subr_kobj.c revision 1.24.2.2 1 1.24.2.2 skrll /* $NetBSD: subr_kobj.c,v 1.24.2.2 2009/03/03 18:32:56 skrll Exp $ */
2 1.1 ad
3 1.1 ad /*-
4 1.1 ad * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 1.1 ad * All rights reserved.
6 1.1 ad *
7 1.24.2.1 skrll * This code is derived from software developed for The NetBSD Foundation
8 1.24.2.1 skrll * by Andrew Doran.
9 1.24.2.1 skrll *
10 1.1 ad * Redistribution and use in source and binary forms, with or without
11 1.1 ad * modification, are permitted provided that the following conditions
12 1.1 ad * are met:
13 1.1 ad * 1. Redistributions of source code must retain the above copyright
14 1.1 ad * notice, this list of conditions and the following disclaimer.
15 1.1 ad * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 ad * notice, this list of conditions and the following disclaimer in the
17 1.1 ad * documentation and/or other materials provided with the distribution.
18 1.1 ad *
19 1.1 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.1 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.1 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.1 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.1 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.1 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.1 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.1 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.1 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.1 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.1 ad * POSSIBILITY OF SUCH DAMAGE.
30 1.1 ad */
31 1.1 ad
32 1.1 ad /*-
33 1.1 ad * Copyright (c) 1998-2000 Doug Rabson
34 1.1 ad * Copyright (c) 2004 Peter Wemm
35 1.1 ad * All rights reserved.
36 1.1 ad *
37 1.1 ad * Redistribution and use in source and binary forms, with or without
38 1.1 ad * modification, are permitted provided that the following conditions
39 1.1 ad * are met:
40 1.1 ad * 1. Redistributions of source code must retain the above copyright
41 1.1 ad * notice, this list of conditions and the following disclaimer.
42 1.1 ad * 2. Redistributions in binary form must reproduce the above copyright
43 1.1 ad * notice, this list of conditions and the following disclaimer in the
44 1.1 ad * documentation and/or other materials provided with the distribution.
45 1.1 ad *
46 1.1 ad * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
47 1.1 ad * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
48 1.1 ad * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
49 1.1 ad * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
50 1.1 ad * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
51 1.1 ad * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
52 1.1 ad * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
53 1.1 ad * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
54 1.1 ad * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
55 1.1 ad * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
56 1.1 ad * SUCH DAMAGE.
57 1.1 ad */
58 1.1 ad
59 1.1 ad /*
60 1.1 ad * Kernel loader for ELF objects.
61 1.1 ad *
62 1.1 ad * TODO: adjust kmem_alloc() calls to avoid needless fragmentation.
63 1.1 ad */
64 1.1 ad
65 1.1 ad #include <sys/cdefs.h>
66 1.24.2.2 skrll __KERNEL_RCSID(0, "$NetBSD: subr_kobj.c,v 1.24.2.2 2009/03/03 18:32:56 skrll Exp $");
67 1.24.2.2 skrll #include "opt_modular.h"
68 1.1 ad
69 1.1 ad #define ELFSIZE ARCH_ELFSIZE
70 1.1 ad
71 1.16 ad #include <sys/systm.h>
72 1.16 ad #include <sys/kobj.h>
73 1.16 ad #include <sys/errno.h>
74 1.16 ad
75 1.16 ad #ifdef MODULAR
76 1.16 ad
77 1.1 ad #include <sys/param.h>
78 1.1 ad #include <sys/kernel.h>
79 1.1 ad #include <sys/kmem.h>
80 1.1 ad #include <sys/proc.h>
81 1.1 ad #include <sys/namei.h>
82 1.1 ad #include <sys/vnode.h>
83 1.1 ad #include <sys/fcntl.h>
84 1.1 ad #include <sys/ksyms.h>
85 1.24.2.1 skrll #include <sys/module.h>
86 1.1 ad #include <sys/exec.h>
87 1.1 ad #include <sys/exec_elf.h>
88 1.1 ad
89 1.1 ad #include <machine/stdarg.h>
90 1.1 ad
91 1.1 ad #include <uvm/uvm_extern.h>
92 1.1 ad
93 1.1 ad typedef struct {
94 1.1 ad void *addr;
95 1.1 ad Elf_Off size;
96 1.1 ad int flags;
97 1.1 ad int sec; /* Original section */
98 1.1 ad const char *name;
99 1.1 ad } progent_t;
100 1.1 ad
101 1.1 ad typedef struct {
102 1.1 ad Elf_Rel *rel;
103 1.1 ad int nrel;
104 1.1 ad int sec;
105 1.1 ad size_t size;
106 1.1 ad } relent_t;
107 1.1 ad
108 1.1 ad typedef struct {
109 1.1 ad Elf_Rela *rela;
110 1.1 ad int nrela;
111 1.1 ad int sec;
112 1.1 ad size_t size;
113 1.1 ad } relaent_t;
114 1.1 ad
115 1.3 ad typedef enum kobjtype {
116 1.3 ad KT_UNSET,
117 1.3 ad KT_VNODE,
118 1.3 ad KT_MEMORY
119 1.3 ad } kobjtype_t;
120 1.3 ad
121 1.1 ad struct kobj {
122 1.24.2.1 skrll char ko_name[MAXMODNAME];
123 1.3 ad kobjtype_t ko_type;
124 1.3 ad void *ko_source;
125 1.3 ad ssize_t ko_memsize;
126 1.1 ad vaddr_t ko_address; /* Relocation address */
127 1.1 ad Elf_Shdr *ko_shdr;
128 1.1 ad progent_t *ko_progtab;
129 1.1 ad relaent_t *ko_relatab;
130 1.1 ad relent_t *ko_reltab;
131 1.1 ad Elf_Sym *ko_symtab; /* Symbol table */
132 1.1 ad char *ko_strtab; /* String table */
133 1.8 ad char *ko_shstrtab; /* Section name string table */
134 1.1 ad size_t ko_size; /* Size of text/data/bss */
135 1.1 ad size_t ko_symcnt; /* Number of symbols */
136 1.1 ad size_t ko_strtabsz; /* Number of bytes in string table */
137 1.8 ad size_t ko_shstrtabsz; /* Number of bytes in scn str table */
138 1.1 ad size_t ko_shdrsz;
139 1.1 ad int ko_nrel;
140 1.1 ad int ko_nrela;
141 1.1 ad int ko_nprogtab;
142 1.1 ad bool ko_ksyms;
143 1.3 ad bool ko_loaded;
144 1.1 ad };
145 1.1 ad
146 1.18 ad static int kobj_relocate(kobj_t, bool);
147 1.24.2.1 skrll static int kobj_checksyms(kobj_t, bool);
148 1.1 ad static void kobj_error(const char *, ...);
149 1.12 ad static int kobj_read(kobj_t, void **, size_t, off_t);
150 1.12 ad static int kobj_read_bits(kobj_t, void *, size_t, off_t);
151 1.18 ad static void kobj_jettison(kobj_t);
152 1.12 ad static void kobj_free(kobj_t, void *, size_t);
153 1.18 ad static void kobj_close(kobj_t);
154 1.18 ad static int kobj_load(kobj_t);
155 1.1 ad
156 1.24.2.1 skrll extern struct vm_map *module_map;
157 1.1 ad
158 1.1 ad /*
159 1.18 ad * kobj_load_file:
160 1.1 ad *
161 1.18 ad * Load an object located in the file system.
