Home | History | Annotate | Line # | Download | only in kern
subr_kobj.c revision 1.10
      1  1.10        ad /*	$NetBSD: subr_kobj.c,v 1.10 2008/03/21 21:55:00 ad Exp $	*/
      2   1.1        ad 
      3   1.1        ad /*-
      4   1.1        ad  * Copyright (c) 2008 The NetBSD Foundation, Inc.
      5   1.1        ad  * All rights reserved.
      6   1.1        ad  *
      7   1.1        ad  * Redistribution and use in source and binary forms, with or without
      8   1.1        ad  * modification, are permitted provided that the following conditions
      9   1.1        ad  * are met:
     10   1.1        ad  * 1. Redistributions of source code must retain the above copyright
     11   1.1        ad  *    notice, this list of conditions and the following disclaimer.
     12   1.1        ad  * 2. Redistributions in binary form must reproduce the above copyright
     13   1.1        ad  *    notice, this list of conditions and the following disclaimer in the
     14   1.1        ad  *    documentation and/or other materials provided with the distribution.
     15   1.1        ad  * 3. All advertising materials mentioning features or use of this software
     16   1.1        ad  *    must display the following acknowledgement:
     17   1.1        ad  *	This product includes software developed by the NetBSD
     18   1.1        ad  *	Foundation, Inc. and its contributors.
     19   1.1        ad  * 4. Neither the name of The NetBSD Foundation nor the names of its
     20   1.1        ad  *    contributors may be used to endorse or promote products derived
     21   1.1        ad  *    from this software without specific prior written permission.
     22   1.1        ad  *
     23   1.1        ad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     24   1.1        ad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     25   1.1        ad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     26   1.1        ad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     27   1.1        ad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     28   1.1        ad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     29   1.1        ad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     30   1.1        ad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     31   1.1        ad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     32   1.1        ad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     33   1.1        ad  * POSSIBILITY OF SUCH DAMAGE.
     34   1.1        ad  */
     35   1.1        ad 
     36   1.1        ad /*-
     37   1.1        ad  * Copyright (c) 1998-2000 Doug Rabson
     38   1.1        ad  * Copyright (c) 2004 Peter Wemm
     39   1.1        ad  * All rights reserved.
     40   1.1        ad  *
     41   1.1        ad  * Redistribution and use in source and binary forms, with or without
     42   1.1        ad  * modification, are permitted provided that the following conditions
     43   1.1        ad  * are met:
     44   1.1        ad  * 1. Redistributions of source code must retain the above copyright
     45   1.1        ad  *    notice, this list of conditions and the following disclaimer.
     46   1.1        ad  * 2. Redistributions in binary form must reproduce the above copyright
     47   1.1        ad  *    notice, this list of conditions and the following disclaimer in the
     48   1.1        ad  *    documentation and/or other materials provided with the distribution.
     49   1.1        ad  *
     50   1.1        ad  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     51   1.1        ad  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     52   1.1        ad  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     53   1.1        ad  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     54   1.1        ad  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     55   1.1        ad  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     56   1.1        ad  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     57   1.1        ad  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     58   1.1        ad  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     59   1.1        ad  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     60   1.1        ad  * SUCH DAMAGE.
     61   1.1        ad  */
     62   1.1        ad 
     63   1.1        ad /*
     64   1.1        ad  * Kernel loader for ELF objects.
     65   1.1        ad  *
     66   1.1        ad  * TODO: adjust kmem_alloc() calls to avoid needless fragmentation.
     67   1.1        ad  */
     68   1.1        ad 
     69   1.5        ad #include "opt_modular.h"
     70   1.5        ad 
     71   1.1        ad #include <sys/cdefs.h>
     72  1.10        ad __KERNEL_RCSID(0, "$NetBSD: subr_kobj.c,v 1.10 2008/03/21 21:55:00 ad Exp $");
     73   1.1        ad 
     74   1.1        ad #define	ELFSIZE		ARCH_ELFSIZE
     75   1.1        ad 
     76   1.1        ad #include <sys/param.h>
     77   1.1        ad #include <sys/systm.h>
     78   1.1        ad #include <sys/kernel.h>
     79   1.1        ad #include <sys/kmem.h>
     80   1.1        ad #include <sys/proc.h>
     81   1.1        ad #include <sys/namei.h>
     82   1.1        ad #include <sys/vnode.h>
     83   1.1        ad #include <sys/fcntl.h>
     84   1.1        ad #include <sys/kobj.h>
     85   1.1        ad #include <sys/ksyms.h>
     86   1.1        ad #include <sys/lkm.h>
     87   1.1        ad #include <sys/exec.h>
     88   1.1        ad #include <sys/exec_elf.h>
     89   1.1        ad 
     90   1.1        ad #include <machine/stdarg.h>
     91   1.1        ad 
     92   1.1        ad #include <uvm/uvm_extern.h>
     93   1.1        ad 
     94   1.5        ad #ifdef MODULAR
     95   1.5        ad 
     96   1.1        ad typedef struct {
     97   1.1        ad 	void		*addr;
     98   1.1        ad 	Elf_Off		size;
     99   1.1        ad 	int		flags;
    100   1.1        ad 	int		sec;		/* Original section */
    101   1.1        ad 	const char	*name;
    102   1.1        ad } progent_t;
    103   1.1        ad 
    104   1.1        ad typedef struct {
    105   1.1        ad 	Elf_Rel		*rel;
    106   1.1        ad 	int 		nrel;
    107   1.1        ad 	int 		sec;
    108   1.1        ad 	size_t		size;
    109   1.1        ad } relent_t;
    110   1.1        ad 
    111   1.1        ad typedef struct {
    112   1.1        ad 	Elf_Rela	*rela;
    113   1.1        ad 	int		nrela;
    114   1.1        ad 	int		sec;
    115   1.1        ad 	size_t		size;
    116   1.1        ad } relaent_t;
    117   1.1        ad 
    118   1.3        ad typedef enum kobjtype {
    119   1.3        ad 	KT_UNSET,
    120   1.3        ad 	KT_VNODE,
    121   1.3        ad 	KT_MEMORY
    122   1.3        ad } kobjtype_t;
    123   1.3        ad 
    124   1.1        ad struct kobj {
    125   1.1        ad 	char		ko_name[MAXLKMNAME];
    126   1.3        ad 	kobjtype_t	ko_type;
    127   1.3        ad 	void		*ko_source;
    128   1.3        ad 	ssize_t		ko_memsize;
    129   1.1        ad 	vaddr_t		ko_address;	/* Relocation address */
    130   1.1        ad 	Elf_Shdr	*ko_shdr;
    131   1.1        ad 	progent_t	*ko_progtab;
    132   1.1        ad 	relaent_t	*ko_relatab;
    133   1.1        ad 	relent_t	*ko_reltab;
    134   1.1        ad 	Elf_Sym		*ko_symtab;	/* Symbol table */
    135   1.1        ad 	char		*ko_strtab;	/* String table */
    136   1.8        ad 	char		*ko_shstrtab;	/* Section name string table */
    137   1.1        ad 	size_t		ko_size;	/* Size of text/data/bss */
    138   1.1        ad 	size_t		ko_symcnt;	/* Number of symbols */
    139   1.1        ad 	size_t		ko_strtabsz;	/* Number of bytes in string table */
    140   1.8        ad 	size_t		ko_shstrtabsz;	/* Number of bytes in scn str table */
    141   1.1        ad 	size_t		ko_shdrsz;
    142   1.1        ad 	int		ko_nrel;
    143   1.1        ad 	int		ko_nrela;
    144   1.1        ad 	int		ko_nprogtab;
    145   1.1        ad 	bool		ko_ksyms;
    146   1.3        ad 	bool		ko_loaded;
    147   1.1        ad };
    148   1.1        ad 
    149   1.1        ad static int	kobj_relocate(kobj_t);
    150   1.1        ad static void	kobj_error(const char *, ...);
    151   1.3        ad static int	kobj_read(kobj_t, void *, size_t, off_t);
    152   1.1        ad static void	kobj_release_mem(kobj_t);
    153   1.1        ad 
    154   1.1        ad extern struct vm_map *lkm_map;
    155   1.1        ad static const char	*kobj_path = "/modules";	/* XXX ??? */
    156   1.1        ad 
    157   1.1        ad /*
    158   1.3        ad  * kobj_open_file:
    159   1.1        ad  *
    160   1.6        ad  *	Open an object located in the file system.
