subr_kobj.c revision 1.6 1 1.6 ad /* $NetBSD: subr_kobj.c,v 1.6 2008/01/07 18:25:56 ad Exp $ */
2 1.1 ad
3 1.1 ad /*-
4 1.1 ad * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 1.1 ad * All rights reserved.
6 1.1 ad *
7 1.1 ad * Redistribution and use in source and binary forms, with or without
8 1.1 ad * modification, are permitted provided that the following conditions
9 1.1 ad * are met:
10 1.1 ad * 1. Redistributions of source code must retain the above copyright
11 1.1 ad * notice, this list of conditions and the following disclaimer.
12 1.1 ad * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 ad * notice, this list of conditions and the following disclaimer in the
14 1.1 ad * documentation and/or other materials provided with the distribution.
15 1.1 ad * 3. All advertising materials mentioning features or use of this software
16 1.1 ad * must display the following acknowledgement:
17 1.1 ad * This product includes software developed by the NetBSD
18 1.1 ad * Foundation, Inc. and its contributors.
19 1.1 ad * 4. Neither the name of The NetBSD Foundation nor the names of its
20 1.1 ad * contributors may be used to endorse or promote products derived
21 1.1 ad * from this software without specific prior written permission.
22 1.1 ad *
23 1.1 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
24 1.1 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25 1.1 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26 1.1 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
27 1.1 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 1.1 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 1.1 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 1.1 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 1.1 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 1.1 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33 1.1 ad * POSSIBILITY OF SUCH DAMAGE.
34 1.1 ad */
35 1.1 ad
36 1.1 ad /*-
37 1.1 ad * Copyright (c) 1998-2000 Doug Rabson
38 1.1 ad * Copyright (c) 2004 Peter Wemm
39 1.1 ad * All rights reserved.
40 1.1 ad *
41 1.1 ad * Redistribution and use in source and binary forms, with or without
42 1.1 ad * modification, are permitted provided that the following conditions
43 1.1 ad * are met:
44 1.1 ad * 1. Redistributions of source code must retain the above copyright
45 1.1 ad * notice, this list of conditions and the following disclaimer.
46 1.1 ad * 2. Redistributions in binary form must reproduce the above copyright
47 1.1 ad * notice, this list of conditions and the following disclaimer in the
48 1.1 ad * documentation and/or other materials provided with the distribution.
49 1.1 ad *
50 1.1 ad * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
51 1.1 ad * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52 1.1 ad * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53 1.1 ad * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
54 1.1 ad * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
55 1.1 ad * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
56 1.1 ad * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
57 1.1 ad * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
58 1.1 ad * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
59 1.1 ad * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60 1.1 ad * SUCH DAMAGE.
61 1.1 ad */
62 1.1 ad
63 1.1 ad /*
64 1.1 ad * Kernel loader for ELF objects.
65 1.1 ad *
66 1.1 ad * TODO: adjust kmem_alloc() calls to avoid needless fragmentation.
67 1.1 ad */
68 1.1 ad
69 1.5 ad #include "opt_modular.h"
70 1.5 ad
71 1.1 ad #include <sys/cdefs.h>
72 1.6 ad __KERNEL_RCSID(0, "$NetBSD: subr_kobj.c,v 1.6 2008/01/07 18:25:56 ad Exp $");
73 1.1 ad
74 1.1 ad #define ELFSIZE ARCH_ELFSIZE
75 1.1 ad
76 1.1 ad #include <sys/param.h>
77 1.1 ad #include <sys/systm.h>
78 1.1 ad #include <sys/kernel.h>
79 1.1 ad #include <sys/kmem.h>
80 1.1 ad #include <sys/proc.h>
81 1.1 ad #include <sys/namei.h>
82 1.1 ad #include <sys/vnode.h>
83 1.1 ad #include <sys/fcntl.h>
84 1.1 ad #include <sys/kobj.h>
85 1.1 ad #include <sys/ksyms.h>
86 1.1 ad #include <sys/lkm.h>
87 1.1 ad #include <sys/exec.h>
88 1.1 ad #include <sys/exec_elf.h>
89 1.1 ad
90 1.1 ad #include <machine/stdarg.h>
91 1.1 ad
92 1.1 ad #include <uvm/uvm_extern.h>
93 1.1 ad
94 1.5 ad #ifdef MODULAR
95 1.5 ad
96 1.1 ad typedef struct {
97 1.1 ad void *addr;
98 1.1 ad Elf_Off size;
99 1.1 ad int flags;
100 1.1 ad int sec; /* Original section */
101 1.1 ad const char *name;
102 1.1 ad } progent_t;
103 1.1 ad
104 1.1 ad typedef struct {
105 1.1 ad Elf_Rel *rel;
106 1.1 ad int nrel;
107 1.1 ad int sec;
108 1.1 ad size_t size;
109 1.1 ad } relent_t;
110 1.1 ad
111 1.1 ad typedef struct {
112 1.1 ad Elf_Rela *rela;
113 1.1 ad int nrela;
114 1.1 ad int sec;
115 1.1 ad size_t size;
116 1.1 ad } relaent_t;
117 1.1 ad
118 1.3 ad typedef enum kobjtype {
119 1.3 ad KT_UNSET,
120 1.3 ad KT_VNODE,
121 1.3 ad KT_MEMORY
122 1.3 ad } kobjtype_t;
123 1.3 ad
124 1.1 ad struct kobj {
125 1.1 ad char ko_name[MAXLKMNAME];
126 1.3 ad kobjtype_t ko_type;
127 1.3 ad void *ko_source;
128 1.3 ad ssize_t ko_memsize;
129 1.1 ad vaddr_t ko_address; /* Relocation address */
130 1.1 ad Elf_Shdr *ko_shdr;
131 1.1 ad progent_t *ko_progtab;
132 1.1 ad relaent_t *ko_relatab;
133 1.1 ad relent_t *ko_reltab;
134 1.1 ad Elf_Sym *ko_symtab; /* Symbol table */
135 1.1 ad char *ko_strtab; /* String table */
136 1.2 ad uintptr_t ko_entry; /* Entry point */
137 1.1 ad size_t ko_size; /* Size of text/data/bss */
138 1.1 ad size_t ko_symcnt; /* Number of symbols */
139 1.1 ad size_t ko_strtabsz; /* Number of bytes in string table */
140 1.1 ad size_t ko_shdrsz;
141 1.1 ad int ko_nrel;
142 1.1 ad int ko_nrela;
143 1.1 ad int ko_nprogtab;
144 1.1 ad bool ko_ksyms;
145 1.3 ad bool ko_loaded;
146 1.1 ad };
147 1.1 ad
148 1.1 ad static int kobj_relocate(kobj_t);
149 1.1 ad static void kobj_error(const char *, ...);
150 1.3 ad static int kobj_read(kobj_t, void *, size_t, off_t);
151 1.1 ad static void kobj_release_mem(kobj_t);
152 1.1 ad
153 1.1 ad extern struct vm_map *lkm_map;
154 1.1 ad static const char *kobj_path = "/modules"; /* XXX ??? */
155 1.1 ad
156 1.1 ad /*
157 1.3 ad * kobj_open_file:
158 1.1 ad *
159 1.6 ad * Open an object located in the file system.