162 1.1 ad */
163 1.1 ad int
164 1.21 ad kobj_load_file(kobj_t *kop, const char *filename, const char *base,
165 1.21 ad bool autoload)
166 1.1 ad {
167 1.1 ad struct nameidata nd;
168 1.1 ad kauth_cred_t cred;
169 1.1 ad char *path;
170 1.1 ad int error;
171 1.1 ad kobj_t ko;
172 1.1 ad
173 1.1 ad cred = kauth_cred_get();
174 1.1 ad
175 1.1 ad ko = kmem_zalloc(sizeof(*ko), KM_SLEEP);
176 1.1 ad if (ko == NULL) {
177 1.1 ad return ENOMEM;
178 1.1 ad }
179 1.1 ad
180 1.21 ad if (autoload) {
181 1.19 ad error = ENOENT;
182 1.19 ad } else {
183 1.19 ad NDINIT(&nd, LOOKUP, FOLLOW, UIO_SYSSPACE, filename);
184 1.19 ad error = vn_open(&nd, FREAD, 0);
185 1.19 ad }
186 1.1 ad if (error != 0) {
187 1.2 ad if (error != ENOENT) {
188 1.2 ad goto out;
189 1.2 ad }
190 1.2 ad path = PNBUF_GET();
191 1.19 ad snprintf(path, MAXPATHLEN - 1, "%s/%s/%s.kmod", base,
192 1.19 ad filename, filename);
193 1.24.2.1 skrll NDINIT(&nd, LOOKUP, FOLLOW | NOCHROOT, UIO_SYSSPACE, path);
194 1.2 ad error = vn_open(&nd, FREAD, 0);
195 1.2 ad PNBUF_PUT(path);
196 1.1 ad }
197 1.1 ad
198 1.3 ad out:
199 1.3 ad if (error != 0) {
200 1.3 ad kmem_free(ko, sizeof(*ko));
201 1.18 ad return error;
202 1.3 ad }
203 1.18 ad
204 1.18 ad ko->ko_type = KT_VNODE;
205 1.18 ad ko->ko_source = nd.ni_vp;
206 1.18 ad *kop = ko;
207 1.18 ad return kobj_load(ko);
208 1.3 ad }
209 1.3 ad
210 1.3 ad /*
211 1.18 ad * kobj_load_mem:
212 1.3 ad *
213 1.18 ad * Load an object already resident in memory. If size is not -1,
214 1.18 ad * the complete size of the object is known.
215 1.3 ad */
216 1.3 ad int
217 1.18 ad kobj_load_mem(kobj_t *kop, void *base, ssize_t size)
218 1.3 ad {
219 1.3 ad kobj_t ko;
220 1.3 ad
221 1.3 ad ko = kmem_zalloc(sizeof(*ko), KM_SLEEP);
222 1.3 ad if (ko == NULL) {
223 1.3 ad return ENOMEM;
224 1.3 ad }
225 1.3 ad
226 1.3 ad ko->ko_type = KT_MEMORY;
227 1.3 ad ko->ko_source = base;
228 1.3 ad ko->ko_memsize = size;
229 1.3 ad *kop = ko;
230 1.18 ad return kobj_load(ko);
231 1.3 ad }
232 1.3 ad
233 1.3 ad /*
234 1.3 ad * kobj_close:
235 1.3 ad *
236 1.18 ad * Close an open ELF object.
237 1.3 ad */
238 1.18 ad static void
239 1.3 ad kobj_close(kobj_t ko)
240 1.3 ad {
241 1.3 ad
242 1.18 ad if (ko->ko_source == NULL) {
243 1.18 ad return;
244 1.18 ad }
245 1.3 ad
246 1.3 ad switch (ko->ko_type) {
247 1.3 ad case KT_VNODE:
248 1.3 ad VOP_UNLOCK(ko->ko_source, 0);
249 1.10 ad vn_close(ko->ko_source, FREAD, kauth_cred_get());
250 1.3 ad break;
251 1.3 ad case KT_MEMORY:
252 1.3 ad /* nothing */
253 1.3 ad break;
254 1.3 ad default:
255 1.3 ad panic("kobj_close: unknown type");
256 1.3 ad break;
257 1.3 ad }
258 1.3 ad
259 1.3 ad ko->ko_source = NULL;
260 1.3 ad }
261 1.3 ad
262 1.3 ad /*
263 1.3 ad * kobj_load:
264 1.3 ad *
265 1.18 ad * Load an ELF object and prepare to link into the running kernel
266 1.18 ad * image.
267 1.3 ad */
268 1.18 ad static int
269 1.3 ad kobj_load(kobj_t ko)
270 1.3 ad {
271 1.3 ad Elf_Ehdr *hdr;
272 1.3 ad Elf_Shdr *shdr;
273 1.3 ad Elf_Sym *es;
274 1.3 ad vaddr_t mapbase;
275 1.3 ad size_t mapsize;
276 1.3 ad int error;
277 1.3 ad int symtabindex;
278 1.3 ad int symstrindex;
279 1.3 ad int nsym;
280 1.3 ad int pb, rl, ra;
281 1.3 ad int alignmask;
282 1.3 ad int i, j;
283 1.13 ad void *addr;
284 1.3 ad
285 1.3 ad KASSERT(ko->ko_type != KT_UNSET);
286 1.3 ad KASSERT(ko->ko_source != NULL);
287 1.3 ad
288 1.3 ad shdr = NULL;
289 1.3 ad mapsize = 0;
290 1.3 ad error = 0;
291 1.3 ad hdr = NULL;
292 1.3 ad
293 1.1 ad /*
294 1.1 ad * Read the elf header from the file.
295 1.1 ad */
296 1.12 ad error = kobj_read(ko, (void **)&hdr, sizeof(*hdr), 0);
297 1.1 ad if (error != 0)
298 1.1 ad goto out;
299 1.1 ad if (memcmp(hdr->e_ident, ELFMAG, SELFMAG) != 0) {
300 1.3 ad kobj_error("not an ELF object");
301 1.1 ad error = ENOEXEC;
302 1.1 ad goto out;
303 1.1 ad }
304 1.1 ad
305 1.1 ad if (hdr->e_ident[EI_VERSION] != EV_CURRENT ||
306 1.1 ad hdr->e_version != EV_CURRENT) {
307 1.1 ad kobj_error("unsupported file version");
308 1.1 ad error = ENOEXEC;
309 1.1 ad goto out;
310 1.1 ad }
311 1.1 ad if (hdr->e_type != ET_REL) {
312 1.1 ad kobj_error("unsupported file type");
313 1.1 ad error = ENOEXEC;
314 1.1 ad goto out;
315 1.1 ad }
316 1.1 ad switch (hdr->e_machine) {
317 1.1 ad #if ELFSIZE == 32
318 1.1 ad ELF32_MACHDEP_ID_CASES
319 1.1 ad #else
320 1.1 ad ELF64_MACHDEP_ID_CASES
321 1.1 ad #endif
322 1.1 ad default:
323 1.1 ad kobj_error("unsupported machine");
324 1.1 ad error = ENOEXEC;
325 1.1 ad goto out;
326 1.1 ad }
327 1.1 ad
328 1.1 ad ko->ko_nprogtab = 0;
329 1.1 ad ko->ko_shdr = 0;
330 1.1 ad ko->ko_nrel = 0;
331 1.1 ad ko->ko_nrela = 0;
332 1.1 ad
333 1.1 ad /*
334 1.1 ad * Allocate and read in the section header.
