subr_kobj.c revision 1.10.4.1 1 /* $NetBSD: subr_kobj.c,v 1.10.4.1 2008/05/16 02:25:26 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 /*-
30 * Copyright (c) 1998-2000 Doug Rabson
31 * Copyright (c) 2004 Peter Wemm
32 * All rights reserved.
33 *
34 * Redistribution and use in source and binary forms, with or without
35 * modification, are permitted provided that the following conditions
36 * are met:
37 * 1. Redistributions of source code must retain the above copyright
38 * notice, this list of conditions and the following disclaimer.
39 * 2. Redistributions in binary form must reproduce the above copyright
40 * notice, this list of conditions and the following disclaimer in the
41 * documentation and/or other materials provided with the distribution.
42 *
43 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
44 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
45 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
46 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
47 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
48 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
49 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
50 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
51 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
52 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
53 * SUCH DAMAGE.
54 */
55
56 /*
57 * Kernel loader for ELF objects.
58 *
59 * TODO: adjust kmem_alloc() calls to avoid needless fragmentation.
60 */
61
62 #include "opt_modular.h"
63
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: subr_kobj.c,v 1.10.4.1 2008/05/16 02:25:26 yamt Exp $");
66
67 #define ELFSIZE ARCH_ELFSIZE
68
69 #include <sys/systm.h>
70 #include <sys/kobj.h>
71 #include <sys/errno.h>
72
73 #ifdef MODULAR
74
75 #include <sys/param.h>
76 #include <sys/kernel.h>
77 #include <sys/kmem.h>
78 #include <sys/proc.h>
79 #include <sys/namei.h>
80 #include <sys/vnode.h>
81 #include <sys/fcntl.h>
82 #include <sys/ksyms.h>
83 #include <sys/lkm.h>
84 #include <sys/exec.h>
85 #include <sys/exec_elf.h>
86
87 #include <machine/stdarg.h>
88
89 #include <uvm/uvm_extern.h>
90
91
92 typedef struct {
93 void *addr;
94 Elf_Off size;
95 int flags;
96 int sec; /* Original section */
97 const char *name;
98 } progent_t;
99
100 typedef struct {
101 Elf_Rel *rel;
102 int nrel;
103 int sec;
104 size_t size;
105 } relent_t;
106
107 typedef struct {
108 Elf_Rela *rela;
109 int nrela;
110 int sec;
111 size_t size;
112 } relaent_t;
113
114 typedef enum kobjtype {
115 KT_UNSET,
116 KT_VNODE,
117 KT_MEMORY
118 } kobjtype_t;
119
120 struct kobj {
121 char ko_name[MAXLKMNAME];
122 kobjtype_t ko_type;
123 void *ko_source;
124 ssize_t ko_memsize;
125 vaddr_t ko_address; /* Relocation address */
126 Elf_Shdr *ko_shdr;
127 progent_t *ko_progtab;
128 relaent_t *ko_relatab;
129 relent_t *ko_reltab;
130 Elf_Sym *ko_symtab; /* Symbol table */
131 char *ko_strtab; /* String table */
132 char *ko_shstrtab; /* Section name string table */
133 size_t ko_size; /* Size of text/data/bss */
134 size_t ko_symcnt; /* Number of symbols */
135 size_t ko_strtabsz; /* Number of bytes in string table */
136 size_t ko_shstrtabsz; /* Number of bytes in scn str table */
137 size_t ko_shdrsz;
138 int ko_nrel;
139 int ko_nrela;
140 int ko_nprogtab;
141 bool ko_ksyms;
142 bool ko_loaded;
143 };
144
145 static int kobj_relocate(kobj_t);
146 static void kobj_error(const char *, ...);
147 static int kobj_read(kobj_t, void **, size_t, off_t);
148 static int kobj_read_bits(kobj_t, void *, size_t, off_t);
149 static void kobj_release_mem(kobj_t);
150 static void kobj_free(kobj_t, void *, size_t);
151
152 extern struct vm_map *lkm_map;
153 static const char *kobj_path = "/modules"; /* XXX ??? */
154
155 /*
156 * kobj_open_file:
157 *
158 * Open an object located in the file system.
