subr_kobj.c revision 1.10 1 1.10 ad /* $NetBSD: subr_kobj.c,v 1.10 2008/03/21 21:55:00 ad Exp $ */
2 1.1 ad
3 1.1 ad /*-
4 1.1 ad * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 1.1 ad * All rights reserved.
6 1.1 ad *
7 1.1 ad * Redistribution and use in source and binary forms, with or without
8 1.1 ad * modification, are permitted provided that the following conditions
9 1.1 ad * are met:
10 1.1 ad * 1. Redistributions of source code must retain the above copyright
11 1.1 ad * notice, this list of conditions and the following disclaimer.
12 1.1 ad * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 ad * notice, this list of conditions and the following disclaimer in the
14 1.1 ad * documentation and/or other materials provided with the distribution.
15 1.1 ad * 3. All advertising materials mentioning features or use of this software
16 1.1 ad * must display the following acknowledgement:
17 1.1 ad * This product includes software developed by the NetBSD
18 1.1 ad * Foundation, Inc. and its contributors.
19 1.1 ad * 4. Neither the name of The NetBSD Foundation nor the names of its
20 1.1 ad * contributors may be used to endorse or promote products derived
21 1.1 ad * from this software without specific prior written permission.
22 1.1 ad *
23 1.1 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
24 1.1 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25 1.1 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26 1.1 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
27 1.1 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 1.1 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 1.1 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 1.1 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 1.1 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 1.1 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33 1.1 ad * POSSIBILITY OF SUCH DAMAGE.
34 1.1 ad */
35 1.1 ad
36 1.1 ad /*-
37 1.1 ad * Copyright (c) 1998-2000 Doug Rabson
38 1.1 ad * Copyright (c) 2004 Peter Wemm
39 1.1 ad * All rights reserved.
40 1.1 ad *
41 1.1 ad * Redistribution and use in source and binary forms, with or without
42 1.1 ad * modification, are permitted provided that the following conditions
43 1.1 ad * are met:
44 1.1 ad * 1. Redistributions of source code must retain the above copyright
45 1.1 ad * notice, this list of conditions and the following disclaimer.
46 1.1 ad * 2. Redistributions in binary form must reproduce the above copyright
47 1.1 ad * notice, this list of conditions and the following disclaimer in the
48 1.1 ad * documentation and/or other materials provided with the distribution.
49 1.1 ad *
50 1.1 ad * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
51 1.1 ad * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52 1.1 ad * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53 1.1 ad * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
54 1.1 ad * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
55 1.1 ad * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
56 1.1 ad * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
57 1.1 ad * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
58 1.1 ad * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
59 1.1 ad * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60 1.1 ad * SUCH DAMAGE.
61 1.1 ad */
62 1.1 ad
63 1.1 ad /*
64 1.1 ad * Kernel loader for ELF objects.
65 1.1 ad *
66 1.1 ad * TODO: adjust kmem_alloc() calls to avoid needless fragmentation.
67 1.1 ad */
68 1.1 ad
69 1.5 ad #include "opt_modular.h"
70 1.5 ad
71 1.1 ad #include <sys/cdefs.h>
72 1.10 ad __KERNEL_RCSID(0, "$NetBSD: subr_kobj.c,v 1.10 2008/03/21 21:55:00 ad Exp $");
73 1.1 ad
74 1.1 ad #define ELFSIZE ARCH_ELFSIZE
75 1.1 ad
76 1.1 ad #include <sys/param.h>
77 1.1 ad #include <sys/systm.h>
78 1.1 ad #include <sys/kernel.h>
79 1.1 ad #include <sys/kmem.h>
80 1.1 ad #include <sys/proc.h>
81 1.1 ad #include <sys/namei.h>
82 1.1 ad #include <sys/vnode.h>
83 1.1 ad #include <sys/fcntl.h>
84 1.1 ad #include <sys/kobj.h>
85 1.1 ad #include <sys/ksyms.h>
86 1.1 ad #include <sys/lkm.h>
87 1.1 ad #include <sys/exec.h>
88 1.1 ad #include <sys/exec_elf.h>
89 1.1 ad
90 1.1 ad #include <machine/stdarg.h>
91 1.1 ad
92 1.1 ad #include <uvm/uvm_extern.h>
93 1.1 ad
94 1.5 ad #ifdef MODULAR
95 1.5 ad
96 1.1 ad typedef struct {
97 1.1 ad void *addr;
98 1.1 ad Elf_Off size;
99 1.1 ad int flags;
100 1.1 ad int sec; /* Original section */
101 1.1 ad const char *name;
102 1.1 ad } progent_t;
103 1.1 ad
104 1.1 ad typedef struct {
105 1.1 ad Elf_Rel *rel;
106 1.1 ad int nrel;
107 1.1 ad int sec;
108 1.1 ad size_t size;
109 1.1 ad } relent_t;
110 1.1 ad
111 1.1 ad typedef struct {
112 1.1 ad Elf_Rela *rela;
113 1.1 ad int nrela;
114 1.1 ad int sec;
115 1.1 ad size_t size;
116 1.1 ad } relaent_t;
117 1.1 ad
118 1.3 ad typedef enum kobjtype {
119 1.3 ad KT_UNSET,
120 1.3 ad KT_VNODE,
121 1.3 ad KT_MEMORY
122 1.3 ad } kobjtype_t;
123 1.3 ad
124 1.1 ad struct kobj {
125 1.1 ad char ko_name[MAXLKMNAME];
126 1.3 ad kobjtype_t ko_type;
127 1.3 ad void *ko_source;
128 1.3 ad ssize_t ko_memsize;
129 1.1 ad vaddr_t ko_address; /* Relocation address */
130 1.1 ad Elf_Shdr *ko_shdr;
131 1.1 ad progent_t *ko_progtab;
132 1.1 ad relaent_t *ko_relatab;
133 1.1 ad relent_t *ko_reltab;
134 1.1 ad Elf_Sym *ko_symtab; /* Symbol table */
135 1.1 ad char *ko_strtab; /* String table */
136 1.8 ad char *ko_shstrtab; /* Section name string table */
137 1.1 ad size_t ko_size; /* Size of text/data/bss */
138 1.1 ad size_t ko_symcnt; /* Number of symbols */
139 1.1 ad size_t ko_strtabsz; /* Number of bytes in string table */
140 1.8 ad size_t ko_shstrtabsz; /* Number of bytes in scn str table */
141 1.1 ad size_t ko_shdrsz;
142 1.1 ad int ko_nrel;
143 1.1 ad int ko_nrela;
144 1.1 ad int ko_nprogtab;
145 1.1 ad bool ko_ksyms;
146 1.3 ad bool ko_loaded;
147 1.1 ad };
148 1.1 ad
149 1.1 ad static int kobj_relocate(kobj_t);
150 1.1 ad static void kobj_error(const char *, ...);
151 1.3 ad static int kobj_read(kobj_t, void *, size_t, off_t);
152 1.1 ad static void kobj_release_mem(kobj_t);
153 1.1 ad
154 1.1 ad extern struct vm_map *lkm_map;
155 1.1 ad static const char *kobj_path = "/modules"; /* XXX ??? */
156 1.1 ad
157 1.1 ad /*
158 1.3 ad * kobj_open_file:
159 1.1 ad *
160 1.6 ad * Open an object located in the file system.