335 1.1 ad */
336 1.1 ad ko->ko_shdrsz = hdr->e_shnum * hdr->e_shentsize;
337 1.1 ad if (ko->ko_shdrsz == 0 || hdr->e_shoff == 0 ||
338 1.1 ad hdr->e_shentsize != sizeof(Elf_Shdr)) {
339 1.1 ad error = ENOEXEC;
340 1.1 ad goto out;
341 1.1 ad }
342 1.12 ad error = kobj_read(ko, (void **)&shdr, ko->ko_shdrsz, hdr->e_shoff);
343 1.12 ad if (error != 0) {
344 1.1 ad goto out;
345 1.1 ad }
346 1.1 ad ko->ko_shdr = shdr;
347 1.1 ad
348 1.1 ad /*
349 1.1 ad * Scan the section header for information and table sizing.
350 1.1 ad */
351 1.1 ad nsym = 0;
352 1.1 ad symtabindex = -1;
353 1.1 ad symstrindex = -1;
354 1.1 ad for (i = 0; i < hdr->e_shnum; i++) {
355 1.1 ad switch (shdr[i].sh_type) {
356 1.1 ad case SHT_PROGBITS:
357 1.1 ad case SHT_NOBITS:
358 1.1 ad ko->ko_nprogtab++;
359 1.1 ad break;
360 1.1 ad case SHT_SYMTAB:
361 1.1 ad nsym++;
362 1.1 ad symtabindex = i;
363 1.1 ad symstrindex = shdr[i].sh_link;
364 1.1 ad break;
365 1.1 ad case SHT_REL:
366 1.1 ad ko->ko_nrel++;
367 1.1 ad break;
368 1.1 ad case SHT_RELA:
369 1.1 ad ko->ko_nrela++;
370 1.1 ad break;
371 1.1 ad case SHT_STRTAB:
372 1.1 ad break;
373 1.1 ad }
374 1.1 ad }
375 1.1 ad if (ko->ko_nprogtab == 0) {
376 1.1 ad kobj_error("file has no contents");
377 1.1 ad error = ENOEXEC;
378 1.1 ad goto out;
379 1.1 ad }
380 1.1 ad if (nsym != 1) {
381 1.1 ad /* Only allow one symbol table for now */
382 1.1 ad kobj_error("file has no valid symbol table");
383 1.1 ad error = ENOEXEC;
384 1.1 ad goto out;
385 1.1 ad }
386 1.1 ad if (symstrindex < 0 || symstrindex > hdr->e_shnum ||
387 1.1 ad shdr[symstrindex].sh_type != SHT_STRTAB) {
388 1.1 ad kobj_error("file has invalid symbol strings");
389 1.1 ad error = ENOEXEC;
390 1.1 ad goto out;
391 1.1 ad }
392 1.1 ad
393 1.1 ad /*
394 1.1 ad * Allocate space for tracking the load chunks.
395 1.1 ad */
396 1.1 ad if (ko->ko_nprogtab != 0) {
397 1.1 ad ko->ko_progtab = kmem_zalloc(ko->ko_nprogtab *
398 1.1 ad sizeof(*ko->ko_progtab), KM_SLEEP);
399 1.1 ad if (ko->ko_progtab == NULL) {
400 1.1 ad error = ENOMEM;
401 1.1 ad goto out;
402 1.1 ad }
403 1.1 ad }
404 1.1 ad if (ko->ko_nrel != 0) {
405 1.1 ad ko->ko_reltab = kmem_zalloc(ko->ko_nrel *
406 1.1 ad sizeof(*ko->ko_reltab), KM_SLEEP);
407 1.1 ad if (ko->ko_reltab == NULL) {
408 1.1 ad error = ENOMEM;
409 1.1 ad goto out;
410 1.1 ad }
411 1.1 ad }
412 1.1 ad if (ko->ko_nrela != 0) {
413 1.1 ad ko->ko_relatab = kmem_zalloc(ko->ko_nrela *
414 1.1 ad sizeof(*ko->ko_relatab), KM_SLEEP);
415 1.1 ad if (ko->ko_relatab == NULL) {
416 1.1 ad error = ENOMEM;
417 1.1 ad goto out;
418 1.1 ad }
419 1.1 ad }
420 1.1 ad if (symtabindex == -1) {
421 1.1 ad kobj_error("lost symbol table index");
422 1.1 ad goto out;
423 1.1 ad }
424 1.1 ad
425 1.1 ad /*
426 1.1 ad * Allocate space for and load the symbol table.
427 1.1 ad */
428 1.1 ad ko->ko_symcnt = shdr[symtabindex].sh_size / sizeof(Elf_Sym);
429 1.1 ad if (ko->ko_symcnt == 0) {
430 1.1 ad kobj_error("no symbol table");
431 1.1 ad goto out;
432 1.1 ad }
433 1.12 ad error = kobj_read(ko, (void **)&ko->ko_symtab,
434 1.12 ad ko->ko_symcnt * sizeof(Elf_Sym),
435 1.1 ad shdr[symtabindex].sh_offset);
436 1.1 ad if (error != 0) {
437 1.1 ad goto out;
438 1.1 ad }
439 1.1 ad
440 1.1 ad /*
441 1.1 ad * Allocate space for and load the symbol strings.
442 1.1 ad */
443 1.1 ad ko->ko_strtabsz = shdr[symstrindex].sh_size;
444 1.1 ad if (ko->ko_strtabsz == 0) {
445 1.1 ad kobj_error("no symbol strings");
446 1.1 ad goto out;
447 1.1 ad }
448 1.12 ad error = kobj_read(ko, (void *)&ko->ko_strtab, ko->ko_strtabsz,
449 1.1 ad shdr[symstrindex].sh_offset);
450 1.1 ad if (error != 0) {
451 1.1 ad goto out;
452 1.1 ad }
453 1.1 ad
454 1.1 ad /*
455 1.8 ad * Do we have a string table for the section names?
456 1.8 ad */
457 1.8 ad if (hdr->e_shstrndx != 0 && shdr[hdr->e_shstrndx].sh_size != 0 &&
458 1.8 ad shdr[hdr->e_shstrndx].sh_type == SHT_STRTAB) {
459 1.8 ad ko->ko_shstrtabsz = shdr[hdr->e_shstrndx].sh_size;
460 1.24.2.1 skrll error = kobj_read(ko, (void **)&ko->ko_shstrtab,
461 1.8 ad shdr[hdr->e_shstrndx].sh_size,
462 1.8 ad shdr[hdr->e_shstrndx].sh_offset);
463 1.8 ad if (error != 0) {
464 1.8 ad goto out;
465 1.8 ad }
466 1.8 ad }
467 1.8 ad
468 1.8 ad /*
469 1.1 ad * Size up code/data(progbits) and bss(nobits).
