subr_kobj.c revision 1.10.4.3 1 /* $NetBSD: subr_kobj.c,v 1.10.4.3 2009/06/20 07:20:31 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software developed for The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1998-2000 Doug Rabson
34 * Copyright (c) 2004 Peter Wemm
35 * All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 *
46 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
47 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
48 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
49 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
50 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
51 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
52 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
53 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
54 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
55 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
56 * SUCH DAMAGE.
57 */
58
59 /*
60 * Kernel loader for ELF objects.
61 *
62 * TODO: adjust kmem_alloc() calls to avoid needless fragmentation.
63 */
64
65 #include <sys/cdefs.h>
66 __KERNEL_RCSID(0, "$NetBSD: subr_kobj.c,v 1.10.4.3 2009/06/20 07:20:31 yamt Exp $");
67
68 #include "opt_modular.h"
69
70 #include <sys/kobj_impl.h>
71
72 #ifdef MODULAR
73
74 #include <sys/param.h>
75 #include <sys/kernel.h>
76 #include <sys/kmem.h>
77 #include <sys/proc.h>
78 #include <sys/namei.h>
79 #include <sys/vnode.h>
80 #include <sys/fcntl.h>
81 #include <sys/ksyms.h>
82 #include <sys/module.h>
83
84 #include <machine/stdarg.h>
85
86 #include <uvm/uvm_extern.h>
87
88 static int kobj_relocate(kobj_t, bool);
89 static int kobj_checksyms(kobj_t, bool);
90 static void kobj_error(const char *, ...);
91 static int kobj_read(kobj_t, void **, size_t, off_t);
92 static int kobj_read_bits(kobj_t, void *, size_t, off_t);
93 static void kobj_jettison(kobj_t);
94 static void kobj_free(kobj_t, void *, size_t);
95 static void kobj_close(kobj_t);
96 static int kobj_load(kobj_t);
97
98 extern struct vm_map *module_map;
99
100 /*
101 * kobj_load_file:
102 *
103 * Load an object located in the file system.
104 */
105 int
106 kobj_load_file(kobj_t *kop, const char *path, const bool nochroot)
107 {
108 struct nameidata nd;
109 kauth_cred_t cred;
110 int error;
111 kobj_t ko;
112
113 cred = kauth_cred_get();
114
115 ko = kmem_zalloc(sizeof(*ko), KM_SLEEP);
116 if (ko == NULL) {
117 return ENOMEM;
118 }
119
120 NDINIT(&nd, LOOKUP, FOLLOW | (nochroot ? NOCHROOT : 0),
121 UIO_SYSSPACE, path);
122 error = vn_open(&nd, FREAD, 0);
123
124 if (error != 0) {
125 kmem_free(ko, sizeof(*ko));
126 return error;
127 }
128
129 ko->ko_type = KT_VNODE;
130 ko->ko_source = nd.ni_vp;
131 *kop = ko;
132 return kobj_load(ko);
133 }
134
135 /*
136 * kobj_load_mem:
137 *
138 * Load an object already resident in memory. If size is not -1,
139 * the complete size of the object is known.
140 */
141 int
142 kobj_load_mem(kobj_t *kop, void *base, ssize_t size)
143 {
144 kobj_t ko;
145
146 ko = kmem_zalloc(sizeof(*ko), KM_SLEEP);
147 if (ko == NULL) {
148 return ENOMEM;
149 }
150
151 ko->ko_type = KT_MEMORY;
152 ko->ko_source = base;
153 ko->ko_memsize = size;
154 *kop = ko;
155 return kobj_load(ko);
156 }
157
158 /*
159 * kobj_close:
160 *
161 * Close an open ELF object.
162 */
163 static void
164 kobj_close(kobj_t ko)
165 {
166
167 if (ko->ko_source == NULL) {
168 return;
169 }
170
171 switch (ko->ko_type) {
172 case KT_VNODE:
173 VOP_UNLOCK(ko->ko_source, 0);
174 vn_close(ko->ko_source, FREAD, kauth_cred_get());
175 break;
176 case KT_MEMORY:
177 /* nothing */
178 break;
179 default:
180 panic("kobj_close: unknown type");
181 break;
182 }
183
184 ko->ko_source = NULL;
185 }
186
187 /*
188 * kobj_load:
189 *
190 * Load an ELF object and prepare to link into the running kernel
191 * image.