159 */
160 int
161 kobj_open_file(kobj_t *kop, const char *filename)
162 {
163 struct nameidata nd;
164 kauth_cred_t cred;
165 char *path;
166 int error;
167 kobj_t ko;
168
169 cred = kauth_cred_get();
170
171 ko = kmem_zalloc(sizeof(*ko), KM_SLEEP);
172 if (ko == NULL) {
173 return ENOMEM;
174 }
175
176 /* XXX where to look? */
177 NDINIT(&nd, LOOKUP, FOLLOW, UIO_SYSSPACE, filename);
178 error = vn_open(&nd, FREAD, 0);
179 if (error != 0) {
180 if (error != ENOENT) {
181 goto out;
182 }
183 path = PNBUF_GET();
184 snprintf(path, MAXPATHLEN - 1, "%s/%s", kobj_path,
185 filename);
186 NDINIT(&nd, LOOKUP, FOLLOW, UIO_SYSSPACE, path);
187 error = vn_open(&nd, FREAD, 0);
188 if (error != 0) {
189 strlcat(path, ".o", MAXPATHLEN);
190 NDINIT(&nd, LOOKUP, FOLLOW, UIO_SYSSPACE, path);
191 error = vn_open(&nd, FREAD, 0);
192 }
193 PNBUF_PUT(path);
194 if (error != 0) {
195 goto out;
196 }
197 }
198
199 out:
200 if (error != 0) {
201 kmem_free(ko, sizeof(*ko));
202 } else {
203 ko->ko_type = KT_VNODE;
204 ko->ko_source = nd.ni_vp;
205 *kop = ko;
206 }
207 return error;
208 }
209
210 /*
211 * kobj_open_mem:
212 *
213 * Open a pre-loaded object already resident in memory. If size
214 * is not -1, the complete size of the object is known.
215 */
216 int
217 kobj_open_mem(kobj_t *kop, void *base, ssize_t size)
218 {
219 kobj_t ko;
220
221 ko = kmem_zalloc(sizeof(*ko), KM_SLEEP);
222 if (ko == NULL) {
223 return ENOMEM;
224 }
225
226 ko->ko_type = KT_MEMORY;
227 ko->ko_source = base;
228 ko->ko_memsize = size;
229 *kop = ko;
230
231 return 0;
232 }
233
234 /*
235 * kobj_close:
236 *
237 * Close an open ELF object. If the object was not successfully
238 * loaded, it will be destroyed.
239 */
240 void
241 kobj_close(kobj_t ko)
242 {
243
244 KASSERT(ko->ko_source != NULL);
245
246 switch (ko->ko_type) {
247 case KT_VNODE:
248 VOP_UNLOCK(ko->ko_source, 0);
249 vn_close(ko->ko_source, FREAD, kauth_cred_get());
250 break;
251 case KT_MEMORY:
252 /* nothing */
253 break;
254 default:
255 panic("kobj_close: unknown type");
256 break;
257 }
258
259 ko->ko_source = NULL;
260
261 /* If the object hasn't been loaded, then destroy it. */
262 if (!ko->ko_loaded) {
263 kobj_unload(ko);
264 }
265 }
266
267 /*
268 * kobj_load:
269 *
270 * Load an ELF object from the file system and link into the
271 * running kernel image.
272 */
273 int
274 kobj_load(kobj_t ko)
275 {
276 Elf_Ehdr *hdr;
277 Elf_Shdr *shdr;
278 Elf_Sym *es;
279 vaddr_t mapbase;
280 size_t mapsize;
281 int error;
282 int symtabindex;
283 int symstrindex;
284 int nsym;
285 int pb, rl, ra;
286 int alignmask;
287 int i, j;
288 void *addr;
289
290 KASSERT(ko->ko_type != KT_UNSET);
291 KASSERT(ko->ko_source != NULL);
292
293 shdr = NULL;
294 mapsize = 0;
295 error = 0;
296 hdr = NULL;
297
298 /*
299 * Read the elf header from the file.
300 */
301 error = kobj_read(ko, (void **)&hdr, sizeof(*hdr), 0);
302 if (error != 0)
303 goto out;
304 if (memcmp(hdr->e_ident, ELFMAG, SELFMAG) != 0) {
305 kobj_error("not an ELF object");
306 error = ENOEXEC;
307 goto out;
308 }
309
310 if (hdr->e_ident[EI_VERSION] != EV_CURRENT ||
311 hdr->e_version != EV_CURRENT) {
312 kobj_error("unsupported file version");
313 error = ENOEXEC;
314 goto out;
315 }
316 if (hdr->e_type != ET_REL) {
317 kobj_error("unsupported file type");
318 error = ENOEXEC;
319 goto out;
320 }
321 switch (hdr->e_machine) {
322 #if ELFSIZE == 32
323 ELF32_MACHDEP_ID_CASES
324 #else
325 ELF64_MACHDEP_ID_CASES
326 #endif
327 default:
328 kobj_error("unsupported machine");
329 error = ENOEXEC;
330 goto out;
331 }
332
333 ko->ko_nprogtab = 0;
334 ko->ko_shdr = 0;
335 ko->ko_nrel = 0;
336 ko->ko_nrela = 0;
337
338 /*
339 * Allocate and read in the section header.