470 1.1 ad */
471 1.1 ad alignmask = 0;
472 1.12 ad mapbase = 0;
473 1.1 ad for (i = 0; i < hdr->e_shnum; i++) {
474 1.1 ad switch (shdr[i].sh_type) {
475 1.1 ad case SHT_PROGBITS:
476 1.1 ad case SHT_NOBITS:
477 1.12 ad if (mapbase == 0)
478 1.12 ad mapbase = shdr[i].sh_offset;
479 1.1 ad alignmask = shdr[i].sh_addralign - 1;
480 1.1 ad mapsize += alignmask;
481 1.1 ad mapsize &= ~alignmask;
482 1.1 ad mapsize += shdr[i].sh_size;
483 1.1 ad break;
484 1.1 ad }
485 1.1 ad }
486 1.1 ad
487 1.1 ad /*
488 1.1 ad * We know how much space we need for the text/data/bss/etc.
489 1.1 ad * This stuff needs to be in a single chunk so that profiling etc
490 1.1 ad * can get the bounds and gdb can associate offsets with modules.
491 1.1 ad */
492 1.1 ad if (mapsize == 0) {
493 1.1 ad kobj_error("no text/data/bss");
494 1.1 ad goto out;
495 1.1 ad }
496 1.12 ad if (ko->ko_type == KT_MEMORY) {
497 1.12 ad mapbase += (vaddr_t)ko->ko_source;
498 1.12 ad } else {
499 1.24.2.1 skrll mapbase = uvm_km_alloc(module_map, round_page(mapsize),
500 1.13 ad 0, UVM_KMF_WIRED | UVM_KMF_EXEC);
501 1.12 ad if (mapbase == 0) {
502 1.12 ad error = ENOMEM;
503 1.12 ad goto out;
504 1.12 ad }
505 1.1 ad }
506 1.1 ad ko->ko_address = mapbase;
507 1.1 ad ko->ko_size = mapsize;
508 1.1 ad
509 1.1 ad /*
510 1.1 ad * Now load code/data(progbits), zero bss(nobits), allocate space
511 1.1 ad * for and load relocs
512 1.1 ad */
513 1.1 ad pb = 0;
514 1.1 ad rl = 0;
515 1.1 ad ra = 0;
516 1.1 ad alignmask = 0;
517 1.1 ad for (i = 0; i < hdr->e_shnum; i++) {
518 1.1 ad switch (shdr[i].sh_type) {
519 1.1 ad case SHT_PROGBITS:
520 1.1 ad case SHT_NOBITS:
521 1.1 ad alignmask = shdr[i].sh_addralign - 1;
522 1.13 ad if (ko->ko_type == KT_MEMORY) {
523 1.13 ad addr = (void *)(shdr[i].sh_offset +
524 1.13 ad (vaddr_t)ko->ko_source);
525 1.13 ad if (((vaddr_t)addr & alignmask) != 0) {
526 1.13 ad kobj_error("section %d not aligned\n",
527 1.13 ad i);
528 1.13 ad goto out;
529 1.13 ad }
530 1.13 ad } else {
531 1.13 ad mapbase += alignmask;
532 1.13 ad mapbase &= ~alignmask;
533 1.13 ad addr = (void *)mapbase;
534 1.13 ad mapbase += shdr[i].sh_size;
535 1.13 ad }
536 1.13 ad ko->ko_progtab[pb].addr = addr;
537 1.1 ad if (shdr[i].sh_type == SHT_PROGBITS) {
538 1.1 ad ko->ko_progtab[pb].name = "<<PROGBITS>>";
539 1.13 ad error = kobj_read_bits(ko, addr,
540 1.13 ad shdr[i].sh_size, shdr[i].sh_offset);
541 1.1 ad if (error != 0) {
542 1.1 ad goto out;
543 1.1 ad }
544 1.13 ad } else if (ko->ko_type == KT_MEMORY &&
545 1.13 ad shdr[i].sh_size != 0) {
546 1.13 ad kobj_error("non-loadable BSS section in "
547 1.13 ad "pre-loaded module");
548 1.17 jmcneill error = EINVAL;
549 1.13 ad goto out;
550 1.1 ad } else {
551 1.1 ad ko->ko_progtab[pb].name = "<<NOBITS>>";
552 1.13 ad memset(addr, 0, shdr[i].sh_size);
553 1.1 ad }
554 1.1 ad ko->ko_progtab[pb].size = shdr[i].sh_size;
555 1.1 ad ko->ko_progtab[pb].sec = i;
556 1.8 ad if (ko->ko_shstrtab != NULL && shdr[i].sh_name != 0) {
557 1.8 ad ko->ko_progtab[pb].name =
558 1.8 ad ko->ko_shstrtab + shdr[i].sh_name;
559 1.8 ad }
560 1.1 ad
561 1.1 ad /* Update all symbol values with the offset. */
562 1.1 ad for (j = 0; j < ko->ko_symcnt; j++) {
563 1.1 ad es = &ko->ko_symtab[j];
564 1.1 ad if (es->st_shndx != i) {
565 1.1 ad continue;
566 1.1 ad }
567 1.13 ad es->st_value += (Elf_Addr)addr;
568 1.1 ad }
569 1.1 ad pb++;
570 1.1 ad break;
571 1.1 ad case SHT_REL:
572 1.1 ad ko->ko_reltab[rl].size = shdr[i].sh_size;
573 1.1 ad ko->ko_reltab[rl].size -=
574 1.1 ad shdr[i].sh_size % sizeof(Elf_Rel);
575 1.1 ad if (ko->ko_reltab[rl].size != 0) {
576 1.1 ad ko->ko_reltab[rl].nrel =
577 1.1 ad shdr[i].sh_size / sizeof(Elf_Rel);
578 1.1 ad ko->ko_reltab[rl].sec = shdr[i].sh_info;
579 1.3 ad error = kobj_read(ko,
580 1.12 ad (void **)&ko->ko_reltab[rl].rel,
581 1.1 ad ko->ko_reltab[rl].size,
582 1.1 ad shdr[i].sh_offset);
583 1.1 ad if (error != 0) {
584 1.1 ad goto out;
585 1.1 ad }
586 1.1 ad }
587 1.1 ad rl++;
588 1.1 ad break;
589 1.1 ad case SHT_RELA:
590 1.1 ad ko->ko_relatab[ra].size = shdr[i].sh_size;
591 1.1 ad ko->ko_relatab[ra].size -=
592 1.1 ad shdr[i].sh_size % sizeof(Elf_Rela);
593 1.1 ad if (ko->ko_relatab[ra].size != 0) {
594 1.1 ad ko->ko_relatab[ra].nrela =
595 1.1 ad shdr[i].sh_size / sizeof(Elf_Rela);
596 1.1 ad ko->ko_relatab[ra].sec = shdr[i].sh_info;
597 1.3 ad error = kobj_read(ko,
598 1.12 ad (void **)&ko->ko_relatab[ra].rela,
599 1.1 ad shdr[i].sh_size,
600 1.1 ad shdr[i].sh_offset);
601 1.1 ad if (error != 0) {
602 1.1 ad goto out;
603 1.1 ad }
604 1.1 ad }
605 1.1 ad ra++;
606 1.1 ad break;
607 1.13 ad default:
608 1.13 ad break;
609 1.1 ad }
610 1.1 ad }
611 1.1 ad if (pb != ko->ko_nprogtab) {
612 1.1 ad panic("lost progbits");
613 1.1 ad }
614 1.1 ad if (rl != ko->ko_nrel) {
615 1.1 ad panic("lost rel");
616 1.1 ad }
617 1.1 ad if (ra != ko->ko_nrela) {
618 1.1 ad panic("lost rela");
619 1.1 ad }
620 1.13 ad if (ko->ko_type != KT_MEMORY && mapbase != ko->ko_address + mapsize) {
621 1.13 ad panic("mapbase 0x%lx != address %lx + mapsize %ld (0x%lx)\n",
622 1.1 ad (long)mapbase, (long)ko->ko_address, (long)mapsize,
623 1.1 ad (long)ko->ko_address + mapsize);
624 1.1 ad }
625 1.1 ad
626 1.1 ad /*
627 1.18 ad * Perform local relocations only. Relocations relating to global
628 1.18 ad * symbols will be done by kobj_affix().