161 1.1 ad */
162 1.1 ad int
163 1.6 ad kobj_open_file(kobj_t *kop, const char *filename)
164 1.1 ad {
165 1.1 ad struct nameidata nd;
166 1.1 ad kauth_cred_t cred;
167 1.1 ad char *path;
168 1.1 ad int error;
169 1.1 ad kobj_t ko;
170 1.1 ad
171 1.1 ad cred = kauth_cred_get();
172 1.1 ad
173 1.1 ad ko = kmem_zalloc(sizeof(*ko), KM_SLEEP);
174 1.1 ad if (ko == NULL) {
175 1.1 ad return ENOMEM;
176 1.1 ad }
177 1.1 ad
178 1.3 ad /* XXX where to look? */
179 1.3 ad NDINIT(&nd, LOOKUP, FOLLOW, UIO_SYSSPACE, filename);
180 1.1 ad error = vn_open(&nd, FREAD, 0);
181 1.1 ad if (error != 0) {
182 1.2 ad if (error != ENOENT) {
183 1.2 ad goto out;
184 1.2 ad }
185 1.2 ad path = PNBUF_GET();
186 1.3 ad snprintf(path, MAXPATHLEN - 1, "%s/%s", kobj_path,
187 1.3 ad filename);
188 1.2 ad NDINIT(&nd, LOOKUP, FOLLOW, UIO_SYSSPACE, path);
189 1.2 ad error = vn_open(&nd, FREAD, 0);
190 1.9 rumble if (error != 0) {
191 1.9 rumble strlcat(path, ".o", MAXPATHLEN);
192 1.9 rumble NDINIT(&nd, LOOKUP, FOLLOW, UIO_SYSSPACE, path);
193 1.9 rumble error = vn_open(&nd, FREAD, 0);
194 1.9 rumble }
195 1.2 ad PNBUF_PUT(path);
196 1.2 ad if (error != 0) {
197 1.2 ad goto out;
198 1.2 ad }
199 1.1 ad }
200 1.1 ad
201 1.3 ad out:
202 1.3 ad if (error != 0) {
203 1.3 ad kmem_free(ko, sizeof(*ko));
204 1.3 ad } else {
205 1.3 ad ko->ko_type = KT_VNODE;
206 1.3 ad ko->ko_source = nd.ni_vp;
207 1.3 ad *kop = ko;
208 1.3 ad }
209 1.3 ad return error;
210 1.3 ad }
211 1.3 ad
212 1.3 ad /*
213 1.3 ad * kobj_open_mem:
214 1.3 ad *
215 1.3 ad * Open a pre-loaded object already resident in memory. If size
216 1.6 ad * is not -1, the complete size of the object is known.
217 1.3 ad */
218 1.3 ad int
219 1.6 ad kobj_open_mem(kobj_t *kop, void *base, ssize_t size)
220 1.3 ad {
221 1.3 ad kobj_t ko;
222 1.3 ad
223 1.3 ad ko = kmem_zalloc(sizeof(*ko), KM_SLEEP);
224 1.3 ad if (ko == NULL) {
225 1.3 ad return ENOMEM;
226 1.3 ad }
227 1.3 ad
228 1.3 ad ko->ko_type = KT_MEMORY;
229 1.3 ad ko->ko_source = base;
230 1.3 ad ko->ko_memsize = size;
231 1.3 ad *kop = ko;
232 1.3 ad
233 1.3 ad return 0;
234 1.3 ad }
235 1.3 ad
236 1.3 ad /*
237 1.3 ad * kobj_close:
238 1.3 ad *
239 1.3 ad * Close an open ELF object. If the object was not successfully
240 1.3 ad * loaded, it will be destroyed.
241 1.3 ad */
242 1.3 ad void
243 1.3 ad kobj_close(kobj_t ko)
244 1.3 ad {
245 1.3 ad
246 1.3 ad KASSERT(ko->ko_source != NULL);
247 1.3 ad
248 1.3 ad switch (ko->ko_type) {
249 1.3 ad case KT_VNODE:
250 1.3 ad VOP_UNLOCK(ko->ko_source, 0);
251 1.10 ad vn_close(ko->ko_source, FREAD, kauth_cred_get());
252 1.3 ad break;
253 1.3 ad case KT_MEMORY:
254 1.3 ad /* nothing */
255 1.3 ad break;
256 1.3 ad default:
257 1.3 ad panic("kobj_close: unknown type");
258 1.3 ad break;
259 1.3 ad }
260 1.3 ad
261 1.3 ad ko->ko_source = NULL;
262 1.3 ad ko->ko_type = KT_UNSET;
263 1.3 ad
264 1.8 ad /* Program table and section strings are no longer needed. */
265 1.8 ad if (ko->ko_progtab != NULL) {
266 1.8 ad kmem_free(ko->ko_progtab, ko->ko_nprogtab *
267 1.8 ad sizeof(*ko->ko_progtab));
268 1.8 ad ko->ko_progtab = NULL;
269 1.8 ad }
270 1.8 ad if (ko->ko_shstrtab) {
271 1.8 ad kmem_free(ko->ko_shstrtab, ko->ko_shstrtabsz);
272 1.8 ad ko->ko_shstrtab = NULL;
273 1.8 ad }
274 1.8 ad
275 1.3 ad /* If the object hasn't been loaded, then destroy it. */
276 1.3 ad if (!ko->ko_loaded) {
277 1.3 ad kobj_unload(ko);
278 1.3 ad }
279 1.3 ad }
280 1.3 ad
281 1.3 ad /*
282 1.3 ad * kobj_load:
283 1.3 ad *
284 1.3 ad * Load an ELF object from the file system and link into the
285 1.3 ad * running kernel image.