340 */
341 ko->ko_shdrsz = hdr->e_shnum * hdr->e_shentsize;
342 if (ko->ko_shdrsz == 0 || hdr->e_shoff == 0 ||
343 hdr->e_shentsize != sizeof(Elf_Shdr)) {
344 error = ENOEXEC;
345 goto out;
346 }
347 error = kobj_read(ko, (void **)&shdr, ko->ko_shdrsz, hdr->e_shoff);
348 if (error != 0) {
349 goto out;
350 }
351 ko->ko_shdr = shdr;
352
353 /*
354 * Scan the section header for information and table sizing.
355 */
356 nsym = 0;
357 symtabindex = -1;
358 symstrindex = -1;
359 for (i = 0; i < hdr->e_shnum; i++) {
360 switch (shdr[i].sh_type) {
361 case SHT_PROGBITS:
362 case SHT_NOBITS:
363 ko->ko_nprogtab++;
364 break;
365 case SHT_SYMTAB:
366 nsym++;
367 symtabindex = i;
368 symstrindex = shdr[i].sh_link;
369 break;
370 case SHT_REL:
371 ko->ko_nrel++;
372 break;
373 case SHT_RELA:
374 ko->ko_nrela++;
375 break;
376 case SHT_STRTAB:
377 break;
378 }
379 }
380 if (ko->ko_nprogtab == 0) {
381 kobj_error("file has no contents");
382 error = ENOEXEC;
383 goto out;
384 }
385 if (nsym != 1) {
386 /* Only allow one symbol table for now */
387 kobj_error("file has no valid symbol table");
388 error = ENOEXEC;
389 goto out;
390 }
391 if (symstrindex < 0 || symstrindex > hdr->e_shnum ||
392 shdr[symstrindex].sh_type != SHT_STRTAB) {
393 kobj_error("file has invalid symbol strings");
394 error = ENOEXEC;
395 goto out;
396 }
397
398 /*
399 * Allocate space for tracking the load chunks.
400 */
401 if (ko->ko_nprogtab != 0) {
402 ko->ko_progtab = kmem_zalloc(ko->ko_nprogtab *
403 sizeof(*ko->ko_progtab), KM_SLEEP);
404 if (ko->ko_progtab == NULL) {
405 error = ENOMEM;
406 goto out;
407 }
408 }
409 if (ko->ko_nrel != 0) {
410 ko->ko_reltab = kmem_zalloc(ko->ko_nrel *
411 sizeof(*ko->ko_reltab), KM_SLEEP);
412 if (ko->ko_reltab == NULL) {
413 error = ENOMEM;
414 goto out;
415 }
416 }
417 if (ko->ko_nrela != 0) {
418 ko->ko_relatab = kmem_zalloc(ko->ko_nrela *
419 sizeof(*ko->ko_relatab), KM_SLEEP);
420 if (ko->ko_relatab == NULL) {
421 error = ENOMEM;
422 goto out;
423 }
424 }
425 if (symtabindex == -1) {
426 kobj_error("lost symbol table index");
427 goto out;
428 }
429
430 /*
431 * Allocate space for and load the symbol table.
432 */
433 ko->ko_symcnt = shdr[symtabindex].sh_size / sizeof(Elf_Sym);
434 if (ko->ko_symcnt == 0) {
435 kobj_error("no symbol table");
436 goto out;
437 }
438 error = kobj_read(ko, (void **)&ko->ko_symtab,
439 ko->ko_symcnt * sizeof(Elf_Sym),
440 shdr[symtabindex].sh_offset);
441 if (error != 0) {
442 goto out;
443 }
444
445 /*
446 * Allocate space for and load the symbol strings.