    161   1.1        ad  */
    162   1.1        ad int
    163   1.6        ad kobj_open_file(kobj_t *kop, const char *filename)
    164   1.1        ad {
    165   1.1        ad 	struct nameidata nd;
    166   1.1        ad 	kauth_cred_t cred;
    167   1.1        ad 	char *path;
    168   1.1        ad 	int error;
    169   1.1        ad 	kobj_t ko;
    170   1.1        ad 
    171   1.1        ad 	cred = kauth_cred_get();
    172   1.1        ad 
    173   1.1        ad 	ko = kmem_zalloc(sizeof(*ko), KM_SLEEP);
    174   1.1        ad 	if (ko == NULL) {
    175   1.1        ad 		return ENOMEM;
    176   1.1        ad 	}
    177   1.1        ad 
    178   1.3        ad 	/* XXX where to look? */
    179   1.3        ad 	NDINIT(&nd, LOOKUP, FOLLOW, UIO_SYSSPACE, filename);
    180   1.1        ad 	error = vn_open(&nd, FREAD, 0);
    181   1.1        ad 	if (error != 0) {
    182   1.2        ad 		if (error != ENOENT) {
    183   1.2        ad 			goto out;
    184   1.2        ad 		}
    185   1.2        ad 		path = PNBUF_GET();
    186   1.3        ad 		snprintf(path, MAXPATHLEN - 1, "%s/%s", kobj_path,
    187   1.3        ad 		    filename);
    188   1.2        ad 		NDINIT(&nd, LOOKUP, FOLLOW, UIO_SYSSPACE, path);
    189   1.2        ad 		error = vn_open(&nd, FREAD, 0);
    190   1.9    rumble 		if (error != 0) {
    191   1.9    rumble 			strlcat(path, ".o", MAXPATHLEN);
    192   1.9    rumble 			NDINIT(&nd, LOOKUP, FOLLOW, UIO_SYSSPACE, path);
    193   1.9    rumble 			error = vn_open(&nd, FREAD, 0);
    194   1.9    rumble 		}
    195   1.2        ad 		PNBUF_PUT(path);
    196   1.2        ad 		if (error != 0) {
    197   1.2        ad 			goto out;
    198   1.2        ad 		}
    199   1.1        ad 	}
    200   1.1        ad 
    201   1.3        ad  out:
    202   1.3        ad  	if (error != 0) {
    203   1.3        ad 	 	kmem_free(ko, sizeof(*ko));
    204   1.3        ad 	} else {
    205   1.3        ad 		ko->ko_type = KT_VNODE;
    206   1.3        ad 		ko->ko_source = nd.ni_vp;
    207   1.3        ad 		*kop = ko;
    208   1.3        ad 	}
    209   1.3        ad 	return error;
    210   1.3        ad }
    211   1.3        ad 
    212   1.3        ad /*
    213   1.3        ad  * kobj_open_mem:
    214   1.3        ad  *
    215   1.3        ad  *	Open a pre-loaded object already resident in memory.  If size
    216   1.6        ad  *	is not -1, the complete size of the object is known.
    217   1.3        ad  */
    218   1.3        ad int
    219   1.6        ad kobj_open_mem(kobj_t *kop, void *base, ssize_t size)
    220   1.3        ad {
    221   1.3        ad 	kobj_t ko;
    222   1.3        ad 
    223   1.3        ad 	ko = kmem_zalloc(sizeof(*ko), KM_SLEEP);
    224   1.3        ad 	if (ko == NULL) {
    225   1.3        ad 		return ENOMEM;
    226   1.3        ad 	}
    227   1.3        ad 
    228   1.3        ad 	ko->ko_type = KT_MEMORY;
    229   1.3        ad 	ko->ko_source = base;
    230   1.3        ad 	ko->ko_memsize = size;
    231   1.3        ad 	*kop = ko;
    232   1.3        ad 
    233   1.3        ad 	return 0;
    234   1.3        ad }
    235   1.3        ad 
    236   1.3        ad /*
    237   1.3        ad  * kobj_close:
    238   1.3        ad  *
    239   1.3        ad  *	Close an open ELF object.  If the object was not successfully
    240   1.3        ad  *	loaded, it will be destroyed.
    241   1.3        ad  */
    242   1.3        ad void
    243   1.3        ad kobj_close(kobj_t ko)
    244   1.3        ad {
    245   1.3        ad 
    246   1.3        ad 	KASSERT(ko->ko_source != NULL);
    247   1.3        ad 
    248   1.3        ad 	switch (ko->ko_type) {
    249   1.3        ad 	case KT_VNODE:
    250   1.3        ad 		VOP_UNLOCK(ko->ko_source, 0);
    251  1.10        ad 		vn_close(ko->ko_source, FREAD, kauth_cred_get());
    252   1.3        ad 		break;
    253   1.3        ad 	case KT_MEMORY:
    254   1.3        ad 		/* nothing */
    255   1.3        ad 		break;
    256   1.3        ad 	default:
    257   1.3        ad 		panic("kobj_close: unknown type");
    258   1.3        ad 		break;
    259   1.3        ad 	}
    260   1.3        ad 
    261   1.3        ad 	ko->ko_source = NULL;
    262   1.3        ad 	ko->ko_type = KT_UNSET;
    263   1.3        ad 
    264   1.8        ad 	/* Program table and section strings are no longer needed. */
    265   1.8        ad 	if (ko->ko_progtab != NULL) {
    266   1.8        ad 		kmem_free(ko->ko_progtab, ko->ko_nprogtab *
    267   1.8        ad 		    sizeof(*ko->ko_progtab));
    268   1.8        ad 		ko->ko_progtab = NULL;
    269   1.8        ad 	}
    270   1.8        ad 	if (ko->ko_shstrtab) {
    271   1.8        ad 		kmem_free(ko->ko_shstrtab, ko->ko_shstrtabsz);
    272   1.8        ad 		ko->ko_shstrtab = NULL;
    273   1.8        ad 	}
    274   1.8        ad 
    275   1.3        ad 	/* If the object hasn't been loaded, then destroy it. */
    276   1.3        ad 	if (!ko->ko_loaded) {
    277   1.3        ad 		kobj_unload(ko);
    278   1.3        ad 	}
    279   1.3        ad }
    280   1.3        ad 
    281   1.3        ad /*
    282   1.3        ad  * kobj_load:
    283   1.3        ad  *
    284   1.3        ad  *	Load an ELF object from the file system and link into the
    285   1.3        ad  *	running	kernel image.
