subr_kobj.c revision 1.11 1 /* $NetBSD: subr_kobj.c,v 1.11 2008/04/28 20:24:04 martin Exp $ */
2
3 /*-
4 * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 /*-
30 * Copyright (c) 1998-2000 Doug Rabson
31 * Copyright (c) 2004 Peter Wemm
32 * All rights reserved.
33 *
34 * Redistribution and use in source and binary forms, with or without
35 * modification, are permitted provided that the following conditions
36 * are met:
37 * 1. Redistributions of source code must retain the above copyright
38 * notice, this list of conditions and the following disclaimer.
39 * 2. Redistributions in binary form must reproduce the above copyright
40 * notice, this list of conditions and the following disclaimer in the
41 * documentation and/or other materials provided with the distribution.
42 *
43 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
44 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
45 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
46 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
47 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
48 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
49 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
50 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
51 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
52 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
53 * SUCH DAMAGE.
54 */
55
56 /*
57 * Kernel loader for ELF objects.
58 *
59 * TODO: adjust kmem_alloc() calls to avoid needless fragmentation.
60 */
61
62 #include "opt_modular.h"
63
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: subr_kobj.c,v 1.11 2008/04/28 20:24:04 martin Exp $");
66
67 #define ELFSIZE ARCH_ELFSIZE
68
69 #include <sys/param.h>
70 #include <sys/systm.h>
71 #include <sys/kernel.h>
72 #include <sys/kmem.h>
73 #include <sys/proc.h>
74 #include <sys/namei.h>
75 #include <sys/vnode.h>
76 #include <sys/fcntl.h>
77 #include <sys/kobj.h>
78 #include <sys/ksyms.h>
79 #include <sys/lkm.h>
80 #include <sys/exec.h>
81 #include <sys/exec_elf.h>
82
83 #include <machine/stdarg.h>
84
85 #include <uvm/uvm_extern.h>
86
87 #ifdef MODULAR
88
89 typedef struct {
90 void *addr;
91 Elf_Off size;
92 int flags;
93 int sec; /* Original section */
94 const char *name;
95 } progent_t;
96
97 typedef struct {
98 Elf_Rel *rel;
99 int nrel;
100 int sec;
101 size_t size;
102 } relent_t;
103
104 typedef struct {
105 Elf_Rela *rela;
106 int nrela;
107 int sec;
108 size_t size;
109 } relaent_t;
110
111 typedef enum kobjtype {
112 KT_UNSET,
113 KT_VNODE,
114 KT_MEMORY
115 } kobjtype_t;
116
117 struct kobj {
118 char ko_name[MAXLKMNAME];
119 kobjtype_t ko_type;
120 void *ko_source;
121 ssize_t ko_memsize;
122 vaddr_t ko_address; /* Relocation address */
123 Elf_Shdr *ko_shdr;
124 progent_t *ko_progtab;
125 relaent_t *ko_relatab;
126 relent_t *ko_reltab;
127 Elf_Sym *ko_symtab; /* Symbol table */
128 char *ko_strtab; /* String table */
129 char *ko_shstrtab; /* Section name string table */
130 size_t ko_size; /* Size of text/data/bss */
131 size_t ko_symcnt; /* Number of symbols */
132 size_t ko_strtabsz; /* Number of bytes in string table */
133 size_t ko_shstrtabsz; /* Number of bytes in scn str table */
134 size_t ko_shdrsz;
135 int ko_nrel;
136 int ko_nrela;
137 int ko_nprogtab;
138 bool ko_ksyms;
139 bool ko_loaded;
140 };
141
142 static int kobj_relocate(kobj_t);
143 static void kobj_error(const char *, ...);
144 static int kobj_read(kobj_t, void *, size_t, off_t);
145 static void kobj_release_mem(kobj_t);
146
147 extern struct vm_map *lkm_map;
148 static const char *kobj_path = "/modules"; /* XXX ??? */
149
150 /*
151 * kobj_open_file:
152 *
153 * Open an object located in the file system.