192 */
193 static int
194 kobj_load(kobj_t ko)
195 {
196 Elf_Ehdr *hdr;
197 Elf_Shdr *shdr;
198 Elf_Sym *es;
199 vaddr_t mapbase;
200 size_t mapsize;
201 int error;
202 int symtabindex;
203 int symstrindex;
204 int nsym;
205 int pb, rl, ra;
206 int alignmask;
207 int i, j;
208 void *addr;
209
210 KASSERT(ko->ko_type != KT_UNSET);
211 KASSERT(ko->ko_source != NULL);
212
213 shdr = NULL;
214 mapsize = 0;
215 error = 0;
216 hdr = NULL;
217
218 /*
219 * Read the elf header from the file.
220 */
221 error = kobj_read(ko, (void **)&hdr, sizeof(*hdr), 0);
222 if (error != 0)
223 goto out;
224 if (memcmp(hdr->e_ident, ELFMAG, SELFMAG) != 0) {
225 kobj_error("not an ELF object");
226 error = ENOEXEC;
227 goto out;
228 }
229
230 if (hdr->e_ident[EI_VERSION] != EV_CURRENT ||
231 hdr->e_version != EV_CURRENT) {
232 kobj_error("unsupported file version");
233 error = ENOEXEC;
234 goto out;
235 }
236 if (hdr->e_type != ET_REL) {
237 kobj_error("unsupported file type");
238 error = ENOEXEC;
239 goto out;
240 }
241 switch (hdr->e_machine) {
242 #if ELFSIZE == 32
243 ELF32_MACHDEP_ID_CASES
244 #else
245 ELF64_MACHDEP_ID_CASES
246 #endif
247 default:
248 kobj_error("unsupported machine");
249 error = ENOEXEC;
250 goto out;
251 }
252
253 ko->ko_nprogtab = 0;
254 ko->ko_shdr = 0;
255 ko->ko_nrel = 0;
256 ko->ko_nrela = 0;
257
258 /*
259 * Allocate and read in the section header.
260 */
261 ko->ko_shdrsz = hdr->e_shnum * hdr->e_shentsize;
262 if (ko->ko_shdrsz == 0 || hdr->e_shoff == 0 ||
263 hdr->e_shentsize != sizeof(Elf_Shdr)) {
264 error = ENOEXEC;
265 goto out;
266 }
267 error = kobj_read(ko, (void **)&shdr, ko->ko_shdrsz, hdr->e_shoff);
268 if (error != 0) {
269 goto out;
270 }
271 ko->ko_shdr = shdr;
272
273 /*
274 * Scan the section header for information and table sizing.
275 */
276 nsym = 0;
277 symtabindex = -1;
278 symstrindex = -1;
279 for (i = 0; i < hdr->e_shnum; i++) {
280 switch (shdr[i].sh_type) {
281 case SHT_PROGBITS:
282 case SHT_NOBITS:
283 ko->ko_nprogtab++;
284 break;
285 case SHT_SYMTAB:
286 nsym++;
287 symtabindex = i;
288 symstrindex = shdr[i].sh_link;
289 break;
290 case SHT_REL:
291 ko->ko_nrel++;
292 break;
293 case SHT_RELA:
294 ko->ko_nrela++;
295 break;
296 case SHT_STRTAB:
297 break;
298 }
299 }
300 if (ko->ko_nprogtab == 0) {
301 kobj_error("file has no contents");
302 error = ENOEXEC;
303 goto out;
304 }
305 if (nsym != 1) {
306 /* Only allow one symbol table for now */
307 kobj_error("file has no valid symbol table");
308 error = ENOEXEC;
309 goto out;
310 }
311 if (symstrindex < 0 || symstrindex > hdr->e_shnum ||
312 shdr[symstrindex].sh_type != SHT_STRTAB) {
313 kobj_error("file has invalid symbol strings");
314 error = ENOEXEC;
315 goto out;
316 }
317
318 /*
319 * Allocate space for tracking the load chunks.
