subr_kmem.c revision 1.79 1 /* $NetBSD: subr_kmem.c,v 1.79 2020/03/08 00:31:19 ad Exp $ */
2
3 /*
4 * Copyright (c) 2009-2020 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran and Maxime Villard.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c)2006 YAMAMOTO Takashi,
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 *
45 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
46 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
49 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55 * SUCH DAMAGE.
56 */
57
58 /*
59 * Allocator of kernel wired memory. This allocator has some debug features
60 * enabled with "option DIAGNOSTIC" and "option DEBUG".
61 */
62
63 /*
64 * KMEM_SIZE: detect alloc/free size mismatch bugs.
65 * Append to each allocation a fixed-sized footer and record the exact
66 * user-requested allocation size in it. When freeing, compare it with
67 * kmem_free's "size" argument.
68 *
69 * This option is enabled on DIAGNOSTIC.
70 *
71 * |CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|CHUNK| |
72 * +-----+-----+-----+-----+-----+-----+-----+-----+-----+-+
73 * | | | | | | | | |/////|U|
74 * | | | | | | | | |/HSZ/|U|
75 * | | | | | | | | |/////|U|
76 * +-----+-----+-----+-----+-----+-----+-----+-----+-----+-+
77 * | Buffer usable by the caller (requested size) |Size |Unused
78 */
79
80 #include <sys/cdefs.h>
81 __KERNEL_RCSID(0, "$NetBSD: subr_kmem.c,v 1.79 2020/03/08 00:31:19 ad Exp $");
82
83 #ifdef _KERNEL_OPT
84 #include "opt_kmem.h"
85 #endif
86
87 #include <sys/param.h>
88 #include <sys/callback.h>
89 #include <sys/kmem.h>
90 #include <sys/pool.h>
91 #include <sys/debug.h>
92 #include <sys/lockdebug.h>
93 #include <sys/cpu.h>
94 #include <sys/asan.h>
95 #include <sys/msan.h>
96
97 #include <uvm/uvm_extern.h>
98 #include <uvm/uvm_map.h>
99
100 #include <lib/libkern/libkern.h>
101
102 struct kmem_cache_info {
103 size_t kc_size;
104 const char * kc_name;
105 };
106
107 static const struct kmem_cache_info kmem_cache_sizes[] = {
108 { 8, "kmem-00008" },
109 { 16, "kmem-00016" },
110 { 24, "kmem-00024" },
111 { 32, "kmem-00032" },
112 { 40, "kmem-00040" },
113 { 48, "kmem-00048" },
114 { 56, "kmem-00056" },
115 { 64, "kmem-00064" },
116 { 80, "kmem-00080" },
117 { 96, "kmem-00096" },
118 { 112, "kmem-00112" },
119 { 128, "kmem-00128" },
120 { 160, "kmem-00160" },
121 { 192, "kmem-00192" },
122 { 224, "kmem-00224" },
123 { 256, "kmem-00256" },
124 { 320, "kmem-00320" },
125 { 384, "kmem-00384" },
126 { 448, "kmem-00448" },
127 { 512, "kmem-00512" },
128 { 768, "kmem-00768" },
129 { 1024, "kmem-01024" },
130 { 0, NULL }
131 };
132
133 static const struct kmem_cache_info kmem_cache_big_sizes[] = {
134 { 2048, "kmem-02048" },
135 { 4096, "kmem-04096" },
136 { 8192, "kmem-08192" },
137 { 16384, "kmem-16384" },
138 { 0, NULL }
139 };
140
141 /*
142 * KMEM_ALIGN is the smallest guaranteed alignment and also the
143 * smallest allocateable quantum.
144 * Every cache size >= CACHE_LINE_SIZE gets CACHE_LINE_SIZE alignment.