447 */
448 ko->ko_strtabsz = shdr[symstrindex].sh_size;
449 if (ko->ko_strtabsz == 0) {
450 kobj_error("no symbol strings");
451 goto out;
452 }
453 error = kobj_read(ko, (void *)&ko->ko_strtab, ko->ko_strtabsz,
454 shdr[symstrindex].sh_offset);
455 if (error != 0) {
456 goto out;
457 }
458
459 /*
460 * Do we have a string table for the section names?
461 */
462 if (hdr->e_shstrndx != 0 && shdr[hdr->e_shstrndx].sh_size != 0 &&
463 shdr[hdr->e_shstrndx].sh_type == SHT_STRTAB) {
464 ko->ko_shstrtabsz = shdr[hdr->e_shstrndx].sh_size;
465 error = kobj_read(ko, (void *)&ko->ko_shstrtab,
466 shdr[hdr->e_shstrndx].sh_size,
467 shdr[hdr->e_shstrndx].sh_offset);
468 if (error != 0) {
469 goto out;
470 }
471 }
472
473 /*
474 * Size up code/data(progbits) and bss(nobits).
475 */
476 alignmask = 0;
477 mapbase = 0;
478 for (i = 0; i < hdr->e_shnum; i++) {
479 switch (shdr[i].sh_type) {
480 case SHT_PROGBITS:
481 case SHT_NOBITS:
482 if (mapbase == 0)
483 mapbase = shdr[i].sh_offset;
484 alignmask = shdr[i].sh_addralign - 1;
485 mapsize += alignmask;
486 mapsize &= ~alignmask;
487 mapsize += shdr[i].sh_size;
488 break;
489 }
490 }
491
492 /*
493 * We know how much space we need for the text/data/bss/etc.
494 * This stuff needs to be in a single chunk so that profiling etc
495 * can get the bounds and gdb can associate offsets with modules.
496 */
497 if (mapsize == 0) {
498 kobj_error("no text/data/bss");
499 goto out;
500 }
501 if (ko->ko_type == KT_MEMORY) {
502 mapbase += (vaddr_t)ko->ko_source;
503 } else {
504 mapbase = uvm_km_alloc(lkm_map, round_page(mapsize),
505 0, UVM_KMF_WIRED | UVM_KMF_EXEC);
506 if (mapbase == 0) {
507 error = ENOMEM;
508 goto out;
509 }
510 }
511 ko->ko_address = mapbase;
512 ko->ko_size = mapsize;
513
514 /*
515 * Now load code/data(progbits), zero bss(nobits), allocate space
516 * for and load relocs
517 */
518 pb = 0;
519 rl = 0;
520 ra = 0;
521 alignmask = 0;
522 for (i = 0; i < hdr->e_shnum; i++) {
523 switch (shdr[i].sh_type) {
524 case SHT_PROGBITS:
525 case SHT_NOBITS:
526 alignmask = shdr[i].sh_addralign - 1;
527 if (ko->ko_type == KT_MEMORY) {
528 addr = (void *)(shdr[i].sh_offset +
529 (vaddr_t)ko->ko_source);
530 if (((vaddr_t)addr & alignmask) != 0) {
531 kobj_error("section %d not aligned\n",
532 i);
533 goto out;
534 }
535 } else {
536 mapbase += alignmask;
537 mapbase &= ~alignmask;
538 addr = (void *)mapbase;
539 mapbase += shdr[i].sh_size;
540 }
541 ko->ko_progtab[pb].addr = addr;
542 if (shdr[i].sh_type == SHT_PROGBITS) {
543 ko->ko_progtab[pb].name = "<<PROGBITS>>";
544 error = kobj_read_bits(ko, addr,
545 shdr[i].sh_size, shdr[i].sh_offset);
546 if (error != 0) {
547 goto out;
548 }
549 } else if (ko->ko_type == KT_MEMORY &&
550 shdr[i].sh_size != 0) {
551 kobj_error("non-loadable BSS section in "
552 "pre-loaded module");
553 goto out;
554 } else {
555 ko->ko_progtab[pb].name = "<<NOBITS>>";
556 memset(addr, 0, shdr[i].sh_size);
557 }
558 ko->ko_progtab[pb].size = shdr[i].sh_size;
559 ko->ko_progtab[pb].sec = i;
560 if (ko->ko_shstrtab != NULL && shdr[i].sh_name != 0) {
561 ko->ko_progtab[pb].name =
562 ko->ko_shstrtab + shdr[i].sh_name;
563 }