320 */
321 if (ko->ko_nprogtab != 0) {
322 ko->ko_progtab = kmem_zalloc(ko->ko_nprogtab *
323 sizeof(*ko->ko_progtab), KM_SLEEP);
324 if (ko->ko_progtab == NULL) {
325 error = ENOMEM;
326 goto out;
327 }
328 }
329 if (ko->ko_nrel != 0) {
330 ko->ko_reltab = kmem_zalloc(ko->ko_nrel *
331 sizeof(*ko->ko_reltab), KM_SLEEP);
332 if (ko->ko_reltab == NULL) {
333 error = ENOMEM;
334 goto out;
335 }
336 }
337 if (ko->ko_nrela != 0) {
338 ko->ko_relatab = kmem_zalloc(ko->ko_nrela *
339 sizeof(*ko->ko_relatab), KM_SLEEP);
340 if (ko->ko_relatab == NULL) {
341 error = ENOMEM;
342 goto out;
343 }
344 }
345 if (symtabindex == -1) {
346 kobj_error("lost symbol table index");
347 goto out;
348 }
349
350 /*
351 * Allocate space for and load the symbol table.
352 */
353 ko->ko_symcnt = shdr[symtabindex].sh_size / sizeof(Elf_Sym);
354 if (ko->ko_symcnt == 0) {
355 kobj_error("no symbol table");
356 goto out;
357 }
358 error = kobj_read(ko, (void **)&ko->ko_symtab,
359 ko->ko_symcnt * sizeof(Elf_Sym),
360 shdr[symtabindex].sh_offset);
361 if (error != 0) {
362 goto out;
363 }
364
365 /*
366 * Allocate space for and load the symbol strings.
367 */
368 ko->ko_strtabsz = shdr[symstrindex].sh_size;
369 if (ko->ko_strtabsz == 0) {
370 kobj_error("no symbol strings");
371 goto out;
372 }
373 error = kobj_read(ko, (void *)&ko->ko_strtab, ko->ko_strtabsz,
374 shdr[symstrindex].sh_offset);
375 if (error != 0) {
376 goto out;
377 }
378
379 /*
380 * Do we have a string table for the section names?
381 */
382 if (hdr->e_shstrndx != 0 && shdr[hdr->e_shstrndx].sh_size != 0 &&
383 shdr[hdr->e_shstrndx].sh_type == SHT_STRTAB) {
384 ko->ko_shstrtabsz = shdr[hdr->e_shstrndx].sh_size;
385 error = kobj_read(ko, (void **)&ko->ko_shstrtab,
386 shdr[hdr->e_shstrndx].sh_size,
387 shdr[hdr->e_shstrndx].sh_offset);
388 if (error != 0) {
389 goto out;
390 }
391 }
392
393 /*
394 * Size up code/data(progbits) and bss(nobits).
395 */
396 alignmask = 0;
397 mapbase = 0;
398 for (i = 0; i < hdr->e_shnum; i++) {
399 switch (shdr[i].sh_type) {
400 case SHT_PROGBITS:
401 case SHT_NOBITS:
402 if (mapbase == 0)
403 mapbase = shdr[i].sh_offset;
404 alignmask = shdr[i].sh_addralign - 1;
405 mapsize += alignmask;
406 mapsize &= ~alignmask;
407 mapsize += shdr[i].sh_size;
408 break;
409 }
410 }
411
412 /*
413 * We know how much space we need for the text/data/bss/etc.
414 * This stuff needs to be in a single chunk so that profiling etc
415 * can get the bounds and gdb can associate offsets with modules.
416 */
417 if (mapsize == 0) {
418 kobj_error("no text/data/bss");
419 goto out;
420 }
421 if (ko->ko_type == KT_MEMORY) {
422 mapbase += (vaddr_t)ko->ko_source;
423 } else {
424 mapbase = uvm_km_alloc(module_map, round_page(mapsize),
425 0, UVM_KMF_WIRED | UVM_KMF_EXEC);
426 if (mapbase == 0) {
427 error = ENOMEM;
428 goto out;
429 }
430 }
431 ko->ko_address = mapbase;
432 ko->ko_size = mapsize;
433
434 /*
435 * Now load code/data(progbits), zero bss(nobits), allocate space
436 * for and load relocs
437 */
438 pb = 0;
439 rl = 0;
440 ra = 0;
441 alignmask = 0;
442 for (i = 0; i < hdr->e_shnum; i++) {
443 switch (shdr[i].sh_type) {
444 case SHT_PROGBITS:
445 case SHT_NOBITS:
446 alignmask = shdr[i].sh_addralign - 1;