629 1.1 ad */
630 1.24.2.1 skrll error = kobj_checksyms(ko, false);
631 1.23 ad if (error == 0) {
632 1.23 ad error = kobj_relocate(ko, true);
633 1.23 ad }
634 1.1 ad out:
635 1.3 ad if (hdr != NULL) {
636 1.12 ad kobj_free(ko, hdr, sizeof(*hdr));
637 1.1 ad }
638 1.18 ad kobj_close(ko);
639 1.18 ad if (error != 0) {
640 1.18 ad kobj_unload(ko);
641 1.18 ad }
642 1.1 ad
643 1.1 ad return error;
644 1.1 ad }
645 1.1 ad
646 1.1 ad /*
647 1.1 ad * kobj_unload:
648 1.1 ad *
649 1.1 ad * Unload an object previously loaded by kobj_load().
650 1.1 ad */
651 1.1 ad void
652 1.1 ad kobj_unload(kobj_t ko)
653 1.1 ad {
654 1.1 ad int error;
655 1.1 ad
656 1.18 ad kobj_close(ko);
657 1.18 ad kobj_jettison(ko);
658 1.18 ad
659 1.18 ad /*
660 1.18 ad * Notify MD code that a module has been unloaded.
661 1.18 ad */
662 1.18 ad if (ko->ko_loaded) {
663 1.18 ad error = kobj_machdep(ko, (void *)ko->ko_address, ko->ko_size,
664 1.18 ad false);
665 1.18 ad if (error != 0) {
666 1.18 ad kobj_error("machine dependent deinit failed");
667 1.18 ad }
668 1.18 ad }
669 1.12 ad if (ko->ko_address != 0 && ko->ko_type != KT_MEMORY) {
670 1.24.2.1 skrll uvm_km_free(module_map, ko->ko_address, round_page(ko->ko_size),
671 1.1 ad UVM_KMF_WIRED);
672 1.1 ad }
673 1.1 ad if (ko->ko_ksyms == true) {
674 1.23 ad ksyms_modunload(ko->ko_name);
675 1.1 ad }
676 1.1 ad if (ko->ko_symtab != NULL) {
677 1.12 ad kobj_free(ko, ko->ko_symtab, ko->ko_symcnt * sizeof(Elf_Sym));
678 1.1 ad }
679 1.1 ad if (ko->ko_strtab != NULL) {
680 1.12 ad kobj_free(ko, ko->ko_strtab, ko->ko_strtabsz);
681 1.1 ad }
682 1.14 ad if (ko->ko_progtab != NULL) {
683 1.14 ad kobj_free(ko, ko->ko_progtab, ko->ko_nprogtab *
684 1.14 ad sizeof(*ko->ko_progtab));
685 1.14 ad ko->ko_progtab = NULL;
686 1.14 ad }
687 1.14 ad if (ko->ko_shstrtab) {
688 1.14 ad kobj_free(ko, ko->ko_shstrtab, ko->ko_shstrtabsz);
689 1.14 ad ko->ko_shstrtab = NULL;
690 1.14 ad }
691 1.1 ad
692 1.3 ad kmem_free(ko, sizeof(*ko));
693 1.1 ad }
694 1.1 ad
695 1.1 ad /*
696 1.2 ad * kobj_stat:
697 1.2 ad *
698 1.2 ad * Return size and load address of an object.
699 1.2 ad */
700 1.2 ad void
701 1.8 ad kobj_stat(kobj_t ko, vaddr_t *address, size_t *size)
702 1.2 ad {
703 1.2 ad
704 1.2 ad if (address != NULL) {
705 1.2 ad *address = ko->ko_address;
706 1.2 ad }
707 1.2 ad if (size != NULL) {
708 1.2 ad *size = ko->ko_size;
709 1.2 ad }
710 1.2 ad }
711 1.2 ad
712 1.2 ad /*
713 1.18 ad * kobj_affix:
714 1.3 ad *
715 1.18 ad * Set an object's name and perform global relocs. May only be
716 1.18 ad * called after the module and any requisite modules are loaded.
717 1.3 ad */
718 1.6 ad int
719 1.18 ad kobj_affix(kobj_t ko, const char *name)
720 1.3 ad {
721 1.6 ad int error;
722 1.3 ad
723 1.18 ad KASSERT(ko->ko_ksyms == false);
724 1.18 ad KASSERT(ko->ko_loaded == false);
725 1.3 ad
726 1.3 ad strlcpy(ko->ko_name, name, sizeof(ko->ko_name));
727 1.6 ad
728 1.24.2.1 skrll /* Cache addresses of undefined symbols. */
729 1.24.2.1 skrll error = kobj_checksyms(ko, true);
730 1.24.2.1 skrll
731 1.23 ad /* Now do global relocations. */
732 1.24.2.1 skrll if (error == 0)
733 1.24.2.1 skrll error = kobj_relocate(ko, false);
734 1.23 ad
735 1.23 ad /*
736 1.23 ad * Now that we know the name, register the symbol table.
737 1.24.2.1 skrll * Do after global relocations because ksyms will pack
738 1.24.2.1 skrll * the table.
739 1.23 ad */
740 1.24.2.1 skrll if (error == 0) {
741 1.24.2.1 skrll ksyms_modload(ko->ko_name, ko->ko_symtab, ko->ko_symcnt *
742 1.24.2.1 skrll sizeof(Elf_Sym), ko->ko_strtab, ko->ko_strtabsz);
743 1.24.2.1 skrll ko->ko_ksyms = true;
744 1.24.2.1 skrll }
745 1.18 ad
746 1.18 ad /* Jettison unneeded memory post-link. */
747 1.18 ad kobj_jettison(ko);
748 1.18 ad
749 1.24.2.1 skrll /*
750 1.24.2.1 skrll * Notify MD code that a module has been loaded.
751 1.24.2.1 skrll *
752 1.24.2.1 skrll * Most architectures use this opportunity to flush their caches.
