidx) {
    251 		pc = kmem_cache[index];
    252 	} else if ((index = ((allocsz - 1) >> KMEM_BIG_SHIFT))
    253 	    < kmem_cache_big_maxidx) {
    254 		pc = kmem_cache_big[index];
    255 	} else {
    256 		int ret = uvm_km_kmem_alloc(kmem_va_arena,
    257 		    (vsize_t)round_page(size),
    258 		    ((kmflags & KM_SLEEP) ? VM_SLEEP : VM_NOSLEEP)
    259 		     | VM_INSTANTFIT, (vmem_addr_t *)&p);
    260 		if (ret) {
    261 			return NULL;
    262 		}
    263 		FREECHECK_OUT(&kmem_freecheck, p);
    264 		return p;
    265 	}
    266 
    267 	p = pool_cache_get(pc, kmflags);
    268 
    269 	if (__predict_true(p != NULL)) {
    270 		FREECHECK_OUT(&kmem_freecheck, p);
    271 		kmem_size_set(p, requested_size);
    272 		p += SIZE_SIZE;
    273 		kasan_alloc(p, origsize, size);
    274 		return p;
    275 	}
    276 	return p;
    277 }
    278 
    279 /*
    280  * kmem_intr_zalloc: allocate zeroed wired memory.
    281  */
    282 
    283 void *
    284 kmem_intr_zalloc(size_t size, km_flag_t kmflags)
    285 {
    286 	void *p;
    287 
    288 	p = kmem_intr_alloc(size, kmflags);
    289 	if (p != NULL) {
    290 		memset(p, 0, size);
    291 	}
    292 	return p;
    293 }
    294 
    295 /*
    296  * kmem_intr_free: free wired memory allocated by kmem_alloc.
    297  */
    298 
    299 void
    300 kmem_intr_free(void *p, size_t requested_size)
    301 {
    302 	size_t allocsz, index;
    303 	size_t size;
    304 	pool_cache_t pc;
    305 
    306 	KASSERT(p != NULL);
    307 	KASSERT(requested_size > 0);
    308 
    309 #ifdef KMEM_GUARD
    310 	if (kmem_guard_enabled) {
    311 		kmem_guard_free(&kmem_guard, requested_size, p);
    312 		return;
    313 	}
    314 #endif
    315 
    316 	kasan_add_redzone(&requested_size);
    317 	size = kmem_roundup_size(requested_size);
    318 	allocsz = size + SIZE_SIZE;
    319 
    320 	if ((index = ((allocsz -1) >> KMEM_SHIFT))
    321 	    < kmem_cache_maxidx) {
    322 		pc = kmem_cache[index];
    323 	} else if ((index = ((allocsz - 1) >> KMEM_BIG_SHIFT))
    324 	    < kmem_cache_big_maxidx) {
    325 		pc = kmem_cache_big[index];
    326 	} else {
    327 		FREECHECK_IN(&kmem_freecheck, p);
    328 		uvm_km_kmem_free(kmem_va_arena, (vaddr_t)p,
    329 		    round_page(size));
    330 		return;
    331 	}
    332 
    333 	kasan_free(p, size);
    334 
    335 	p = (uint8_t *)p - SIZE_SIZE;
    336 	kmem_size_check(p, requested_size);
    337 	FREECHECK_IN(&kmem_freecheck, p);
    338 	LOCKDEBUG_MEM_CHECK(p, size);
    339 
    340 	pool_cache_put(pc, p);
    341 }
    342 
    343 /* ---- kmem API */
    344 
    345 /*
    346  * kmem_alloc: allocate wired memory.
    347  * => must not be called from interrupt context.
    348  */
    349 
    350 void *
    351 kmem_alloc(size_t size, km_flag_t kmflags)
    352 {
    353 	void *v;
    354 
    355 	KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()),
    356 	    "kmem(9) should not be used from the interrupt context");
    357 	v = kmem_intr_alloc(size, kmflags);
    358 	KASSERT(v || (kmflags & KM_NOSLEEP) != 0);
    359 	return v;
    360 }
    361 
    362 /*
    363  * kmem_zalloc: allocate zeroed wired memory.
    364  * => must not be called from interrupt context.
