Home | History | Annotate | Line # | Download | only in kern
subr_kobj.c revision 1.7
      1  1.7        ad /*	$NetBSD: subr_kobj.c,v 1.7 2008/01/07 20:42:48 ad Exp $	*/
      2  1.1        ad 
      3  1.1        ad /*-
      4  1.1        ad  * Copyright (c) 2008 The NetBSD Foundation, Inc.
      5  1.1        ad  * All rights reserved.
      6  1.1        ad  *
      7  1.1        ad  * Redistribution and use in source and binary forms, with or without
      8  1.1        ad  * modification, are permitted provided that the following conditions
      9  1.1        ad  * are met:
     10  1.1        ad  * 1. Redistributions of source code must retain the above copyright
     11  1.1        ad  *    notice, this list of conditions and the following disclaimer.
     12  1.1        ad  * 2. Redistributions in binary form must reproduce the above copyright
     13  1.1        ad  *    notice, this list of conditions and the following disclaimer in the
     14  1.1        ad  *    documentation and/or other materials provided with the distribution.
     15  1.1        ad  * 3. All advertising materials mentioning features or use of this software
     16  1.1        ad  *    must display the following acknowledgement:
     17  1.1        ad  *	This product includes software developed by the NetBSD
     18  1.1        ad  *	Foundation, Inc. and its contributors.
     19  1.1        ad  * 4. Neither the name of The NetBSD Foundation nor the names of its
     20  1.1        ad  *    contributors may be used to endorse or promote products derived
     21  1.1        ad  *    from this software without specific prior written permission.
     22  1.1        ad  *
     23  1.1        ad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     24  1.1        ad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     25  1.1        ad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     26  1.1        ad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     27  1.1        ad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     28  1.1        ad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     29  1.1        ad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     30  1.1        ad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     31  1.1        ad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     32  1.1        ad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     33  1.1        ad  * POSSIBILITY OF SUCH DAMAGE.
     34  1.1        ad  */
     35  1.1        ad 
     36  1.1        ad /*-
     37  1.1        ad  * Copyright (c) 1998-2000 Doug Rabson
     38  1.1        ad  * Copyright (c) 2004 Peter Wemm
     39  1.1        ad  * All rights reserved.
     40  1.1        ad  *
     41  1.1        ad  * Redistribution and use in source and binary forms, with or without
     42  1.1        ad  * modification, are permitted provided that the following conditions
     43  1.1        ad  * are met:
     44  1.1        ad  * 1. Redistributions of source code must retain the above copyright
     45  1.1        ad  *    notice, this list of conditions and the following disclaimer.
     46  1.1        ad  * 2. Redistributions in binary form must reproduce the above copyright
     47  1.1        ad  *    notice, this list of conditions and the following disclaimer in the
     48  1.1        ad  *    documentation and/or other materials provided with the distribution.
     49  1.1        ad  *
     50  1.1        ad  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     51  1.1        ad  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     52  1.1        ad  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     53  1.1        ad  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     54  1.1        ad  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     55  1.1        ad  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     56  1.1        ad  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     57  1.1        ad  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     58  1.1        ad  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     59  1.1        ad  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     60  1.1        ad  * SUCH DAMAGE.
     61  1.1        ad  */
     62  1.1        ad 
     63  1.1        ad /*
     64  1.1        ad  * Kernel loader for ELF objects.
     65  1.1        ad  *
     66  1.1        ad  * TODO: adjust kmem_alloc() calls to avoid needless fragmentation.
     67  1.1        ad  */
     68  1.1        ad 
     69  1.5        ad #include "opt_modular.h"
     70  1.5        ad 
     71  1.1        ad #include <sys/cdefs.h>
     72  1.7        ad __KERNEL_RCSID(0, "$NetBSD: subr_kobj.c,v 1.7 2008/01/07 20:42:48 ad Exp $");
     73  1.1        ad 
     74  1.1        ad #define	ELFSIZE		ARCH_ELFSIZE
     75  1.1        ad 
     76  1.1        ad #include <sys/param.h>
     77  1.1        ad #include <sys/systm.h>
     78  1.1        ad #include <sys/kernel.h>
     79  1.1        ad #include <sys/kmem.h>
     80  1.1        ad #include <sys/proc.h>
     81  1.1        ad #include <sys/namei.h>
     82  1.1        ad #include <sys/vnode.h>
     83  1.1        ad #include <sys/fcntl.h>
     84  1.1        ad #include <sys/kobj.h>
     85  1.1        ad #include <sys/ksyms.h>
     86  1.1        ad #include <sys/lkm.h>
     87  1.1        ad #include <sys/exec.h>
     88  1.1        ad #include <sys/exec_elf.h>
     89  1.1        ad 
     90  1.1        ad #include <machine/stdarg.h>
     91  1.1        ad 
     92  1.1        ad #include <uvm/uvm_extern.h>
     93  1.1        ad 
     94  1.5        ad #ifdef MODULAR
     95  1.5        ad 
     96  1.1        ad typedef struct {
     97  1.1        ad 	void		*addr;
     98  1.1        ad 	Elf_Off		size;
     99  1.1        ad 	int		flags;
    100  1.1        ad 	int		sec;		/* Original section */
    101  1.1        ad 	const char	*name;
    102  1.1        ad } progent_t;
    103  1.1        ad 
    104  1.1        ad typedef struct {
    105  1.1        ad 	Elf_Rel		*rel;
    106  1.1        ad 	int 		nrel;
    107  1.1        ad 	int 		sec;
    108  1.1        ad 	size_t		size;
    109  1.1        ad } relent_t;
    110  1.1        ad 
    111  1.1        ad typedef struct {
    112  1.1        ad 	Elf_Rela	*rela;
    113  1.1        ad 	int		nrela;
    114  1.1        ad 	int		sec;
    115  1.1        ad 	size_t		size;
    116  1.1        ad } relaent_t;
    117  1.1        ad 
    118  1.3        ad typedef enum kobjtype {
    119  1.3        ad 	KT_UNSET,
    120  1.3        ad 	KT_VNODE,
    121  1.3        ad 	KT_MEMORY
    122  1.3        ad } kobjtype_t;
    123  1.3        ad 
    124  1.1        ad struct kobj {
    125  1.1        ad 	char		ko_name[MAXLKMNAME];
    126  1.3        ad 	kobjtype_t	ko_type;
    127  1.3        ad 	void		*ko_source;
    128  1.3        ad 	ssize_t		ko_memsize;
    129  1.1        ad 	vaddr_t		ko_address;	/* Relocation address */
    130  1.1        ad 	Elf_Shdr	*ko_shdr;
    131  1.1        ad 	progent_t	*ko_progtab;
    132  1.1        ad 	relaent_t	*ko_relatab;
    133  1.1        ad 	relent_t	*ko_reltab;
    134  1.1        ad 	Elf_Sym		*ko_symtab;	/* Symbol table */
    135  1.1        ad 	char		*ko_strtab;	/* String table */
    136  1.2        ad 	uintptr_t	ko_entry;	/* Entry point */
    137  1.1        ad 	size_t		ko_size;	/* Size of text/data/bss */
    138  1.1        ad 	size_t		ko_symcnt;	/* Number of symbols */
    139  1.1        ad 	size_t		ko_strtabsz;	/* Number of bytes in string table */
    140  1.1        ad 	size_t		ko_shdrsz;
    141  1.1        ad 	int		ko_nrel;
    142  1.1        ad 	int		ko_nrela;
    143  1.1        ad 	int		ko_nprogtab;
    144  1.1        ad 	bool		ko_ksyms;
    145  1.3        ad 	bool		ko_loaded;
    146  1.1        ad };
    147  1.1        ad 
    148  1.1        ad static int	kobj_relocate(kobj_t);
    149  1.1        ad static void	kobj_error(const char *, ...);
    150  1.3        ad static int	kobj_read(kobj_t, void *, size_t, off_t);
    151  1.1        ad static void	kobj_release_mem(kobj_t);
    152  1.1        ad 
    153  1.1        ad extern struct vm_map *lkm_map;
    154  1.1        ad static const char	*kobj_path = "/modules";	/* XXX ??? */
    155  1.1        ad 
    156  1.1        ad /*
    157  1.3        ad  * kobj_open_file:
    158  1.1        ad  *
    159  1.6        ad  *	Open an object located in the file system.