145 */
146 #define KMEM_ALIGN 8
147 #define KMEM_SHIFT 3
148 #define KMEM_MAXSIZE 1024
149 #define KMEM_CACHE_COUNT (KMEM_MAXSIZE >> KMEM_SHIFT)
150
151 static pool_cache_t kmem_cache[KMEM_CACHE_COUNT] __cacheline_aligned;
152 static size_t kmem_cache_maxidx __read_mostly;
153
154 #define KMEM_BIG_ALIGN 2048
155 #define KMEM_BIG_SHIFT 11
156 #define KMEM_BIG_MAXSIZE 16384
157 #define KMEM_CACHE_BIG_COUNT (KMEM_BIG_MAXSIZE >> KMEM_BIG_SHIFT)
158
159 static pool_cache_t kmem_cache_big[KMEM_CACHE_BIG_COUNT] __cacheline_aligned;
160 static size_t kmem_cache_big_maxidx __read_mostly;
161
162 #if defined(DIAGNOSTIC) && defined(_HARDKERNEL)
163 #define KMEM_SIZE
164 #endif
165
166 #if defined(DEBUG) && defined(_HARDKERNEL)
167 static void *kmem_freecheck;
168 #endif
169
170 #if defined(KMEM_SIZE)
171 #define SIZE_SIZE sizeof(size_t)
172 static void kmem_size_set(void *, size_t);
173 static void kmem_size_check(void *, size_t);
174 #else
175 #define SIZE_SIZE 0
176 #define kmem_size_set(p, sz) /* nothing */
177 #define kmem_size_check(p, sz) /* nothing */
178 #endif
179
180 CTASSERT(KM_SLEEP == PR_WAITOK);
181 CTASSERT(KM_NOSLEEP == PR_NOWAIT);
182
183 /*
184 * kmem_intr_alloc: allocate wired memory.
185 */
186 void *
187 kmem_intr_alloc(size_t requested_size, km_flag_t kmflags)
188 {
189 #ifdef KASAN
190 const size_t origsize = requested_size;
191 #endif
192 size_t allocsz, index;
193 size_t size;
194 pool_cache_t pc;
195 uint8_t *p;
196
197 KASSERT(requested_size > 0);
198
199 KASSERT((kmflags & KM_SLEEP) || (kmflags & KM_NOSLEEP));
200 KASSERT(!(kmflags & KM_SLEEP) || !(kmflags & KM_NOSLEEP));
201
202 kasan_add_redzone(&requested_size);
203 size = kmem_roundup_size(requested_size);
204 allocsz = size + SIZE_SIZE;
205
206 if ((index = ((allocsz -1) >> KMEM_SHIFT))
207 < kmem_cache_maxidx) {
208 pc = kmem_cache[index];
209 } else if ((index = ((allocsz - 1) >> KMEM_BIG_SHIFT))
210 < kmem_cache_big_maxidx) {
211 pc = kmem_cache_big[index];
212 } else {
213 int ret = uvm_km_kmem_alloc(kmem_va_arena,
214 (vsize_t)round_page(size),
215 ((kmflags & KM_SLEEP) ? VM_SLEEP : VM_NOSLEEP)
216 | VM_INSTANTFIT, (vmem_addr_t *)&p);
217 if (ret) {
218 return NULL;
219 }
220 FREECHECK_OUT(&kmem_freecheck, p);
221 return p;
222 }
223
224 p = pool_cache_get(pc, kmflags);
225
226 if (__predict_true(p != NULL)) {
227 FREECHECK_OUT(&kmem_freecheck, p);
228 kmem_size_set(p, requested_size);
229 kasan_mark(p, origsize, size, KASAN_KMEM_REDZONE);
230 return p;
231 }
232 return p;
233 }
234
235 /*
236 * kmem_intr_zalloc: allocate zeroed wired memory.
237 */
238 void *
239 kmem_intr_zalloc(size_t size, km_flag_t kmflags)
240 {
241 void *p;
242
243 p = kmem_intr_alloc(size, kmflags);
244 if (p != NULL) {
245 memset(p, 0, size);
246 }
247 return p;
248 }
249
250 /*
251 * kmem_intr_free: free wired memory allocated by kmem_alloc.