160 1.1 ad */
161 1.1 ad int
162 1.6 ad kobj_open_file(kobj_t *kop, const char *filename)
163 1.1 ad {
164 1.1 ad struct nameidata nd;
165 1.1 ad kauth_cred_t cred;
166 1.1 ad char *path;
167 1.1 ad int error;
168 1.1 ad kobj_t ko;
169 1.1 ad
170 1.1 ad cred = kauth_cred_get();
171 1.1 ad
172 1.1 ad ko = kmem_zalloc(sizeof(*ko), KM_SLEEP);
173 1.1 ad if (ko == NULL) {
174 1.1 ad return ENOMEM;
175 1.1 ad }
176 1.1 ad
177 1.3 ad /* XXX where to look? */
178 1.3 ad NDINIT(&nd, LOOKUP, FOLLOW, UIO_SYSSPACE, filename);
179 1.1 ad error = vn_open(&nd, FREAD, 0);
180 1.1 ad if (error != 0) {
181 1.2 ad if (error != ENOENT) {
182 1.2 ad goto out;
183 1.2 ad }
184 1.2 ad path = PNBUF_GET();
185 1.3 ad snprintf(path, MAXPATHLEN - 1, "%s/%s", kobj_path,
186 1.3 ad filename);
187 1.2 ad NDINIT(&nd, LOOKUP, FOLLOW, UIO_SYSSPACE, path);
188 1.2 ad error = vn_open(&nd, FREAD, 0);
189 1.2 ad PNBUF_PUT(path);
190 1.2 ad if (error != 0) {
191 1.2 ad goto out;
192 1.2 ad }
193 1.1 ad }
194 1.1 ad
195 1.3 ad out:
196 1.3 ad if (error != 0) {
197 1.3 ad kmem_free(ko, sizeof(*ko));
198 1.3 ad } else {
199 1.3 ad ko->ko_type = KT_VNODE;
200 1.3 ad ko->ko_source = nd.ni_vp;
201 1.3 ad *kop = ko;
202 1.3 ad }
203 1.3 ad return error;
204 1.3 ad }
205 1.3 ad
206 1.3 ad /*
207 1.3 ad * kobj_open_mem:
208 1.3 ad *
209 1.3 ad * Open a pre-loaded object already resident in memory. If size
210 1.6 ad * is not -1, the complete size of the object is known.
211 1.3 ad */
212 1.3 ad int
213 1.6 ad kobj_open_mem(kobj_t *kop, void *base, ssize_t size)
214 1.3 ad {
215 1.3 ad kobj_t ko;
216 1.3 ad
217 1.3 ad ko = kmem_zalloc(sizeof(*ko), KM_SLEEP);
218 1.3 ad if (ko == NULL) {
219 1.3 ad return ENOMEM;
220 1.3 ad }
221 1.3 ad
222 1.3 ad ko->ko_type = KT_MEMORY;
223 1.3 ad ko->ko_source = base;
224 1.3 ad ko->ko_memsize = size;
225 1.3 ad *kop = ko;
226 1.3 ad
227 1.3 ad return 0;
228 1.3 ad }
229 1.3 ad
230 1.3 ad /*
231 1.3 ad * kobj_close:
232 1.3 ad *
233 1.3 ad * Close an open ELF object. If the object was not successfully
234 1.3 ad * loaded, it will be destroyed.
235 1.3 ad */
236 1.3 ad void
237 1.3 ad kobj_close(kobj_t ko)
238 1.3 ad {
239 1.3 ad
240 1.3 ad KASSERT(ko->ko_source != NULL);
241 1.3 ad
242 1.3 ad switch (ko->ko_type) {
243 1.3 ad case KT_VNODE:
244 1.3 ad VOP_UNLOCK(ko->ko_source, 0);
245 1.3 ad vn_close(ko->ko_source, FREAD, kauth_cred_get(), curlwp);
246 1.3 ad break;
247 1.3 ad case KT_MEMORY:
248 1.3 ad /* nothing */
249 1.3 ad break;
250 1.3 ad default:
251 1.3 ad panic("kobj_close: unknown type");
252 1.3 ad break;
253 1.3 ad }
254 1.3 ad
255 1.3 ad ko->ko_source = NULL;
256 1.3 ad ko->ko_type = KT_UNSET;
257 1.3 ad
258 1.3 ad /* If the object hasn't been loaded, then destroy it. */
259 1.3 ad if (!ko->ko_loaded) {
260 1.3 ad kobj_unload(ko);
261 1.3 ad }
262 1.3 ad }
263 1.3 ad
264 1.3 ad /*
265 1.3 ad * kobj_load:
266 1.3 ad *
267 1.3 ad * Load an ELF object from the file system and link into the
268 1.3 ad * running kernel image.