    160  1.1        ad  */
    161  1.1        ad int
    162  1.6        ad kobj_open_file(kobj_t *kop, const char *filename)
    163  1.1        ad {
    164  1.1        ad 	struct nameidata nd;
    165  1.1        ad 	kauth_cred_t cred;
    166  1.1        ad 	char *path;
    167  1.1        ad 	int error;
    168  1.1        ad 	kobj_t ko;
    169  1.1        ad 
    170  1.1        ad 	cred = kauth_cred_get();
    171  1.1        ad 
    172  1.1        ad 	ko = kmem_zalloc(sizeof(*ko), KM_SLEEP);
    173  1.1        ad 	if (ko == NULL) {
    174  1.1        ad 		return ENOMEM;
    175  1.1        ad 	}
    176  1.1        ad 
    177  1.3        ad 	/* XXX where to look? */
    178  1.3        ad 	NDINIT(&nd, LOOKUP, FOLLOW, UIO_SYSSPACE, filename);
    179  1.1        ad 	error = vn_open(&nd, FREAD, 0);
    180  1.1        ad 	if (error != 0) {
    181  1.2        ad 		if (error != ENOENT) {
    182  1.2        ad 			goto out;
    183  1.2        ad 		}
    184  1.2        ad 		path = PNBUF_GET();
    185  1.3        ad 		snprintf(path, MAXPATHLEN - 1, "%s/%s", kobj_path,
    186  1.3        ad 		    filename);
    187  1.2        ad 		NDINIT(&nd, LOOKUP, FOLLOW, UIO_SYSSPACE, path);
    188  1.2        ad 		error = vn_open(&nd, FREAD, 0);
    189  1.2        ad 		PNBUF_PUT(path);
    190  1.2        ad 		if (error != 0) {
    191  1.2        ad 			goto out;
    192  1.2        ad 		}
    193  1.1        ad 	}
    194  1.1        ad 
    195  1.3        ad  out:
    196  1.3        ad  	if (error != 0) {
    197  1.3        ad 	 	kmem_free(ko, sizeof(*ko));
    198  1.3        ad 	} else {
    199  1.3        ad 		ko->ko_type = KT_VNODE;
    200  1.3        ad 		ko->ko_source = nd.ni_vp;
    201  1.3        ad 		*kop = ko;
    202  1.3        ad 	}
    203  1.3        ad 	return error;
    204  1.3        ad }
    205  1.3        ad 
    206  1.3        ad /*
    207  1.3        ad  * kobj_open_mem:
    208  1.3        ad  *
    209  1.3        ad  *	Open a pre-loaded object already resident in memory.  If size
    210  1.6        ad  *	is not -1, the complete size of the object is known.
    211  1.3        ad  */
    212  1.3        ad int
    213  1.6        ad kobj_open_mem(kobj_t *kop, void *base, ssize_t size)
    214  1.3        ad {
    215  1.3        ad 	kobj_t ko;
    216  1.3        ad 
    217  1.3        ad 	ko = kmem_zalloc(sizeof(*ko), KM_SLEEP);
    218  1.3        ad 	if (ko == NULL) {
    219  1.3        ad 		return ENOMEM;
    220  1.3        ad 	}
    221  1.3        ad 
    222  1.3        ad 	ko->ko_type = KT_MEMORY;
    223  1.3        ad 	ko->ko_source = base;
    224  1.3        ad 	ko->ko_memsize = size;
    225  1.3        ad 	*kop = ko;
    226  1.3        ad 
    227  1.3        ad 	return 0;
    228  1.3        ad }
    229  1.3        ad 
    230  1.3        ad /*
    231  1.3        ad  * kobj_close:
    232  1.3        ad  *
    233  1.3        ad  *	Close an open ELF object.  If the object was not successfully
    234  1.3        ad  *	loaded, it will be destroyed.
    235  1.3        ad  */
    236  1.3        ad void
    237  1.3        ad kobj_close(kobj_t ko)
    238  1.3        ad {
    239  1.3        ad 
    240  1.3        ad 	KASSERT(ko->ko_source != NULL);
    241  1.3        ad 
    242  1.3        ad 	switch (ko->ko_type) {
    243  1.3        ad 	case KT_VNODE:
    244  1.3        ad 		VOP_UNLOCK(ko->ko_source, 0);
    245  1.3        ad 		vn_close(ko->ko_source, FREAD, kauth_cred_get(), curlwp);
    246  1.3        ad 		break;
    247  1.3        ad 	case KT_MEMORY:
    248  1.3        ad 		/* nothing */
    249  1.3        ad 		break;
    250  1.3        ad 	default:
    251  1.3        ad 		panic("kobj_close: unknown type");
    252  1.3        ad 		break;
    253  1.3        ad 	}
    254  1.3        ad 
    255  1.3        ad 	ko->ko_source = NULL;
    256  1.3        ad 	ko->ko_type = KT_UNSET;
    257  1.3        ad 
    258  1.3        ad 	/* If the object hasn't been loaded, then destroy it. */
    259  1.3        ad 	if (!ko->ko_loaded) {
    260  1.3        ad 		kobj_unload(ko);
    261  1.3        ad 	}
    262  1.3        ad }
    263  1.3        ad 
    264  1.3        ad /*
    265  1.3        ad  * kobj_load:
    266  1.3        ad  *
    267  1.3        ad  *	Load an ELF object from the file system and link into the
    268  1.3        ad  *	running	kernel image.