286 1.3 ad */
287 1.3 ad int
288 1.3 ad kobj_load(kobj_t ko)
289 1.3 ad {
290 1.3 ad Elf_Ehdr *hdr;
291 1.3 ad Elf_Shdr *shdr;
292 1.3 ad Elf_Sym *es;
293 1.3 ad vaddr_t mapbase;
294 1.3 ad size_t mapsize;
295 1.3 ad int error;
296 1.3 ad int symtabindex;
297 1.3 ad int symstrindex;
298 1.3 ad int nsym;
299 1.3 ad int pb, rl, ra;
300 1.3 ad int alignmask;
301 1.3 ad int i, j;
302 1.3 ad
303 1.3 ad KASSERT(ko->ko_type != KT_UNSET);
304 1.3 ad KASSERT(ko->ko_source != NULL);
305 1.3 ad
306 1.3 ad shdr = NULL;
307 1.3 ad mapsize = 0;
308 1.3 ad error = 0;
309 1.3 ad hdr = NULL;
310 1.3 ad
311 1.1 ad /*
312 1.1 ad * Read the elf header from the file.
313 1.1 ad */
314 1.1 ad hdr = kmem_alloc(sizeof(*hdr), KM_SLEEP);
315 1.1 ad if (hdr == NULL) {
316 1.1 ad error = ENOMEM;
317 1.1 ad goto out;
318 1.1 ad }
319 1.3 ad error = kobj_read(ko, hdr, sizeof(*hdr), 0);
320 1.1 ad if (error != 0)
321 1.1 ad goto out;
322 1.1 ad if (memcmp(hdr->e_ident, ELFMAG, SELFMAG) != 0) {
323 1.3 ad kobj_error("not an ELF object");
324 1.1 ad error = ENOEXEC;
325 1.1 ad goto out;
326 1.1 ad }
327 1.1 ad
328 1.1 ad if (hdr->e_ident[EI_VERSION] != EV_CURRENT ||
329 1.1 ad hdr->e_version != EV_CURRENT) {
330 1.1 ad kobj_error("unsupported file version");
331 1.1 ad error = ENOEXEC;
332 1.1 ad goto out;
333 1.1 ad }
334 1.1 ad if (hdr->e_type != ET_REL) {
335 1.1 ad kobj_error("unsupported file type");
336 1.1 ad error = ENOEXEC;
337 1.1 ad goto out;
338 1.1 ad }
339 1.1 ad switch (hdr->e_machine) {
340 1.1 ad #if ELFSIZE == 32
341 1.1 ad ELF32_MACHDEP_ID_CASES
342 1.1 ad #else
343 1.1 ad ELF64_MACHDEP_ID_CASES
344 1.1 ad #endif
345 1.1 ad default:
346 1.1 ad kobj_error("unsupported machine");
347 1.1 ad error = ENOEXEC;
348 1.1 ad goto out;
349 1.1 ad }
350 1.1 ad
351 1.1 ad ko->ko_nprogtab = 0;
352 1.1 ad ko->ko_shdr = 0;
353 1.1 ad ko->ko_nrel = 0;
354 1.1 ad ko->ko_nrela = 0;
355 1.1 ad
356 1.1 ad /*
357 1.1 ad * Allocate and read in the section header.
358 1.1 ad */
359 1.1 ad ko->ko_shdrsz = hdr->e_shnum * hdr->e_shentsize;
360 1.1 ad if (ko->ko_shdrsz == 0 || hdr->e_shoff == 0 ||
361 1.1 ad hdr->e_shentsize != sizeof(Elf_Shdr)) {
362 1.1 ad error = ENOEXEC;
363 1.1 ad goto out;
364 1.1 ad }
365 1.1 ad shdr = kmem_alloc(ko->ko_shdrsz, KM_SLEEP);
366 1.1 ad if (shdr == NULL) {
367 1.1 ad error = ENOMEM;
368 1.1 ad goto out;
369 1.1 ad }
370 1.1 ad ko->ko_shdr = shdr;
371 1.3 ad error = kobj_read(ko, shdr, ko->ko_shdrsz, hdr->e_shoff);
372 1.1 ad if (error != 0) {
373 1.1 ad goto out;
374 1.1 ad }
375 1.1 ad
376 1.1 ad /*
377 1.1 ad * Scan the section header for information and table sizing.
378 1.1 ad */
379 1.1 ad nsym = 0;
380 1.1 ad symtabindex = -1;
381 1.1 ad symstrindex = -1;
382 1.1 ad for (i = 0; i < hdr->e_shnum; i++) {
383 1.1 ad switch (shdr[i].sh_type) {
384 1.1 ad case SHT_PROGBITS:
385 1.1 ad case SHT_NOBITS:
386 1.1 ad ko->ko_nprogtab++;
387 1.1 ad break;
388 1.1 ad case SHT_SYMTAB:
389 1.1 ad nsym++;
390 1.1 ad symtabindex = i;
391 1.1 ad symstrindex = shdr[i].sh_link;
392 1.1 ad break;
393 1.1 ad case SHT_REL:
394 1.1 ad ko->ko_nrel++;
395 1.1 ad break;
396 1.1 ad case SHT_RELA:
397 1.1 ad ko->ko_nrela++;
398 1.1 ad break;
399 1.1 ad case SHT_STRTAB:
400 1.1 ad break;
401 1.1 ad }
402 1.1 ad }
403 1.1 ad if (ko->ko_nprogtab == 0) {
404 1.1 ad kobj_error("file has no contents");
405 1.1 ad error = ENOEXEC;
406 1.1 ad goto out;
407 1.1 ad }
408 1.1 ad if (nsym != 1) {
409 1.1 ad /* Only allow one symbol table for now */
410 1.1 ad kobj_error("file has no valid symbol table");
411 1.1 ad error = ENOEXEC;
412 1.1 ad goto out;
413 1.1 ad }
414 1.1 ad if (symstrindex < 0 || symstrindex > hdr->e_shnum ||
415 1.1 ad shdr[symstrindex].sh_type != SHT_STRTAB) {
416 1.1 ad kobj_error("file has invalid symbol strings");
417 1.1 ad error = ENOEXEC;
418 1.1 ad goto out;
419 1.1 ad }
420 1.1 ad
421 1.1 ad /*
422 1.1 ad * Allocate space for tracking the load chunks.