    365  */
    366 
    367 void *
    368 kmem_zalloc(size_t size, km_flag_t kmflags)
    369 {
    370 	void *v;
    371 
    372 	KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()),
    373 	    "kmem(9) should not be used from the interrupt context");
    374 	v = kmem_intr_zalloc(size, kmflags);
    375 	KASSERT(v || (kmflags & KM_NOSLEEP) != 0);
    376 	return v;
    377 }
    378 
    379 /*
    380  * kmem_free: free wired memory allocated by kmem_alloc.
    381  * => must not be called from interrupt context.
    382  */
    383 
    384 void
    385 kmem_free(void *p, size_t size)
    386 {
    387 	KASSERT(!cpu_intr_p());
    388 	KASSERT(!cpu_softintr_p());
    389 	kmem_intr_free(p, size);
    390 }
    391 
    392 static size_t
    393 kmem_create_caches(const struct kmem_cache_info *array,
    394     pool_cache_t alloc_table[], size_t maxsize, int shift, int ipl)
    395 {
    396 	size_t maxidx = 0;
    397 	size_t table_unit = (1 << shift);
    398 	size_t size = table_unit;
    399 	int i;
    400 
    401 	for (i = 0; array[i].kc_size != 0 ; i++) {
    402 		const char *name = array[i].kc_name;
    403 		size_t cache_size = array[i].kc_size;
    404 		struct pool_allocator *pa;
    405 		int flags = PR_NOALIGN;
    406 		pool_cache_t pc;
    407 		size_t align;
    408 
    409 		if ((cache_size & (CACHE_LINE_SIZE - 1)) == 0)
    410 			align = CACHE_LINE_SIZE;
    411 		else if ((cache_size & (PAGE_SIZE - 1)) == 0)
    412 			align = PAGE_SIZE;
    413 		else
    414 			align = KMEM_ALIGN;
    415 
    416 		if (cache_size < CACHE_LINE_SIZE)
    417 			flags |= PR_NOTOUCH;
    418 
    419 		/* check if we reached the requested size */
    420 		if (cache_size > maxsize || cache_size > PAGE_SIZE) {
    421 			break;
    422 		}
    423 		if ((cache_size >> shift) > maxidx) {
    424 			maxidx = cache_size >> shift;
    425 		}
    426 
    427 		if ((cache_size >> shift) > maxidx) {
    428 			maxidx = cache_size >> shift;
    429 		}
    430 
    431 		pa = &pool_allocator_kmem;
    432 		pc = pool_cache_init(cache_size, align, 0, flags,
    433 		    name, pa, ipl, NULL, NULL, NULL);
    434 
    435 		while (size <= cache_size) {
    436 			alloc_table[(size - 1) >> shift] = pc;
    437 			size += table_unit;
    438 		}
    439 	}
    440 	return maxidx;
    441 }
    442 
    443 void
    444 kmem_init(void)
    445 {
    446 #ifdef KMEM_GUARD
    447 	kmem_guard_enabled = kmem_guard_init(&kmem_guard, kmem_guard_depth,
    448 	    kmem_va_arena);
    449 #endif
    450 	kmem_cache_maxidx = kmem_create_caches(kmem_cache_sizes,
    451 	    kmem_cache, KMEM_MAXSIZE, KMEM_SHIFT, IPL_VM);
    452 	kmem_cache_big_maxidx = kmem_create_caches(kmem_cache_big_sizes,
    453 	    kmem_cache_big, PAGE_SIZE, KMEM_BIG_SHIFT, IPL_VM);
    454 }
    455 
    456 size_t
    457 kmem_roundup_size(size_t size)
    458 {
    459 	return (size + (KMEM_ALIGN - 1)) & ~(KMEM_ALIGN - 1);
    460 }
    461 
    462 /*
    463  * Used to dynamically allocate string with kmem accordingly to format.
    464  */
    465 char *
    466 kmem_asprintf(const char *fmt, ...)