    269  1.3        ad  */
    270  1.3        ad int
    271  1.3        ad kobj_load(kobj_t ko)
    272  1.3        ad {
    273  1.3        ad 	Elf_Ehdr *hdr;
    274  1.3        ad 	Elf_Shdr *shdr;
    275  1.3        ad 	Elf_Sym *es;
    276  1.3        ad 	vaddr_t mapbase;
    277  1.3        ad 	size_t mapsize;
    278  1.3        ad 	int error;
    279  1.3        ad 	int symtabindex;
    280  1.3        ad 	int symstrindex;
    281  1.3        ad 	int nsym;
    282  1.3        ad 	int pb, rl, ra;
    283  1.3        ad 	int alignmask;
    284  1.3        ad 	int i, j;
    285  1.3        ad 
    286  1.3        ad 	KASSERT(ko->ko_type != KT_UNSET);
    287  1.3        ad 	KASSERT(ko->ko_source != NULL);
    288  1.3        ad 
    289  1.3        ad 	shdr = NULL;
    290  1.3        ad 	mapsize = 0;
    291  1.3        ad 	error = 0;
    292  1.3        ad 	hdr = NULL;
    293  1.3        ad 
    294  1.1        ad 	/*
    295  1.1        ad 	 * Read the elf header from the file.
    296  1.1        ad 	 */
    297  1.1        ad 	hdr = kmem_alloc(sizeof(*hdr), KM_SLEEP);
    298  1.1        ad 	if (hdr == NULL) {
    299  1.1        ad 		error = ENOMEM;
    300  1.1        ad 		goto out;
    301  1.1        ad 	}
    302  1.3        ad 	error = kobj_read(ko, hdr, sizeof(*hdr), 0);
    303  1.1        ad 	if (error != 0)
    304  1.1        ad 		goto out;
    305  1.1        ad 	if (memcmp(hdr->e_ident, ELFMAG, SELFMAG) != 0) {
    306  1.3        ad 		kobj_error("not an ELF object");
    307  1.1        ad 		error = ENOEXEC;
    308  1.1        ad 		goto out;
    309  1.1        ad 	}
    310  1.1        ad 
    311  1.1        ad 	if (hdr->e_ident[EI_VERSION] != EV_CURRENT ||
    312  1.1        ad 	    hdr->e_version != EV_CURRENT) {
    313  1.1        ad 		kobj_error("unsupported file version");
    314  1.1        ad 		error = ENOEXEC;
    315  1.1        ad 		goto out;
    316  1.1        ad 	}
    317  1.1        ad 	if (hdr->e_type != ET_REL) {
    318  1.1        ad 		kobj_error("unsupported file type");
    319  1.1        ad 		error = ENOEXEC;
    320  1.1        ad 		goto out;
    321  1.1        ad 	}
    322  1.1        ad 	switch (hdr->e_machine) {
    323  1.1        ad #if ELFSIZE == 32
    324  1.1        ad 	ELF32_MACHDEP_ID_CASES
    325  1.1        ad #else
    326  1.1        ad 	ELF64_MACHDEP_ID_CASES
    327  1.1        ad #endif
    328  1.1        ad 	default:
    329  1.1        ad 		kobj_error("unsupported machine");
    330  1.1        ad 		error = ENOEXEC;
    331  1.1        ad 		goto out;
    332  1.1        ad 	}
    333  1.1        ad 
    334  1.1        ad 	ko->ko_nprogtab = 0;
    335  1.1        ad 	ko->ko_shdr = 0;
    336  1.1        ad 	ko->ko_nrel = 0;
    337  1.1        ad 	ko->ko_nrela = 0;
    338  1.1        ad 
    339  1.1        ad 	/*
    340  1.1        ad 	 * Allocate and read in the section header.
    341  1.1        ad 	 */
    342  1.1        ad 	ko->ko_shdrsz = hdr->e_shnum * hdr->e_shentsize;
    343  1.1        ad 	if (ko->ko_shdrsz == 0 || hdr->e_shoff == 0 ||
    344  1.1        ad 	    hdr->e_shentsize != sizeof(Elf_Shdr)) {
    345  1.1        ad 		error = ENOEXEC;
    346  1.1        ad 		goto out;
    347  1.1        ad 	}
    348  1.1        ad 	shdr = kmem_alloc(ko->ko_shdrsz, KM_SLEEP);
    349  1.1        ad 	if (shdr == NULL) {
    350  1.1        ad 		error = ENOMEM;
    351  1.1        ad 		goto out;
    352  1.1        ad 	}
    353  1.1        ad 	ko->ko_shdr = shdr;
    354  1.3        ad 	error = kobj_read(ko, shdr, ko->ko_shdrsz, hdr->e_shoff);
    355  1.1        ad 	if (error != 0) {
    356  1.1        ad 		goto out;
    357  1.1        ad 	}
    358  1.1        ad 
    359  1.1        ad 	/*
    360  1.1        ad 	 * Scan the section header for information and table sizing.
    361  1.1        ad 	 */
    362  1.1        ad 	nsym = 0;
    363  1.1        ad 	symtabindex = -1;
    364  1.1        ad 	symstrindex = -1;
    365  1.1        ad 	for (i = 0; i < hdr->e_shnum; i++) {
    366  1.1        ad 		switch (shdr[i].sh_type) {
    367  1.1        ad 		case SHT_PROGBITS:
    368  1.1        ad 		case SHT_NOBITS:
    369  1.1        ad 			ko->ko_nprogtab++;
    370  1.1        ad 			break;
    371  1.1        ad 		case SHT_SYMTAB:
    372  1.1        ad 			nsym++;
    373  1.1        ad 			symtabindex = i;
    374  1.1        ad 			symstrindex = shdr[i].sh_link;
    375  1.1        ad 			break;
    376  1.1        ad 		case SHT_REL:
    377  1.1        ad 			ko->ko_nrel++;
    378  1.1        ad 			break;
    379  1.1        ad 		case SHT_RELA:
    380  1.1        ad 			ko->ko_nrela++;
    381  1.1        ad 			break;
    382  1.1        ad 		case SHT_STRTAB:
    383  1.1        ad 			break;
    384  1.1        ad 		}
    385  1.1        ad 	}
    386  1.1        ad 	if (ko->ko_nprogtab == 0) {
    387  1.1        ad 		kobj_error("file has no contents");
    388  1.1        ad 		error = ENOEXEC;
    389  1.1        ad 		goto out;
    390  1.1        ad 	}
    391  1.1        ad 	if (nsym != 1) {
    392  1.1        ad 		/* Only allow one symbol table for now */
    393  1.1        ad 		kobj_error("file has no valid symbol table");
    394  1.1        ad 		error = ENOEXEC;
    395  1.1        ad 		goto out;
    396  1.1        ad 	}
    397  1.1        ad 	if (symstrindex < 0 || symstrindex > hdr->e_shnum ||
    398  1.1        ad 	    shdr[symstrindex].sh_type != SHT_STRTAB) {
    399  1.1        ad 		kobj_error("file has invalid symbol strings");
    400  1.1        ad 		error = ENOEXEC;
    401  1.1        ad 		goto out;
    402  1.1        ad 	}
    403  1.1        ad 
    404  1.1        ad 	/*
    405  1.1        ad 	 * Allocate space for tracking the load chunks.