269 1.3 ad */
270 1.3 ad int
271 1.3 ad kobj_load(kobj_t ko)
272 1.3 ad {
273 1.3 ad Elf_Ehdr *hdr;
274 1.3 ad Elf_Shdr *shdr;
275 1.3 ad Elf_Sym *es;
276 1.3 ad vaddr_t mapbase;
277 1.3 ad size_t mapsize;
278 1.3 ad int error;
279 1.3 ad int symtabindex;
280 1.3 ad int symstrindex;
281 1.3 ad int nsym;
282 1.3 ad int pb, rl, ra;
283 1.3 ad int alignmask;
284 1.3 ad int i, j;
285 1.3 ad
286 1.3 ad KASSERT(ko->ko_type != KT_UNSET);
287 1.3 ad KASSERT(ko->ko_source != NULL);
288 1.3 ad
289 1.3 ad shdr = NULL;
290 1.3 ad mapsize = 0;
291 1.3 ad error = 0;
292 1.3 ad hdr = NULL;
293 1.3 ad
294 1.1 ad /*
295 1.1 ad * Read the elf header from the file.
296 1.1 ad */
297 1.1 ad hdr = kmem_alloc(sizeof(*hdr), KM_SLEEP);
298 1.1 ad if (hdr == NULL) {
299 1.1 ad error = ENOMEM;
300 1.1 ad goto out;
301 1.1 ad }
302 1.3 ad error = kobj_read(ko, hdr, sizeof(*hdr), 0);
303 1.1 ad if (error != 0)
304 1.1 ad goto out;
305 1.1 ad if (memcmp(hdr->e_ident, ELFMAG, SELFMAG) != 0) {
306 1.3 ad kobj_error("not an ELF object");
307 1.1 ad error = ENOEXEC;
308 1.1 ad goto out;
309 1.1 ad }
310 1.1 ad
311 1.1 ad if (hdr->e_ident[EI_VERSION] != EV_CURRENT ||
312 1.1 ad hdr->e_version != EV_CURRENT) {
313 1.1 ad kobj_error("unsupported file version");
314 1.1 ad error = ENOEXEC;
315 1.1 ad goto out;
316 1.1 ad }
317 1.1 ad if (hdr->e_type != ET_REL) {
318 1.1 ad kobj_error("unsupported file type");
319 1.1 ad error = ENOEXEC;
320 1.1 ad goto out;
321 1.1 ad }
322 1.1 ad switch (hdr->e_machine) {
323 1.1 ad #if ELFSIZE == 32
324 1.1 ad ELF32_MACHDEP_ID_CASES
325 1.1 ad #else
326 1.1 ad ELF64_MACHDEP_ID_CASES
327 1.1 ad #endif
328 1.1 ad default:
329 1.1 ad kobj_error("unsupported machine");
330 1.1 ad error = ENOEXEC;
331 1.1 ad goto out;
332 1.1 ad }
333 1.1 ad
334 1.1 ad ko->ko_nprogtab = 0;
335 1.1 ad ko->ko_shdr = 0;
336 1.1 ad ko->ko_nrel = 0;
337 1.1 ad ko->ko_nrela = 0;
338 1.1 ad
339 1.1 ad /*
340 1.1 ad * Allocate and read in the section header.
341 1.1 ad */
342 1.1 ad ko->ko_shdrsz = hdr->e_shnum * hdr->e_shentsize;
343 1.1 ad if (ko->ko_shdrsz == 0 || hdr->e_shoff == 0 ||
344 1.1 ad hdr->e_shentsize != sizeof(Elf_Shdr)) {
345 1.1 ad error = ENOEXEC;
346 1.1 ad goto out;
347 1.1 ad }
348 1.1 ad shdr = kmem_alloc(ko->ko_shdrsz, KM_SLEEP);
349 1.1 ad if (shdr == NULL) {
350 1.1 ad error = ENOMEM;
351 1.1 ad goto out;
352 1.1 ad }
353 1.1 ad ko->ko_shdr = shdr;
354 1.3 ad error = kobj_read(ko, shdr, ko->ko_shdrsz, hdr->e_shoff);
355 1.1 ad if (error != 0) {
356 1.1 ad goto out;
357 1.1 ad }
358 1.1 ad
359 1.1 ad /*
360 1.1 ad * Scan the section header for information and table sizing.
361 1.1 ad */
362 1.1 ad nsym = 0;
363 1.1 ad symtabindex = -1;
364 1.1 ad symstrindex = -1;
365 1.1 ad for (i = 0; i < hdr->e_shnum; i++) {
366 1.1 ad switch (shdr[i].sh_type) {
367 1.1 ad case SHT_PROGBITS:
368 1.1 ad case SHT_NOBITS:
369 1.1 ad ko->ko_nprogtab++;
370 1.1 ad break;
371 1.1 ad case SHT_SYMTAB:
372 1.1 ad nsym++;
373 1.1 ad symtabindex = i;
374 1.1 ad symstrindex = shdr[i].sh_link;
375 1.1 ad break;
376 1.1 ad case SHT_REL:
377 1.1 ad ko->ko_nrel++;
378 1.1 ad break;
379 1.1 ad case SHT_RELA:
380 1.1 ad ko->ko_nrela++;
381 1.1 ad break;
382 1.1 ad case SHT_STRTAB:
383 1.1 ad break;
384 1.1 ad }
385 1.1 ad }
386 1.1 ad if (ko->ko_nprogtab == 0) {
387 1.1 ad kobj_error("file has no contents");
388 1.1 ad error = ENOEXEC;
389 1.1 ad goto out;
390 1.1 ad }
391 1.1 ad if (nsym != 1) {
392 1.1 ad /* Only allow one symbol table for now */
393 1.1 ad kobj_error("file has no valid symbol table");
394 1.1 ad error = ENOEXEC;
395 1.1 ad goto out;
396 1.1 ad }
397 1.1 ad if (symstrindex < 0 || symstrindex > hdr->e_shnum ||
398 1.1 ad shdr[symstrindex].sh_type != SHT_STRTAB) {
399 1.1 ad kobj_error("file has invalid symbol strings");
400 1.1 ad error = ENOEXEC;
401 1.1 ad goto out;
402 1.1 ad }
403 1.1 ad
404 1.1 ad /*
405 1.1 ad * Allocate space for tracking the load chunks.