423 1.1 ad */
424 1.1 ad if (ko->ko_nprogtab != 0) {
425 1.1 ad ko->ko_progtab = kmem_zalloc(ko->ko_nprogtab *
426 1.1 ad sizeof(*ko->ko_progtab), KM_SLEEP);
427 1.1 ad if (ko->ko_progtab == NULL) {
428 1.1 ad error = ENOMEM;
429 1.1 ad goto out;
430 1.1 ad }
431 1.1 ad }
432 1.1 ad if (ko->ko_nrel != 0) {
433 1.1 ad ko->ko_reltab = kmem_zalloc(ko->ko_nrel *
434 1.1 ad sizeof(*ko->ko_reltab), KM_SLEEP);
435 1.1 ad if (ko->ko_reltab == NULL) {
436 1.1 ad error = ENOMEM;
437 1.1 ad goto out;
438 1.1 ad }
439 1.1 ad }
440 1.1 ad if (ko->ko_nrela != 0) {
441 1.1 ad ko->ko_relatab = kmem_zalloc(ko->ko_nrela *
442 1.1 ad sizeof(*ko->ko_relatab), KM_SLEEP);
443 1.1 ad if (ko->ko_relatab == NULL) {
444 1.1 ad error = ENOMEM;
445 1.1 ad goto out;
446 1.1 ad }
447 1.1 ad }
448 1.1 ad if (symtabindex == -1) {
449 1.1 ad kobj_error("lost symbol table index");
450 1.1 ad goto out;
451 1.1 ad }
452 1.1 ad
453 1.1 ad /*
454 1.1 ad * Allocate space for and load the symbol table.
455 1.1 ad */
456 1.1 ad ko->ko_symcnt = shdr[symtabindex].sh_size / sizeof(Elf_Sym);
457 1.1 ad if (ko->ko_symcnt == 0) {
458 1.1 ad kobj_error("no symbol table");
459 1.1 ad goto out;
460 1.1 ad }
461 1.1 ad ko->ko_symtab = kmem_alloc(ko->ko_symcnt * sizeof(Elf_Sym), KM_SLEEP);
462 1.1 ad if (ko->ko_symtab == NULL) {
463 1.1 ad error = ENOMEM;
464 1.1 ad goto out;
465 1.1 ad }
466 1.3 ad error = kobj_read(ko, ko->ko_symtab, shdr[symtabindex].sh_size,
467 1.1 ad shdr[symtabindex].sh_offset);
468 1.1 ad if (error != 0) {
469 1.1 ad goto out;
470 1.1 ad }
471 1.1 ad
472 1.1 ad /*
473 1.1 ad * Allocate space for and load the symbol strings.
474 1.1 ad */
475 1.1 ad ko->ko_strtabsz = shdr[symstrindex].sh_size;
476 1.1 ad if (ko->ko_strtabsz == 0) {
477 1.1 ad kobj_error("no symbol strings");
478 1.1 ad goto out;
479 1.1 ad }
480 1.1 ad ko->ko_strtab = kmem_alloc(ko->ko_strtabsz, KM_SLEEP);
481 1.1 ad if (ko->ko_strtab == NULL) {
482 1.1 ad error = ENOMEM;
483 1.1 ad goto out;
484 1.1 ad }
485 1.3 ad error = kobj_read(ko, ko->ko_strtab, shdr[symstrindex].sh_size,
486 1.1 ad shdr[symstrindex].sh_offset);
487 1.1 ad if (error != 0) {
488 1.1 ad goto out;
489 1.1 ad }
490 1.1 ad
491 1.1 ad /*
492 1.8 ad * Do we have a string table for the section names?
493 1.8 ad */
494 1.8 ad if (hdr->e_shstrndx != 0 && shdr[hdr->e_shstrndx].sh_size != 0 &&
495 1.8 ad shdr[hdr->e_shstrndx].sh_type == SHT_STRTAB) {
496 1.8 ad ko->ko_shstrtabsz = shdr[hdr->e_shstrndx].sh_size;
497 1.8 ad ko->ko_shstrtab = kmem_alloc(shdr[hdr->e_shstrndx].sh_size,
498 1.8 ad KM_SLEEP);
499 1.8 ad if (ko->ko_shstrtab == NULL) {
500 1.8 ad error = ENOMEM;
501 1.8 ad goto out;
502 1.8 ad }
503 1.8 ad error = kobj_read(ko, ko->ko_shstrtab,
504 1.8 ad shdr[hdr->e_shstrndx].sh_size,
505 1.8 ad shdr[hdr->e_shstrndx].sh_offset);
506 1.8 ad if (error != 0) {
507 1.8 ad goto out;
508 1.8 ad }
509 1.8 ad }
510 1.8 ad
511 1.8 ad /*
512 1.1 ad * Size up code/data(progbits) and bss(nobits).
513 1.1 ad */
514 1.1 ad alignmask = 0;
515 1.1 ad for (i = 0; i < hdr->e_shnum; i++) {
516 1.1 ad switch (shdr[i].sh_type) {
517 1.1 ad case SHT_PROGBITS:
518 1.1 ad case SHT_NOBITS:
519 1.1 ad alignmask = shdr[i].sh_addralign - 1;
520 1.1 ad mapsize += alignmask;
521 1.1 ad mapsize &= ~alignmask;
522 1.1 ad mapsize += shdr[i].sh_size;
523 1.1 ad break;
524 1.1 ad }
525 1.1 ad }
526 1.1 ad
527 1.1 ad /*
528 1.1 ad * We know how much space we need for the text/data/bss/etc.
529 1.1 ad * This stuff needs to be in a single chunk so that profiling etc
530 1.1 ad * can get the bounds and gdb can associate offsets with modules.