753 1.24.2.1 skrll */
754 1.18 ad if (error == 0) {
755 1.18 ad error = kobj_machdep(ko, (void *)ko->ko_address, ko->ko_size,
756 1.18 ad true);
757 1.18 ad if (error != 0) {
758 1.18 ad kobj_error("machine dependent init failed");
759 1.18 ad }
760 1.18 ad ko->ko_loaded = true;
761 1.18 ad }
762 1.18 ad
763 1.18 ad /* If there was an error, destroy the whole object. */
764 1.18 ad if (error != 0) {
765 1.18 ad kobj_unload(ko);
766 1.6 ad }
767 1.6 ad
768 1.6 ad return error;
769 1.3 ad }
770 1.3 ad
771 1.3 ad /*
772 1.8 ad * kobj_find_section:
773 1.8 ad *
774 1.8 ad * Given a section name, search the loaded object and return
775 1.8 ad * virtual address if present and loaded.
776 1.8 ad */
777 1.8 ad int
778 1.8 ad kobj_find_section(kobj_t ko, const char *name, void **addr, size_t *size)
779 1.8 ad {
780 1.8 ad int i;
781 1.8 ad
782 1.8 ad KASSERT(ko->ko_progtab != NULL);
783 1.8 ad
784 1.8 ad for (i = 0; i < ko->ko_nprogtab; i++) {
785 1.8 ad if (strcmp(ko->ko_progtab[i].name, name) == 0) {
786 1.8 ad if (addr != NULL) {
787 1.8 ad *addr = ko->ko_progtab[i].addr;
788 1.8 ad }
789 1.8 ad if (size != NULL) {
790 1.8 ad *size = ko->ko_progtab[i].size;
791 1.8 ad }
792 1.8 ad return 0;
793 1.8 ad }
794 1.8 ad }
795 1.8 ad
796 1.8 ad return ENOENT;
797 1.8 ad }
798 1.8 ad
799 1.8 ad /*
800 1.18 ad * kobj_jettison:
801 1.1 ad *
802 1.18 ad * Release object data not needed after performing relocations.
803 1.1 ad */
804 1.1 ad static void
805 1.18 ad kobj_jettison(kobj_t ko)
806 1.1 ad {
807 1.1 ad int i;
808 1.1 ad
809 1.1 ad for (i = 0; i < ko->ko_nrel; i++) {
810 1.1 ad if (ko->ko_reltab[i].rel) {
811 1.12 ad kobj_free(ko, ko->ko_reltab[i].rel,
812 1.1 ad ko->ko_reltab[i].size);
813 1.1 ad }
814 1.1 ad }
815 1.1 ad for (i = 0; i < ko->ko_nrela; i++) {
816 1.1 ad if (ko->ko_relatab[i].rela) {
817 1.12 ad kobj_free(ko, ko->ko_relatab[i].rela,
818 1.1 ad ko->ko_relatab[i].size);
819 1.1 ad }
820 1.1 ad }
821 1.1 ad if (ko->ko_reltab != NULL) {
822 1.12 ad kobj_free(ko, ko->ko_reltab, ko->ko_nrel *
823 1.1 ad sizeof(*ko->ko_reltab));
824 1.1 ad ko->ko_reltab = NULL;
825 1.1 ad ko->ko_nrel = 0;
826 1.1 ad }
827 1.1 ad if (ko->ko_relatab != NULL) {
828 1.12 ad kobj_free(ko, ko->ko_relatab, ko->ko_nrela *
829 1.1 ad sizeof(*ko->ko_relatab));
830 1.1 ad ko->ko_relatab = NULL;
831 1.1 ad ko->ko_nrela = 0;
832 1.1 ad }
833 1.1 ad if (ko->ko_shdr != NULL) {
834 1.12 ad kobj_free(ko, ko->ko_shdr, ko->ko_shdrsz);
835 1.1 ad ko->ko_shdr = NULL;
836 1.1 ad }
837 1.1 ad }
838 1.1 ad
839 1.1 ad /*
840 1.1 ad * kobj_sym_lookup:
841 1.1 ad *
842 1.1 ad * Symbol lookup function to be used when the symbol index
843 1.1 ad * is known (ie during relocation).
844 1.1 ad */
845 1.1 ad uintptr_t
846 1.1 ad kobj_sym_lookup(kobj_t ko, uintptr_t symidx)
847 1.1 ad {
848 1.1 ad const Elf_Sym *sym;
849 1.1 ad const char *symbol;
850 1.1 ad
851 1.1 ad /* Don't even try to lookup the symbol if the index is bogus. */
852 1.1 ad if (symidx >= ko->ko_symcnt)
853 1.1 ad return 0;
854 1.1 ad
855 1.1 ad sym = ko->ko_symtab + symidx;
856 1.1 ad
857 1.1 ad /* Quick answer if there is a definition included. */
858 1.1 ad if (sym->st_shndx != SHN_UNDEF) {
859 1.24.2.1 skrll return (uintptr_t)sym->st_value;
860 1.1 ad }
861 1.1 ad
862 1.1 ad /* If we get here, then it is undefined and needs a lookup. */
863 1.1 ad switch (ELF_ST_BIND(sym->st_info)) {
864 1.1 ad case STB_LOCAL:
865 1.1 ad /* Local, but undefined? huh? */
866 1.1 ad kobj_error("local symbol undefined");
867 1.1 ad return 0;
868 1.1 ad
869 1.1 ad case STB_GLOBAL:
870 1.1 ad /* Relative to Data or Function name */
871 1.1 ad symbol = ko->ko_strtab + sym->st_name;
872 1.1 ad
873 1.1 ad /* Force a lookup failure if the symbol name is bogus. */
874 1.1 ad if (*symbol == 0) {
875 1.1 ad kobj_error("bad symbol name");
876 1.1 ad return 0;
877 1.1 ad }
878 1.1 ad
879 1.24.2.1 skrll return (uintptr_t)sym->st_value;
880 1.1 ad
881 1.1 ad case STB_WEAK:
882 1.1 ad kobj_error("weak symbols not supported\n");
883 1.1 ad return 0;
884 1.1 ad
885 1.1 ad default:
886 1.1 ad return 0;
887 1.1 ad }
888 1.1 ad }
889 1.1 ad
890 1.1 ad /*
891 1.1 ad * kobj_findbase:
892 1.1 ad *
893 1.1 ad * Return base address of the given section.
894 1.1 ad */
895 1.1 ad static uintptr_t
896 1.1 ad kobj_findbase(kobj_t ko, int sec)
897 1.1 ad {
898 1.1 ad int i;
899 1.1 ad
900 1.1 ad for (i = 0; i < ko->ko_nprogtab; i++) {
901 1.1 ad if (sec == ko->ko_progtab[i].sec) {
902 1.1 ad return (uintptr_t)ko->ko_progtab[i].addr;
903 1.1 ad }
904 1.1 ad }
905 1.1 ad return 0;
906 1.1 ad }
907 1.1 ad
908 1.1 ad /*
909 1.24.2.1 skrll * kobj_checksyms:
910 1.23 ad *
911 1.24.2.1 skrll * Scan symbol table for duplicates or resolve references to
912 1.24.2.1 skrll * exernal symbols.