    286   1.3        ad  */
    287   1.3        ad int
    288   1.3        ad kobj_load(kobj_t ko)
    289   1.3        ad {
    290   1.3        ad 	Elf_Ehdr *hdr;
    291   1.3        ad 	Elf_Shdr *shdr;
    292   1.3        ad 	Elf_Sym *es;
    293   1.3        ad 	vaddr_t mapbase;
    294   1.3        ad 	size_t mapsize;
    295   1.3        ad 	int error;
    296   1.3        ad 	int symtabindex;
    297   1.3        ad 	int symstrindex;
    298   1.3        ad 	int nsym;
    299   1.3        ad 	int pb, rl, ra;
    300   1.3        ad 	int alignmask;
    301   1.3        ad 	int i, j;
    302   1.3        ad 
    303   1.3        ad 	KASSERT(ko->ko_type != KT_UNSET);
    304   1.3        ad 	KASSERT(ko->ko_source != NULL);
    305   1.3        ad 
    306   1.3        ad 	shdr = NULL;
    307   1.3        ad 	mapsize = 0;
    308   1.3        ad 	error = 0;
    309   1.3        ad 	hdr = NULL;
    310   1.3        ad 
    311   1.1        ad 	/*
    312   1.1        ad 	 * Read the elf header from the file.
    313   1.1        ad 	 */
    314   1.1        ad 	hdr = kmem_alloc(sizeof(*hdr), KM_SLEEP);
    315   1.1        ad 	if (hdr == NULL) {
    316   1.1        ad 		error = ENOMEM;
    317   1.1        ad 		goto out;
    318   1.1        ad 	}
    319   1.3        ad 	error = kobj_read(ko, hdr, sizeof(*hdr), 0);
    320   1.1        ad 	if (error != 0)
    321   1.1        ad 		goto out;
    322   1.1        ad 	if (memcmp(hdr->e_ident, ELFMAG, SELFMAG) != 0) {
    323   1.3        ad 		kobj_error("not an ELF object");
    324   1.1        ad 		error = ENOEXEC;
    325   1.1        ad 		goto out;
    326   1.1        ad 	}
    327   1.1        ad 
    328   1.1        ad 	if (hdr->e_ident[EI_VERSION] != EV_CURRENT ||
    329   1.1        ad 	    hdr->e_version != EV_CURRENT) {
    330   1.1        ad 		kobj_error("unsupported file version");
    331   1.1        ad 		error = ENOEXEC;
    332   1.1        ad 		goto out;
    333   1.1        ad 	}
    334   1.1        ad 	if (hdr->e_type != ET_REL) {
    335   1.1        ad 		kobj_error("unsupported file type");
    336   1.1        ad 		error = ENOEXEC;
    337   1.1        ad 		goto out;
    338   1.1        ad 	}
    339   1.1        ad 	switch (hdr->e_machine) {
    340   1.1        ad #if ELFSIZE == 32
    341   1.1        ad 	ELF32_MACHDEP_ID_CASES
    342   1.1        ad #else
    343   1.1        ad 	ELF64_MACHDEP_ID_CASES
    344   1.1        ad #endif
    345   1.1        ad 	default:
    346   1.1        ad 		kobj_error("unsupported machine");
    347   1.1        ad 		error = ENOEXEC;
    348   1.1        ad 		goto out;
    349   1.1        ad 	}
    350   1.1        ad 
    351   1.1        ad 	ko->ko_nprogtab = 0;
    352   1.1        ad 	ko->ko_shdr = 0;
    353   1.1        ad 	ko->ko_nrel = 0;
    354   1.1        ad 	ko->ko_nrela = 0;
    355   1.1        ad 
    356   1.1        ad 	/*
    357   1.1        ad 	 * Allocate and read in the section header.
    358   1.1        ad 	 */
    359   1.1        ad 	ko->ko_shdrsz = hdr->e_shnum * hdr->e_shentsize;
    360   1.1        ad 	if (ko->ko_shdrsz == 0 || hdr->e_shoff == 0 ||
    361   1.1        ad 	    hdr->e_shentsize != sizeof(Elf_Shdr)) {
    362   1.1        ad 		error = ENOEXEC;
    363   1.1        ad 		goto out;
    364   1.1        ad 	}
    365   1.1        ad 	shdr = kmem_alloc(ko->ko_shdrsz, KM_SLEEP);
    366   1.1        ad 	if (shdr == NULL) {
    367   1.1        ad 		error = ENOMEM;
    368   1.1        ad 		goto out;
    369   1.1        ad 	}
    370   1.1        ad 	ko->ko_shdr = shdr;
    371   1.3        ad 	error = kobj_read(ko, shdr, ko->ko_shdrsz, hdr->e_shoff);
    372   1.1        ad 	if (error != 0) {
    373   1.1        ad 		goto out;
    374   1.1        ad 	}
    375   1.1        ad 
    376   1.1        ad 	/*
    377   1.1        ad 	 * Scan the section header for information and table sizing.
    378   1.1        ad 	 */
    379   1.1        ad 	nsym = 0;
    380   1.1        ad 	symtabindex = -1;
    381   1.1        ad 	symstrindex = -1;
    382   1.1        ad 	for (i = 0; i < hdr->e_shnum; i++) {
    383   1.1        ad 		switch (shdr[i].sh_type) {
    384   1.1        ad 		case SHT_PROGBITS:
    385   1.1        ad 		case SHT_NOBITS:
    386   1.1        ad 			ko->ko_nprogtab++;
    387   1.1        ad 			break;
    388   1.1        ad 		case SHT_SYMTAB:
    389   1.1        ad 			nsym++;
    390   1.1        ad 			symtabindex = i;
    391   1.1        ad 			symstrindex = shdr[i].sh_link;
    392   1.1        ad 			break;
    393   1.1        ad 		case SHT_REL:
    394   1.1        ad 			ko->ko_nrel++;
    395   1.1        ad 			break;
    396   1.1        ad 		case SHT_RELA:
    397   1.1        ad 			ko->ko_nrela++;
    398   1.1        ad 			break;
    399   1.1        ad 		case SHT_STRTAB:
    400   1.1        ad 			break;
    401   1.1        ad 		}
    402   1.1        ad 	}
    403   1.1        ad 	if (ko->ko_nprogtab == 0) {
    404   1.1        ad 		kobj_error("file has no contents");
    405   1.1        ad 		error = ENOEXEC;
    406   1.1        ad 		goto out;
    407   1.1        ad 	}
    408   1.1        ad 	if (nsym != 1) {
    409   1.1        ad 		/* Only allow one symbol table for now */
    410   1.1        ad 		kobj_error("file has no valid symbol table");
    411   1.1        ad 		error = ENOEXEC;
    412   1.1        ad 		goto out;
    413   1.1        ad 	}
    414   1.1        ad 	if (symstrindex < 0 || symstrindex > hdr->e_shnum ||
    415   1.1        ad 	    shdr[symstrindex].sh_type != SHT_STRTAB) {
    416   1.1        ad 		kobj_error("file has invalid symbol strings");
    417   1.1        ad 		error = ENOEXEC;
    418   1.1        ad 		goto out;
    419   1.1        ad 	}
    420   1.1        ad 
    421   1.1        ad 	/*
    422   1.1        ad 	 * Allocate space for tracking the load chunks.