447 if (ko->ko_type == KT_MEMORY) {
448 addr = (void *)(shdr[i].sh_offset +
449 (vaddr_t)ko->ko_source);
450 if (((vaddr_t)addr & alignmask) != 0) {
451 kobj_error("section %d not aligned\n",
452 i);
453 goto out;
454 }
455 } else {
456 mapbase += alignmask;
457 mapbase &= ~alignmask;
458 addr = (void *)mapbase;
459 mapbase += shdr[i].sh_size;
460 }
461 ko->ko_progtab[pb].addr = addr;
462 if (shdr[i].sh_type == SHT_PROGBITS) {
463 ko->ko_progtab[pb].name = "<<PROGBITS>>";
464 error = kobj_read_bits(ko, addr,
465 shdr[i].sh_size, shdr[i].sh_offset);
466 if (error != 0) {
467 goto out;
468 }
469 } else if (ko->ko_type == KT_MEMORY &&
470 shdr[i].sh_size != 0) {
471 kobj_error("non-loadable BSS section in "
472 "pre-loaded module");
473 error = EINVAL;
474 goto out;
475 } else {
476 ko->ko_progtab[pb].name = "<<NOBITS>>";
477 memset(addr, 0, shdr[i].sh_size);
478 }
479 ko->ko_progtab[pb].size = shdr[i].sh_size;
480 ko->ko_progtab[pb].sec = i;
481 if (ko->ko_shstrtab != NULL && shdr[i].sh_name != 0) {
482 ko->ko_progtab[pb].name =
483 ko->ko_shstrtab + shdr[i].sh_name;
484 }
485
486 /* Update all symbol values with the offset. */
487 for (j = 0; j < ko->ko_symcnt; j++) {
488 es = &ko->ko_symtab[j];
489 if (es->st_shndx != i) {
490 continue;
491 }
492 es->st_value += (Elf_Addr)addr;
493 }
494 pb++;
495 break;
496 case SHT_REL:
497 ko->ko_reltab[rl].size = shdr[i].sh_size;
498 ko->ko_reltab[rl].size -=
499 shdr[i].sh_size % sizeof(Elf_Rel);
500 if (ko->ko_reltab[rl].size != 0) {
501 ko->ko_reltab[rl].nrel =
502 shdr[i].sh_size / sizeof(Elf_Rel);
503 ko->ko_reltab[rl].sec = shdr[i].sh_info;
504 error = kobj_read(ko,
505 (void **)&ko->ko_reltab[rl].rel,
506 ko->ko_reltab[rl].size,
507 shdr[i].sh_offset);
508 if (error != 0) {
509 goto out;
510 }
511 }
512 rl++;
513 break;
514 case SHT_RELA:
515 ko->ko_relatab[ra].size = shdr[i].sh_size;
516 ko->ko_relatab[ra].size -=
517 shdr[i].sh_size % sizeof(Elf_Rela);
518 if (ko->ko_relatab[ra].size != 0) {
519 ko->ko_relatab[ra].nrela =
520 shdr[i].sh_size / sizeof(Elf_Rela);
521 ko->ko_relatab[ra].sec = shdr[i].sh_info;
522 error = kobj_read(ko,
523 (void **)&ko->ko_relatab[ra].rela,
524 shdr[i].sh_size,
525 shdr[i].sh_offset);
526 if (error != 0) {
527 goto out;
528 }
529 }
530 ra++;
531 break;
532 default:
533 break;
534 }
535 }
536 if (pb != ko->ko_nprogtab) {
537 panic("lost progbits");
538 }
539 if (rl != ko->ko_nrel) {
540 panic("lost rel");
541 }
542 if (ra != ko->ko_nrela) {
543 panic("lost rela");
544 }
545 if (ko->ko_type != KT_MEMORY && mapbase != ko->ko_address + mapsize) {
546 panic("mapbase 0x%lx != address %lx + mapsize %ld (0x%lx)\n",
547 (long)mapbase, (long)ko->ko_address, (long)mapsize,
548 (long)ko->ko_address + mapsize);
549 }
550
551 /*
552 * Perform local relocations only. Relocations relating to global
553 * symbols will be done by kobj_affix().
554 */
555 error = kobj_checksyms(ko, false);
556 if (error == 0) {
557 error = kobj_relocate(ko, true);
558 }
559 out:
560 if (hdr != NULL) {
561 kobj_free(ko, hdr, sizeof(*hdr));
562 }
563 kobj_close(ko);
564 if (error != 0) {
565 kobj_unload(ko);
566 }
567
568 return error;
569 }
570
571 /*
572 * kobj_unload:
573 *
574 * Unload an object previously loaded by kobj_load().