252 */
253 void
254 kmem_intr_free(void *p, size_t requested_size)
255 {
256 size_t allocsz, index;
257 size_t size;
258 pool_cache_t pc;
259
260 KASSERT(p != NULL);
261 KASSERT(requested_size > 0);
262
263 kasan_add_redzone(&requested_size);
264 size = kmem_roundup_size(requested_size);
265 allocsz = size + SIZE_SIZE;
266
267 if ((index = ((allocsz -1) >> KMEM_SHIFT))
268 < kmem_cache_maxidx) {
269 pc = kmem_cache[index];
270 } else if ((index = ((allocsz - 1) >> KMEM_BIG_SHIFT))
271 < kmem_cache_big_maxidx) {
272 pc = kmem_cache_big[index];
273 } else {
274 FREECHECK_IN(&kmem_freecheck, p);
275 uvm_km_kmem_free(kmem_va_arena, (vaddr_t)p,
276 round_page(size));
277 return;
278 }
279
280 kasan_mark(p, size, size, 0);
281
282 kmem_size_check(p, requested_size);
283 FREECHECK_IN(&kmem_freecheck, p);
284 LOCKDEBUG_MEM_CHECK(p, size);
285
286 pool_cache_put(pc, p);
287 }
288
289 /* -------------------------------- Kmem API -------------------------------- */
290
291 /*
292 * kmem_alloc: allocate wired memory.
293 * => must not be called from interrupt context.
294 */
295 void *
296 kmem_alloc(size_t size, km_flag_t kmflags)
297 {
298 void *v;
299
300 KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()),
301 "kmem(9) should not be used from the interrupt context");
302 v = kmem_intr_alloc(size, kmflags);
303 if (__predict_true(v != NULL)) {
304 kmsan_mark(v, size, KMSAN_STATE_UNINIT);
305 kmsan_orig(v, size, KMSAN_TYPE_KMEM, __RET_ADDR);
306 }
307 KASSERT(v || (kmflags & KM_NOSLEEP) != 0);
308 return v;
309 }
310
311 /*
312 * kmem_zalloc: allocate zeroed wired memory.
313 * => must not be called from interrupt context.
314 */
315 void *
316 kmem_zalloc(size_t size, km_flag_t kmflags)
317 {
318 void *v;
319
320 KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()),
321 "kmem(9) should not be used from the interrupt context");
322 v = kmem_intr_zalloc(size, kmflags);
323 KASSERT(v || (kmflags & KM_NOSLEEP) != 0);
324 return v;
325 }
326
327 /*
328 * kmem_free: free wired memory allocated by kmem_alloc.
329 * => must not be called from interrupt context.
330 */
331 void
332 kmem_free(void *p, size_t size)
333 {
334 KASSERT(!cpu_intr_p());
335 KASSERT(!cpu_softintr_p());
336 kmem_intr_free(p, size);
337 kmsan_mark(p, size, KMSAN_STATE_INITED);
338 }
339
340 static size_t
341 kmem_create_caches(const struct kmem_cache_info *array,
342 pool_cache_t alloc_table[], size_t maxsize, int shift, int ipl)
343 {
344 size_t maxidx = 0;
345 size_t table_unit = (1 << shift);
346 size_t size = table_unit;
347 int i;
348
349 for (i = 0; array[i].kc_size != 0 ; i++) {
350 const char *name = array[i].kc_name;
351 size_t cache_size = array[i].kc_size;
352 struct pool_allocator *pa;
353 int flags = 0;
354 pool_cache_t pc;
355 size_t align;
356
357 /* check if we reached the requested size */
358 if (cache_size > maxsize || cache_size > PAGE_SIZE) {
359 break;
360 }
361
362 /*
363 * Exclude caches with size not a factor or multiple of the
364 * coherency unit.