    423   1.1        ad 	 */
    424   1.1        ad 	if (ko->ko_nprogtab != 0) {
    425   1.1        ad 		ko->ko_progtab = kmem_zalloc(ko->ko_nprogtab *
    426   1.1        ad 		    sizeof(*ko->ko_progtab), KM_SLEEP);
    427   1.1        ad 		if (ko->ko_progtab == NULL) {
    428   1.1        ad 			error = ENOMEM;
    429   1.1        ad 			goto out;
    430   1.1        ad 		}
    431   1.1        ad 	}
    432   1.1        ad 	if (ko->ko_nrel != 0) {
    433   1.1        ad 		ko->ko_reltab = kmem_zalloc(ko->ko_nrel *
    434   1.1        ad 		    sizeof(*ko->ko_reltab), KM_SLEEP);
    435   1.1        ad 		if (ko->ko_reltab == NULL) {
    436   1.1        ad 			error = ENOMEM;
    437   1.1        ad 			goto out;
    438   1.1        ad 		}
    439   1.1        ad 	}
    440   1.1        ad 	if (ko->ko_nrela != 0) {
    441   1.1        ad 		ko->ko_relatab = kmem_zalloc(ko->ko_nrela *
    442   1.1        ad 		    sizeof(*ko->ko_relatab), KM_SLEEP);
    443   1.1        ad 		if (ko->ko_relatab == NULL) {
    444   1.1        ad 			error = ENOMEM;
    445   1.1        ad 			goto out;
    446   1.1        ad 		}
    447   1.1        ad 	}
    448   1.1        ad 	if (symtabindex == -1) {
    449   1.1        ad 		kobj_error("lost symbol table index");
    450   1.1        ad 		goto out;
    451   1.1        ad 	}
    452   1.1        ad 
    453   1.1        ad 	/*
    454   1.1        ad 	 * Allocate space for and load the symbol table.
    455   1.1        ad 	 */
    456   1.1        ad 	ko->ko_symcnt = shdr[symtabindex].sh_size / sizeof(Elf_Sym);
    457   1.1        ad 	if (ko->ko_symcnt == 0) {
    458   1.1        ad 		kobj_error("no symbol table");
    459   1.1        ad 		goto out;
    460   1.1        ad 	}
    461   1.1        ad 	ko->ko_symtab = kmem_alloc(ko->ko_symcnt * sizeof(Elf_Sym), KM_SLEEP);
    462   1.1        ad 	if (ko->ko_symtab == NULL) {
    463   1.1        ad 		error = ENOMEM;
    464   1.1        ad 		goto out;
    465   1.1        ad 	}
    466   1.3        ad 	error = kobj_read(ko, ko->ko_symtab, shdr[symtabindex].sh_size,
    467   1.1        ad 	    shdr[symtabindex].sh_offset);
    468   1.1        ad 	if (error != 0) {
    469   1.1        ad 		goto out;
    470   1.1        ad 	}
    471   1.1        ad 
    472   1.1        ad 	/*
    473   1.1        ad 	 * Allocate space for and load the symbol strings.
    474   1.1        ad 	 */
    475   1.1        ad 	ko->ko_strtabsz = shdr[symstrindex].sh_size;
    476   1.1        ad 	if (ko->ko_strtabsz == 0) {
    477   1.1        ad 		kobj_error("no symbol strings");
    478   1.1        ad 		goto out;
    479   1.1        ad 	}
    480   1.1        ad 	ko->ko_strtab = kmem_alloc(ko->ko_strtabsz, KM_SLEEP);
    481   1.1        ad 	if (ko->ko_strtab == NULL) {
    482   1.1        ad 		error = ENOMEM;
    483   1.1        ad 		goto out;
    484   1.1        ad 	}
    485   1.3        ad 	error = kobj_read(ko, ko->ko_strtab, shdr[symstrindex].sh_size,
    486   1.1        ad 	    shdr[symstrindex].sh_offset);
    487   1.1        ad 	if (error != 0) {
    488   1.1        ad 		goto out;
    489   1.1        ad 	}
    490   1.1        ad 
    491   1.1        ad 	/*
    492   1.8        ad 	 * Do we have a string table for the section names?
    493   1.8        ad 	 */
    494   1.8        ad 	if (hdr->e_shstrndx != 0 && shdr[hdr->e_shstrndx].sh_size != 0 &&
    495   1.8        ad 	    shdr[hdr->e_shstrndx].sh_type == SHT_STRTAB) {
    496   1.8        ad 		ko->ko_shstrtabsz = shdr[hdr->e_shstrndx].sh_size;
    497   1.8        ad 		ko->ko_shstrtab = kmem_alloc(shdr[hdr->e_shstrndx].sh_size,
    498   1.8        ad 		    KM_SLEEP);
    499   1.8        ad 		if (ko->ko_shstrtab == NULL) {
    500   1.8        ad 			error = ENOMEM;
    501   1.8        ad 			goto out;
    502   1.8        ad 		}
    503   1.8        ad 		error = kobj_read(ko, ko->ko_shstrtab,
    504   1.8        ad 		    shdr[hdr->e_shstrndx].sh_size,
    505   1.8        ad 		    shdr[hdr->e_shstrndx].sh_offset);
    506   1.8        ad 		if (error != 0) {
    507   1.8        ad 			goto out;
    508   1.8        ad 		}
    509   1.8        ad 	}
    510   1.8        ad 
    511   1.8        ad 	/*
    512   1.1        ad 	 * Size up code/data(progbits) and bss(nobits).
    513   1.1        ad 	 */
    514   1.1        ad 	alignmask = 0;
    515   1.1        ad 	for (i = 0; i < hdr->e_shnum; i++) {
    516   1.1        ad 		switch (shdr[i].sh_type) {
    517   1.1        ad 		case SHT_PROGBITS:
    518   1.1        ad 		case SHT_NOBITS:
    519   1.1        ad 			alignmask = shdr[i].sh_addralign - 1;
    520   1.1        ad 			mapsize += alignmask;
    521   1.1        ad 			mapsize &= ~alignmask;
    522   1.1        ad 			mapsize += shdr[i].sh_size;
    523   1.1        ad 			break;
    524   1.1        ad 		}
    525   1.1        ad 	}
    526   1.1        ad 
    527   1.1        ad 	/*
    528   1.1        ad 	 * We know how much space we need for the text/data/bss/etc.
    529   1.1        ad 	 * This stuff needs to be in a single chunk so that profiling etc
    530   1.1        ad 	 * can get the bounds and gdb can associate offsets with modules.