154 */
155 int
156 kobj_open_file(kobj_t *kop, const char *filename)
157 {
158 struct nameidata nd;
159 kauth_cred_t cred;
160 char *path;
161 int error;
162 kobj_t ko;
163
164 cred = kauth_cred_get();
165
166 ko = kmem_zalloc(sizeof(*ko), KM_SLEEP);
167 if (ko == NULL) {
168 return ENOMEM;
169 }
170
171 /* XXX where to look? */
172 NDINIT(&nd, LOOKUP, FOLLOW, UIO_SYSSPACE, filename);
173 error = vn_open(&nd, FREAD, 0);
174 if (error != 0) {
175 if (error != ENOENT) {
176 goto out;
177 }
178 path = PNBUF_GET();
179 snprintf(path, MAXPATHLEN - 1, "%s/%s", kobj_path,
180 filename);
181 NDINIT(&nd, LOOKUP, FOLLOW, UIO_SYSSPACE, path);
182 error = vn_open(&nd, FREAD, 0);
183 if (error != 0) {
184 strlcat(path, ".o", MAXPATHLEN);
185 NDINIT(&nd, LOOKUP, FOLLOW, UIO_SYSSPACE, path);
186 error = vn_open(&nd, FREAD, 0);
187 }
188 PNBUF_PUT(path);
189 if (error != 0) {
190 goto out;
191 }
192 }
193
194 out:
195 if (error != 0) {
196 kmem_free(ko, sizeof(*ko));
197 } else {
198 ko->ko_type = KT_VNODE;
199 ko->ko_source = nd.ni_vp;
200 *kop = ko;
201 }
202 return error;
203 }
204
205 /*
206 * kobj_open_mem:
207 *
208 * Open a pre-loaded object already resident in memory. If size
209 * is not -1, the complete size of the object is known.
210 */
211 int
212 kobj_open_mem(kobj_t *kop, void *base, ssize_t size)
213 {
214 kobj_t ko;
215
216 ko = kmem_zalloc(sizeof(*ko), KM_SLEEP);
217 if (ko == NULL) {
218 return ENOMEM;
219 }
220
221 ko->ko_type = KT_MEMORY;
222 ko->ko_source = base;
223 ko->ko_memsize = size;
224 *kop = ko;
225
226 return 0;
227 }
228
229 /*
230 * kobj_close:
231 *
232 * Close an open ELF object. If the object was not successfully
233 * loaded, it will be destroyed.
234 */
235 void
236 kobj_close(kobj_t ko)
237 {
238
239 KASSERT(ko->ko_source != NULL);
240
241 switch (ko->ko_type) {
242 case KT_VNODE:
243 VOP_UNLOCK(ko->ko_source, 0);
244 vn_close(ko->ko_source, FREAD, kauth_cred_get());
245 break;
246 case KT_MEMORY:
247 /* nothing */
248 break;
249 default:
250 panic("kobj_close: unknown type");
251 break;
252 }
253
254 ko->ko_source = NULL;
255 ko->ko_type = KT_UNSET;
256
257 /* Program table and section strings are no longer needed. */
258 if (ko->ko_progtab != NULL) {
259 kmem_free(ko->ko_progtab, ko->ko_nprogtab *
260 sizeof(*ko->ko_progtab));
261 ko->ko_progtab = NULL;
262 }
263 if (ko->ko_shstrtab) {
264 kmem_free(ko->ko_shstrtab, ko->ko_shstrtabsz);
265 ko->ko_shstrtab = NULL;
266 }
267
268 /* If the object hasn't been loaded, then destroy it. */
269 if (!ko->ko_loaded) {
270 kobj_unload(ko);
271 }
272 }
273
274 /*
275 * kobj_load:
276 *
277 * Load an ELF object from the file system and link into the
278 * running kernel image.
279 */
280 int
281 kobj_load(kobj_t ko)
282 {
283 Elf_Ehdr *hdr;
284 Elf_Shdr *shdr;
285 Elf_Sym *es;
286 vaddr_t mapbase;
287 size_t mapsize;
288 int error;
289 int symtabindex;
290 int symstrindex;
291 int nsym;
292 int pb, rl, ra;
293 int alignmask;
294 int i, j;
295
296 KASSERT(ko->ko_type != KT_UNSET);
297 KASSERT(ko->ko_source != NULL);
298
299 shdr = NULL;
300 mapsize = 0;
301 error = 0;
302 hdr = NULL;
303
304 /*
305 * Read the elf header from the file.