    406  1.1        ad 	 */
    407  1.1        ad 	if (ko->ko_nprogtab != 0) {
    408  1.1        ad 		ko->ko_progtab = kmem_zalloc(ko->ko_nprogtab *
    409  1.1        ad 		    sizeof(*ko->ko_progtab), KM_SLEEP);
    410  1.1        ad 		if (ko->ko_progtab == NULL) {
    411  1.1        ad 			error = ENOMEM;
    412  1.1        ad 			goto out;
    413  1.1        ad 		}
    414  1.1        ad 	}
    415  1.1        ad 	if (ko->ko_nrel != 0) {
    416  1.1        ad 		ko->ko_reltab = kmem_zalloc(ko->ko_nrel *
    417  1.1        ad 		    sizeof(*ko->ko_reltab), KM_SLEEP);
    418  1.1        ad 		if (ko->ko_reltab == NULL) {
    419  1.1        ad 			error = ENOMEM;
    420  1.1        ad 			goto out;
    421  1.1        ad 		}
    422  1.1        ad 	}
    423  1.1        ad 	if (ko->ko_nrela != 0) {
    424  1.1        ad 		ko->ko_relatab = kmem_zalloc(ko->ko_nrela *
    425  1.1        ad 		    sizeof(*ko->ko_relatab), KM_SLEEP);
    426  1.1        ad 		if (ko->ko_relatab == NULL) {
    427  1.1        ad 			error = ENOMEM;
    428  1.1        ad 			goto out;
    429  1.1        ad 		}
    430  1.1        ad 	}
    431  1.1        ad 	if (symtabindex == -1) {
    432  1.1        ad 		kobj_error("lost symbol table index");
    433  1.1        ad 		goto out;
    434  1.1        ad 	}
    435  1.1        ad 
    436  1.1        ad 	/*
    437  1.1        ad 	 * Allocate space for and load the symbol table.
    438  1.1        ad 	 */
    439  1.1        ad 	ko->ko_symcnt = shdr[symtabindex].sh_size / sizeof(Elf_Sym);
    440  1.1        ad 	if (ko->ko_symcnt == 0) {
    441  1.1        ad 		kobj_error("no symbol table");
    442  1.1        ad 		goto out;
    443  1.1        ad 	}
    444  1.1        ad 	ko->ko_symtab = kmem_alloc(ko->ko_symcnt * sizeof(Elf_Sym), KM_SLEEP);
    445  1.1        ad 	if (ko->ko_symtab == NULL) {
    446  1.1        ad 		error = ENOMEM;
    447  1.1        ad 		goto out;
    448  1.1        ad 	}
    449  1.3        ad 	error = kobj_read(ko, ko->ko_symtab, shdr[symtabindex].sh_size,
    450  1.1        ad 	    shdr[symtabindex].sh_offset);
    451  1.1        ad 	if (error != 0) {
    452  1.1        ad 		goto out;
    453  1.1        ad 	}
    454  1.1        ad 
    455  1.1        ad 	/*
    456  1.1        ad 	 * Allocate space for and load the symbol strings.
    457  1.1        ad 	 */
    458  1.1        ad 	ko->ko_strtabsz = shdr[symstrindex].sh_size;
    459  1.1        ad 	if (ko->ko_strtabsz == 0) {
    460  1.1        ad 		kobj_error("no symbol strings");
    461  1.1        ad 		goto out;
    462  1.1        ad 	}
    463  1.1        ad 	ko->ko_strtab = kmem_alloc(ko->ko_strtabsz, KM_SLEEP);
    464  1.1        ad 	if (ko->ko_strtab == NULL) {
    465  1.1        ad 		error = ENOMEM;
    466  1.1        ad 		goto out;
    467  1.1        ad 	}
    468  1.3        ad 	error = kobj_read(ko, ko->ko_strtab, shdr[symstrindex].sh_size,
    469  1.1        ad 	    shdr[symstrindex].sh_offset);
    470  1.1        ad 	if (error != 0) {
    471  1.1        ad 		goto out;
    472  1.1        ad 	}
    473  1.1        ad 
    474  1.1        ad 	/*
    475  1.1        ad 	 * Size up code/data(progbits) and bss(nobits).
    476  1.1        ad 	 */
    477  1.1        ad 	alignmask = 0;
    478  1.1        ad 	for (i = 0; i < hdr->e_shnum; i++) {
    479  1.1        ad 		switch (shdr[i].sh_type) {
    480  1.1        ad 		case SHT_PROGBITS:
    481  1.1        ad 		case SHT_NOBITS:
    482  1.1        ad 			alignmask = shdr[i].sh_addralign - 1;
    483  1.1        ad 			mapsize += alignmask;
    484  1.1        ad 			mapsize &= ~alignmask;
    485  1.1        ad 			mapsize += shdr[i].sh_size;
    486  1.1        ad 			break;
    487  1.1        ad 		}
    488  1.1        ad 	}
    489  1.1        ad 
    490  1.1        ad 	/*
    491  1.1        ad 	 * We know how much space we need for the text/data/bss/etc.
    492  1.1        ad 	 * This stuff needs to be in a single chunk so that profiling etc
    493  1.1        ad 	 * can get the bounds and gdb can associate offsets with modules.