    531   1.1        ad 	 */
    532   1.1        ad 	if (mapsize == 0) {
    533   1.1        ad 		kobj_error("no text/data/bss");
    534   1.1        ad 		goto out;
    535   1.1        ad 	}
    536   1.1        ad 	mapbase = uvm_km_alloc(lkm_map, round_page(mapsize), 0,
    537   1.1        ad 	    UVM_KMF_WIRED | UVM_KMF_EXEC);
    538   1.1        ad 	if (mapbase == 0) {
    539   1.1        ad 		error = ENOMEM;
    540   1.1        ad 		goto out;
    541   1.1        ad 	}
    542   1.1        ad 	ko->ko_address = mapbase;
    543   1.1        ad 	ko->ko_size = mapsize;
    544   1.1        ad 
    545   1.1        ad 	/*
    546   1.1        ad 	 * Now load code/data(progbits), zero bss(nobits), allocate space
    547   1.1        ad 	 * for and load relocs
    548   1.1        ad 	 */
    549   1.1        ad 	pb = 0;
    550   1.1        ad 	rl = 0;
    551   1.1        ad 	ra = 0;
    552   1.1        ad 	alignmask = 0;
    553   1.1        ad 	for (i = 0; i < hdr->e_shnum; i++) {
    554   1.1        ad 		switch (shdr[i].sh_type) {
    555   1.1        ad 		case SHT_PROGBITS:
    556   1.1        ad 		case SHT_NOBITS:
    557   1.1        ad 			alignmask = shdr[i].sh_addralign - 1;
    558   1.1        ad 			mapbase += alignmask;
    559   1.1        ad 			mapbase &= ~alignmask;
    560   1.1        ad 			ko->ko_progtab[pb].addr = (void *)mapbase;
    561   1.1        ad 			if (shdr[i].sh_type == SHT_PROGBITS) {
    562   1.1        ad 				ko->ko_progtab[pb].name = "<<PROGBITS>>";
    563   1.3        ad 				error = kobj_read(ko,
    564   1.1        ad 				    ko->ko_progtab[pb].addr, shdr[i].sh_size,
    565   1.1        ad 				    shdr[i].sh_offset);
    566   1.1        ad 				if (error != 0) {
    567   1.1        ad 					goto out;
    568   1.1        ad 				}
    569   1.1        ad 			} else {
    570   1.1        ad 				ko->ko_progtab[pb].name = "<<NOBITS>>";
    571   1.1        ad 				memset(ko->ko_progtab[pb].addr, 0,
    572   1.1        ad 				    shdr[i].sh_size);
    573   1.1        ad 			}
    574   1.1        ad 			ko->ko_progtab[pb].size = shdr[i].sh_size;
    575   1.1        ad 			ko->ko_progtab[pb].sec = i;
    576   1.8        ad 			if (ko->ko_shstrtab != NULL && shdr[i].sh_name != 0) {
    577   1.8        ad 				ko->ko_progtab[pb].name =
    578   1.8        ad 				    ko->ko_shstrtab + shdr[i].sh_name;
    579   1.8        ad 			}
    580   1.1        ad 
    581   1.1        ad 			/* Update all symbol values with the offset. */
    582   1.1        ad 			for (j = 0; j < ko->ko_symcnt; j++) {
    583   1.1        ad 				es = &ko->ko_symtab[j];
    584   1.1        ad 				if (es->st_shndx != i) {
    585   1.1        ad 					continue;
    586   1.1        ad 				}
    587   1.1        ad 				es->st_value +=
    588   1.1        ad 				    (Elf_Addr)ko->ko_progtab[pb].addr;
    589   1.1        ad 			}
    590   1.1        ad 			mapbase += shdr[i].sh_size;
    591   1.1        ad 			pb++;
    592   1.1        ad 			break;
    593   1.1        ad 		case SHT_REL:
    594   1.1        ad 			ko->ko_reltab[rl].size = shdr[i].sh_size;
    595   1.1        ad 			ko->ko_reltab[rl].size -=
    596   1.1        ad 			    shdr[i].sh_size % sizeof(Elf_Rel);
    597   1.1        ad 			if (ko->ko_reltab[rl].size != 0) {
    598   1.1        ad 				ko->ko_reltab[rl].rel =
    599   1.1        ad 				    kmem_alloc(ko->ko_reltab[rl].size,
    600   1.1        ad 				    KM_SLEEP);
    601   1.1        ad 				ko->ko_reltab[rl].nrel =
    602   1.1        ad 				    shdr[i].sh_size / sizeof(Elf_Rel);
    603   1.1        ad 				ko->ko_reltab[rl].sec = shdr[i].sh_info;
    604   1.3        ad 				error = kobj_read(ko,
    605   1.1        ad 				    ko->ko_reltab[rl].rel,
    606   1.1        ad 				    ko->ko_reltab[rl].size,
    607   1.1        ad 				    shdr[i].sh_offset);
    608   1.1        ad 				if (error != 0) {
    609   1.1        ad 					goto out;
    610   1.1        ad 				}
    611   1.1        ad 			}
    612   1.1        ad 			rl++;
    613   1.1        ad 			break;
    614   1.1        ad 		case SHT_RELA:
    615   1.1        ad 			ko->ko_relatab[ra].size = shdr[i].sh_size;
    616   1.1        ad 			ko->ko_relatab[ra].size -=
    617   1.1        ad 			    shdr[i].sh_size % sizeof(Elf_Rela);
    618   1.1        ad 			if (ko->ko_relatab[ra].size != 0) {
    619   1.1        ad 				ko->ko_relatab[ra].rela =
    620   1.1        ad 				    kmem_alloc(ko->ko_relatab[ra].size,
    621   1.1        ad 				    KM_SLEEP);
    622   1.1        ad 				ko->ko_relatab[ra].nrela =
    623   1.1        ad 				    shdr[i].sh_size / sizeof(Elf_Rela);
    624   1.1        ad 				ko->ko_relatab[ra].sec = shdr[i].sh_info;
    625   1.3        ad 				error = kobj_read(ko,
    626   1.1        ad 				    ko->ko_relatab[ra].rela,
    627   1.1        ad 				    shdr[i].sh_size,
    628   1.1        ad 				    shdr[i].sh_offset);
    629   1.1        ad 				if (error != 0) {
    630   1.1        ad 					goto out;
    631   1.1        ad 				}
    632   1.1        ad 			}
    633   1.1        ad 			ra++;
    634   1.1        ad 			break;
    635   1.1        ad 		}
    636   1.1        ad 	}
    637   1.1        ad 	if (pb != ko->ko_nprogtab) {
    638   1.1        ad 		panic("lost progbits");
    639   1.1        ad 	}
    640   1.1        ad 	if (rl != ko->ko_nrel) {
    641   1.1        ad 		panic("lost rel");
    642   1.1        ad 	}
    643   1.1        ad 	if (ra != ko->ko_nrela) {
    644   1.1        ad 		panic("lost rela");
    645   1.1        ad 	}
    646   1.1        ad 	if (mapbase != ko->ko_address + mapsize) {
    647   1.1        ad 		panic("mapbase 0x%lx != address %lx + mapsize 0x%lx (0x%lx)\n",
    648   1.1        ad 		    (long)mapbase, (long)ko->ko_address, (long)mapsize,
    649   1.1        ad 		    (long)ko->ko_address + mapsize);
    650   1.1        ad 	}
    651   1.1        ad 
    652   1.1        ad 	/*
    653   1.1        ad 	 * Perform relocations.  Done before registering with ksyms,
    654   1.1        ad 	 * which will pack our symbol table.