531 1.1 ad */
532 1.1 ad if (mapsize == 0) {
533 1.1 ad kobj_error("no text/data/bss");
534 1.1 ad goto out;
535 1.1 ad }
536 1.1 ad mapbase = uvm_km_alloc(lkm_map, round_page(mapsize), 0,
537 1.1 ad UVM_KMF_WIRED | UVM_KMF_EXEC);
538 1.1 ad if (mapbase == 0) {
539 1.1 ad error = ENOMEM;
540 1.1 ad goto out;
541 1.1 ad }
542 1.1 ad ko->ko_address = mapbase;
543 1.1 ad ko->ko_size = mapsize;
544 1.1 ad
545 1.1 ad /*
546 1.1 ad * Now load code/data(progbits), zero bss(nobits), allocate space
547 1.1 ad * for and load relocs
548 1.1 ad */
549 1.1 ad pb = 0;
550 1.1 ad rl = 0;
551 1.1 ad ra = 0;
552 1.1 ad alignmask = 0;
553 1.1 ad for (i = 0; i < hdr->e_shnum; i++) {
554 1.1 ad switch (shdr[i].sh_type) {
555 1.1 ad case SHT_PROGBITS:
556 1.1 ad case SHT_NOBITS:
557 1.1 ad alignmask = shdr[i].sh_addralign - 1;
558 1.1 ad mapbase += alignmask;
559 1.1 ad mapbase &= ~alignmask;
560 1.1 ad ko->ko_progtab[pb].addr = (void *)mapbase;
561 1.1 ad if (shdr[i].sh_type == SHT_PROGBITS) {
562 1.1 ad ko->ko_progtab[pb].name = "<<PROGBITS>>";
563 1.3 ad error = kobj_read(ko,
564 1.1 ad ko->ko_progtab[pb].addr, shdr[i].sh_size,
565 1.1 ad shdr[i].sh_offset);
566 1.1 ad if (error != 0) {
567 1.1 ad goto out;
568 1.1 ad }
569 1.1 ad } else {
570 1.1 ad ko->ko_progtab[pb].name = "<<NOBITS>>";
571 1.1 ad memset(ko->ko_progtab[pb].addr, 0,
572 1.1 ad shdr[i].sh_size);
573 1.1 ad }
574 1.1 ad ko->ko_progtab[pb].size = shdr[i].sh_size;
575 1.1 ad ko->ko_progtab[pb].sec = i;
576 1.8 ad if (ko->ko_shstrtab != NULL && shdr[i].sh_name != 0) {
577 1.8 ad ko->ko_progtab[pb].name =
578 1.8 ad ko->ko_shstrtab + shdr[i].sh_name;
579 1.8 ad }
580 1.1 ad
581 1.1 ad /* Update all symbol values with the offset. */
582 1.1 ad for (j = 0; j < ko->ko_symcnt; j++) {
583 1.1 ad es = &ko->ko_symtab[j];
584 1.1 ad if (es->st_shndx != i) {
585 1.1 ad continue;
586 1.1 ad }
587 1.1 ad es->st_value +=
588 1.1 ad (Elf_Addr)ko->ko_progtab[pb].addr;
589 1.1 ad }
590 1.1 ad mapbase += shdr[i].sh_size;
591 1.1 ad pb++;
592 1.1 ad break;
593 1.1 ad case SHT_REL:
594 1.1 ad ko->ko_reltab[rl].size = shdr[i].sh_size;
595 1.1 ad ko->ko_reltab[rl].size -=
596 1.1 ad shdr[i].sh_size % sizeof(Elf_Rel);
597 1.1 ad if (ko->ko_reltab[rl].size != 0) {
598 1.1 ad ko->ko_reltab[rl].rel =
599 1.1 ad kmem_alloc(ko->ko_reltab[rl].size,
600 1.1 ad KM_SLEEP);
601 1.1 ad ko->ko_reltab[rl].nrel =
602 1.1 ad shdr[i].sh_size / sizeof(Elf_Rel);
603 1.1 ad ko->ko_reltab[rl].sec = shdr[i].sh_info;
604 1.3 ad error = kobj_read(ko,
605 1.1 ad ko->ko_reltab[rl].rel,
606 1.1 ad ko->ko_reltab[rl].size,
607 1.1 ad shdr[i].sh_offset);
608 1.1 ad if (error != 0) {
609 1.1 ad goto out;
610 1.1 ad }
611 1.1 ad }
612 1.1 ad rl++;
613 1.1 ad break;
614 1.1 ad case SHT_RELA:
615 1.1 ad ko->ko_relatab[ra].size = shdr[i].sh_size;
616 1.1 ad ko->ko_relatab[ra].size -=
617 1.1 ad shdr[i].sh_size % sizeof(Elf_Rela);
618 1.1 ad if (ko->ko_relatab[ra].size != 0) {
619 1.1 ad ko->ko_relatab[ra].rela =
620 1.1 ad kmem_alloc(ko->ko_relatab[ra].size,
621 1.1 ad KM_SLEEP);
622 1.1 ad ko->ko_relatab[ra].nrela =
623 1.1 ad shdr[i].sh_size / sizeof(Elf_Rela);
624 1.1 ad ko->ko_relatab[ra].sec = shdr[i].sh_info;
625 1.3 ad error = kobj_read(ko,
626 1.1 ad ko->ko_relatab[ra].rela,
627 1.1 ad shdr[i].sh_size,
628 1.1 ad shdr[i].sh_offset);
629 1.1 ad if (error != 0) {
630 1.1 ad goto out;
631 1.1 ad }
632 1.1 ad }
633 1.1 ad ra++;
634 1.1 ad break;
635 1.1 ad }
636 1.1 ad }
637 1.1 ad if (pb != ko->ko_nprogtab) {
638 1.1 ad panic("lost progbits");
639 1.1 ad }
640 1.1 ad if (rl != ko->ko_nrel) {
641 1.1 ad panic("lost rel");
642 1.1 ad }
643 1.1 ad if (ra != ko->ko_nrela) {
644 1.1 ad panic("lost rela");
645 1.1 ad }
646 1.1 ad if (mapbase != ko->ko_address + mapsize) {
647 1.1 ad panic("mapbase 0x%lx != address %lx + mapsize 0x%lx (0x%lx)\n",
648 1.1 ad (long)mapbase, (long)ko->ko_address, (long)mapsize,
649 1.1 ad (long)ko->ko_address + mapsize);
650 1.1 ad }
651 1.1 ad
652 1.1 ad /*
653 1.1 ad * Perform relocations. Done before registering with ksyms,
654 1.1 ad * which will pack our symbol table.
655 1.1 ad */
656 1.1 ad error = kobj_relocate(ko);
657 1.1 ad if (error != 0) {
658 1.1 ad goto out;
659 1.1 ad }
660 1.1 ad
661 1.1 ad /*
662 1.1 ad * Notify MD code that a module has been loaded.