564
565 /* Update all symbol values with the offset. */
566 for (j = 0; j < ko->ko_symcnt; j++) {
567 es = &ko->ko_symtab[j];
568 if (es->st_shndx != i) {
569 continue;
570 }
571 es->st_value += (Elf_Addr)addr;
572 }
573 pb++;
574 break;
575 case SHT_REL:
576 ko->ko_reltab[rl].size = shdr[i].sh_size;
577 ko->ko_reltab[rl].size -=
578 shdr[i].sh_size % sizeof(Elf_Rel);
579 if (ko->ko_reltab[rl].size != 0) {
580 ko->ko_reltab[rl].nrel =
581 shdr[i].sh_size / sizeof(Elf_Rel);
582 ko->ko_reltab[rl].sec = shdr[i].sh_info;
583 error = kobj_read(ko,
584 (void **)&ko->ko_reltab[rl].rel,
585 ko->ko_reltab[rl].size,
586 shdr[i].sh_offset);
587 if (error != 0) {
588 goto out;
589 }
590 }
591 rl++;
592 break;
593 case SHT_RELA:
594 ko->ko_relatab[ra].size = shdr[i].sh_size;
595 ko->ko_relatab[ra].size -=
596 shdr[i].sh_size % sizeof(Elf_Rela);
597 if (ko->ko_relatab[ra].size != 0) {
598 ko->ko_relatab[ra].nrela =
599 shdr[i].sh_size / sizeof(Elf_Rela);
600 ko->ko_relatab[ra].sec = shdr[i].sh_info;
601 error = kobj_read(ko,
602 (void **)&ko->ko_relatab[ra].rela,
603 shdr[i].sh_size,
604 shdr[i].sh_offset);
605 if (error != 0) {
606 goto out;
607 }
608 }
609 ra++;
610 break;
611 default:
612 break;
613 }
614 }
615 if (pb != ko->ko_nprogtab) {
616 panic("lost progbits");
617 }
618 if (rl != ko->ko_nrel) {
619 panic("lost rel");
620 }
621 if (ra != ko->ko_nrela) {
622 panic("lost rela");
623 }
624 if (ko->ko_type != KT_MEMORY && mapbase != ko->ko_address + mapsize) {
625 panic("mapbase 0x%lx != address %lx + mapsize %ld (0x%lx)\n",
626 (long)mapbase, (long)ko->ko_address, (long)mapsize,
627 (long)ko->ko_address + mapsize);
628 }
629
630 /*
631 * Perform relocations. Done before registering with ksyms,
632 * which will pack our symbol table.
633 */
634 error = kobj_relocate(ko);
635 if (error != 0) {
636 goto out;
637 }
638
639 /*
640 * Notify MD code that a module has been loaded.
641 */
642 error = kobj_machdep(ko, (void *)ko->ko_address, ko->ko_size, true);
643 if (error != 0) {
644 kobj_error("machine dependent init failed");
645 goto out;
646 }
647 ko->ko_loaded = true;
648 out:
649 kobj_release_mem(ko);
650 if (hdr != NULL) {
651 kobj_free(ko, hdr, sizeof(*hdr));
652 }
653
654 return error;
655 }
656
657 /*
658 * kobj_unload:
659 *
660 * Unload an object previously loaded by kobj_load().
661 */
662 void
663 kobj_unload(kobj_t ko)
664 {
665 int error;
666
667 if (ko->ko_address != 0 && ko->ko_type != KT_MEMORY) {
668 uvm_km_free(lkm_map, ko->ko_address, round_page(ko->ko_size),
669 UVM_KMF_WIRED);
670 }
671 if (ko->ko_ksyms == true) {
672 ksyms_delsymtab(ko->ko_name);
673 }
674 if (ko->ko_symtab != NULL) {
675 kobj_free(ko, ko->ko_symtab, ko->ko_symcnt * sizeof(Elf_Sym));
676 }
677 if (ko->ko_strtab != NULL) {
678 kobj_free(ko, ko->ko_strtab, ko->ko_strtabsz);
679 }
680 if (ko->ko_progtab != NULL) {
681 kobj_free(ko, ko->ko_progtab, ko->ko_nprogtab *
682 sizeof(*ko->ko_progtab));
683 ko->ko_progtab = NULL;
684 }
685 if (ko->ko_shstrtab) {
686 kobj_free(ko, ko->ko_shstrtab, ko->ko_shstrtabsz);
687 ko->ko_shstrtab = NULL;
688 }
689
690 /*
691 * Notify MD code that a module has been unloaded.