    655   1.1        ad 	 */
    656   1.1        ad 	error = kobj_relocate(ko);
    657   1.1        ad 	if (error != 0) {
    658   1.1        ad 		goto out;
    659   1.1        ad 	}
    660   1.1        ad 
    661   1.1        ad 	/*
    662   1.1        ad 	 * Notify MD code that a module has been loaded.
    663   1.1        ad 	 */
    664   1.1        ad 	error = kobj_machdep(ko, (void *)ko->ko_address, ko->ko_size, true);
    665   1.1        ad 	if (error != 0) {
    666   1.1        ad 		kobj_error("machine dependent init failed");
    667   1.1        ad 		goto out;
    668   1.1        ad 	}
    669   1.3        ad 	ko->ko_loaded = true;
    670   1.1        ad  out:
    671   1.1        ad 	kobj_release_mem(ko);
    672   1.3        ad 	if (hdr != NULL) {
    673   1.1        ad 		kmem_free(hdr, sizeof(*hdr));
    674   1.1        ad 	}
    675   1.1        ad 
    676   1.1        ad 	return error;
    677   1.1        ad }
    678   1.1        ad 
    679   1.1        ad /*
    680   1.1        ad  * kobj_unload:
    681   1.1        ad  *
    682   1.1        ad  *	Unload an object previously loaded by kobj_load().
    683   1.1        ad  */
    684   1.1        ad void
    685   1.1        ad kobj_unload(kobj_t ko)
    686   1.1        ad {
    687   1.1        ad 	int error;
    688   1.1        ad 
    689   1.8        ad 	KASSERT(ko->ko_progtab == NULL);
    690   1.8        ad 	KASSERT(ko->ko_shstrtab == NULL);
    691   1.8        ad 
    692   1.1        ad 	if (ko->ko_address != 0) {
    693   1.1        ad 		uvm_km_free(lkm_map, ko->ko_address, round_page(ko->ko_size),
    694   1.1        ad 		    UVM_KMF_WIRED);
    695   1.1        ad 	}
    696   1.1        ad 	if (ko->ko_ksyms == true) {
    697   1.1        ad 		ksyms_delsymtab(ko->ko_name);
    698   1.1        ad 	}
    699   1.1        ad 	if (ko->ko_symtab != NULL) {
    700   1.1        ad 		kmem_free(ko->ko_symtab, ko->ko_symcnt * sizeof(Elf_Sym));
    701   1.1        ad 	}
    702   1.1        ad 	if (ko->ko_strtab != NULL) {
    703   1.1        ad 		kmem_free(ko->ko_strtab, ko->ko_strtabsz);
    704   1.1        ad 	}
    705   1.1        ad 
    706   1.1        ad 	/*
    707   1.1        ad 	 * Notify MD code that a module has been unloaded.
    708   1.1        ad 	 */
    709   1.3        ad 	if (ko->ko_loaded) {
    710   1.3        ad 		error = kobj_machdep(ko, (void *)ko->ko_address, ko->ko_size,
    711   1.3        ad 		    false);
    712   1.3        ad 		if (error != 0) {
    713   1.3        ad 			kobj_error("machine dependent deinit failed");
    714   1.3        ad 		}
    715   1.1        ad 	}
    716   1.3        ad 
    717   1.3        ad 	kmem_free(ko, sizeof(*ko));
    718   1.1        ad }
    719   1.1        ad 
    720   1.1        ad /*
    721   1.2        ad  * kobj_stat:
    722   1.2        ad  *
    723   1.2        ad  *	Return size and load address of an object.
    724   1.2        ad  */
    725   1.2        ad void
    726   1.8        ad kobj_stat(kobj_t ko, vaddr_t *address, size_t *size)
    727   1.2        ad {
    728   1.2        ad 
    729   1.2        ad 	if (address != NULL) {
    730   1.2        ad 		*address = ko->ko_address;
    731   1.2        ad 	}
    732   1.2        ad 	if (size != NULL) {
    733   1.2        ad 		*size = ko->ko_size;
    734   1.2        ad 	}
    735   1.2        ad }
    736   1.2        ad 
    737   1.2        ad /*
    738   1.3        ad  * kobj_set_name:
    739   1.3        ad  *
    740   1.3        ad  *	Set an object's name.  Used only for symbol table lookups.
    741   1.3        ad  *	May only be called after the module is loaded.
    742   1.3        ad  */
    743   1.6        ad int
    744   1.3        ad kobj_set_name(kobj_t ko, const char *name)
    745   1.3        ad {
    746   1.6        ad 	int error;
    747   1.3        ad 
    748   1.3        ad 	KASSERT(ko->ko_loaded);
    749   1.3        ad 
    750   1.3        ad 	strlcpy(ko->ko_name, name, sizeof(ko->ko_name));
    751   1.6        ad 
    752   1.6        ad 	/*
    753   1.6        ad 	 * Now that we know the name, register the symbol table.
    754   1.6        ad 	 */
    755   1.6        ad 	error = ksyms_addsymtab(ko->ko_name, ko->ko_symtab, ko->ko_symcnt *
    756   1.6        ad 	    sizeof(Elf_Sym), ko->ko_strtab, ko->ko_strtabsz);
    757   1.6        ad 	if (error != 0) {
    758   1.6        ad 		kobj_error("unable to register module symbol table");
    759   1.6        ad 	} else {
    760   1.6        ad 		ko->ko_ksyms = true;
    761   1.6        ad 	}
    762   1.6        ad 
    763   1.6        ad 	return error;
    764   1.3        ad }
    765   1.3        ad 
    766   1.3        ad /*
    767   1.8        ad  * kobj_find_section:
    768   1.8        ad  *
    769   1.8        ad  *	Given a section name, search the loaded object and return
    770   1.8        ad  *	virtual address if present and loaded.
    771   1.8        ad  */
    772   1.8        ad int
    773   1.8        ad kobj_find_section(kobj_t ko, const char *name, void **addr, size_t *size)
    774   1.8        ad {
    775   1.8        ad 	int i;
    776   1.8        ad 
    777   1.8        ad 	KASSERT(ko->ko_progtab != NULL);
    778   1.8        ad 
    779   1.8        ad 	for (i = 0; i < ko->ko_nprogtab; i++) {
    780   1.8        ad 		if (strcmp(ko->ko_progtab[i].name, name) == 0) {
    781   1.8        ad 			if (addr != NULL) {
    782   1.8        ad 				*addr = ko->ko_progtab[i].addr;
    783   1.8        ad 			}
    784   1.8        ad 			if (size != NULL) {
    785   1.8        ad 				*size = ko->ko_progtab[i].size;
    786   1.8        ad 			}
    787   1.8        ad 			return 0;
    788   1.8        ad 		}
    789   1.8        ad 	}
    790   1.8        ad 
    791   1.8        ad 	return ENOENT;
    792   1.8        ad }
    793   1.8        ad 
    794   1.8        ad /*
    795   1.1        ad  * kobj_release_mem:
    796   1.1        ad  *
    797   1.1        ad  *	Release object data not needed after loading.