306 */
307 hdr = kmem_alloc(sizeof(*hdr), KM_SLEEP);
308 if (hdr == NULL) {
309 error = ENOMEM;
310 goto out;
311 }
312 error = kobj_read(ko, hdr, sizeof(*hdr), 0);
313 if (error != 0)
314 goto out;
315 if (memcmp(hdr->e_ident, ELFMAG, SELFMAG) != 0) {
316 kobj_error("not an ELF object");
317 error = ENOEXEC;
318 goto out;
319 }
320
321 if (hdr->e_ident[EI_VERSION] != EV_CURRENT ||
322 hdr->e_version != EV_CURRENT) {
323 kobj_error("unsupported file version");
324 error = ENOEXEC;
325 goto out;
326 }
327 if (hdr->e_type != ET_REL) {
328 kobj_error("unsupported file type");
329 error = ENOEXEC;
330 goto out;
331 }
332 switch (hdr->e_machine) {
333 #if ELFSIZE == 32
334 ELF32_MACHDEP_ID_CASES
335 #else
336 ELF64_MACHDEP_ID_CASES
337 #endif
338 default:
339 kobj_error("unsupported machine");
340 error = ENOEXEC;
341 goto out;
342 }
343
344 ko->ko_nprogtab = 0;
345 ko->ko_shdr = 0;
346 ko->ko_nrel = 0;
347 ko->ko_nrela = 0;
348
349 /*
350 * Allocate and read in the section header.
351 */
352 ko->ko_shdrsz = hdr->e_shnum * hdr->e_shentsize;
353 if (ko->ko_shdrsz == 0 || hdr->e_shoff == 0 ||
354 hdr->e_shentsize != sizeof(Elf_Shdr)) {
355 error = ENOEXEC;
356 goto out;
357 }
358 shdr = kmem_alloc(ko->ko_shdrsz, KM_SLEEP);
359 if (shdr == NULL) {
360 error = ENOMEM;
361 goto out;
362 }
363 ko->ko_shdr = shdr;
364 error = kobj_read(ko, shdr, ko->ko_shdrsz, hdr->e_shoff);
365 if (error != 0) {
366 goto out;
367 }
368
369 /*
370 * Scan the section header for information and table sizing.
371 */
372 nsym = 0;
373 symtabindex = -1;
374 symstrindex = -1;
375 for (i = 0; i < hdr->e_shnum; i++) {
376 switch (shdr[i].sh_type) {
377 case SHT_PROGBITS:
378 case SHT_NOBITS:
379 ko->ko_nprogtab++;
380 break;
381 case SHT_SYMTAB:
382 nsym++;
383 symtabindex = i;
384 symstrindex = shdr[i].sh_link;
385 break;
386 case SHT_REL:
387 ko->ko_nrel++;
388 break;
389 case SHT_RELA:
390 ko->ko_nrela++;
391 break;
392 case SHT_STRTAB:
393 break;
394 }
395 }
396 if (ko->ko_nprogtab == 0) {
397 kobj_error("file has no contents");
398 error = ENOEXEC;
399 goto out;
400 }
401 if (nsym != 1) {
402 /* Only allow one symbol table for now */
403 kobj_error("file has no valid symbol table");
404 error = ENOEXEC;
405 goto out;
406 }
407 if (symstrindex < 0 || symstrindex > hdr->e_shnum ||
408 shdr[symstrindex].sh_type != SHT_STRTAB) {
409 kobj_error("file has invalid symbol strings");
410 error = ENOEXEC;
411 goto out;
412 }
413
414 /*
415 * Allocate space for tracking the load chunks.
416 */
417 if (ko->ko_nprogtab != 0) {
418 ko->ko_progtab = kmem_zalloc(ko->ko_nprogtab *
419 sizeof(*ko->ko_progtab), KM_SLEEP);
420 if (ko->ko_progtab == NULL) {
421 error = ENOMEM;
422 goto out;
423 }
424 }
425 if (ko->ko_nrel != 0) {
426 ko->ko_reltab = kmem_zalloc(ko->ko_nrel *
427 sizeof(*ko->ko_reltab), KM_SLEEP);
428 if (ko->ko_reltab == NULL) {
429 error = ENOMEM;
430 goto out;
431 }
432 }
433 if (ko->ko_nrela != 0) {
434 ko->ko_relatab = kmem_zalloc(ko->ko_nrela *
435 sizeof(*ko->ko_relatab), KM_SLEEP);
436 if (ko->ko_relatab == NULL) {
437 error = ENOMEM;
438 goto out;
439 }
440 }
441 if (symtabindex == -1) {
442 kobj_error("lost symbol table index");
443 goto out;
444 }
445
446 /*
447 * Allocate space for and load the symbol table.