692 */
693 if (ko->ko_loaded) {
694 error = kobj_machdep(ko, (void *)ko->ko_address, ko->ko_size,
695 false);
696 if (error != 0) {
697 kobj_error("machine dependent deinit failed");
698 }
699 }
700
701 kmem_free(ko, sizeof(*ko));
702 }
703
704 /*
705 * kobj_stat:
706 *
707 * Return size and load address of an object.
708 */
709 void
710 kobj_stat(kobj_t ko, vaddr_t *address, size_t *size)
711 {
712
713 if (address != NULL) {
714 *address = ko->ko_address;
715 }
716 if (size != NULL) {
717 *size = ko->ko_size;
718 }
719 }
720
721 /*
722 * kobj_set_name:
723 *
724 * Set an object's name. Used only for symbol table lookups.
725 * May only be called after the module is loaded.
726 */
727 int
728 kobj_set_name(kobj_t ko, const char *name)
729 {
730 int error;
731
732 KASSERT(ko->ko_loaded);
733
734 strlcpy(ko->ko_name, name, sizeof(ko->ko_name));
735
736 /*
737 * Now that we know the name, register the symbol table.
738 */
739 error = ksyms_addsymtab(ko->ko_name, ko->ko_symtab, ko->ko_symcnt *
740 sizeof(Elf_Sym), ko->ko_strtab, ko->ko_strtabsz);
741 if (error != 0) {
742 kobj_error("unable to register module symbol table");
743 } else {
744 ko->ko_ksyms = true;
745 }
746
747 return error;
748 }
749
750 /*
751 * kobj_find_section:
752 *
753 * Given a section name, search the loaded object and return
754 * virtual address if present and loaded.
755 */
756 int
757 kobj_find_section(kobj_t ko, const char *name, void **addr, size_t *size)
758 {
759 int i;
760
761 KASSERT(ko->ko_progtab != NULL);
762
763 for (i = 0; i < ko->ko_nprogtab; i++) {
764 if (strcmp(ko->ko_progtab[i].name, name) == 0) {
765 if (addr != NULL) {
766 *addr = ko->ko_progtab[i].addr;
767 }
768 if (size != NULL) {
769 *size = ko->ko_progtab[i].size;
770 }
771 return 0;
772 }
773 }
774
775 return ENOENT;
776 }
777
778 /*
779 * kobj_release_mem:
780 *
781 * Release object data not needed after loading.
782 */
783 static void
784 kobj_release_mem(kobj_t ko)
785 {
786 int i;
787
788 for (i = 0; i < ko->ko_nrel; i++) {
789 if (ko->ko_reltab[i].rel) {
790 kobj_free(ko, ko->ko_reltab[i].rel,
791 ko->ko_reltab[i].size);
792 }
793 }
794 for (i = 0; i < ko->ko_nrela; i++) {
795 if (ko->ko_relatab[i].rela) {
796 kobj_free(ko, ko->ko_relatab[i].rela,
797 ko->ko_relatab[i].size);
798 }
799 }
800 if (ko->ko_reltab != NULL) {
801 kobj_free(ko, ko->ko_reltab, ko->ko_nrel *
802 sizeof(*ko->ko_reltab));
803 ko->ko_reltab = NULL;
804 ko->ko_nrel = 0;
805 }
806 if (ko->ko_relatab != NULL) {
807 kobj_free(ko, ko->ko_relatab, ko->ko_nrela *
808 sizeof(*ko->ko_relatab));
809 ko->ko_relatab = NULL;
810 ko->ko_nrela = 0;
811 }
812 if (ko->ko_shdr != NULL) {
813 kobj_free(ko, ko->ko_shdr, ko->ko_shdrsz);
814 ko->ko_shdr = NULL;
815 }
816 }
817
818 /*
819 * kobj_sym_lookup:
820 *
821 * Symbol lookup function to be used when the symbol index
822 * is known (ie during relocation).