406 1.1 ad */
407 1.1 ad if (ko->ko_nprogtab != 0) {
408 1.1 ad ko->ko_progtab = kmem_zalloc(ko->ko_nprogtab *
409 1.1 ad sizeof(*ko->ko_progtab), KM_SLEEP);
410 1.1 ad if (ko->ko_progtab == NULL) {
411 1.1 ad error = ENOMEM;
412 1.1 ad goto out;
413 1.1 ad }
414 1.1 ad }
415 1.1 ad if (ko->ko_nrel != 0) {
416 1.1 ad ko->ko_reltab = kmem_zalloc(ko->ko_nrel *
417 1.1 ad sizeof(*ko->ko_reltab), KM_SLEEP);
418 1.1 ad if (ko->ko_reltab == NULL) {
419 1.1 ad error = ENOMEM;
420 1.1 ad goto out;
421 1.1 ad }
422 1.1 ad }
423 1.1 ad if (ko->ko_nrela != 0) {
424 1.1 ad ko->ko_relatab = kmem_zalloc(ko->ko_nrela *
425 1.1 ad sizeof(*ko->ko_relatab), KM_SLEEP);
426 1.1 ad if (ko->ko_relatab == NULL) {
427 1.1 ad error = ENOMEM;
428 1.1 ad goto out;
429 1.1 ad }
430 1.1 ad }
431 1.1 ad if (symtabindex == -1) {
432 1.1 ad kobj_error("lost symbol table index");
433 1.1 ad goto out;
434 1.1 ad }
435 1.1 ad
436 1.1 ad /*
437 1.1 ad * Allocate space for and load the symbol table.
438 1.1 ad */
439 1.1 ad ko->ko_symcnt = shdr[symtabindex].sh_size / sizeof(Elf_Sym);
440 1.1 ad if (ko->ko_symcnt == 0) {
441 1.1 ad kobj_error("no symbol table");
442 1.1 ad goto out;
443 1.1 ad }
444 1.1 ad ko->ko_symtab = kmem_alloc(ko->ko_symcnt * sizeof(Elf_Sym), KM_SLEEP);
445 1.1 ad if (ko->ko_symtab == NULL) {
446 1.1 ad error = ENOMEM;
447 1.1 ad goto out;
448 1.1 ad }
449 1.3 ad error = kobj_read(ko, ko->ko_symtab, shdr[symtabindex].sh_size,
450 1.1 ad shdr[symtabindex].sh_offset);
451 1.1 ad if (error != 0) {
452 1.1 ad goto out;
453 1.1 ad }
454 1.1 ad
455 1.1 ad /*
456 1.1 ad * Allocate space for and load the symbol strings.
457 1.1 ad */
458 1.1 ad ko->ko_strtabsz = shdr[symstrindex].sh_size;
459 1.1 ad if (ko->ko_strtabsz == 0) {
460 1.1 ad kobj_error("no symbol strings");
461 1.1 ad goto out;
462 1.1 ad }
463 1.1 ad ko->ko_strtab = kmem_alloc(ko->ko_strtabsz, KM_SLEEP);
464 1.1 ad if (ko->ko_strtab == NULL) {
465 1.1 ad error = ENOMEM;
466 1.1 ad goto out;
467 1.1 ad }
468 1.3 ad error = kobj_read(ko, ko->ko_strtab, shdr[symstrindex].sh_size,
469 1.1 ad shdr[symstrindex].sh_offset);
470 1.1 ad if (error != 0) {
471 1.1 ad goto out;
472 1.1 ad }
473 1.1 ad
474 1.1 ad /*
475 1.1 ad * Size up code/data(progbits) and bss(nobits).
476 1.1 ad */
477 1.1 ad alignmask = 0;
478 1.1 ad for (i = 0; i < hdr->e_shnum; i++) {
479 1.1 ad switch (shdr[i].sh_type) {
480 1.1 ad case SHT_PROGBITS:
481 1.1 ad case SHT_NOBITS:
482 1.1 ad alignmask = shdr[i].sh_addralign - 1;
483 1.1 ad mapsize += alignmask;
484 1.1 ad mapsize &= ~alignmask;
485 1.1 ad mapsize += shdr[i].sh_size;
486 1.1 ad break;
487 1.1 ad }
488 1.1 ad }
489 1.1 ad
490 1.1 ad /*
491 1.1 ad * We know how much space we need for the text/data/bss/etc.
492 1.1 ad * This stuff needs to be in a single chunk so that profiling etc
493 1.1 ad * can get the bounds and gdb can associate offsets with modules.