    494  1.1        ad 	 */
    495  1.1        ad 	if (mapsize == 0) {
    496  1.1        ad 		kobj_error("no text/data/bss");
    497  1.1        ad 		goto out;
    498  1.1        ad 	}
    499  1.1        ad 	mapbase = uvm_km_alloc(lkm_map, round_page(mapsize), 0,
    500  1.1        ad 	    UVM_KMF_WIRED | UVM_KMF_EXEC);
    501  1.1        ad 	if (mapbase == 0) {
    502  1.1        ad 		error = ENOMEM;
    503  1.1        ad 		goto out;
    504  1.1        ad 	}
    505  1.1        ad 	ko->ko_address = mapbase;
    506  1.1        ad 	ko->ko_size = mapsize;
    507  1.2        ad 	ko->ko_entry = mapbase + hdr->e_entry;
    508  1.1        ad 
    509  1.1        ad 	/*
    510  1.1        ad 	 * Now load code/data(progbits), zero bss(nobits), allocate space
    511  1.1        ad 	 * for and load relocs
    512  1.1        ad 	 */
    513  1.1        ad 	pb = 0;
    514  1.1        ad 	rl = 0;
    515  1.1        ad 	ra = 0;
    516  1.1        ad 	alignmask = 0;
    517  1.1        ad 	for (i = 0; i < hdr->e_shnum; i++) {
    518  1.1        ad 		switch (shdr[i].sh_type) {
    519  1.1        ad 		case SHT_PROGBITS:
    520  1.1        ad 		case SHT_NOBITS:
    521  1.1        ad 			alignmask = shdr[i].sh_addralign - 1;
    522  1.1        ad 			mapbase += alignmask;
    523  1.1        ad 			mapbase &= ~alignmask;
    524  1.1        ad 			ko->ko_progtab[pb].addr = (void *)mapbase;
    525  1.1        ad 			if (shdr[i].sh_type == SHT_PROGBITS) {
    526  1.1        ad 				ko->ko_progtab[pb].name = "<<PROGBITS>>";
    527  1.3        ad 				error = kobj_read(ko,
    528  1.1        ad 				    ko->ko_progtab[pb].addr, shdr[i].sh_size,
    529  1.1        ad 				    shdr[i].sh_offset);
    530  1.1        ad 				if (error != 0) {
    531  1.1        ad 					goto out;
    532  1.1        ad 				}
    533  1.1        ad 			} else {
    534  1.1        ad 				ko->ko_progtab[pb].name = "<<NOBITS>>";
    535  1.1        ad 				memset(ko->ko_progtab[pb].addr, 0,
    536  1.1        ad 				    shdr[i].sh_size);
    537  1.1        ad 			}
    538  1.1        ad 			ko->ko_progtab[pb].size = shdr[i].sh_size;
    539  1.1        ad 			ko->ko_progtab[pb].sec = i;
    540  1.1        ad 
    541  1.1        ad 			/* Update all symbol values with the offset. */
    542  1.1        ad 			for (j = 0; j < ko->ko_symcnt; j++) {
    543  1.1        ad 				es = &ko->ko_symtab[j];
    544  1.1        ad 				if (es->st_shndx != i) {
    545  1.1        ad 					continue;
    546  1.1        ad 				}
    547  1.1        ad 				es->st_value +=
    548  1.1        ad 				    (Elf_Addr)ko->ko_progtab[pb].addr;
    549  1.1        ad 			}
    550  1.1        ad 			mapbase += shdr[i].sh_size;
    551  1.1        ad 			pb++;
    552  1.1        ad 			break;
    553  1.1        ad 		case SHT_REL:
    554  1.1        ad 			ko->ko_reltab[rl].size = shdr[i].sh_size;
    555  1.1        ad 			ko->ko_reltab[rl].size -=
    556  1.1        ad 			    shdr[i].sh_size % sizeof(Elf_Rel);
    557  1.1        ad 			if (ko->ko_reltab[rl].size != 0) {
    558  1.1        ad 				ko->ko_reltab[rl].rel =
    559  1.1        ad 				    kmem_alloc(ko->ko_reltab[rl].size,
    560  1.1        ad 				    KM_SLEEP);
    561  1.1        ad 				ko->ko_reltab[rl].nrel =
    562  1.1        ad 				    shdr[i].sh_size / sizeof(Elf_Rel);
    563  1.1        ad 				ko->ko_reltab[rl].sec = shdr[i].sh_info;
    564  1.3        ad 				error = kobj_read(ko,
    565  1.1        ad 				    ko->ko_reltab[rl].rel,
    566  1.1        ad 				    ko->ko_reltab[rl].size,
    567  1.1        ad 				    shdr[i].sh_offset);
    568  1.1        ad 				if (error != 0) {
    569  1.1        ad 					goto out;
    570  1.1        ad 				}
    571  1.1        ad 			}
    572  1.1        ad 			rl++;
    573  1.1        ad 			break;
    574  1.1        ad 		case SHT_RELA:
    575  1.1        ad 			ko->ko_relatab[ra].size = shdr[i].sh_size;
    576  1.1        ad 			ko->ko_relatab[ra].size -=
    577  1.1        ad 			    shdr[i].sh_size % sizeof(Elf_Rela);
    578  1.1        ad 			if (ko->ko_relatab[ra].size != 0) {
    579  1.1        ad 				ko->ko_relatab[ra].rela =
    580  1.1        ad 				    kmem_alloc(ko->ko_relatab[ra].size,
    581  1.1        ad 				    KM_SLEEP);
    582  1.1        ad 				ko->ko_relatab[ra].nrela =
    583  1.1        ad 				    shdr[i].sh_size / sizeof(Elf_Rela);
    584  1.1        ad 				ko->ko_relatab[ra].sec = shdr[i].sh_info;
    585  1.3        ad 				error = kobj_read(ko,
    586  1.1        ad 				    ko->ko_relatab[ra].rela,
    587  1.1        ad 				    shdr[i].sh_size,
    588  1.1        ad 				    shdr[i].sh_offset);
    589  1.1        ad 				if (error != 0) {
    590  1.1        ad 					goto out;
    591  1.1        ad 				}
    592  1.1        ad 			}
    593  1.1        ad 			ra++;
    594  1.1        ad 			break;
    595  1.1        ad 		}
    596  1.1        ad 	}
    597  1.1        ad 	if (pb != ko->ko_nprogtab) {
    598  1.1        ad 		panic("lost progbits");
    599  1.1        ad 	}
    600  1.1        ad 	if (rl != ko->ko_nrel) {
    601  1.1        ad 		panic("lost rel");
    602  1.1        ad 	}
    603  1.1        ad 	if (ra != ko->ko_nrela) {
    604  1.1        ad 		panic("lost rela");
    605  1.1        ad 	}
    606  1.1        ad 	if (mapbase != ko->ko_address + mapsize) {
    607  1.1        ad 		panic("mapbase 0x%lx != address %lx + mapsize 0x%lx (0x%lx)\n",
    608  1.1        ad 		    (long)mapbase, (long)ko->ko_address, (long)mapsize,
    609  1.1        ad 		    (long)ko->ko_address + mapsize);
    610  1.1        ad 	}
    611  1.1        ad 
    612  1.1        ad 	/*
    613  1.1        ad 	 * Perform relocations.  Done before registering with ksyms,
    614  1.1        ad 	 * which will pack our symbol table.
    615  1.1        ad 	 */
    616  1.1        ad 	error = kobj_relocate(ko);
    617  1.1        ad 	if (error != 0) {
    618  1.1        ad 		goto out;
    619  1.1        ad 	}
    620  1.1        ad 
    621  1.1        ad 	/*
    622  1.1        ad 	 * Notify MD code that a module has been loaded.