913 1.23 ad */
914 1.23 ad static int
915 1.24.2.1 skrll kobj_checksyms(kobj_t ko, bool undefined)
916 1.23 ad {
917 1.23 ad unsigned long rval;
918 1.23 ad Elf_Sym *sym, *ms;
919 1.23 ad const char *name;
920 1.24.2.1 skrll int error;
921 1.24.2.1 skrll
922 1.24.2.1 skrll error = 0;
923 1.23 ad
924 1.23 ad for (ms = (sym = ko->ko_symtab) + ko->ko_symcnt; sym < ms; sym++) {
925 1.23 ad /* Check validity of the symbol. */
926 1.23 ad if (ELF_ST_BIND(sym->st_info) != STB_GLOBAL ||
927 1.23 ad sym->st_name == 0)
928 1.23 ad continue;
929 1.24.2.1 skrll if (undefined != (sym->st_shndx == SHN_UNDEF)) {
930 1.24.2.1 skrll continue;
931 1.24.2.1 skrll }
932 1.23 ad
933 1.24.2.1 skrll /*
934 1.24.2.1 skrll * Look it up. Don't need to lock, as it is known that
935 1.24.2.1 skrll * the symbol tables aren't going to change (we hold
936 1.24.2.1 skrll * module_lock).
937 1.24.2.1 skrll */
938 1.23 ad name = ko->ko_strtab + sym->st_name;
939 1.24.2.1 skrll if (ksyms_getval_unlocked(NULL, name, &rval,
940 1.24.2.1 skrll KSYMS_EXTERN) != 0) {
941 1.24.2.1 skrll if (undefined) {
942 1.24.2.1 skrll kobj_error("symbol `%s' not found", name);
943 1.24.2.1 skrll error = ENOEXEC;
944 1.24.2.1 skrll }
945 1.23 ad continue;
946 1.23 ad }
947 1.23 ad
948 1.24.2.1 skrll /* Save values of undefined globals. */
949 1.24.2.1 skrll if (undefined) {
950 1.24.2.1 skrll sym->st_value = (Elf_Addr)rval;
951 1.24.2.1 skrll continue;
952 1.24.2.1 skrll }
953 1.24.2.1 skrll
954 1.24.2.1 skrll /* Check (and complain) about differing values. */
955 1.24.2.1 skrll if (sym->st_value == rval) {
956 1.23 ad continue;
957 1.23 ad }
958 1.23 ad if (strcmp(name, "_bss_start") == 0 ||
959 1.23 ad strcmp(name, "__bss_start") == 0 ||
960 1.23 ad strcmp(name, "_bss_end__") == 0 ||
961 1.23 ad strcmp(name, "__bss_end__") == 0 ||
962 1.23 ad strcmp(name, "_edata") == 0 ||
963 1.23 ad strcmp(name, "_end") == 0 ||
964 1.23 ad strcmp(name, "__end") == 0 ||
965 1.23 ad strcmp(name, "__end__") == 0 ||
966 1.23 ad strncmp(name, "__start_link_set_", 17) == 0 ||
967 1.23 ad strncmp(name, "__stop_link_set_", 16)) {
968 1.23 ad continue;
969 1.23 ad }
970 1.24 ad kobj_error("global symbol `%s' redefined\n", name);
971 1.24.2.1 skrll error = ENOEXEC;
972 1.23 ad }
973 1.23 ad
974 1.24.2.1 skrll return error;
975 1.23 ad }
976 1.23 ad
977 1.23 ad /*
978 1.1 ad * kobj_relocate:
979 1.1 ad *
980 1.18 ad * Resolve relocations for the loaded object.
981 1.1 ad */
982 1.1 ad static int
983 1.18 ad kobj_relocate(kobj_t ko, bool local)
984 1.1 ad {
985 1.1 ad const Elf_Rel *rellim;
986 1.1 ad const Elf_Rel *rel;
987 1.1 ad const Elf_Rela *relalim;
988 1.1 ad const Elf_Rela *rela;
989 1.1 ad const Elf_Sym *sym;
990 1.1 ad uintptr_t base;
991 1.8 ad int i, error;
992 1.1 ad uintptr_t symidx;
993 1.1 ad
994 1.1 ad /*
995 1.1 ad * Perform relocations without addend if there are any.
996 1.1 ad */
997 1.1 ad for (i = 0; i < ko->ko_nrel; i++) {
998 1.1 ad rel = ko->ko_reltab[i].rel;
999 1.1 ad if (rel == NULL) {
1000 1.1 ad continue;
1001 1.1 ad }
1002 1.1 ad rellim = rel + ko->ko_reltab[i].nrel;
1003 1.1 ad base = kobj_findbase(ko, ko->ko_reltab[i].sec);
1004 1.1 ad if (base == 0) {
1005 1.1 ad panic("lost base for e_reltab");
1006 1.1 ad }
1007 1.1 ad for (; rel < rellim; rel++) {
1008 1.1 ad symidx = ELF_R_SYM(rel->r_info);
1009 1.1 ad if (symidx >= ko->ko_symcnt) {
1010 1.1 ad continue;
1011 1.1 ad }
1012 1.1 ad sym = ko->ko_symtab + symidx;
1013 1.18 ad if (local != (ELF_ST_BIND(sym->st_info) == STB_LOCAL)) {
1014 1.18 ad continue;
1015 1.18 ad }
1016 1.18 ad error = kobj_reloc(ko, base, rel, false, local);
1017 1.8 ad if (error != 0) {
1018 1.1 ad return ENOENT;
1019 1.1 ad }
1020 1.1 ad }
1021 1.1 ad }
1022 1.1 ad
1023 1.1 ad /*
1024 1.1 ad * Perform relocations with addend if there are any.
1025 1.1 ad */
1026 1.1 ad for (i = 0; i < ko->ko_nrela; i++) {
1027 1.1 ad rela = ko->ko_relatab[i].rela;
1028 1.1 ad if (rela == NULL) {
1029 1.1 ad continue;
1030 1.1 ad }
1031 1.1 ad relalim = rela + ko->ko_relatab[i].nrela;
1032 1.1 ad base = kobj_findbase(ko, ko->ko_relatab[i].sec);
1033 1.1 ad if (base == 0) {
1034 1.1 ad panic("lost base for e_relatab");
1035 1.1 ad }
1036 1.1 ad for (; rela < relalim; rela++) {
1037 1.1 ad symidx = ELF_R_SYM(rela->r_info);
1038 1.1 ad if (symidx >= ko->ko_symcnt) {
1039 1.1 ad continue;
1040 1.1 ad }
1041 1.1 ad sym = ko->ko_symtab + symidx;
1042 1.18 ad if (local != (ELF_ST_BIND(sym->st_info) == STB_LOCAL)) {
1043 1.18 ad continue;
1044 1.18 ad }
1045 1.18 ad error = kobj_reloc(ko, base, rela, true, local);
1046 1.8 ad if (error != 0) {
1047 1.1 ad return ENOENT;
1048 1.1 ad }
1049 1.1 ad }
1050 1.1 ad }
1051 1.1 ad
1052 1.1 ad return 0;
1053 1.1 ad }
1054 1.1 ad
1055 1.1 ad /*
1056 1.1 ad * kobj_error:
1057 1.1 ad *
1058 1.1 ad * Utility function: log an error.
1059 1.1 ad */
1060 1.1 ad static void
1061 1.1 ad kobj_error(const char *fmt, ...)