448 */
449 ko->ko_symcnt = shdr[symtabindex].sh_size / sizeof(Elf_Sym);
450 if (ko->ko_symcnt == 0) {
451 kobj_error("no symbol table");
452 goto out;
453 }
454 ko->ko_symtab = kmem_alloc(ko->ko_symcnt * sizeof(Elf_Sym), KM_SLEEP);
455 if (ko->ko_symtab == NULL) {
456 error = ENOMEM;
457 goto out;
458 }
459 error = kobj_read(ko, ko->ko_symtab, shdr[symtabindex].sh_size,
460 shdr[symtabindex].sh_offset);
461 if (error != 0) {
462 goto out;
463 }
464
465 /*
466 * Allocate space for and load the symbol strings.
467 */
468 ko->ko_strtabsz = shdr[symstrindex].sh_size;
469 if (ko->ko_strtabsz == 0) {
470 kobj_error("no symbol strings");
471 goto out;
472 }
473 ko->ko_strtab = kmem_alloc(ko->ko_strtabsz, KM_SLEEP);
474 if (ko->ko_strtab == NULL) {
475 error = ENOMEM;
476 goto out;
477 }
478 error = kobj_read(ko, ko->ko_strtab, shdr[symstrindex].sh_size,
479 shdr[symstrindex].sh_offset);
480 if (error != 0) {
481 goto out;
482 }
483
484 /*
485 * Do we have a string table for the section names?
486 */
487 if (hdr->e_shstrndx != 0 && shdr[hdr->e_shstrndx].sh_size != 0 &&
488 shdr[hdr->e_shstrndx].sh_type == SHT_STRTAB) {
489 ko->ko_shstrtabsz = shdr[hdr->e_shstrndx].sh_size;
490 ko->ko_shstrtab = kmem_alloc(shdr[hdr->e_shstrndx].sh_size,
491 KM_SLEEP);
492 if (ko->ko_shstrtab == NULL) {
493 error = ENOMEM;
494 goto out;
495 }
496 error = kobj_read(ko, ko->ko_shstrtab,
497 shdr[hdr->e_shstrndx].sh_size,
498 shdr[hdr->e_shstrndx].sh_offset);
499 if (error != 0) {
500 goto out;
501 }
502 }
503
504 /*
505 * Size up code/data(progbits) and bss(nobits).
506 */
507 alignmask = 0;
508 for (i = 0; i < hdr->e_shnum; i++) {
509 switch (shdr[i].sh_type) {
510 case SHT_PROGBITS:
511 case SHT_NOBITS:
512 alignmask = shdr[i].sh_addralign - 1;
513 mapsize += alignmask;
514 mapsize &= ~alignmask;
515 mapsize += shdr[i].sh_size;
516 break;
517 }
518 }
519
520 /*
521 * We know how much space we need for the text/data/bss/etc.
522 * This stuff needs to be in a single chunk so that profiling etc
523 * can get the bounds and gdb can associate offsets with modules.