823 */
824 uintptr_t
825 kobj_sym_lookup(kobj_t ko, uintptr_t symidx)
826 {
827 const Elf_Sym *sym;
828 const char *symbol;
829 int error;
830 u_long addr;
831
832 /* Don't even try to lookup the symbol if the index is bogus. */
833 if (symidx >= ko->ko_symcnt)
834 return 0;
835
836 sym = ko->ko_symtab + symidx;
837
838 /* Quick answer if there is a definition included. */
839 if (sym->st_shndx != SHN_UNDEF) {
840 return sym->st_value;
841 }
842
843 /* If we get here, then it is undefined and needs a lookup. */
844 switch (ELF_ST_BIND(sym->st_info)) {
845 case STB_LOCAL:
846 /* Local, but undefined? huh? */
847 kobj_error("local symbol undefined");
848 return 0;
849
850 case STB_GLOBAL:
851 /* Relative to Data or Function name */
852 symbol = ko->ko_strtab + sym->st_name;
853
854 /* Force a lookup failure if the symbol name is bogus. */
855 if (*symbol == 0) {
856 kobj_error("bad symbol name");
857 return 0;
858 }
859
860 error = ksyms_getval(NULL, symbol, &addr, KSYMS_ANY);
861 if (error != 0) {
862 kobj_error("symbol %s undefined", symbol);
863 return (uintptr_t)0;
864 }
865 return (uintptr_t)addr;
866
867 case STB_WEAK:
868 kobj_error("weak symbols not supported\n");
869 return 0;
870
871 default:
872 return 0;
873 }
874 }
875
876 /*
877 * kobj_findbase:
878 *
879 * Return base address of the given section.
880 */
881 static uintptr_t
882 kobj_findbase(kobj_t ko, int sec)
883 {
884 int i;
885
886 for (i = 0; i < ko->ko_nprogtab; i++) {
887 if (sec == ko->ko_progtab[i].sec) {
888 return (uintptr_t)ko->ko_progtab[i].addr;
889 }
890 }
891 return 0;
892 }
893
894 /*
895 * kobj_relocate:
896 *
897 * Resolve all relocations for the loaded object.
898 */
899 static int
900 kobj_relocate(kobj_t ko)
901 {
902 const Elf_Rel *rellim;
903 const Elf_Rel *rel;
904 const Elf_Rela *relalim;
905 const Elf_Rela *rela;
906 const Elf_Sym *sym;
907 uintptr_t base;
908 int i, error;
909 uintptr_t symidx;
910
911 /*
912 * Perform relocations without addend if there are any.
913 */
914 for (i = 0; i < ko->ko_nrel; i++) {
915 rel = ko->ko_reltab[i].rel;
916 if (rel == NULL) {
917 continue;
918 }
919 rellim = rel + ko->ko_reltab[i].nrel;
920 base = kobj_findbase(ko, ko->ko_reltab[i].sec);
921 if (base == 0) {
922 panic("lost base for e_reltab");
923 }
924 for (; rel < rellim; rel++) {
925 symidx = ELF_R_SYM(rel->r_info);
926 if (symidx >= ko->ko_symcnt) {
927 continue;
928 }
929 sym = ko->ko_symtab + symidx;
930 error = kobj_reloc(ko, base, rel, false,
931 ELF_ST_BIND(sym->st_info) == STB_LOCAL);
932 if (error != 0) {
933 return ENOENT;
934 }
935 }
936 }
937
938 /*
939 * Perform relocations with addend if there are any.
940 */
941 for (i = 0; i < ko->ko_nrela; i++) {
942 rela = ko->ko_relatab[i].rela;
943 if (rela == NULL) {
944 continue;
945 }
946 relalim = rela + ko->ko_relatab[i].nrela;
947 base = kobj_findbase(ko, ko->ko_relatab[i].sec);
948 if (base == 0) {
949 panic("lost base for e_relatab");
950 }
951 for (; rela < relalim; rela++) {
952 symidx = ELF_R_SYM(rela->r_info);
953 if (symidx >= ko->ko_symcnt) {
954 continue;
955 }
956 sym = ko->ko_symtab + symidx;
957 error = kobj_reloc(ko, base, rela, true,
958 ELF_ST_BIND(sym->st_info) == STB_LOCAL);
959 if (error != 0) {
960 return ENOENT;
961 }
962 }
963 }
964
965 return 0;
966 }
967
968 /*
969 * kobj_error:
970 *
971 * Utility function: log an error.
972 */
973 static void
974 kobj_error(const char *fmt, ...)
975 {
976 va_list ap;
977
978 va_start(ap, fmt);
979 printf("WARNING: linker error: ");
980 vprintf(fmt, ap);
981 printf("\n");
982 va_end(ap);
983 }
984
985 /*
986 * kobj_read:
987 *
988 * Utility function: read from the object.