365 */
366 if (cache_size < COHERENCY_UNIT) {
367 if (COHERENCY_UNIT % cache_size > 0) {
368 continue;
369 }
370 flags |= PR_NOTOUCH;
371 align = KMEM_ALIGN;
372 } else if ((cache_size & (PAGE_SIZE - 1)) == 0) {
373 align = PAGE_SIZE;
374 } else {
375 if ((cache_size % COHERENCY_UNIT) > 0) {
376 continue;
377 }
378 align = COHERENCY_UNIT;
379 }
380
381 if ((cache_size >> shift) > maxidx) {
382 maxidx = cache_size >> shift;
383 }
384
385 pa = &pool_allocator_kmem;
386 pc = pool_cache_init(cache_size, align, 0, flags,
387 name, pa, ipl, NULL, NULL, NULL);
388
389 while (size <= cache_size) {
390 alloc_table[(size - 1) >> shift] = pc;
391 size += table_unit;
392 }
393 }
394 return maxidx;
395 }
396
397 void
398 kmem_init(void)
399 {
400 kmem_cache_maxidx = kmem_create_caches(kmem_cache_sizes,
401 kmem_cache, KMEM_MAXSIZE, KMEM_SHIFT, IPL_VM);
402 kmem_cache_big_maxidx = kmem_create_caches(kmem_cache_big_sizes,
403 kmem_cache_big, PAGE_SIZE, KMEM_BIG_SHIFT, IPL_VM);
404 }
405
406 size_t
407 kmem_roundup_size(size_t size)
408 {
409 return (size + (KMEM_ALIGN - 1)) & ~(KMEM_ALIGN - 1);
410 }
411
412 /*
413 * Used to dynamically allocate string with kmem accordingly to format.
414 */
415 char *
416 kmem_asprintf(const char *fmt, ...)
417 {
418 int size __diagused, len;
419 va_list va;
420 char *str;
421
422 va_start(va, fmt);
423 len = vsnprintf(NULL, 0, fmt, va);
424 va_end(va);
425
426 str = kmem_alloc(len + 1, KM_SLEEP);
427
428 va_start(va, fmt);
429 size = vsnprintf(str, len + 1, fmt, va);
430 va_end(va);
431
432 KASSERT(size == len);
433
434 return str;
435 }
436
437 char *
438 kmem_strdupsize(const char *str, size_t *lenp, km_flag_t flags)
439 {
440 size_t len = strlen(str) + 1;
441 char *ptr = kmem_alloc(len, flags);
442 if (ptr == NULL)
443 return NULL;
444
445 if (lenp)
446 *lenp = len;
447 memcpy(ptr, str, len);
448 return ptr;
449 }
450
451 char *
452 kmem_strndup(const char *str, size_t maxlen, km_flag_t flags)
453 {
454 KASSERT(str != NULL);
455 KASSERT(maxlen != 0);
456
457 size_t len = strnlen(str, maxlen);
458 char *ptr = kmem_alloc(len + 1, flags);
459 if (ptr == NULL)
460 return NULL;
461
462 memcpy(ptr, str, len);
463 ptr[len] = '\0';
464
465 return ptr;
466 }
467
468 void
469 kmem_strfree(char *str)
470 {
471 if (str == NULL)
472 return;
473
474 kmem_free(str, strlen(str) + 1);
475 }
476
477 /* --------------------------- DEBUG / DIAGNOSTIC --------------------------- */
478
479 #if defined(KMEM_SIZE)
480 static void
481 kmem_size_set(void *p, size_t sz)
482 {
483 memcpy((size_t *)((uintptr_t)p + sz), &sz, sizeof(size_t));
484 }
485
486 static void
487 kmem_size_check(void *p, size_t sz)
488 {
489 size_t hsz;
490
491 memcpy(&hsz, (size_t *)((uintptr_t)p + sz), sizeof(size_t));
492
493 if (hsz != sz) {
494 panic("kmem_free(%p, %zu) != allocated size %zu; overwrote?",
495 p, sz, hsz);
496 }
497
498 memset((size_t *)((uintptr_t)p + sz), 0xff, sizeof(size_t));
499 }
500 #endif /* defined(KMEM_SIZE) */
501