    623  1.1        ad 	 */
    624  1.1        ad 	error = kobj_machdep(ko, (void *)ko->ko_address, ko->ko_size, true);
    625  1.1        ad 	if (error != 0) {
    626  1.1        ad 		kobj_error("machine dependent init failed");
    627  1.1        ad 		goto out;
    628  1.1        ad 	}
    629  1.3        ad 	ko->ko_loaded = true;
    630  1.1        ad  out:
    631  1.1        ad 	kobj_release_mem(ko);
    632  1.3        ad 	if (hdr != NULL) {
    633  1.1        ad 		kmem_free(hdr, sizeof(*hdr));
    634  1.1        ad 	}
    635  1.1        ad 
    636  1.1        ad 	return error;
    637  1.1        ad }
    638  1.1        ad 
    639  1.1        ad /*
    640  1.1        ad  * kobj_unload:
    641  1.1        ad  *
    642  1.1        ad  *	Unload an object previously loaded by kobj_load().
    643  1.1        ad  */
    644  1.1        ad void
    645  1.1        ad kobj_unload(kobj_t ko)
    646  1.1        ad {
    647  1.1        ad 	int error;
    648  1.1        ad 
    649  1.1        ad 	if (ko->ko_address != 0) {
    650  1.1        ad 		uvm_km_free(lkm_map, ko->ko_address, round_page(ko->ko_size),
    651  1.1        ad 		    UVM_KMF_WIRED);
    652  1.1        ad 	}
    653  1.1        ad 	if (ko->ko_ksyms == true) {
    654  1.1        ad 		ksyms_delsymtab(ko->ko_name);
    655  1.1        ad 	}
    656  1.1        ad 	if (ko->ko_symtab != NULL) {
    657  1.1        ad 		kmem_free(ko->ko_symtab, ko->ko_symcnt * sizeof(Elf_Sym));
    658  1.1        ad 	}
    659  1.1        ad 	if (ko->ko_strtab != NULL) {
    660  1.1        ad 		kmem_free(ko->ko_strtab, ko->ko_strtabsz);
    661  1.1        ad 	}
    662  1.1        ad 
    663  1.1        ad 	/*
    664  1.1        ad 	 * Notify MD code that a module has been unloaded.
    665  1.1        ad 	 */
    666  1.3        ad 	if (ko->ko_loaded) {
    667  1.3        ad 		error = kobj_machdep(ko, (void *)ko->ko_address, ko->ko_size,
    668  1.3        ad 		    false);
    669  1.3        ad 		if (error != 0) {
    670  1.3        ad 			kobj_error("machine dependent deinit failed");
    671  1.3        ad 		}
    672  1.1        ad 	}
    673  1.3        ad 
    674  1.3        ad 	kmem_free(ko, sizeof(*ko));
    675  1.1        ad }
    676  1.1        ad 
    677  1.1        ad /*
    678  1.2        ad  * kobj_stat:
    679  1.2        ad  *
    680  1.2        ad  *	Return size and load address of an object.
    681  1.2        ad  */
    682  1.2        ad void
    683  1.2        ad kobj_stat(kobj_t ko, vaddr_t *address, size_t *size, uintptr_t *entry)
    684  1.2        ad {
    685  1.2        ad 
    686  1.2        ad 	if (address != NULL) {
    687  1.2        ad 		*address = ko->ko_address;
    688  1.2        ad 	}
    689  1.2        ad 	if (size != NULL) {
    690  1.2        ad 		*size = ko->ko_size;
    691  1.2        ad 	}
    692  1.2        ad 	if (entry != NULL) {
    693  1.2        ad 		*entry = ko->ko_entry;
    694  1.2        ad 	}
    695  1.2        ad }
    696  1.2        ad 
    697  1.2        ad /*
    698  1.3        ad  * kobj_set_name:
    699  1.3        ad  *
    700  1.3        ad  *	Set an object's name.  Used only for symbol table lookups.
    701  1.3        ad  *	May only be called after the module is loaded.
    702  1.3        ad  */
    703  1.6        ad int
    704  1.3        ad kobj_set_name(kobj_t ko, const char *name)
    705  1.3        ad {
    706  1.6        ad 	int error;
    707  1.3        ad 
    708  1.3        ad 	KASSERT(ko->ko_loaded);
    709  1.3        ad 
    710  1.3        ad 	strlcpy(ko->ko_name, name, sizeof(ko->ko_name));
    711  1.6        ad 
    712  1.6        ad 	/*
    713  1.6        ad 	 * Now that we know the name, register the symbol table.
    714  1.6        ad 	 */
    715  1.6        ad 	error = ksyms_addsymtab(ko->ko_name, ko->ko_symtab, ko->ko_symcnt *
    716  1.6        ad 	    sizeof(Elf_Sym), ko->ko_strtab, ko->ko_strtabsz);
    717  1.6        ad 	if (error != 0) {
    718  1.6        ad 		kobj_error("unable to register module symbol table");
    719  1.6        ad 	} else {
    720  1.6        ad 		ko->ko_ksyms = true;
    721  1.6        ad 	}
    722  1.6        ad 
    723  1.6        ad 	return error;
    724  1.3        ad }
    725  1.3        ad 
    726  1.3        ad /*
    727  1.1        ad  * kobj_release_mem:
    728  1.1        ad  *
    729  1.1        ad  *	Release object data not needed after loading.
    730  1.1        ad  */
    731  1.1        ad static void
    732  1.1        ad kobj_release_mem(kobj_t ko)
    733  1.1        ad {
    734  1.1        ad 	int i;
    735  1.1        ad 
    736  1.1        ad 	for (i = 0; i < ko->ko_nrel; i++) {
    737  1.1        ad 		if (ko->ko_reltab[i].rel) {
    738  1.1        ad 			kmem_free(ko->ko_reltab[i].rel,
    739  1.1        ad 			    ko->ko_reltab[i].size);
    740  1.1        ad 		}
    741  1.1        ad 	}
    742  1.1        ad 	for (i = 0; i < ko->ko_nrela; i++) {
    743  1.1        ad 		if (ko->ko_relatab[i].rela) {
    744  1.1        ad 			kmem_free(ko->ko_relatab[i].rela,
    745  1.1        ad 			    ko->ko_relatab[i].size);
    746  1.1        ad 		}
    747  1.1        ad 	}
    748  1.1        ad 	if (ko->ko_reltab != NULL) {
    749  1.1        ad 		kmem_free(ko->ko_reltab, ko->ko_nrel *
    750  1.1        ad 		    sizeof(*ko->ko_reltab));
    751  1.1        ad 		ko->ko_reltab = NULL;
    752  1.1        ad 		ko->ko_nrel = 0;
    753  1.1        ad 	}
    754  1.1        ad 	if (ko->ko_relatab != NULL) {
    755  1.1        ad 		kmem_free(ko->ko_relatab, ko->ko_nrela *
    756  1.1        ad 		    sizeof(*ko->ko_relatab));
    757  1.1        ad 		ko->ko_relatab = NULL;
    758  1.1        ad 		ko->ko_nrela = 0;
    759  1.1        ad 	}
    760  1.1        ad 	if (ko->ko_progtab != NULL) {
    761  1.1        ad 		kmem_free(ko->ko_progtab, ko->ko_nprogtab *
    762  1.1        ad 		    sizeof(*ko->ko_progtab));
    763  1.1        ad 		ko->ko_progtab = NULL;
    764  1.1        ad 	}
    765  1.1        ad 	if (ko->ko_shdr != NULL) {
    766  1.1        ad 		kmem_free(ko->ko_shdr, ko->ko_shdrsz);
    767  1.1        ad 		ko->ko_shdr = NULL;
    768  1.1        ad 	}
    769  1.1        ad }
    770  1.1        ad 
    771  1.1        ad /*
    772  1.1        ad  * kobj_sym_lookup:
    773  1.1        ad  *
    774  1.1        ad  *	Symbol lookup function to be used when the symbol index
    775  1.1        ad  *	is known (ie during relocation).