494 1.1 ad */
495 1.1 ad if (mapsize == 0) {
496 1.1 ad kobj_error("no text/data/bss");
497 1.1 ad goto out;
498 1.1 ad }
499 1.1 ad mapbase = uvm_km_alloc(lkm_map, round_page(mapsize), 0,
500 1.1 ad UVM_KMF_WIRED | UVM_KMF_EXEC);
501 1.1 ad if (mapbase == 0) {
502 1.1 ad error = ENOMEM;
503 1.1 ad goto out;
504 1.1 ad }
505 1.1 ad ko->ko_address = mapbase;
506 1.1 ad ko->ko_size = mapsize;
507 1.2 ad ko->ko_entry = mapbase + hdr->e_entry;
508 1.1 ad
509 1.1 ad /*
510 1.1 ad * Now load code/data(progbits), zero bss(nobits), allocate space
511 1.1 ad * for and load relocs
512 1.1 ad */
513 1.1 ad pb = 0;
514 1.1 ad rl = 0;
515 1.1 ad ra = 0;
516 1.1 ad alignmask = 0;
517 1.1 ad for (i = 0; i < hdr->e_shnum; i++) {
518 1.1 ad switch (shdr[i].sh_type) {
519 1.1 ad case SHT_PROGBITS:
520 1.1 ad case SHT_NOBITS:
521 1.1 ad alignmask = shdr[i].sh_addralign - 1;
522 1.1 ad mapbase += alignmask;
523 1.1 ad mapbase &= ~alignmask;
524 1.1 ad ko->ko_progtab[pb].addr = (void *)mapbase;
525 1.1 ad if (shdr[i].sh_type == SHT_PROGBITS) {
526 1.1 ad ko->ko_progtab[pb].name = "<<PROGBITS>>";
527 1.3 ad error = kobj_read(ko,
528 1.1 ad ko->ko_progtab[pb].addr, shdr[i].sh_size,
529 1.1 ad shdr[i].sh_offset);
530 1.1 ad if (error != 0) {
531 1.1 ad goto out;
532 1.1 ad }
533 1.1 ad } else {
534 1.1 ad ko->ko_progtab[pb].name = "<<NOBITS>>";
535 1.1 ad memset(ko->ko_progtab[pb].addr, 0,
536 1.1 ad shdr[i].sh_size);
537 1.1 ad }
538 1.1 ad ko->ko_progtab[pb].size = shdr[i].sh_size;
539 1.1 ad ko->ko_progtab[pb].sec = i;
540 1.1 ad
541 1.1 ad /* Update all symbol values with the offset. */
542 1.1 ad for (j = 0; j < ko->ko_symcnt; j++) {
543 1.1 ad es = &ko->ko_symtab[j];
544 1.1 ad if (es->st_shndx != i) {
545 1.1 ad continue;
546 1.1 ad }
547 1.1 ad es->st_value +=
548 1.1 ad (Elf_Addr)ko->ko_progtab[pb].addr;
549 1.1 ad }
550 1.1 ad mapbase += shdr[i].sh_size;
551 1.1 ad pb++;
552 1.1 ad break;
553 1.1 ad case SHT_REL:
554 1.1 ad ko->ko_reltab[rl].size = shdr[i].sh_size;
555 1.1 ad ko->ko_reltab[rl].size -=
556 1.1 ad shdr[i].sh_size % sizeof(Elf_Rel);
557 1.1 ad if (ko->ko_reltab[rl].size != 0) {
558 1.1 ad ko->ko_reltab[rl].rel =
559 1.1 ad kmem_alloc(ko->ko_reltab[rl].size,
560 1.1 ad KM_SLEEP);
561 1.1 ad ko->ko_reltab[rl].nrel =
562 1.1 ad shdr[i].sh_size / sizeof(Elf_Rel);
563 1.1 ad ko->ko_reltab[rl].sec = shdr[i].sh_info;
564 1.3 ad error = kobj_read(ko,
565 1.1 ad ko->ko_reltab[rl].rel,
566 1.1 ad ko->ko_reltab[rl].size,
567 1.1 ad shdr[i].sh_offset);
568 1.1 ad if (error != 0) {
569 1.1 ad goto out;
570 1.1 ad }
571 1.1 ad }
572 1.1 ad rl++;
573 1.1 ad break;
574 1.1 ad case SHT_RELA:
575 1.1 ad ko->ko_relatab[ra].size = shdr[i].sh_size;
576 1.1 ad ko->ko_relatab[ra].size -=
577 1.1 ad shdr[i].sh_size % sizeof(Elf_Rela);
578 1.1 ad if (ko->ko_relatab[ra].size != 0) {
579 1.1 ad ko->ko_relatab[ra].rela =
580 1.1 ad kmem_alloc(ko->ko_relatab[ra].size,
581 1.1 ad KM_SLEEP);
582 1.1 ad ko->ko_relatab[ra].nrela =
583 1.1 ad shdr[i].sh_size / sizeof(Elf_Rela);
584 1.1 ad ko->ko_relatab[ra].sec = shdr[i].sh_info;
585 1.3 ad error = kobj_read(ko,
586 1.1 ad ko->ko_relatab[ra].rela,
587 1.1 ad shdr[i].sh_size,
588 1.1 ad shdr[i].sh_offset);
589 1.1 ad if (error != 0) {
590 1.1 ad goto out;
591 1.1 ad }
592 1.1 ad }
593 1.1 ad ra++;
594 1.1 ad break;
595 1.1 ad }
596 1.1 ad }
597 1.1 ad if (pb != ko->ko_nprogtab) {
598 1.1 ad panic("lost progbits");
599 1.1 ad }
600 1.1 ad if (rl != ko->ko_nrel) {
601 1.1 ad panic("lost rel");
602 1.1 ad }
603 1.1 ad if (ra != ko->ko_nrela) {
604 1.1 ad panic("lost rela");
605 1.1 ad }
606 1.1 ad if (mapbase != ko->ko_address + mapsize) {
607 1.1 ad panic("mapbase 0x%lx != address %lx + mapsize 0x%lx (0x%lx)\n",
608 1.1 ad (long)mapbase, (long)ko->ko_address, (long)mapsize,
609 1.1 ad (long)ko->ko_address + mapsize);
610 1.1 ad }
611 1.1 ad
612 1.1 ad /*
613 1.1 ad * Perform relocations. Done before registering with ksyms,
614 1.1 ad * which will pack our symbol table.
615 1.1 ad */
616 1.1 ad error = kobj_relocate(ko);
617 1.1 ad if (error != 0) {
618 1.1 ad goto out;
619 1.1 ad }
620 1.1 ad
621 1.1 ad /*
622 1.1 ad * Notify MD code that a module has been loaded.