524 */
525 if (mapsize == 0) {
526 kobj_error("no text/data/bss");
527 goto out;
528 }
529 mapbase = uvm_km_alloc(lkm_map, round_page(mapsize), 0,
530 UVM_KMF_WIRED | UVM_KMF_EXEC);
531 if (mapbase == 0) {
532 error = ENOMEM;
533 goto out;
534 }
535 ko->ko_address = mapbase;
536 ko->ko_size = mapsize;
537
538 /*
539 * Now load code/data(progbits), zero bss(nobits), allocate space
540 * for and load relocs
541 */
542 pb = 0;
543 rl = 0;
544 ra = 0;
545 alignmask = 0;
546 for (i = 0; i < hdr->e_shnum; i++) {
547 switch (shdr[i].sh_type) {
548 case SHT_PROGBITS:
549 case SHT_NOBITS:
550 alignmask = shdr[i].sh_addralign - 1;
551 mapbase += alignmask;
552 mapbase &= ~alignmask;
553 ko->ko_progtab[pb].addr = (void *)mapbase;
554 if (shdr[i].sh_type == SHT_PROGBITS) {
555 ko->ko_progtab[pb].name = "<<PROGBITS>>";
556 error = kobj_read(ko,
557 ko->ko_progtab[pb].addr, shdr[i].sh_size,
558 shdr[i].sh_offset);
559 if (error != 0) {
560 goto out;
561 }
562 } else {
563 ko->ko_progtab[pb].name = "<<NOBITS>>";
564 memset(ko->ko_progtab[pb].addr, 0,
565 shdr[i].sh_size);
566 }
567 ko->ko_progtab[pb].size = shdr[i].sh_size;
568 ko->ko_progtab[pb].sec = i;
569 if (ko->ko_shstrtab != NULL && shdr[i].sh_name != 0) {
570 ko->ko_progtab[pb].name =
571 ko->ko_shstrtab + shdr[i].sh_name;
572 }
573
574 /* Update all symbol values with the offset. */
575 for (j = 0; j < ko->ko_symcnt; j++) {
576 es = &ko->ko_symtab[j];
577 if (es->st_shndx != i) {
578 continue;
579 }
580 es->st_value +=
581 (Elf_Addr)ko->ko_progtab[pb].addr;
582 }
583 mapbase += shdr[i].sh_size;
584 pb++;
585 break;
586 case SHT_REL:
587 ko->ko_reltab[rl].size = shdr[i].sh_size;
588 ko->ko_reltab[rl].size -=
589 shdr[i].sh_size % sizeof(Elf_Rel);
590 if (ko->ko_reltab[rl].size != 0) {
591 ko->ko_reltab[rl].rel =
592 kmem_alloc(ko->ko_reltab[rl].size,
593 KM_SLEEP);
594 ko->ko_reltab[rl].nrel =
595 shdr[i].sh_size / sizeof(Elf_Rel);
596 ko->ko_reltab[rl].sec = shdr[i].sh_info;
597 error = kobj_read(ko,
598 ko->ko_reltab[rl].rel,
599 ko->ko_reltab[rl].size,
600 shdr[i].sh_offset);
601 if (error != 0) {
602 goto out;
603 }
604 }
605 rl++;
606 break;
607 case SHT_RELA:
608 ko->ko_relatab[ra].size = shdr[i].sh_size;
609 ko->ko_relatab[ra].size -=
610 shdr[i].sh_size % sizeof(Elf_Rela);
611 if (ko->ko_relatab[ra].size != 0) {
612 ko->ko_relatab[ra].rela =
613 kmem_alloc(ko->ko_relatab[ra].size,
614 KM_SLEEP);
615 ko->ko_relatab[ra].nrela =
616 shdr[i].sh_size / sizeof(Elf_Rela);
617 ko->ko_relatab[ra].sec = shdr[i].sh_info;
618 error = kobj_read(ko,
619 ko->ko_relatab[ra].rela,
620 shdr[i].sh_size,
621 shdr[i].sh_offset);
622 if (error != 0) {
623 goto out;
624 }
625 }
626 ra++;
627 break;
628 }
629 }
630 if (pb != ko->ko_nprogtab) {
631 panic("lost progbits");
632 }
633 if (rl != ko->ko_nrel) {
634 panic("lost rel");
635 }
636 if (ra != ko->ko_nrela) {
637 panic("lost rela");
638 }
639 if (mapbase != ko->ko_address + mapsize) {
640 panic("mapbase 0x%lx != address %lx + mapsize 0x%lx (0x%lx)\n",
641 (long)mapbase, (long)ko->ko_address, (long)mapsize,
642 (long)ko->ko_address + mapsize);
643 }
644
645 /*
646 * Perform relocations. Done before registering with ksyms,
647 * which will pack our symbol table.
648 */
649 error = kobj_relocate(ko);
650 if (error != 0) {
651 goto out;
652 }
653
654 /*
655 * Notify MD code that a module has been loaded.