    798   1.1        ad  */
    799   1.1        ad static void
    800   1.1        ad kobj_release_mem(kobj_t ko)
    801   1.1        ad {
    802   1.1        ad 	int i;
    803   1.1        ad 
    804   1.1        ad 	for (i = 0; i < ko->ko_nrel; i++) {
    805   1.1        ad 		if (ko->ko_reltab[i].rel) {
    806   1.1        ad 			kmem_free(ko->ko_reltab[i].rel,
    807   1.1        ad 			    ko->ko_reltab[i].size);
    808   1.1        ad 		}
    809   1.1        ad 	}
    810   1.1        ad 	for (i = 0; i < ko->ko_nrela; i++) {
    811   1.1        ad 		if (ko->ko_relatab[i].rela) {
    812   1.1        ad 			kmem_free(ko->ko_relatab[i].rela,
    813   1.1        ad 			    ko->ko_relatab[i].size);
    814   1.1        ad 		}
    815   1.1        ad 	}
    816   1.1        ad 	if (ko->ko_reltab != NULL) {
    817   1.1        ad 		kmem_free(ko->ko_reltab, ko->ko_nrel *
    818   1.1        ad 		    sizeof(*ko->ko_reltab));
    819   1.1        ad 		ko->ko_reltab = NULL;
    820   1.1        ad 		ko->ko_nrel = 0;
    821   1.1        ad 	}
    822   1.1        ad 	if (ko->ko_relatab != NULL) {
    823   1.1        ad 		kmem_free(ko->ko_relatab, ko->ko_nrela *
    824   1.1        ad 		    sizeof(*ko->ko_relatab));
    825   1.1        ad 		ko->ko_relatab = NULL;
    826   1.1        ad 		ko->ko_nrela = 0;
    827   1.1        ad 	}
    828   1.1        ad 	if (ko->ko_shdr != NULL) {
    829   1.1        ad 		kmem_free(ko->ko_shdr, ko->ko_shdrsz);
    830   1.1        ad 		ko->ko_shdr = NULL;
    831   1.1        ad 	}
    832   1.1        ad }
    833   1.1        ad 
    834   1.1        ad /*
    835   1.1        ad  * kobj_sym_lookup:
    836   1.1        ad  *
    837   1.1        ad  *	Symbol lookup function to be used when the symbol index
    838   1.1        ad  *	is known (ie during relocation).
    839   1.1        ad  */
    840   1.1        ad uintptr_t
    841   1.1        ad kobj_sym_lookup(kobj_t ko, uintptr_t symidx)
    842   1.1        ad {
    843   1.1        ad 	const Elf_Sym *sym;
    844   1.1        ad 	const char *symbol;
    845   1.1        ad 	int error;
    846   1.1        ad 	u_long addr;
    847   1.1        ad 
    848   1.1        ad 	/* Don't even try to lookup the symbol if the index is bogus. */
    849   1.1        ad 	if (symidx >= ko->ko_symcnt)
    850   1.1        ad 		return 0;
    851   1.1        ad 
    852   1.1        ad 	sym = ko->ko_symtab + symidx;
    853   1.1        ad 
    854   1.1        ad 	/* Quick answer if there is a definition included. */
    855   1.1        ad 	if (sym->st_shndx != SHN_UNDEF) {
    856   1.1        ad 		return sym->st_value;
    857   1.1        ad 	}
    858   1.1        ad 
    859   1.1        ad 	/* If we get here, then it is undefined and needs a lookup. */
    860   1.1        ad 	switch (ELF_ST_BIND(sym->st_info)) {
    861   1.1        ad 	case STB_LOCAL:
    862   1.1        ad 		/* Local, but undefined? huh? */
    863   1.1        ad 		kobj_error("local symbol undefined");
    864   1.1        ad 		return 0;
    865   1.1        ad 
    866   1.1        ad 	case STB_GLOBAL:
    867   1.1        ad 		/* Relative to Data or Function name */
    868   1.1        ad 		symbol = ko->ko_strtab + sym->st_name;
    869   1.1        ad 
    870   1.1        ad 		/* Force a lookup failure if the symbol name is bogus. */
    871   1.1        ad 		if (*symbol == 0) {
    872   1.1        ad 			kobj_error("bad symbol name");
    873   1.1        ad 			return 0;
    874   1.1        ad 		}
    875   1.1        ad 
    876   1.1        ad 		error = ksyms_getval(NULL, symbol, &addr, KSYMS_ANY);
    877   1.1        ad 		if (error != 0) {
    878   1.1        ad 			kobj_error("symbol %s undefined", symbol);
    879   1.1        ad 			return (uintptr_t)0;
    880   1.1        ad 		}
    881   1.1        ad 		return (uintptr_t)addr;
    882   1.1        ad 
    883   1.1        ad 	case STB_WEAK:
    884   1.1        ad 		kobj_error("weak symbols not supported\n");
    885   1.1        ad 		return 0;
    886   1.1        ad 
    887   1.1        ad 	default:
    888   1.1        ad 		return 0;
    889   1.1        ad 	}
    890   1.1        ad }
    891   1.1        ad 
    892   1.1        ad /*
    893   1.1        ad  * kobj_findbase:
    894   1.1        ad  *
    895   1.1        ad  *	Return base address of the given section.
    896   1.1        ad  */
    897   1.1        ad static uintptr_t
    898   1.1        ad kobj_findbase(kobj_t ko, int sec)
    899   1.1        ad {
    900   1.1        ad 	int i;
    901   1.1        ad 
    902   1.1        ad 	for (i = 0; i < ko->ko_nprogtab; i++) {
    903   1.1        ad 		if (sec == ko->ko_progtab[i].sec) {
    904   1.1        ad 			return (uintptr_t)ko->ko_progtab[i].addr;
    905   1.1        ad 		}
    906   1.1        ad 	}
    907   1.1        ad 	return 0;
    908   1.1        ad }
    909   1.1        ad 
    910   1.1        ad /*
    911   1.1        ad  * kobj_relocate:
    912   1.1        ad  *
    913   1.1        ad  *	Resolve all relocations for the loaded object.
    914   1.1        ad  */
    915   1.1        ad static int
    916   1.1        ad kobj_relocate(kobj_t ko)
    917   1.1        ad {
    918   1.1        ad 	const Elf_Rel *rellim;
    919   1.1        ad 	const Elf_Rel *rel;
    920   1.1        ad 	const Elf_Rela *relalim;
    921   1.1        ad 	const Elf_Rela *rela;
    922   1.1        ad 	const Elf_Sym *sym;
    923   1.1        ad 	uintptr_t base;
    924   1.8        ad 	int i, error;
    925   1.1        ad 	uintptr_t symidx;
    926   1.1        ad 
    927   1.1        ad 	/*
    928   1.1        ad 	 * Perform relocations without addend if there are any.
    929   1.1        ad 	 */
    930   1.1        ad 	for (i = 0; i < ko->ko_nrel; i++) {
    931   1.1        ad 		rel = ko->ko_reltab[i].rel;
    932   1.1        ad 		if (rel == NULL) {
    933   1.1        ad 			continue;
    934   1.1        ad 		}
    935   1.1        ad 		rellim = rel + ko->ko_reltab[i].nrel;
    936   1.1        ad 		base = kobj_findbase(ko, ko->ko_reltab[i].sec);
    937   1.1        ad 		if (base == 0) {
    938   1.1        ad 			panic("lost base for e_reltab");
    939   1.1        ad 		}
    940   1.1        ad 		for (; rel < rellim; rel++) {
    941   1.1        ad 			symidx = ELF_R_SYM(rel->r_info);
    942   1.1        ad 			if (symidx >= ko->ko_symcnt) {
    943   1.1        ad 				continue;
    944   1.1        ad 			}
    945   1.1        ad 			sym = ko->ko_symtab + symidx;
    946   1.8        ad 			error = kobj_reloc(ko, base, rel, false,
    947   1.8        ad 			    ELF_ST_BIND(sym->st_info) == STB_LOCAL);
    948   1.8        ad 			if (error != 0) {
    949   1.1        ad 				return ENOENT;
    950   1.1        ad 			}
    951   1.1        ad 		}
    952   1.1        ad 	}
    953   1.1        ad 
    954   1.1        ad 	/*
    955   1.1        ad 	 * Perform relocations with addend if there are any.