575 */
576 void
577 kobj_unload(kobj_t ko)
578 {
579 int error;
580
581 kobj_close(ko);
582 kobj_jettison(ko);
583
584 /*
585 * Notify MD code that a module has been unloaded.
586 */
587 if (ko->ko_loaded) {
588 error = kobj_machdep(ko, (void *)ko->ko_address, ko->ko_size,
589 false);
590 if (error != 0) {
591 kobj_error("machine dependent deinit failed");
592 }
593 }
594 if (ko->ko_address != 0 && ko->ko_type != KT_MEMORY) {
595 uvm_km_free(module_map, ko->ko_address, round_page(ko->ko_size),
596 UVM_KMF_WIRED);
597 }
598 if (ko->ko_ksyms == true) {
599 ksyms_modunload(ko->ko_name);
600 }
601 if (ko->ko_symtab != NULL) {
602 kobj_free(ko, ko->ko_symtab, ko->ko_symcnt * sizeof(Elf_Sym));
603 }
604 if (ko->ko_strtab != NULL) {
605 kobj_free(ko, ko->ko_strtab, ko->ko_strtabsz);
606 }
607 if (ko->ko_progtab != NULL) {
608 kobj_free(ko, ko->ko_progtab, ko->ko_nprogtab *
609 sizeof(*ko->ko_progtab));
610 ko->ko_progtab = NULL;
611 }
612 if (ko->ko_shstrtab) {
613 kobj_free(ko, ko->ko_shstrtab, ko->ko_shstrtabsz);
614 ko->ko_shstrtab = NULL;
615 }
616
617 kmem_free(ko, sizeof(*ko));
618 }
619
620 /*
621 * kobj_stat:
622 *
623 * Return size and load address of an object.
624 */
625 int
626 kobj_stat(kobj_t ko, vaddr_t *address, size_t *size)
627 {
628
629 if (address != NULL) {
630 *address = ko->ko_address;
631 }
632 if (size != NULL) {
633 *size = ko->ko_size;
634 }
635 return 0;
636 }
637
638 /*
639 * kobj_affix:
640 *
641 * Set an object's name and perform global relocs. May only be
642 * called after the module and any requisite modules are loaded.
643 */
644 int
645 kobj_affix(kobj_t ko, const char *name)
646 {
647 int error;
648
649 KASSERT(ko->ko_ksyms == false);
650 KASSERT(ko->ko_loaded == false);
651
652 strlcpy(ko->ko_name, name, sizeof(ko->ko_name));
653
654 /* Cache addresses of undefined symbols. */
655 error = kobj_checksyms(ko, true);
656
657 /* Now do global relocations. */
658 if (error == 0)
659 error = kobj_relocate(ko, false);
660
661 /*
662 * Now that we know the name, register the symbol table.
663 * Do after global relocations because ksyms will pack
664 * the table.
665 */
666 if (error == 0) {
667 ksyms_modload(ko->ko_name, ko->ko_symtab, ko->ko_symcnt *
668 sizeof(Elf_Sym), ko->ko_strtab, ko->ko_strtabsz);
669 ko->ko_ksyms = true;
670 }
671
672 /* Jettison unneeded memory post-link. */
673 kobj_jettison(ko);
674
675 /*
676 * Notify MD code that a module has been loaded.
677 *
678 * Most architectures use this opportunity to flush their caches.
679 */
680 if (error == 0) {
681 error = kobj_machdep(ko, (void *)ko->ko_address, ko->ko_size,
682 true);
683 if (error != 0) {
684 kobj_error("machine dependent init failed");
685 }
686 ko->ko_loaded = true;
687 }
688
689 /* If there was an error, destroy the whole object. */
690 if (error != 0) {
691 kobj_unload(ko);
692 }
693
694 return error;
695 }
696
697 /*
698 * kobj_find_section:
699 *
700 * Given a section name, search the loaded object and return
701 * virtual address if present and loaded.
702 */
703 int
704 kobj_find_section(kobj_t ko, const char *name, void **addr, size_t *size)
705 {
706 int i;
707
708 KASSERT(ko->ko_progtab != NULL);
709
710 for (i = 0; i < ko->ko_nprogtab; i++) {
711 if (strcmp(ko->ko_progtab[i].name, name) == 0) {
712 if (addr != NULL) {
713 *addr = ko->ko_progtab[i].addr;
714 }
715 if (size != NULL) {
716 *size = ko->ko_progtab[i].size;
717 }
718 return 0;
719 }
720 }
721
722 return ENOENT;
723 }
724
725 /*
726 * kobj_jettison:
727 *
728 * Release object data not needed after performing relocations.