989 */
990 static int
991 kobj_read(kobj_t ko, void **basep, size_t size, off_t off)
992 {
993 size_t resid;
994 void *base;
995 int error;
996
997 KASSERT(ko->ko_source != NULL);
998
999 switch (ko->ko_type) {
1000 case KT_VNODE:
1001 base = kmem_alloc(size, KM_SLEEP);
1002 if (base == NULL) {
1003 error = ENOMEM;
1004 break;
1005 }
1006 error = vn_rdwr(UIO_READ, ko->ko_source, base, size, off,
1007 UIO_SYSSPACE, IO_NODELOCKED, curlwp->l_cred, &resid,
1008 curlwp);
1009 if (error == 0 && resid != 0) {
1010 kmem_free(base, size);
1011 error = EINVAL;
1012 }
1013 break;
1014 case KT_MEMORY:
1015 if (ko->ko_memsize != -1 && off + size > ko->ko_memsize) {
1016 kobj_error("kobj_read: preloaded object short");
1017 error = EINVAL;
1018 base = NULL;
1019 } else {
1020 base = (uint8_t *)ko->ko_source + off;
1021 error = 0;
1022 }
1023 break;
1024 default:
1025 panic("kobj_read: invalid type");
1026 }
1027
1028 *basep = base;
1029 return error;
1030 }
1031
1032 /*
1033 * kobj_read_bits:
1034 *
1035 * Utility function: load a section from the object.
1036 */
1037 static int
1038 kobj_read_bits(kobj_t ko, void *base, size_t size, off_t off)
1039 {
1040 size_t resid;
1041 int error;
1042
1043 KASSERT(ko->ko_source != NULL);
1044
1045 switch (ko->ko_type) {
1046 case KT_VNODE:
1047 error = vn_rdwr(UIO_READ, ko->ko_source, base, size, off,
1048 UIO_SYSSPACE, IO_NODELOCKED, curlwp->l_cred, &resid,
1049 curlwp);
1050 if (error == 0 && resid != 0) {
1051 error = EINVAL;
1052 }
1053 break;
1054 case KT_MEMORY:
1055 if (ko->ko_memsize != -1 && off + size > ko->ko_memsize) {
1056 kobj_error("kobj_read_bits: preloaded object short");
1057 error = EINVAL;
1058 } else if ((uint8_t *)base != (uint8_t *)ko->ko_source + off) {
1059 kobj_error("kobj_read_bits: object not aligned");
1060 kobj_error("source=%p base=%p off=%d size=%zd",
1061 ko->ko_source, base, (int)off, size);
1062 error = EINVAL;
1063 } else {
1064 /* Nothing to do. Loading in-situ. */
1065 error = 0;
1066 }
1067 break;
1068 default:
1069 panic("kobj_read: invalid type");
1070 }
1071
1072 return error;
1073 }
1074
1075 /*
1076 * kobj_free:
1077 *
1078 * Utility function: free memory if it was allocated from the heap.
1079 */
1080 static void
1081 kobj_free(kobj_t ko, void *base, size_t size)
1082 {
1083
1084 if (ko->ko_type != KT_MEMORY)
1085 kmem_free(base, size);
1086 }
1087
1088 #else /* MODULAR */
1089
1090 int
1091 kobj_open_file(kobj_t *kop, const char *name)
1092 {
1093
1094 return ENOSYS;
1095 }
1096
1097 int
1098 kobj_open_mem(kobj_t *kop, void *base, ssize_t size)
1099 {
1100
1101 return ENOSYS;
1102 }
1103
1104 void
1105 kobj_close(kobj_t ko)
1106 {
1107
1108 panic("not modular");
1109 }
1110
1111 int
1112 kobj_load(kobj_t ko)
1113 {
1114
1115 panic("not modular");
1116 }
1117
1118 void
1119 kobj_unload(kobj_t ko)
1120 {
1121
1122 panic("not modular");
1123 }
1124
1125 void
1126 kobj_stat(kobj_t ko, vaddr_t *base, size_t *size)
1127 {
1128
1129 panic("not modular");
1130 }
1131
1132 int
1133 kobj_set_name(kobj_t ko, const char *name)
1134 {
1135
1136 panic("not modular");
1137 }
1138
1139 int
1140 kobj_find_section(kobj_t ko, const char *name, void **addr, size_t *size)
1141 {
1142
1143 panic("not modular");
1144 }
1145
1146 #endif /* MODULAR */
1147