    956   1.1        ad 	 */
    957   1.1        ad 	for (i = 0; i < ko->ko_nrela; i++) {
    958   1.1        ad 		rela = ko->ko_relatab[i].rela;
    959   1.1        ad 		if (rela == NULL) {
    960   1.1        ad 			continue;
    961   1.1        ad 		}
    962   1.1        ad 		relalim = rela + ko->ko_relatab[i].nrela;
    963   1.1        ad 		base = kobj_findbase(ko, ko->ko_relatab[i].sec);
    964   1.1        ad 		if (base == 0) {
    965   1.1        ad 			panic("lost base for e_relatab");
    966   1.1        ad 		}
    967   1.1        ad 		for (; rela < relalim; rela++) {
    968   1.1        ad 			symidx = ELF_R_SYM(rela->r_info);
    969   1.1        ad 			if (symidx >= ko->ko_symcnt) {
    970   1.1        ad 				continue;
    971   1.1        ad 			}
    972   1.1        ad 			sym = ko->ko_symtab + symidx;
    973   1.8        ad 			error = kobj_reloc(ko, base, rela, true,
    974   1.8        ad 			    ELF_ST_BIND(sym->st_info) == STB_LOCAL);
    975   1.8        ad 			if (error != 0) {
    976   1.1        ad 				return ENOENT;
    977   1.1        ad 			}
    978   1.1        ad 		}
    979   1.1        ad 	}
    980   1.1        ad 
    981   1.1        ad 	return 0;
    982   1.1        ad }
    983   1.1        ad 
    984   1.1        ad /*
    985   1.1        ad  * kobj_error:
    986   1.1        ad  *
    987   1.1        ad  *	Utility function: log an error.
    988   1.1        ad  */
    989   1.1        ad static void
    990   1.1        ad kobj_error(const char *fmt, ...)
    991   1.1        ad {
    992   1.1        ad 	va_list ap;
    993   1.1        ad 
    994   1.1        ad 	va_start(ap, fmt);
    995   1.1        ad 	printf("WARNING: linker error: ");
    996   1.1        ad 	vprintf(fmt, ap);
    997   1.1        ad 	printf("\n");
    998   1.1        ad 	va_end(ap);
    999   1.1        ad }
   1000   1.1        ad 
   1001   1.1        ad /*
   1002   1.1        ad  * kobj_read:
   1003   1.1        ad  *
   1004   1.1        ad  *	Utility function: read from the object.
   1005   1.1        ad  */
   1006   1.1        ad static int
   1007   1.3        ad kobj_read(kobj_t ko, void *base, size_t size, off_t off)
   1008   1.1        ad {
   1009   1.1        ad 	size_t resid;
   1010   1.1        ad 	int error;
   1011   1.1        ad 
   1012   1.3        ad 	KASSERT(ko->ko_source != NULL);
   1013   1.3        ad 
   1014   1.3        ad 	switch (ko->ko_type) {
   1015   1.3        ad 	case KT_VNODE:
   1016   1.3        ad 		error = vn_rdwr(UIO_READ, ko->ko_source, base, size, off,
   1017   1.3        ad 		    UIO_SYSSPACE, IO_NODELOCKED, curlwp->l_cred, &resid,
   1018   1.3        ad 		    curlwp);
   1019   1.3        ad 		if (error == 0 && resid != 0) {
   1020   1.3        ad 			error = EINVAL;
   1021   1.3        ad 		}
   1022   1.3        ad 		break;
   1023   1.3        ad 	case KT_MEMORY:
   1024   1.4  jmcneill 		if (ko->ko_memsize != -1 && off + size > ko->ko_memsize) {
   1025   1.3        ad 			kobj_error("kobj_read: preloaded object short");
   1026   1.3        ad 			error = EINVAL;
   1027   1.3        ad 		} else {
   1028   1.3        ad 			memcpy(base, (uint8_t *)ko->ko_source + off, size);
   1029   1.3        ad 			error = 0;
   1030   1.3        ad 		}
   1031   1.3        ad 		break;
   1032   1.3        ad 	default:
   1033   1.3        ad 		panic("kobj_read: invalid type");
   1034   1.3        ad 	}
   1035   1.3        ad 
   1036   1.1        ad 	return error;
   1037   1.1        ad }
   1038   1.5        ad 
   1039   1.5        ad #else	/* MODULAR */
   1040   1.5        ad 
   1041   1.5        ad int
   1042   1.7        ad kobj_open_file(kobj_t *kop, const char *name)
   1043   1.5        ad {
   1044   1.5        ad 
   1045   1.5        ad 	return ENOSYS;
   1046   1.5        ad }
   1047   1.5        ad 
   1048   1.5        ad int
   1049   1.7        ad kobj_open_mem(kobj_t *kop, void *base, ssize_t size)
   1050   1.5        ad {
   1051   1.5        ad 
   1052   1.5        ad 	return ENOSYS;
   1053   1.5        ad }
   1054   1.5        ad 
   1055   1.5        ad void
   1056   1.5        ad kobj_close(kobj_t ko)
   1057   1.5        ad {
   1058   1.5        ad 
   1059   1.5        ad 	panic("not modular");
   1060   1.5        ad }
   1061   1.5        ad 
   1062   1.5        ad int
   1063   1.5        ad kobj_load(kobj_t ko)
   1064   1.5        ad {
   1065   1.5        ad 
   1066   1.5        ad 	panic("not modular");
   1067   1.5        ad }
   1068   1.5        ad 
   1069   1.5        ad void
   1070   1.5        ad kobj_unload(kobj_t ko)
   1071   1.5        ad {
   1072   1.5        ad 
   1073   1.5        ad 	panic("not modular");
   1074   1.5        ad }
   1075   1.5        ad 
   1076   1.5        ad void
   1077   1.8        ad kobj_stat(kobj_t ko, vaddr_t *base, size_t *size)
   1078   1.5        ad {
   1079   1.5        ad 
   1080   1.5        ad 	panic("not modular");
   1081   1.5        ad }
   1082   1.5        ad 
   1083   1.7        ad int
   1084   1.5        ad kobj_set_name(kobj_t ko, const char *name)
   1085   1.5        ad {
   1086   1.5        ad 
   1087   1.5        ad 	panic("not modular");
   1088   1.5        ad }
   1089   1.5        ad 
   1090   1.8        ad int
   1091   1.8        ad kobj_find_section(kobj_t ko, const char *name, void **addr, size_t *size)
   1092   1.8        ad {
   1093   1.8        ad 
   1094   1.8        ad 	panic("not modular");
   1095   1.8        ad }
   1096   1.8        ad 
   1097   1.5        ad #endif	/* MODULAR */
   1098