    776  1.1        ad  */
    777  1.1        ad uintptr_t
    778  1.1        ad kobj_sym_lookup(kobj_t ko, uintptr_t symidx)
    779  1.1        ad {
    780  1.1        ad 	const Elf_Sym *sym;
    781  1.1        ad 	const char *symbol;
    782  1.1        ad 	int error;
    783  1.1        ad 	u_long addr;
    784  1.1        ad 
    785  1.1        ad 	/* Don't even try to lookup the symbol if the index is bogus. */
    786  1.1        ad 	if (symidx >= ko->ko_symcnt)
    787  1.1        ad 		return 0;
    788  1.1        ad 
    789  1.1        ad 	sym = ko->ko_symtab + symidx;
    790  1.1        ad 
    791  1.1        ad 	/* Quick answer if there is a definition included. */
    792  1.1        ad 	if (sym->st_shndx != SHN_UNDEF) {
    793  1.1        ad 		return sym->st_value;
    794  1.1        ad 	}
    795  1.1        ad 
    796  1.1        ad 	/* If we get here, then it is undefined and needs a lookup. */
    797  1.1        ad 	switch (ELF_ST_BIND(sym->st_info)) {
    798  1.1        ad 	case STB_LOCAL:
    799  1.1        ad 		/* Local, but undefined? huh? */
    800  1.1        ad 		kobj_error("local symbol undefined");
    801  1.1        ad 		return 0;
    802  1.1        ad 
    803  1.1        ad 	case STB_GLOBAL:
    804  1.1        ad 		/* Relative to Data or Function name */
    805  1.1        ad 		symbol = ko->ko_strtab + sym->st_name;
    806  1.1        ad 
    807  1.1        ad 		/* Force a lookup failure if the symbol name is bogus. */
    808  1.1        ad 		if (*symbol == 0) {
    809  1.1        ad 			kobj_error("bad symbol name");
    810  1.1        ad 			return 0;
    811  1.1        ad 		}
    812  1.1        ad 
    813  1.1        ad 		error = ksyms_getval(NULL, symbol, &addr, KSYMS_ANY);
    814  1.1        ad 		if (error != 0) {
    815  1.1        ad 			kobj_error("symbol %s undefined", symbol);
    816  1.1        ad 			return (uintptr_t)0;
    817  1.1        ad 		}
    818  1.1        ad 		return (uintptr_t)addr;
    819  1.1        ad 
    820  1.1        ad 	case STB_WEAK:
    821  1.1        ad 		kobj_error("weak symbols not supported\n");
    822  1.1        ad 		return 0;
    823  1.1        ad 
    824  1.1        ad 	default:
    825  1.1        ad 		return 0;
    826  1.1        ad 	}
    827  1.1        ad }
    828  1.1        ad 
    829  1.1        ad /*
    830  1.1        ad  * kobj_findbase:
    831  1.1        ad  *
    832  1.1        ad  *	Return base address of the given section.
    833  1.1        ad  */
    834  1.1        ad static uintptr_t
    835  1.1        ad kobj_findbase(kobj_t ko, int sec)
    836  1.1        ad {
    837  1.1        ad 	int i;
    838  1.1        ad 
    839  1.1        ad 	for (i = 0; i < ko->ko_nprogtab; i++) {
    840  1.1        ad 		if (sec == ko->ko_progtab[i].sec) {
    841  1.1        ad 			return (uintptr_t)ko->ko_progtab[i].addr;
    842  1.1        ad 		}
    843  1.1        ad 	}
    844  1.1        ad 	return 0;
    845  1.1        ad }
    846  1.1        ad 
    847  1.1        ad /*
    848  1.1        ad  * kobj_relocate:
    849  1.1        ad  *
    850  1.1        ad  *	Resolve all relocations for the loaded object.
    851  1.1        ad  */
    852  1.1        ad static int
    853  1.1        ad kobj_relocate(kobj_t ko)
    854  1.1        ad {
    855  1.1        ad 	const Elf_Rel *rellim;
    856  1.1        ad 	const Elf_Rel *rel;
    857  1.1        ad 	const Elf_Rela *relalim;
    858  1.1        ad 	const Elf_Rela *rela;
    859  1.1        ad 	const Elf_Sym *sym;
    860  1.1        ad 	uintptr_t base;
    861  1.1        ad 	int i;
    862  1.1        ad 	uintptr_t symidx;
    863  1.1        ad 
    864  1.1        ad 	/*
    865  1.1        ad 	 * Perform relocations without addend if there are any.
    866  1.1        ad 	 */
    867  1.1        ad 	for (i = 0; i < ko->ko_nrel; i++) {
    868  1.1        ad 		rel = ko->ko_reltab[i].rel;
    869  1.1        ad 		if (rel == NULL) {
    870  1.1        ad 			continue;
    871  1.1        ad 		}
    872  1.1        ad 		rellim = rel + ko->ko_reltab[i].nrel;
    873  1.1        ad 		base = kobj_findbase(ko, ko->ko_reltab[i].sec);
    874  1.1        ad 		if (base == 0) {
    875  1.1        ad 			panic("lost base for e_reltab");
    876  1.1        ad 		}
    877  1.1        ad 		for (; rel < rellim; rel++) {
    878  1.1        ad 			symidx = ELF_R_SYM(rel->r_info);
    879  1.1        ad 			if (symidx >= ko->ko_symcnt) {
    880  1.1        ad 				continue;
    881  1.1        ad 			}
    882  1.1        ad 			sym = ko->ko_symtab + symidx;
    883  1.1        ad 			if (ELF_ST_BIND(sym->st_info) == STB_LOCAL) {
    884  1.1        ad 				kobj_reloc(ko, base, rel, false, true);
    885  1.1        ad 				continue;
    886  1.1        ad 			}
    887  1.1        ad 			if (kobj_reloc(ko, base, rel, false, false)) {
    888  1.1        ad 				return ENOENT;
    889  1.1        ad 			}
    890  1.1        ad 		}
    891  1.1        ad 	}
    892  1.1        ad 
    893  1.1        ad 	/*
    894  1.1        ad 	 * Perform relocations with addend if there are any.