729 */
730 static void
731 kobj_jettison(kobj_t ko)
732 {
733 int i;
734
735 if (ko->ko_reltab != NULL) {
736 for (i = 0; i < ko->ko_nrel; i++) {
737 if (ko->ko_reltab[i].rel) {
738 kobj_free(ko, ko->ko_reltab[i].rel,
739 ko->ko_reltab[i].size);
740 }
741 }
742 kobj_free(ko, ko->ko_reltab, ko->ko_nrel *
743 sizeof(*ko->ko_reltab));
744 ko->ko_reltab = NULL;
745 ko->ko_nrel = 0;
746 }
747 if (ko->ko_relatab != NULL) {
748 for (i = 0; i < ko->ko_nrela; i++) {
749 if (ko->ko_relatab[i].rela) {
750 kobj_free(ko, ko->ko_relatab[i].rela,
751 ko->ko_relatab[i].size);
752 }
753 }
754 kobj_free(ko, ko->ko_relatab, ko->ko_nrela *
755 sizeof(*ko->ko_relatab));
756 ko->ko_relatab = NULL;
757 ko->ko_nrela = 0;
758 }
759 if (ko->ko_shdr != NULL) {
760 kobj_free(ko, ko->ko_shdr, ko->ko_shdrsz);
761 ko->ko_shdr = NULL;
762 }
763 }
764
765 /*
766 * kobj_sym_lookup:
767 *
768 * Symbol lookup function to be used when the symbol index
769 * is known (ie during relocation).
770 */
771 uintptr_t
772 kobj_sym_lookup(kobj_t ko, uintptr_t symidx)
773 {
774 const Elf_Sym *sym;
775 const char *symbol;
776
777 /* Don't even try to lookup the symbol if the index is bogus. */
778 if (symidx >= ko->ko_symcnt)
779 return 0;
780
781 sym = ko->ko_symtab + symidx;
782
783 /* Quick answer if there is a definition included. */
784 if (sym->st_shndx != SHN_UNDEF) {
785 return (uintptr_t)sym->st_value;
786 }
787
788 /* If we get here, then it is undefined and needs a lookup. */
789 switch (ELF_ST_BIND(sym->st_info)) {
790 case STB_LOCAL:
791 /* Local, but undefined? huh? */
792 kobj_error("local symbol undefined");
793 return 0;
794
795 case STB_GLOBAL:
796 /* Relative to Data or Function name */
797 symbol = ko->ko_strtab + sym->st_name;
798
799 /* Force a lookup failure if the symbol name is bogus. */
800 if (*symbol == 0) {
801 kobj_error("bad symbol name");
802 return 0;
803 }
804
805 return (uintptr_t)sym->st_value;
806
807 case STB_WEAK:
808 kobj_error("weak symbols not supported\n");
809 return 0;
810
811 default:
812 return 0;
813 }
814 }
815
816 /*
817 * kobj_findbase:
818 *
819 * Return base address of the given section.
820 */
821 static uintptr_t
822 kobj_findbase(kobj_t ko, int sec)
823 {
824 int i;
825
826 for (i = 0; i < ko->ko_nprogtab; i++) {
827 if (sec == ko->ko_progtab[i].sec) {
828 return (uintptr_t)ko->ko_progtab[i].addr;
829 }
830 }
831 return 0;
832 }
833
834 /*
835 * kobj_checksyms:
836 *
837 * Scan symbol table for duplicates or resolve references to
838 * exernal symbols.
839 */
840 static int
841 kobj_checksyms(kobj_t ko, bool undefined)
842 {
843 unsigned long rval;
844 Elf_Sym *sym, *ms;
845 const char *name;
846 int error;
847
848 error = 0;
849
850 for (ms = (sym = ko->ko_symtab) + ko->ko_symcnt; sym < ms; sym++) {
851 /* Check validity of the symbol. */
852 if (ELF_ST_BIND(sym->st_info) != STB_GLOBAL ||
853 sym->st_name == 0)
854 continue;
855 if (undefined != (sym->st_shndx == SHN_UNDEF)) {
856 continue;
857 }
858
859 /*
860 * Look it up. Don't need to lock, as it is known that
861 * the symbol tables aren't going to change (we hold
862 * module_lock).