1062 1.1 ad {
1063 1.1 ad va_list ap;
1064 1.1 ad
1065 1.1 ad va_start(ap, fmt);
1066 1.1 ad printf("WARNING: linker error: ");
1067 1.1 ad vprintf(fmt, ap);
1068 1.1 ad printf("\n");
1069 1.1 ad va_end(ap);
1070 1.1 ad }
1071 1.1 ad
1072 1.1 ad /*
1073 1.1 ad * kobj_read:
1074 1.1 ad *
1075 1.1 ad * Utility function: read from the object.
1076 1.1 ad */
1077 1.1 ad static int
1078 1.12 ad kobj_read(kobj_t ko, void **basep, size_t size, off_t off)
1079 1.1 ad {
1080 1.1 ad size_t resid;
1081 1.12 ad void *base;
1082 1.1 ad int error;
1083 1.1 ad
1084 1.3 ad KASSERT(ko->ko_source != NULL);
1085 1.3 ad
1086 1.3 ad switch (ko->ko_type) {
1087 1.3 ad case KT_VNODE:
1088 1.12 ad base = kmem_alloc(size, KM_SLEEP);
1089 1.12 ad if (base == NULL) {
1090 1.12 ad error = ENOMEM;
1091 1.12 ad break;
1092 1.12 ad }
1093 1.3 ad error = vn_rdwr(UIO_READ, ko->ko_source, base, size, off,
1094 1.3 ad UIO_SYSSPACE, IO_NODELOCKED, curlwp->l_cred, &resid,
1095 1.3 ad curlwp);
1096 1.3 ad if (error == 0 && resid != 0) {
1097 1.22 ad error = EINVAL;
1098 1.22 ad }
1099 1.22 ad if (error != 0) {
1100 1.12 ad kmem_free(base, size);
1101 1.22 ad base = NULL;
1102 1.3 ad }
1103 1.3 ad break;
1104 1.3 ad case KT_MEMORY:
1105 1.4 jmcneill if (ko->ko_memsize != -1 && off + size > ko->ko_memsize) {
1106 1.3 ad kobj_error("kobj_read: preloaded object short");
1107 1.3 ad error = EINVAL;
1108 1.12 ad base = NULL;
1109 1.12 ad } else {
1110 1.12 ad base = (uint8_t *)ko->ko_source + off;
1111 1.12 ad error = 0;
1112 1.12 ad }
1113 1.12 ad break;
1114 1.12 ad default:
1115 1.12 ad panic("kobj_read: invalid type");
1116 1.12 ad }
1117 1.12 ad
1118 1.12 ad *basep = base;
1119 1.12 ad return error;
1120 1.12 ad }
1121 1.12 ad
1122 1.12 ad /*
1123 1.12 ad * kobj_read_bits:
1124 1.12 ad *
1125 1.12 ad * Utility function: load a section from the object.
1126 1.12 ad */
1127 1.12 ad static int
1128 1.12 ad kobj_read_bits(kobj_t ko, void *base, size_t size, off_t off)
1129 1.12 ad {
1130 1.12 ad size_t resid;
1131 1.12 ad int error;
1132 1.12 ad
1133 1.12 ad KASSERT(ko->ko_source != NULL);
1134 1.12 ad
1135 1.12 ad switch (ko->ko_type) {
1136 1.12 ad case KT_VNODE:
1137 1.18 ad KASSERT((uintptr_t)base >= (uintptr_t)ko->ko_address);
1138 1.18 ad KASSERT((uintptr_t)base + size <=
1139 1.18 ad (uintptr_t)ko->ko_address + ko->ko_size);
1140 1.12 ad error = vn_rdwr(UIO_READ, ko->ko_source, base, size, off,
1141 1.12 ad UIO_SYSSPACE, IO_NODELOCKED, curlwp->l_cred, &resid,
1142 1.12 ad curlwp);
1143 1.12 ad if (error == 0 && resid != 0) {
1144 1.12 ad error = EINVAL;
1145 1.12 ad }
1146 1.12 ad break;
1147 1.12 ad case KT_MEMORY:
1148 1.12 ad if (ko->ko_memsize != -1 && off + size > ko->ko_memsize) {
1149 1.12 ad kobj_error("kobj_read_bits: preloaded object short");
1150 1.12 ad error = EINVAL;
1151 1.12 ad } else if ((uint8_t *)base != (uint8_t *)ko->ko_source + off) {
1152 1.12 ad kobj_error("kobj_read_bits: object not aligned");
1153 1.12 ad kobj_error("source=%p base=%p off=%d size=%zd",
1154 1.12 ad ko->ko_source, base, (int)off, size);
1155 1.12 ad error = EINVAL;
1156 1.3 ad } else {
1157 1.12 ad /* Nothing to do. Loading in-situ. */
1158 1.3 ad error = 0;
1159 1.3 ad }
1160 1.3 ad break;
1161 1.3 ad default:
1162 1.3 ad panic("kobj_read: invalid type");
1163 1.3 ad }
1164 1.3 ad
1165 1.1 ad return error;
1166 1.1 ad }
1167 1.5 ad
1168 1.12 ad /*
1169 1.12 ad * kobj_free:
1170 1.12 ad *
1171 1.12 ad * Utility function: free memory if it was allocated from the heap.
1172 1.12 ad */
1173 1.12 ad static void
1174 1.12 ad kobj_free(kobj_t ko, void *base, size_t size)
1175 1.12 ad {
1176 1.12 ad
1177 1.12 ad if (ko->ko_type != KT_MEMORY)
1178 1.12 ad kmem_free(base, size);
1179 1.12 ad }
1180 1.12 ad
1181 1.5 ad #else /* MODULAR */
1182 1.5 ad
1183 1.5 ad int
1184 1.21 ad kobj_load_file(kobj_t *kop, const char *name, const char *base, bool autoload)
1185 1.5 ad {
1186 1.5 ad
1187 1.5 ad return ENOSYS;
1188 1.5 ad }
1189 1.5 ad
1190 1.5 ad int
1191 1.18 ad kobj_load_mem(kobj_t *kop, void *base, ssize_t size)
1192 1.5 ad {
1193 1.5 ad
1194 1.5 ad return ENOSYS;
1195 1.5 ad }
1196 1.5 ad
1197 1.5 ad void
1198 1.5 ad kobj_unload(kobj_t ko)
1199 1.5 ad {
1200 1.5 ad
1201 1.5 ad panic("not modular");
1202 1.5 ad }
1203 1.5 ad
1204 1.5 ad void
1205 1.8 ad kobj_stat(kobj_t ko, vaddr_t *base, size_t *size)
1206 1.5 ad {
1207 1.5 ad
1208 1.5 ad panic("not modular");
1209 1.5 ad }
1210 1.5 ad
1211 1.7 ad int
1212 1.18 ad kobj_affix(kobj_t ko, const char *name)
1213 1.5 ad {
1214 1.5 ad
1215 1.5 ad panic("not modular");
1216 1.5 ad }
1217 1.5 ad
1218 1.8 ad int
1219 1.8 ad kobj_find_section(kobj_t ko, const char *name, void **addr, size_t *size)
1220 1.8 ad {
1221 1.8 ad
1222 1.8 ad panic("not modular");
1223 1.8 ad }
1224 1.8 ad
1225 1.5 ad #endif /* MODULAR */
1226