    467 {
    468 	int size __diagused, len;
    469 	va_list va;
    470 	char *str;
    471 
    472 	va_start(va, fmt);
    473 	len = vsnprintf(NULL, 0, fmt, va);
    474 	va_end(va);
    475 
    476 	str = kmem_alloc(len + 1, KM_SLEEP);
    477 
    478 	va_start(va, fmt);
    479 	size = vsnprintf(str, len + 1, fmt, va);
    480 	va_end(va);
    481 
    482 	KASSERT(size == len);
    483 
    484 	return str;
    485 }
    486 
    487 char *
    488 kmem_strdupsize(const char *str, size_t *lenp, km_flag_t flags)
    489 {
    490 	size_t len = strlen(str) + 1;
    491 	char *ptr = kmem_alloc(len, flags);
    492 	if (ptr == NULL)
    493 		return NULL;
    494 
    495 	if (lenp)
    496 		*lenp = len;
    497 	memcpy(ptr, str, len);
    498 	return ptr;
    499 }
    500 
    501 char *
    502 kmem_strndup(const char *str, size_t maxlen, km_flag_t flags)
    503 {
    504 	KASSERT(str != NULL);
    505 	KASSERT(maxlen != 0);
    506 
    507 	size_t len = strnlen(str, maxlen);
    508 	char *ptr = kmem_alloc(len + 1, flags);
    509 	if (ptr == NULL)
    510 		return NULL;
    511 
    512 	memcpy(ptr, str, len);
    513 	ptr[len] = '\0';
    514 
    515 	return ptr;
    516 }
    517 
    518 void
    519 kmem_strfree(char *str)
    520 {
    521 	if (str == NULL)
    522 		return;
    523 
    524 	kmem_free(str, strlen(str) + 1);
    525 }
    526 
    527 /* ------------------ DEBUG / DIAGNOSTIC ------------------ */
    528 
    529 #if defined(KMEM_SIZE)
    530 static void
    531 kmem_size_set(void *p, size_t sz)
    532 {
    533 	struct kmem_header *hd;
    534 	hd = (struct kmem_header *)p;
    535 	hd->size = sz;
    536 }
    537 
    538 static void
    539 kmem_size_check(void *p, size_t sz)
    540 {
    541 	struct kmem_header *hd;
    542 	size_t hsz;
    543 
    544 	hd = (struct kmem_header *)p;
    545 	hsz = hd->size;
    546 
    547 	if (hsz != sz) {
    548 		panic("kmem_free(%p, %zu) != allocated size %zu",
    549 		    (const uint8_t *)p + SIZE_SIZE, sz, hsz);
    550 	}
    551 }
    552 #endif /* defined(KMEM_SIZE) */
    553 
    554 #if defined(KMEM_GUARD)
    555 /*
    556  * The ultimate memory allocator for debugging, baby.  It tries to catch:
    557  *
    558  * 1. Overflow, in realtime. A guard page sits immediately after the
    559  *    requested area; a read/write overflow therefore triggers a page
    560  *    fault.
    561  * 2. Invalid pointer/size passed, at free. A kmem_header structure sits
    562  *    just before the requested area, and holds the allocated size. Any
    563  *    difference with what is given at free triggers a panic.
    564  * 3. Underflow, at free. If an underflow occurs, the kmem header will be
    565  *    modified, and 2. will trigger a panic.
    566  * 4. Use-after-free. When freeing, the memory is unmapped, and depending
    567  *    on the value of kmem_guard_depth, the kernel will more or less delay
    568  *    the recycling of that memory. Which means that any ulterior read/write
    569  *    access to the memory will trigger a page fault, given it hasn't been
    570  *    recycled yet.
    571  */
    572 
    573 #include <sys/atomic.h>
    574 #include <uvm/uvm.h>
    575 
    576 static bool
    577 kmem_guard_init(struct kmem_guard *kg, u_int depth, vmem_t *vm)
    578 {
    579 	vaddr_t va;
    580 
    581 	/* If not enabled, we have nothing to do. */
    582 	if (depth == 0) {
    583 		return false;
    584 	}
    585 	depth = roundup(depth, PAGE_SIZE / sizeof(void *));
    586 	KASSERT(depth != 0);
    587 
    588 	/*
    589 	 * Allocate fifo.
    590 	 */
    591 	va = uvm_km_alloc(kernel_map, depth * sizeof(void *), PAGE_SIZE,
    592 	    UVM_KMF_WIRED | UVM_KMF_ZERO);
    593 	if (va == 0) {
    594 		return false;
    595 	}
    596 
    597 	/*
    598 	 * Init object.