863 */
864 name = ko->ko_strtab + sym->st_name;
865 if (ksyms_getval_unlocked(NULL, name, &rval,
866 KSYMS_EXTERN) != 0) {
867 if (undefined) {
868 kobj_error("symbol `%s' not found", name);
869 error = ENOEXEC;
870 }
871 continue;
872 }
873
874 /* Save values of undefined globals. */
875 if (undefined) {
876 sym->st_value = (Elf_Addr)rval;
877 continue;
878 }
879
880 /* Check (and complain) about differing values. */
881 if (sym->st_value == rval) {
882 continue;
883 }
884 if (strcmp(name, "_bss_start") == 0 ||
885 strcmp(name, "__bss_start") == 0 ||
886 strcmp(name, "_bss_end__") == 0 ||
887 strcmp(name, "__bss_end__") == 0 ||
888 strcmp(name, "_edata") == 0 ||
889 strcmp(name, "_end") == 0 ||
890 strcmp(name, "__end") == 0 ||
891 strcmp(name, "__end__") == 0 ||
892 strncmp(name, "__start_link_set_", 17) == 0 ||
893 strncmp(name, "__stop_link_set_", 16)) {
894 continue;
895 }
896 kobj_error("global symbol `%s' redefined\n", name);
897 error = ENOEXEC;
898 }
899
900 return error;
901 }
902
903 /*
904 * kobj_relocate:
905 *
906 * Resolve relocations for the loaded object.
907 */
908 static int
909 kobj_relocate(kobj_t ko, bool local)
910 {
911 const Elf_Rel *rellim;
912 const Elf_Rel *rel;
913 const Elf_Rela *relalim;
914 const Elf_Rela *rela;
915 const Elf_Sym *sym;
916 uintptr_t base;
917 int i, error;
918 uintptr_t symidx;
919
920 /*
921 * Perform relocations without addend if there are any.
922 */
923 for (i = 0; i < ko->ko_nrel; i++) {
924 rel = ko->ko_reltab[i].rel;
925 if (rel == NULL) {
926 continue;
927 }
928 rellim = rel + ko->ko_reltab[i].nrel;
929 base = kobj_findbase(ko, ko->ko_reltab[i].sec);
930 if (base == 0) {
931 panic("lost base for e_reltab");
932 }
933 for (; rel < rellim; rel++) {
934 symidx = ELF_R_SYM(rel->r_info);
935 if (symidx >= ko->ko_symcnt) {
936 continue;
937 }
938 sym = ko->ko_symtab + symidx;
939 if (local != (ELF_ST_BIND(sym->st_info) == STB_LOCAL)) {
940 continue;
941 }
942 error = kobj_reloc(ko, base, rel, false, local);
943 if (error != 0) {
944 return ENOENT;
945 }
946 }
947 }
948
949 /*
950 * Perform relocations with addend if there are any.
951 */
952 for (i = 0; i < ko->ko_nrela; i++) {
953 rela = ko->ko_relatab[i].rela;
954 if (rela == NULL) {
955 continue;
956 }
957 relalim = rela + ko->ko_relatab[i].nrela;
958 base = kobj_findbase(ko, ko->ko_relatab[i].sec);
959 if (base == 0) {
960 panic("lost base for e_relatab");
961 }
962 for (; rela < relalim; rela++) {
963 symidx = ELF_R_SYM(rela->r_info);
964 if (symidx >= ko->ko_symcnt) {
965 continue;
966 }
967 sym = ko->ko_symtab + symidx;
968 if (local != (ELF_ST_BIND(sym->st_info) == STB_LOCAL)) {
969 continue;
970 }
971 error = kobj_reloc(ko, base, rela, true, local);
972 if (error != 0) {
973 return ENOENT;
974 }
975 }
976 }
977
978 return 0;
979 }
980
981 /*
982 * kobj_error:
983 *
984 * Utility function: log an error.
985 */
986 static void
987 kobj_error(const char *fmt, ...)
988 {
989 va_list ap;
990
991 va_start(ap, fmt);
992 printf("WARNING: linker error: ");
993 vprintf(fmt, ap);
994 printf("\n");
995 va_end(ap);
996 }
997
998 /*
999 * kobj_read:
1000 *
1001 * Utility function: read from the object.