663 1.1 ad */
664 1.1 ad error = kobj_machdep(ko, (void *)ko->ko_address, ko->ko_size, true);
665 1.1 ad if (error != 0) {
666 1.1 ad kobj_error("machine dependent init failed");
667 1.1 ad goto out;
668 1.1 ad }
669 1.3 ad ko->ko_loaded = true;
670 1.1 ad out:
671 1.1 ad kobj_release_mem(ko);
672 1.3 ad if (hdr != NULL) {
673 1.1 ad kmem_free(hdr, sizeof(*hdr));
674 1.1 ad }
675 1.1 ad
676 1.1 ad return error;
677 1.1 ad }
678 1.1 ad
679 1.1 ad /*
680 1.1 ad * kobj_unload:
681 1.1 ad *
682 1.1 ad * Unload an object previously loaded by kobj_load().
683 1.1 ad */
684 1.1 ad void
685 1.1 ad kobj_unload(kobj_t ko)
686 1.1 ad {
687 1.1 ad int error;
688 1.1 ad
689 1.8 ad KASSERT(ko->ko_progtab == NULL);
690 1.8 ad KASSERT(ko->ko_shstrtab == NULL);
691 1.8 ad
692 1.1 ad if (ko->ko_address != 0) {
693 1.1 ad uvm_km_free(lkm_map, ko->ko_address, round_page(ko->ko_size),
694 1.1 ad UVM_KMF_WIRED);
695 1.1 ad }
696 1.1 ad if (ko->ko_ksyms == true) {
697 1.1 ad ksyms_delsymtab(ko->ko_name);
698 1.1 ad }
699 1.1 ad if (ko->ko_symtab != NULL) {
700 1.1 ad kmem_free(ko->ko_symtab, ko->ko_symcnt * sizeof(Elf_Sym));
701 1.1 ad }
702 1.1 ad if (ko->ko_strtab != NULL) {
703 1.1 ad kmem_free(ko->ko_strtab, ko->ko_strtabsz);
704 1.1 ad }
705 1.1 ad
706 1.1 ad /*
707 1.1 ad * Notify MD code that a module has been unloaded.
708 1.1 ad */
709 1.3 ad if (ko->ko_loaded) {
710 1.3 ad error = kobj_machdep(ko, (void *)ko->ko_address, ko->ko_size,
711 1.3 ad false);
712 1.3 ad if (error != 0) {
713 1.3 ad kobj_error("machine dependent deinit failed");
714 1.3 ad }
715 1.1 ad }
716 1.3 ad
717 1.3 ad kmem_free(ko, sizeof(*ko));
718 1.1 ad }
719 1.1 ad
720 1.1 ad /*
721 1.2 ad * kobj_stat:
722 1.2 ad *
723 1.2 ad * Return size and load address of an object.
724 1.2 ad */
725 1.2 ad void
726 1.8 ad kobj_stat(kobj_t ko, vaddr_t *address, size_t *size)
727 1.2 ad {
728 1.2 ad
729 1.2 ad if (address != NULL) {
730 1.2 ad *address = ko->ko_address;
731 1.2 ad }
732 1.2 ad if (size != NULL) {
733 1.2 ad *size = ko->ko_size;
734 1.2 ad }
735 1.2 ad }
736 1.2 ad
737 1.2 ad /*
738 1.3 ad * kobj_set_name:
739 1.3 ad *
740 1.3 ad * Set an object's name. Used only for symbol table lookups.
741 1.3 ad * May only be called after the module is loaded.
742 1.3 ad */
743 1.6 ad int
744 1.3 ad kobj_set_name(kobj_t ko, const char *name)
745 1.3 ad {
746 1.6 ad int error;
747 1.3 ad
748 1.3 ad KASSERT(ko->ko_loaded);
749 1.3 ad
750 1.3 ad strlcpy(ko->ko_name, name, sizeof(ko->ko_name));
751 1.6 ad
752 1.6 ad /*
753 1.6 ad * Now that we know the name, register the symbol table.
754 1.6 ad */
755 1.6 ad error = ksyms_addsymtab(ko->ko_name, ko->ko_symtab, ko->ko_symcnt *
756 1.6 ad sizeof(Elf_Sym), ko->ko_strtab, ko->ko_strtabsz);
757 1.6 ad if (error != 0) {
758 1.6 ad kobj_error("unable to register module symbol table");
759 1.6 ad } else {
760 1.6 ad ko->ko_ksyms = true;
761 1.6 ad }
762 1.6 ad
763 1.6 ad return error;
764 1.3 ad }
765 1.3 ad
766 1.3 ad /*
767 1.8 ad * kobj_find_section:
768 1.8 ad *
769 1.8 ad * Given a section name, search the loaded object and return
770 1.8 ad * virtual address if present and loaded.
771 1.8 ad */
772 1.8 ad int
773 1.8 ad kobj_find_section(kobj_t ko, const char *name, void **addr, size_t *size)
774 1.8 ad {
775 1.8 ad int i;
776 1.8 ad
777 1.8 ad KASSERT(ko->ko_progtab != NULL);
778 1.8 ad
779 1.8 ad for (i = 0; i < ko->ko_nprogtab; i++) {
780 1.8 ad if (strcmp(ko->ko_progtab[i].name, name) == 0) {
781 1.8 ad if (addr != NULL) {
782 1.8 ad *addr = ko->ko_progtab[i].addr;
783 1.8 ad }
784 1.8 ad if (size != NULL) {
785 1.8 ad *size = ko->ko_progtab[i].size;
786 1.8 ad }
787 1.8 ad return 0;
788 1.8 ad }
789 1.8 ad }
790 1.8 ad
791 1.8 ad return ENOENT;
792 1.8 ad }
793 1.8 ad
794 1.8 ad /*
795 1.1 ad * kobj_release_mem:
796 1.1 ad *
797 1.1 ad * Release object data not needed after loading.