623 1.1 ad */
624 1.1 ad error = kobj_machdep(ko, (void *)ko->ko_address, ko->ko_size, true);
625 1.1 ad if (error != 0) {
626 1.1 ad kobj_error("machine dependent init failed");
627 1.1 ad goto out;
628 1.1 ad }
629 1.3 ad ko->ko_loaded = true;
630 1.1 ad out:
631 1.1 ad kobj_release_mem(ko);
632 1.3 ad if (hdr != NULL) {
633 1.1 ad kmem_free(hdr, sizeof(*hdr));
634 1.1 ad }
635 1.1 ad
636 1.1 ad return error;
637 1.1 ad }
638 1.1 ad
639 1.1 ad /*
640 1.1 ad * kobj_unload:
641 1.1 ad *
642 1.1 ad * Unload an object previously loaded by kobj_load().
643 1.1 ad */
644 1.1 ad void
645 1.1 ad kobj_unload(kobj_t ko)
646 1.1 ad {
647 1.1 ad int error;
648 1.1 ad
649 1.1 ad if (ko->ko_address != 0) {
650 1.1 ad uvm_km_free(lkm_map, ko->ko_address, round_page(ko->ko_size),
651 1.1 ad UVM_KMF_WIRED);
652 1.1 ad }
653 1.1 ad if (ko->ko_ksyms == true) {
654 1.1 ad ksyms_delsymtab(ko->ko_name);
655 1.1 ad }
656 1.1 ad if (ko->ko_symtab != NULL) {
657 1.1 ad kmem_free(ko->ko_symtab, ko->ko_symcnt * sizeof(Elf_Sym));
658 1.1 ad }
659 1.1 ad if (ko->ko_strtab != NULL) {
660 1.1 ad kmem_free(ko->ko_strtab, ko->ko_strtabsz);
661 1.1 ad }
662 1.1 ad
663 1.1 ad /*
664 1.1 ad * Notify MD code that a module has been unloaded.
665 1.1 ad */
666 1.3 ad if (ko->ko_loaded) {
667 1.3 ad error = kobj_machdep(ko, (void *)ko->ko_address, ko->ko_size,
668 1.3 ad false);
669 1.3 ad if (error != 0) {
670 1.3 ad kobj_error("machine dependent deinit failed");
671 1.3 ad }
672 1.1 ad }
673 1.3 ad
674 1.3 ad kmem_free(ko, sizeof(*ko));
675 1.1 ad }
676 1.1 ad
677 1.1 ad /*
678 1.2 ad * kobj_stat:
679 1.2 ad *
680 1.2 ad * Return size and load address of an object.
681 1.2 ad */
682 1.2 ad void
683 1.2 ad kobj_stat(kobj_t ko, vaddr_t *address, size_t *size, uintptr_t *entry)
684 1.2 ad {
685 1.2 ad
686 1.2 ad if (address != NULL) {
687 1.2 ad *address = ko->ko_address;
688 1.2 ad }
689 1.2 ad if (size != NULL) {
690 1.2 ad *size = ko->ko_size;
691 1.2 ad }
692 1.2 ad if (entry != NULL) {
693 1.2 ad *entry = ko->ko_entry;
694 1.2 ad }
695 1.2 ad }
696 1.2 ad
697 1.2 ad /*
698 1.3 ad * kobj_set_name:
699 1.3 ad *
700 1.3 ad * Set an object's name. Used only for symbol table lookups.
701 1.3 ad * May only be called after the module is loaded.
702 1.3 ad */
703 1.6 ad int
704 1.3 ad kobj_set_name(kobj_t ko, const char *name)
705 1.3 ad {
706 1.6 ad int error;
707 1.3 ad
708 1.3 ad KASSERT(ko->ko_loaded);
709 1.3 ad
710 1.3 ad strlcpy(ko->ko_name, name, sizeof(ko->ko_name));
711 1.6 ad
712 1.6 ad /*
713 1.6 ad * Now that we know the name, register the symbol table.
714 1.6 ad */
715 1.6 ad error = ksyms_addsymtab(ko->ko_name, ko->ko_symtab, ko->ko_symcnt *
716 1.6 ad sizeof(Elf_Sym), ko->ko_strtab, ko->ko_strtabsz);
717 1.6 ad if (error != 0) {
718 1.6 ad kobj_error("unable to register module symbol table");
719 1.6 ad } else {
720 1.6 ad ko->ko_ksyms = true;
721 1.6 ad }
722 1.6 ad
723 1.6 ad return error;
724 1.3 ad }
725 1.3 ad
726 1.3 ad /*
727 1.1 ad * kobj_release_mem:
728 1.1 ad *
729 1.1 ad * Release object data not needed after loading.
730 1.1 ad */
731 1.1 ad static void
732 1.1 ad kobj_release_mem(kobj_t ko)
733 1.1 ad {
734 1.1 ad int i;
735 1.1 ad
736 1.1 ad for (i = 0; i < ko->ko_nrel; i++) {
737 1.1 ad if (ko->ko_reltab[i].rel) {
738 1.1 ad kmem_free(ko->ko_reltab[i].rel,
739 1.1 ad ko->ko_reltab[i].size);
740 1.1 ad }
741 1.1 ad }
742 1.1 ad for (i = 0; i < ko->ko_nrela; i++) {
743 1.1 ad if (ko->ko_relatab[i].rela) {
744 1.1 ad kmem_free(ko->ko_relatab[i].rela,
745 1.1 ad ko->ko_relatab[i].size);
746 1.1 ad }
747 1.1 ad }
748 1.1 ad if (ko->ko_reltab != NULL) {
749 1.1 ad kmem_free(ko->ko_reltab, ko->ko_nrel *
750 1.1 ad sizeof(*ko->ko_reltab));
751 1.1 ad ko->ko_reltab = NULL;
752 1.1 ad ko->ko_nrel = 0;
753 1.1 ad }
754 1.1 ad if (ko->ko_relatab != NULL) {
755 1.1 ad kmem_free(ko->ko_relatab, ko->ko_nrela *
756 1.1 ad sizeof(*ko->ko_relatab));
757 1.1 ad ko->ko_relatab = NULL;
758 1.1 ad ko->ko_nrela = 0;
759 1.1 ad }
760 1.1 ad if (ko->ko_progtab != NULL) {
761 1.1 ad kmem_free(ko->ko_progtab, ko->ko_nprogtab *
762 1.1 ad sizeof(*ko->ko_progtab));
763 1.1 ad ko->ko_progtab = NULL;
764 1.1 ad }
765 1.1 ad if (ko->ko_shdr != NULL) {
766 1.1 ad kmem_free(ko->ko_shdr, ko->ko_shdrsz);
767 1.1 ad ko->ko_shdr = NULL;
768 1.1 ad }
769 1.1 ad }
770 1.1 ad
771 1.1 ad /*
772 1.1 ad * kobj_sym_lookup:
773 1.1 ad *
774 1.1 ad * Symbol lookup function to be used when the symbol index
775 1.1 ad * is known (ie during relocation).