1002 */
1003 static int
1004 kobj_read(kobj_t ko, void **basep, size_t size, off_t off)
1005 {
1006 size_t resid;
1007 void *base;
1008 int error;
1009
1010 KASSERT(ko->ko_source != NULL);
1011
1012 switch (ko->ko_type) {
1013 case KT_VNODE:
1014 base = kmem_alloc(size, KM_SLEEP);
1015 if (base == NULL) {
1016 error = ENOMEM;
1017 break;
1018 }
1019 error = vn_rdwr(UIO_READ, ko->ko_source, base, size, off,
1020 UIO_SYSSPACE, IO_NODELOCKED, curlwp->l_cred, &resid,
1021 curlwp);
1022 if (error == 0 && resid != 0) {
1023 error = EINVAL;
1024 }
1025 if (error != 0) {
1026 kmem_free(base, size);
1027 base = NULL;
1028 }
1029 break;
1030 case KT_MEMORY:
1031 if (ko->ko_memsize != -1 && off + size > ko->ko_memsize) {
1032 kobj_error("kobj_read: preloaded object short");
1033 error = EINVAL;
1034 base = NULL;
1035 } else {
1036 base = (uint8_t *)ko->ko_source + off;
1037 error = 0;
1038 }
1039 break;
1040 default:
1041 panic("kobj_read: invalid type");
1042 }
1043
1044 *basep = base;
1045 return error;
1046 }
1047
1048 /*
1049 * kobj_read_bits:
1050 *
1051 * Utility function: load a section from the object.
1052 */
1053 static int
1054 kobj_read_bits(kobj_t ko, void *base, size_t size, off_t off)
1055 {
1056 size_t resid;
1057 int error;
1058
1059 KASSERT(ko->ko_source != NULL);
1060
1061 switch (ko->ko_type) {
1062 case KT_VNODE:
1063 KASSERT((uintptr_t)base >= (uintptr_t)ko->ko_address);
1064 KASSERT((uintptr_t)base + size <=
1065 (uintptr_t)ko->ko_address + ko->ko_size);
1066 error = vn_rdwr(UIO_READ, ko->ko_source, base, size, off,
1067 UIO_SYSSPACE, IO_NODELOCKED, curlwp->l_cred, &resid,
1068 curlwp);
1069 if (error == 0 && resid != 0) {
1070 error = EINVAL;
1071 }
1072 break;
1073 case KT_MEMORY:
1074 if (ko->ko_memsize != -1 && off + size > ko->ko_memsize) {
1075 kobj_error("kobj_read_bits: preloaded object short");
1076 error = EINVAL;
1077 } else if ((uint8_t *)base != (uint8_t *)ko->ko_source + off) {
1078 kobj_error("kobj_read_bits: object not aligned");
1079 kobj_error("source=%p base=%p off=%d size=%zd",
1080 ko->ko_source, base, (int)off, size);
1081 error = EINVAL;
1082 } else {
1083 /* Nothing to do. Loading in-situ. */
1084 error = 0;
1085 }
1086 break;
1087 default:
1088 panic("kobj_read: invalid type");
1089 }
1090
1091 return error;
1092 }
1093
1094 /*
1095 * kobj_free:
1096 *
1097 * Utility function: free memory if it was allocated from the heap.
1098 */
1099 static void
1100 kobj_free(kobj_t ko, void *base, size_t size)
1101 {
1102
1103 if (ko->ko_type != KT_MEMORY)
1104 kmem_free(base, size);
1105 }
1106
1107 #else /* MODULAR */
1108
1109 int
1110 kobj_load_file(kobj_t *kop, const char *name, const bool nochroot)
1111 {
1112
1113 return ENOSYS;
1114 }
1115
1116 int
1117 kobj_load_mem(kobj_t *kop, void *base, ssize_t size)
1118 {
1119
1120 return ENOSYS;
1121 }
1122
1123 void
1124 kobj_unload(kobj_t ko)
1125 {
1126
1127 panic("not modular");
1128 }
1129
1130 int
1131 kobj_stat(kobj_t ko, vaddr_t *base, size_t *size)
1132 {
1133
1134 return ENOSYS;
1135 }
1136
1137 int
1138 kobj_affix(kobj_t ko, const char *name)
1139 {
1140
1141 panic("not modular");
1142 }
1143
1144 int
1145 kobj_find_section(kobj_t ko, const char *name, void **addr, size_t *size)
1146 {
1147
1148 panic("not modular");
1149 }
1150
1151 #endif /* MODULAR */
1152