798 1.1 ad */
799 1.1 ad static void
800 1.1 ad kobj_release_mem(kobj_t ko)
801 1.1 ad {
802 1.1 ad int i;
803 1.1 ad
804 1.1 ad for (i = 0; i < ko->ko_nrel; i++) {
805 1.1 ad if (ko->ko_reltab[i].rel) {
806 1.1 ad kmem_free(ko->ko_reltab[i].rel,
807 1.1 ad ko->ko_reltab[i].size);
808 1.1 ad }
809 1.1 ad }
810 1.1 ad for (i = 0; i < ko->ko_nrela; i++) {
811 1.1 ad if (ko->ko_relatab[i].rela) {
812 1.1 ad kmem_free(ko->ko_relatab[i].rela,
813 1.1 ad ko->ko_relatab[i].size);
814 1.1 ad }
815 1.1 ad }
816 1.1 ad if (ko->ko_reltab != NULL) {
817 1.1 ad kmem_free(ko->ko_reltab, ko->ko_nrel *
818 1.1 ad sizeof(*ko->ko_reltab));
819 1.1 ad ko->ko_reltab = NULL;
820 1.1 ad ko->ko_nrel = 0;
821 1.1 ad }
822 1.1 ad if (ko->ko_relatab != NULL) {
823 1.1 ad kmem_free(ko->ko_relatab, ko->ko_nrela *
824 1.1 ad sizeof(*ko->ko_relatab));
825 1.1 ad ko->ko_relatab = NULL;
826 1.1 ad ko->ko_nrela = 0;
827 1.1 ad }
828 1.1 ad if (ko->ko_shdr != NULL) {
829 1.1 ad kmem_free(ko->ko_shdr, ko->ko_shdrsz);
830 1.1 ad ko->ko_shdr = NULL;
831 1.1 ad }
832 1.1 ad }
833 1.1 ad
834 1.1 ad /*
835 1.1 ad * kobj_sym_lookup:
836 1.1 ad *
837 1.1 ad * Symbol lookup function to be used when the symbol index
838 1.1 ad * is known (ie during relocation).
839 1.1 ad */
840 1.1 ad uintptr_t
841 1.1 ad kobj_sym_lookup(kobj_t ko, uintptr_t symidx)
842 1.1 ad {
843 1.1 ad const Elf_Sym *sym;
844 1.1 ad const char *symbol;
845 1.1 ad int error;
846 1.1 ad u_long addr;
847 1.1 ad
848 1.1 ad /* Don't even try to lookup the symbol if the index is bogus. */
849 1.1 ad if (symidx >= ko->ko_symcnt)
850 1.1 ad return 0;
851 1.1 ad
852 1.1 ad sym = ko->ko_symtab + symidx;
853 1.1 ad
854 1.1 ad /* Quick answer if there is a definition included. */
855 1.1 ad if (sym->st_shndx != SHN_UNDEF) {
856 1.1 ad return sym->st_value;
857 1.1 ad }
858 1.1 ad
859 1.1 ad /* If we get here, then it is undefined and needs a lookup. */
860 1.1 ad switch (ELF_ST_BIND(sym->st_info)) {
861 1.1 ad case STB_LOCAL:
862 1.1 ad /* Local, but undefined? huh? */
863 1.1 ad kobj_error("local symbol undefined");
864 1.1 ad return 0;
865 1.1 ad
866 1.1 ad case STB_GLOBAL:
867 1.1 ad /* Relative to Data or Function name */
868 1.1 ad symbol = ko->ko_strtab + sym->st_name;
869 1.1 ad
870 1.1 ad /* Force a lookup failure if the symbol name is bogus. */
871 1.1 ad if (*symbol == 0) {
872 1.1 ad kobj_error("bad symbol name");
873 1.1 ad return 0;
874 1.1 ad }
875 1.1 ad
876 1.1 ad error = ksyms_getval(NULL, symbol, &addr, KSYMS_ANY);
877 1.1 ad if (error != 0) {
878 1.1 ad kobj_error("symbol %s undefined", symbol);
879 1.1 ad return (uintptr_t)0;
880 1.1 ad }
881 1.1 ad return (uintptr_t)addr;
882 1.1 ad
883 1.1 ad case STB_WEAK:
884 1.1 ad kobj_error("weak symbols not supported\n");
885 1.1 ad return 0;
886 1.1 ad
887 1.1 ad default:
888 1.1 ad return 0;
889 1.1 ad }
890 1.1 ad }
891 1.1 ad
892 1.1 ad /*
893 1.1 ad * kobj_findbase:
894 1.1 ad *
895 1.1 ad * Return base address of the given section.
896 1.1 ad */
897 1.1 ad static uintptr_t
898 1.1 ad kobj_findbase(kobj_t ko, int sec)
899 1.1 ad {
900 1.1 ad int i;
901 1.1 ad
902 1.1 ad for (i = 0; i < ko->ko_nprogtab; i++) {
903 1.1 ad if (sec == ko->ko_progtab[i].sec) {
904 1.1 ad return (uintptr_t)ko->ko_progtab[i].addr;
905 1.1 ad }
906 1.1 ad }
907 1.1 ad return 0;
908 1.1 ad }
909 1.1 ad
910 1.1 ad /*
911 1.1 ad * kobj_relocate:
912 1.1 ad *
913 1.1 ad * Resolve all relocations for the loaded object.
914 1.1 ad */
915 1.1 ad static int
916 1.1 ad kobj_relocate(kobj_t ko)
917 1.1 ad {
918 1.1 ad const Elf_Rel *rellim;
919 1.1 ad const Elf_Rel *rel;
920 1.1 ad const Elf_Rela *relalim;
921 1.1 ad const Elf_Rela *rela;
922 1.1 ad const Elf_Sym *sym;
923 1.1 ad uintptr_t base;
924 1.8 ad int i, error;
925 1.1 ad uintptr_t symidx;
926 1.1 ad
927 1.1 ad /*
928 1.1 ad * Perform relocations without addend if there are any.
929 1.1 ad */
930 1.1 ad for (i = 0; i < ko->ko_nrel; i++) {
931 1.1 ad rel = ko->ko_reltab[i].rel;
932 1.1 ad if (rel == NULL) {
933 1.1 ad continue;
934 1.1 ad }
935 1.1 ad rellim = rel + ko->ko_reltab[i].nrel;
936 1.1 ad base = kobj_findbase(ko, ko->ko_reltab[i].sec);
937 1.1 ad if (base == 0) {
938 1.1 ad panic("lost base for e_reltab");
939 1.1 ad }
940 1.1 ad for (; rel < rellim; rel++) {
941 1.1 ad symidx = ELF_R_SYM(rel->r_info);
942 1.1 ad if (symidx >= ko->ko_symcnt) {
943 1.1 ad continue;
944 1.1 ad }
945 1.1 ad sym = ko->ko_symtab + symidx;
946 1.8 ad error = kobj_reloc(ko, base, rel, false,
947 1.8 ad ELF_ST_BIND(sym->st_info) == STB_LOCAL);
948 1.8 ad if (error != 0) {
949 1.1 ad return ENOENT;
950 1.1 ad }
951 1.1 ad }
952 1.1 ad }
953 1.1 ad
954 1.1 ad /*
955 1.1 ad * Perform relocations with addend if there are any.