776 1.1 ad */
777 1.1 ad uintptr_t
778 1.1 ad kobj_sym_lookup(kobj_t ko, uintptr_t symidx)
779 1.1 ad {
780 1.1 ad const Elf_Sym *sym;
781 1.1 ad const char *symbol;
782 1.1 ad int error;
783 1.1 ad u_long addr;
784 1.1 ad
785 1.1 ad /* Don't even try to lookup the symbol if the index is bogus. */
786 1.1 ad if (symidx >= ko->ko_symcnt)
787 1.1 ad return 0;
788 1.1 ad
789 1.1 ad sym = ko->ko_symtab + symidx;
790 1.1 ad
791 1.1 ad /* Quick answer if there is a definition included. */
792 1.1 ad if (sym->st_shndx != SHN_UNDEF) {
793 1.1 ad return sym->st_value;
794 1.1 ad }
795 1.1 ad
796 1.1 ad /* If we get here, then it is undefined and needs a lookup. */
797 1.1 ad switch (ELF_ST_BIND(sym->st_info)) {
798 1.1 ad case STB_LOCAL:
799 1.1 ad /* Local, but undefined? huh? */
800 1.1 ad kobj_error("local symbol undefined");
801 1.1 ad return 0;
802 1.1 ad
803 1.1 ad case STB_GLOBAL:
804 1.1 ad /* Relative to Data or Function name */
805 1.1 ad symbol = ko->ko_strtab + sym->st_name;
806 1.1 ad
807 1.1 ad /* Force a lookup failure if the symbol name is bogus. */
808 1.1 ad if (*symbol == 0) {
809 1.1 ad kobj_error("bad symbol name");
810 1.1 ad return 0;
811 1.1 ad }
812 1.1 ad
813 1.1 ad error = ksyms_getval(NULL, symbol, &addr, KSYMS_ANY);
814 1.1 ad if (error != 0) {
815 1.1 ad kobj_error("symbol %s undefined", symbol);
816 1.1 ad return (uintptr_t)0;
817 1.1 ad }
818 1.1 ad return (uintptr_t)addr;
819 1.1 ad
820 1.1 ad case STB_WEAK:
821 1.1 ad kobj_error("weak symbols not supported\n");
822 1.1 ad return 0;
823 1.1 ad
824 1.1 ad default:
825 1.1 ad return 0;
826 1.1 ad }
827 1.1 ad }
828 1.1 ad
829 1.1 ad /*
830 1.1 ad * kobj_findbase:
831 1.1 ad *
832 1.1 ad * Return base address of the given section.
833 1.1 ad */
834 1.1 ad static uintptr_t
835 1.1 ad kobj_findbase(kobj_t ko, int sec)
836 1.1 ad {
837 1.1 ad int i;
838 1.1 ad
839 1.1 ad for (i = 0; i < ko->ko_nprogtab; i++) {
840 1.1 ad if (sec == ko->ko_progtab[i].sec) {
841 1.1 ad return (uintptr_t)ko->ko_progtab[i].addr;
842 1.1 ad }
843 1.1 ad }
844 1.1 ad return 0;
845 1.1 ad }
846 1.1 ad
847 1.1 ad /*
848 1.1 ad * kobj_relocate:
849 1.1 ad *
850 1.1 ad * Resolve all relocations for the loaded object.
851 1.1 ad */
852 1.1 ad static int
853 1.1 ad kobj_relocate(kobj_t ko)
854 1.1 ad {
855 1.1 ad const Elf_Rel *rellim;
856 1.1 ad const Elf_Rel *rel;
857 1.1 ad const Elf_Rela *relalim;
858 1.1 ad const Elf_Rela *rela;
859 1.1 ad const Elf_Sym *sym;
860 1.1 ad uintptr_t base;
861 1.1 ad int i;
862 1.1 ad uintptr_t symidx;
863 1.1 ad
864 1.1 ad /*
865 1.1 ad * Perform relocations without addend if there are any.
866 1.1 ad */
867 1.1 ad for (i = 0; i < ko->ko_nrel; i++) {
868 1.1 ad rel = ko->ko_reltab[i].rel;
869 1.1 ad if (rel == NULL) {
870 1.1 ad continue;
871 1.1 ad }
872 1.1 ad rellim = rel + ko->ko_reltab[i].nrel;
873 1.1 ad base = kobj_findbase(ko, ko->ko_reltab[i].sec);
874 1.1 ad if (base == 0) {
875 1.1 ad panic("lost base for e_reltab");
876 1.1 ad }
877 1.1 ad for (; rel < rellim; rel++) {
878 1.1 ad symidx = ELF_R_SYM(rel->r_info);
879 1.1 ad if (symidx >= ko->ko_symcnt) {
880 1.1 ad continue;
881 1.1 ad }
882 1.1 ad sym = ko->ko_symtab + symidx;
883 1.1 ad if (ELF_ST_BIND(sym->st_info) == STB_LOCAL) {
884 1.1 ad kobj_reloc(ko, base, rel, false, true);
885 1.1 ad continue;
886 1.1 ad }
887 1.1 ad if (kobj_reloc(ko, base, rel, false, false)) {
888 1.1 ad return ENOENT;
889 1.1 ad }
890 1.1 ad }
891 1.1 ad }
892 1.1 ad
893 1.1 ad /*
894 1.1 ad * Perform relocations with addend if there are any.