656 */
657 error = kobj_machdep(ko, (void *)ko->ko_address, ko->ko_size, true);
658 if (error != 0) {
659 kobj_error("machine dependent init failed");
660 goto out;
661 }
662 ko->ko_loaded = true;
663 out:
664 kobj_release_mem(ko);
665 if (hdr != NULL) {
666 kmem_free(hdr, sizeof(*hdr));
667 }
668
669 return error;
670 }
671
672 /*
673 * kobj_unload:
674 *
675 * Unload an object previously loaded by kobj_load().
676 */
677 void
678 kobj_unload(kobj_t ko)
679 {
680 int error;
681
682 KASSERT(ko->ko_progtab == NULL);
683 KASSERT(ko->ko_shstrtab == NULL);
684
685 if (ko->ko_address != 0) {
686 uvm_km_free(lkm_map, ko->ko_address, round_page(ko->ko_size),
687 UVM_KMF_WIRED);
688 }
689 if (ko->ko_ksyms == true) {
690 ksyms_delsymtab(ko->ko_name);
691 }
692 if (ko->ko_symtab != NULL) {
693 kmem_free(ko->ko_symtab, ko->ko_symcnt * sizeof(Elf_Sym));
694 }
695 if (ko->ko_strtab != NULL) {
696 kmem_free(ko->ko_strtab, ko->ko_strtabsz);
697 }
698
699 /*
700 * Notify MD code that a module has been unloaded.
701 */
702 if (ko->ko_loaded) {
703 error = kobj_machdep(ko, (void *)ko->ko_address, ko->ko_size,
704 false);
705 if (error != 0) {
706 kobj_error("machine dependent deinit failed");
707 }
708 }
709
710 kmem_free(ko, sizeof(*ko));
711 }
712
713 /*
714 * kobj_stat:
715 *
716 * Return size and load address of an object.
717 */
718 void
719 kobj_stat(kobj_t ko, vaddr_t *address, size_t *size)
720 {
721
722 if (address != NULL) {
723 *address = ko->ko_address;
724 }
725 if (size != NULL) {
726 *size = ko->ko_size;
727 }
728 }
729
730 /*
731 * kobj_set_name:
732 *
733 * Set an object's name. Used only for symbol table lookups.
734 * May only be called after the module is loaded.
735 */
736 int
737 kobj_set_name(kobj_t ko, const char *name)
738 {
739 int error;
740
741 KASSERT(ko->ko_loaded);
742
743 strlcpy(ko->ko_name, name, sizeof(ko->ko_name));
744
745 /*
746 * Now that we know the name, register the symbol table.
747 */
748 error = ksyms_addsymtab(ko->ko_name, ko->ko_symtab, ko->ko_symcnt *
749 sizeof(Elf_Sym), ko->ko_strtab, ko->ko_strtabsz);
750 if (error != 0) {
751 kobj_error("unable to register module symbol table");
752 } else {
753 ko->ko_ksyms = true;
754 }
755
756 return error;
757 }
758
759 /*
760 * kobj_find_section:
761 *
762 * Given a section name, search the loaded object and return
763 * virtual address if present and loaded.
764 */
765 int
766 kobj_find_section(kobj_t ko, const char *name, void **addr, size_t *size)
767 {
768 int i;
769
770 KASSERT(ko->ko_progtab != NULL);
771
772 for (i = 0; i < ko->ko_nprogtab; i++) {
773 if (strcmp(ko->ko_progtab[i].name, name) == 0) {
774 if (addr != NULL) {
775 *addr = ko->ko_progtab[i].addr;
776 }
777 if (size != NULL) {
778 *size = ko->ko_progtab[i].size;
779 }
780 return 0;
781 }
782 }
783
784 return ENOENT;
785 }
786
787 /*
788 * kobj_release_mem:
789 *
790 * Release object data not needed after loading.