    895  1.1        ad 	 */
    896  1.1        ad 	for (i = 0; i < ko->ko_nrela; i++) {
    897  1.1        ad 		rela = ko->ko_relatab[i].rela;
    898  1.1        ad 		if (rela == NULL) {
    899  1.1        ad 			continue;
    900  1.1        ad 		}
    901  1.1        ad 		relalim = rela + ko->ko_relatab[i].nrela;
    902  1.1        ad 		base = kobj_findbase(ko, ko->ko_relatab[i].sec);
    903  1.1        ad 		if (base == 0) {
    904  1.1        ad 			panic("lost base for e_relatab");
    905  1.1        ad 		}
    906  1.1        ad 		for (; rela < relalim; rela++) {
    907  1.1        ad 			symidx = ELF_R_SYM(rela->r_info);
    908  1.1        ad 			if (symidx >= ko->ko_symcnt) {
    909  1.1        ad 				continue;
    910  1.1        ad 			}
    911  1.1        ad 			sym = ko->ko_symtab + symidx;
    912  1.1        ad 			if (ELF_ST_BIND(sym->st_info) == STB_LOCAL) {
    913  1.1        ad 				kobj_reloc(ko, base, rela, true, true);
    914  1.1        ad 				continue;
    915  1.1        ad 			}
    916  1.1        ad 			if (kobj_reloc(ko, base, rela, true, false)) {
    917  1.1        ad 				return ENOENT;
    918  1.1        ad 			}
    919  1.1        ad 		}
    920  1.1        ad 	}
    921  1.1        ad 
    922  1.1        ad 	return 0;
    923  1.1        ad }
    924  1.1        ad 
    925  1.1        ad /*
    926  1.1        ad  * kobj_error:
    927  1.1        ad  *
    928  1.1        ad  *	Utility function: log an error.
    929  1.1        ad  */
    930  1.1        ad static void
    931  1.1        ad kobj_error(const char *fmt, ...)
    932  1.1        ad {
    933  1.1        ad 	va_list ap;
    934  1.1        ad 
    935  1.1        ad 	va_start(ap, fmt);
    936  1.1        ad 	printf("WARNING: linker error: ");
    937  1.1        ad 	vprintf(fmt, ap);
    938  1.1        ad 	printf("\n");
    939  1.1        ad 	va_end(ap);
    940  1.1        ad }
    941  1.1        ad 
    942  1.1        ad /*
    943  1.1        ad  * kobj_read:
    944  1.1        ad  *
    945  1.1        ad  *	Utility function: read from the object.
    946  1.1        ad  */
    947  1.1        ad static int
    948  1.3        ad kobj_read(kobj_t ko, void *base, size_t size, off_t off)
    949  1.1        ad {
    950  1.1        ad 	size_t resid;
    951  1.1        ad 	int error;
    952  1.1        ad 
    953  1.3        ad 	KASSERT(ko->ko_source != NULL);
    954  1.3        ad 
    955  1.3        ad 	switch (ko->ko_type) {
    956  1.3        ad 	case KT_VNODE:
    957  1.3        ad 		error = vn_rdwr(UIO_READ, ko->ko_source, base, size, off,
    958  1.3        ad 		    UIO_SYSSPACE, IO_NODELOCKED, curlwp->l_cred, &resid,
    959  1.3        ad 		    curlwp);
    960  1.3        ad 		if (error == 0 && resid != 0) {
    961  1.3        ad 			error = EINVAL;
    962  1.3        ad 		}
    963  1.3        ad 		break;
    964  1.3        ad 	case KT_MEMORY:
    965  1.4  jmcneill 		if (ko->ko_memsize != -1 && off + size > ko->ko_memsize) {
    966  1.3        ad 			kobj_error("kobj_read: preloaded object short");
    967  1.3        ad 			error = EINVAL;
    968  1.3        ad 		} else {
    969  1.3        ad 			memcpy(base, (uint8_t *)ko->ko_source + off, size);
    970  1.3        ad 			error = 0;
    971  1.3        ad 		}
    972  1.3        ad 		break;
    973  1.3        ad 	default:
    974  1.3        ad 		panic("kobj_read: invalid type");
    975  1.3        ad 	}
    976  1.3        ad 
    977  1.1        ad 	return error;
    978  1.1        ad }
    979  1.5        ad 
    980  1.5        ad #else	/* MODULAR */
    981  1.5        ad 
    982  1.5        ad int
    983  1.7        ad kobj_open_file(kobj_t *kop, const char *name)
    984  1.5        ad {
    985  1.5        ad 
    986  1.5        ad 	return ENOSYS;
    987  1.5        ad }
    988  1.5        ad 
    989  1.5        ad int
    990  1.7        ad kobj_open_mem(kobj_t *kop, void *base, ssize_t size)
    991  1.5        ad {
    992  1.5        ad 
    993  1.5        ad 	return ENOSYS;
    994  1.5        ad }
    995  1.5        ad 
    996  1.5        ad void
    997  1.5        ad kobj_close(kobj_t ko)
    998  1.5        ad {
    999  1.5        ad 
   1000  1.5        ad 	panic("not modular");
   1001  1.5        ad }
   1002  1.5        ad 
   1003  1.5        ad int
   1004  1.5        ad kobj_load(kobj_t ko)
   1005  1.5        ad {
   1006  1.5        ad 
   1007  1.5        ad 	panic("not modular");
   1008  1.5        ad }
   1009  1.5        ad 
   1010  1.5        ad void
   1011  1.5        ad kobj_unload(kobj_t ko)
   1012  1.5        ad {
   1013  1.5        ad 
   1014  1.5        ad 	panic("not modular");
   1015  1.5        ad }
   1016  1.5        ad 
   1017  1.5        ad void
   1018  1.5        ad kobj_stat(kobj_t ko, vaddr_t *base, size_t *size, uintptr_t *entry)
   1019  1.5        ad {
   1020  1.5        ad 
   1021  1.5        ad 	panic("not modular");
   1022  1.5        ad }
   1023  1.5        ad 
   1024  1.7        ad int
   1025  1.5        ad kobj_set_name(kobj_t ko, const char *name)
   1026  1.5        ad {
   1027  1.5        ad 
   1028  1.5        ad 	panic("not modular");
   1029  1.5        ad }
   1030  1.5        ad 
   1031  1.5        ad #endif	/* MODULAR */
   1032