895 1.1 ad */
896 1.1 ad for (i = 0; i < ko->ko_nrela; i++) {
897 1.1 ad rela = ko->ko_relatab[i].rela;
898 1.1 ad if (rela == NULL) {
899 1.1 ad continue;
900 1.1 ad }
901 1.1 ad relalim = rela + ko->ko_relatab[i].nrela;
902 1.1 ad base = kobj_findbase(ko, ko->ko_relatab[i].sec);
903 1.1 ad if (base == 0) {
904 1.1 ad panic("lost base for e_relatab");
905 1.1 ad }
906 1.1 ad for (; rela < relalim; rela++) {
907 1.1 ad symidx = ELF_R_SYM(rela->r_info);
908 1.1 ad if (symidx >= ko->ko_symcnt) {
909 1.1 ad continue;
910 1.1 ad }
911 1.1 ad sym = ko->ko_symtab + symidx;
912 1.1 ad if (ELF_ST_BIND(sym->st_info) == STB_LOCAL) {
913 1.1 ad kobj_reloc(ko, base, rela, true, true);
914 1.1 ad continue;
915 1.1 ad }
916 1.1 ad if (kobj_reloc(ko, base, rela, true, false)) {
917 1.1 ad return ENOENT;
918 1.1 ad }
919 1.1 ad }
920 1.1 ad }
921 1.1 ad
922 1.1 ad return 0;
923 1.1 ad }
924 1.1 ad
925 1.1 ad /*
926 1.1 ad * kobj_error:
927 1.1 ad *
928 1.1 ad * Utility function: log an error.
929 1.1 ad */
930 1.1 ad static void
931 1.1 ad kobj_error(const char *fmt, ...)
932 1.1 ad {
933 1.1 ad va_list ap;
934 1.1 ad
935 1.1 ad va_start(ap, fmt);
936 1.1 ad printf("WARNING: linker error: ");
937 1.1 ad vprintf(fmt, ap);
938 1.1 ad printf("\n");
939 1.1 ad va_end(ap);
940 1.1 ad }
941 1.1 ad
942 1.1 ad /*
943 1.1 ad * kobj_read:
944 1.1 ad *
945 1.1 ad * Utility function: read from the object.
946 1.1 ad */
947 1.1 ad static int
948 1.3 ad kobj_read(kobj_t ko, void *base, size_t size, off_t off)
949 1.1 ad {
950 1.1 ad size_t resid;
951 1.1 ad int error;
952 1.1 ad
953 1.3 ad KASSERT(ko->ko_source != NULL);
954 1.3 ad
955 1.3 ad switch (ko->ko_type) {
956 1.3 ad case KT_VNODE:
957 1.3 ad error = vn_rdwr(UIO_READ, ko->ko_source, base, size, off,
958 1.3 ad UIO_SYSSPACE, IO_NODELOCKED, curlwp->l_cred, &resid,
959 1.3 ad curlwp);
960 1.3 ad if (error == 0 && resid != 0) {
961 1.3 ad error = EINVAL;
962 1.3 ad }
963 1.3 ad break;
964 1.3 ad case KT_MEMORY:
965 1.4 jmcneill if (ko->ko_memsize != -1 && off + size > ko->ko_memsize) {
966 1.3 ad kobj_error("kobj_read: preloaded object short");
967 1.3 ad error = EINVAL;
968 1.3 ad } else {
969 1.3 ad memcpy(base, (uint8_t *)ko->ko_source + off, size);
970 1.3 ad error = 0;
971 1.3 ad }
972 1.3 ad break;
973 1.3 ad default:
974 1.3 ad panic("kobj_read: invalid type");
975 1.3 ad }
976 1.3 ad
977 1.1 ad return error;
978 1.1 ad }
979 1.5 ad
980 1.5 ad #else /* MODULAR */
981 1.5 ad
982 1.5 ad int
983 1.5 ad kobj_open_file(kobj_t *kop, const char *name, const char *filename)
984 1.5 ad {
985 1.5 ad
986 1.5 ad return ENOSYS;
987 1.5 ad }
988 1.5 ad
989 1.5 ad int
990 1.5 ad kobj_open_mem(kobj_t *kop, const char *name, void *base, ssize_t size)
991 1.5 ad {
992 1.5 ad
993 1.5 ad return ENOSYS;
994 1.5 ad }
995 1.5 ad
996 1.5 ad void
997 1.5 ad kobj_close(kobj_t ko)
998 1.5 ad {
999 1.5 ad
1000 1.5 ad panic("not modular");
1001 1.5 ad }
1002 1.5 ad
1003 1.5 ad int
1004 1.5 ad kobj_load(kobj_t ko)
1005 1.5 ad {
1006 1.5 ad
1007 1.5 ad panic("not modular");
1008 1.5 ad }
1009 1.5 ad
1010 1.5 ad void
1011 1.5 ad kobj_unload(kobj_t ko)
1012 1.5 ad {
1013 1.5 ad
1014 1.5 ad panic("not modular");
1015 1.5 ad }
1016 1.5 ad
1017 1.5 ad void
1018 1.5 ad kobj_stat(kobj_t ko, vaddr_t *base, size_t *size, uintptr_t *entry)
1019 1.5 ad {
1020 1.5 ad
1021 1.5 ad panic("not modular");
1022 1.5 ad }
1023 1.5 ad
1024 1.5 ad void
1025 1.5 ad kobj_set_name(kobj_t ko, const char *name)
1026 1.5 ad {
1027 1.5 ad
1028 1.5 ad panic("not modular");
1029 1.5 ad }
1030 1.5 ad
1031 1.5 ad #endif /* MODULAR */
1032