    599 	 */
    600 	kg->kg_vmem = vm;
    601 	kg->kg_fifo = (void *)va;
    602 	kg->kg_depth = depth;
    603 	kg->kg_rotor = 0;
    604 
    605 	printf("kmem_guard(%p): depth %d\n", kg, depth);
    606 	return true;
    607 }
    608 
    609 static void *
    610 kmem_guard_alloc(struct kmem_guard *kg, size_t requested_size, bool waitok)
    611 {
    612 	struct vm_page *pg;
    613 	vm_flag_t flags;
    614 	vmem_addr_t va;
    615 	vaddr_t loopva;
    616 	vsize_t loopsize;
    617 	size_t size;
    618 	void **p;
    619 
    620 	/*
    621 	 * Compute the size: take the kmem header into account, and add a guard
    622 	 * page at the end.
    623 	 */
    624 	size = round_page(requested_size + SIZE_SIZE) + PAGE_SIZE;
    625 
    626 	/* Allocate pages of kernel VA, but do not map anything in yet. */
    627 	flags = VM_BESTFIT | (waitok ? VM_SLEEP : VM_NOSLEEP);
    628 	if (vmem_alloc(kg->kg_vmem, size, flags, &va) != 0) {
    629 		return NULL;
    630 	}
    631 
    632 	loopva = va;
    633 	loopsize = size - PAGE_SIZE;
    634 
    635 	while (loopsize) {
    636 		pg = uvm_pagealloc(NULL, loopva, NULL, 0);
    637 		if (__predict_false(pg == NULL)) {
    638 			if (waitok) {
    639 				uvm_wait("kmem_guard");
    640 				continue;
    641 			} else {
    642 				uvm_km_pgremove_intrsafe(kernel_map, va,
    643 				    va + size);
    644 				vmem_free(kg->kg_vmem, va, size);
    645 				return NULL;
    646 			}
    647 		}
    648 
    649 		pg->flags &= ~PG_BUSY;	/* new page */
    650 		UVM_PAGE_OWN(pg, NULL);
    651 		pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
    652 		    VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE);
    653 
    654 		loopva += PAGE_SIZE;
    655 		loopsize -= PAGE_SIZE;
    656 	}
    657 
    658 	pmap_update(pmap_kernel());
    659 
    660 	/*
    661 	 * Offset the returned pointer so that the unmapped guard page sits
    662 	 * immediately after the returned object.
    663 	 */
    664 	p = (void **)((va + (size - PAGE_SIZE) - requested_size) & ~(uintptr_t)ALIGNBYTES);
    665 	kmem_size_set((uint8_t *)p - SIZE_SIZE, requested_size);
    666 	return (void *)p;
    667 }
    668 
    669 static void
    670 kmem_guard_free(struct kmem_guard *kg, size_t requested_size, void *p)
    671 {
    672 	vaddr_t va;
    673 	u_int rotor;
    674 	size_t size;
    675 	uint8_t *ptr;
    676 
    677 	ptr = (uint8_t *)p - SIZE_SIZE;
    678 	kmem_size_check(ptr, requested_size);
    679 	va = trunc_page((vaddr_t)ptr);
    680 	size = round_page(requested_size + SIZE_SIZE) + PAGE_SIZE;
    681 
    682 	KASSERT(pmap_extract(pmap_kernel(), va, NULL));
    683 	KASSERT(!pmap_extract(pmap_kernel(), va + (size - PAGE_SIZE), NULL));
    684 
    685 	/*
    686 	 * Unmap and free the pages. The last one is never allocated.
    687 	 */
    688 	uvm_km_pgremove_intrsafe(kernel_map, va, va + size);
    689 	pmap_update(pmap_kernel());
    690 
    691 #if 0
    692 	/*
    693 	 * XXX: Here, we need to atomically register the va and its size in the
    694 	 * fifo.
    695 	 */
    696 
    697 	/*
    698 	 * Put the VA allocation into the list and swap an old one out to free.
    699 	 * This behaves mostly like a fifo.
    700 	 */
    701 	rotor = atomic_inc_uint_nv(&kg->kg_rotor) % kg->kg_depth;
    702 	va = (vaddr_t)atomic_swap_ptr(&kg->kg_fifo[rotor], (void *)va);
    703 	if (va != 0) {
    704 		vmem_free(kg->kg_vmem, va, size);
    705 	}
    706 #else
    707 	(void)rotor;
    708 	vmem_free(kg->kg_vmem, va, size);
    709 #endif
    710 }
    711 
    712 #endif /* defined(KMEM_GUARD) */
    713