956 1.1 ad */
957 1.1 ad for (i = 0; i < ko->ko_nrela; i++) {
958 1.1 ad rela = ko->ko_relatab[i].rela;
959 1.1 ad if (rela == NULL) {
960 1.1 ad continue;
961 1.1 ad }
962 1.1 ad relalim = rela + ko->ko_relatab[i].nrela;
963 1.1 ad base = kobj_findbase(ko, ko->ko_relatab[i].sec);
964 1.1 ad if (base == 0) {
965 1.1 ad panic("lost base for e_relatab");
966 1.1 ad }
967 1.1 ad for (; rela < relalim; rela++) {
968 1.1 ad symidx = ELF_R_SYM(rela->r_info);
969 1.1 ad if (symidx >= ko->ko_symcnt) {
970 1.1 ad continue;
971 1.1 ad }
972 1.1 ad sym = ko->ko_symtab + symidx;
973 1.8 ad error = kobj_reloc(ko, base, rela, true,
974 1.8 ad ELF_ST_BIND(sym->st_info) == STB_LOCAL);
975 1.8 ad if (error != 0) {
976 1.1 ad return ENOENT;
977 1.1 ad }
978 1.1 ad }
979 1.1 ad }
980 1.1 ad
981 1.1 ad return 0;
982 1.1 ad }
983 1.1 ad
984 1.1 ad /*
985 1.1 ad * kobj_error:
986 1.1 ad *
987 1.1 ad * Utility function: log an error.
988 1.1 ad */
989 1.1 ad static void
990 1.1 ad kobj_error(const char *fmt, ...)
991 1.1 ad {
992 1.1 ad va_list ap;
993 1.1 ad
994 1.1 ad va_start(ap, fmt);
995 1.1 ad printf("WARNING: linker error: ");
996 1.1 ad vprintf(fmt, ap);
997 1.1 ad printf("\n");
998 1.1 ad va_end(ap);
999 1.1 ad }
1000 1.1 ad
1001 1.1 ad /*
1002 1.1 ad * kobj_read:
1003 1.1 ad *
1004 1.1 ad * Utility function: read from the object.
1005 1.1 ad */
1006 1.1 ad static int
1007 1.3 ad kobj_read(kobj_t ko, void *base, size_t size, off_t off)
1008 1.1 ad {
1009 1.1 ad size_t resid;
1010 1.1 ad int error;
1011 1.1 ad
1012 1.3 ad KASSERT(ko->ko_source != NULL);
1013 1.3 ad
1014 1.3 ad switch (ko->ko_type) {
1015 1.3 ad case KT_VNODE:
1016 1.3 ad error = vn_rdwr(UIO_READ, ko->ko_source, base, size, off,
1017 1.3 ad UIO_SYSSPACE, IO_NODELOCKED, curlwp->l_cred, &resid,
1018 1.3 ad curlwp);
1019 1.3 ad if (error == 0 && resid != 0) {
1020 1.3 ad error = EINVAL;
1021 1.3 ad }
1022 1.3 ad break;
1023 1.3 ad case KT_MEMORY:
1024 1.4 jmcneill if (ko->ko_memsize != -1 && off + size > ko->ko_memsize) {
1025 1.3 ad kobj_error("kobj_read: preloaded object short");
1026 1.3 ad error = EINVAL;
1027 1.3 ad } else {
1028 1.3 ad memcpy(base, (uint8_t *)ko->ko_source + off, size);
1029 1.3 ad error = 0;
1030 1.3 ad }
1031 1.3 ad break;
1032 1.3 ad default:
1033 1.3 ad panic("kobj_read: invalid type");
1034 1.3 ad }
1035 1.3 ad
1036 1.1 ad return error;
1037 1.1 ad }
1038 1.5 ad
1039 1.5 ad #else /* MODULAR */
1040 1.5 ad
1041 1.5 ad int
1042 1.7 ad kobj_open_file(kobj_t *kop, const char *name)
1043 1.5 ad {
1044 1.5 ad
1045 1.5 ad return ENOSYS;
1046 1.5 ad }
1047 1.5 ad
1048 1.5 ad int
1049 1.7 ad kobj_open_mem(kobj_t *kop, void *base, ssize_t size)
1050 1.5 ad {
1051 1.5 ad
1052 1.5 ad return ENOSYS;
1053 1.5 ad }
1054 1.5 ad
1055 1.5 ad void
1056 1.5 ad kobj_close(kobj_t ko)
1057 1.5 ad {
1058 1.5 ad
1059 1.5 ad panic("not modular");
1060 1.5 ad }
1061 1.5 ad
1062 1.5 ad int
1063 1.5 ad kobj_load(kobj_t ko)
1064 1.5 ad {
1065 1.5 ad
1066 1.5 ad panic("not modular");
1067 1.5 ad }
1068 1.5 ad
1069 1.5 ad void
1070 1.5 ad kobj_unload(kobj_t ko)
1071 1.5 ad {
1072 1.5 ad
1073 1.5 ad panic("not modular");
1074 1.5 ad }
1075 1.5 ad
1076 1.5 ad void
1077 1.8 ad kobj_stat(kobj_t ko, vaddr_t *base, size_t *size)
1078 1.5 ad {
1079 1.5 ad
1080 1.5 ad panic("not modular");
1081 1.5 ad }
1082 1.5 ad
1083 1.7 ad int
1084 1.5 ad kobj_set_name(kobj_t ko, const char *name)
1085 1.5 ad {
1086 1.5 ad
1087 1.5 ad panic("not modular");
1088 1.5 ad }
1089 1.5 ad
1090 1.8 ad int
1091 1.8 ad kobj_find_section(kobj_t ko, const char *name, void **addr, size_t *size)
1092 1.8 ad {
1093 1.8 ad
1094 1.8 ad panic("not modular");
1095 1.8 ad }
1096 1.8 ad
1097 1.5 ad #endif /* MODULAR */
1098