791 */
792 static void
793 kobj_release_mem(kobj_t ko)
794 {
795 int i;
796
797 for (i = 0; i < ko->ko_nrel; i++) {
798 if (ko->ko_reltab[i].rel) {
799 kmem_free(ko->ko_reltab[i].rel,
800 ko->ko_reltab[i].size);
801 }
802 }
803 for (i = 0; i < ko->ko_nrela; i++) {
804 if (ko->ko_relatab[i].rela) {
805 kmem_free(ko->ko_relatab[i].rela,
806 ko->ko_relatab[i].size);
807 }
808 }
809 if (ko->ko_reltab != NULL) {
810 kmem_free(ko->ko_reltab, ko->ko_nrel *
811 sizeof(*ko->ko_reltab));
812 ko->ko_reltab = NULL;
813 ko->ko_nrel = 0;
814 }
815 if (ko->ko_relatab != NULL) {
816 kmem_free(ko->ko_relatab, ko->ko_nrela *
817 sizeof(*ko->ko_relatab));
818 ko->ko_relatab = NULL;
819 ko->ko_nrela = 0;
820 }
821 if (ko->ko_shdr != NULL) {
822 kmem_free(ko->ko_shdr, ko->ko_shdrsz);
823 ko->ko_shdr = NULL;
824 }
825 }
826
827 /*
828 * kobj_sym_lookup:
829 *
830 * Symbol lookup function to be used when the symbol index
831 * is known (ie during relocation).
832 */
833 uintptr_t
834 kobj_sym_lookup(kobj_t ko, uintptr_t symidx)
835 {
836 const Elf_Sym *sym;
837 const char *symbol;
838 int error;
839 u_long addr;
840
841 /* Don't even try to lookup the symbol if the index is bogus. */
842 if (symidx >= ko->ko_symcnt)
843 return 0;
844
845 sym = ko->ko_symtab + symidx;
846
847 /* Quick answer if there is a definition included. */
848 if (sym->st_shndx != SHN_UNDEF) {
849 return sym->st_value;
850 }
851
852 /* If we get here, then it is undefined and needs a lookup. */
853 switch (ELF_ST_BIND(sym->st_info)) {
854 case STB_LOCAL:
855 /* Local, but undefined? huh? */
856 kobj_error("local symbol undefined");
857 return 0;
858
859 case STB_GLOBAL:
860 /* Relative to Data or Function name */
861 symbol = ko->ko_strtab + sym->st_name;
862
863 /* Force a lookup failure if the symbol name is bogus. */
864 if (*symbol == 0) {
865 kobj_error("bad symbol name");
866 return 0;
867 }
868
869 error = ksyms_getval(NULL, symbol, &addr, KSYMS_ANY);
870 if (error != 0) {
871 kobj_error("symbol %s undefined", symbol);
872 return (uintptr_t)0;
873 }
874 return (uintptr_t)addr;
875
876 case STB_WEAK:
877 kobj_error("weak symbols not supported\n");
878 return 0;
879
880 default:
881 return 0;
882 }
883 }
884
885 /*
886 * kobj_findbase:
887 *
888 * Return base address of the given section.
889 */
890 static uintptr_t
891 kobj_findbase(kobj_t ko, int sec)
892 {
893 int i;
894
895 for (i = 0; i < ko->ko_nprogtab; i++) {
896 if (sec == ko->ko_progtab[i].sec) {
897 return (uintptr_t)ko->ko_progtab[i].addr;
898 }
899 }
900 return 0;
901 }
902
903 /*
904 * kobj_relocate:
905 *
906 * Resolve all relocations for the loaded object.
907 */
908 static int
909 kobj_relocate(kobj_t ko)
910 {
911 const Elf_Rel *rellim;
912 const Elf_Rel *rel;
913 const Elf_Rela *relalim;
914 const Elf_Rela *rela;
915 const Elf_Sym *sym;
916 uintptr_t base;
917 int i, error;
918 uintptr_t symidx;
919
920 /*
921 * Perform relocations without addend if there are any.
922 */
923 for (i = 0; i < ko->ko_nrel; i++) {
924 rel = ko->ko_reltab[i].rel;
925 if (rel == NULL) {
926 continue;
927 }
928 rellim = rel + ko->ko_reltab[i].nrel;
929 base = kobj_findbase(ko, ko->ko_reltab[i].sec);
930 if (base == 0) {
931 panic("lost base for e_reltab");
932 }
933 for (; rel < rellim; rel++) {
934 symidx = ELF_R_SYM(rel->r_info);
935 if (symidx >= ko->ko_symcnt) {
936 continue;
937 }
938 sym = ko->ko_symtab + symidx;
939 error = kobj_reloc(ko, base, rel, false,
940 ELF_ST_BIND(sym->st_info) == STB_LOCAL);
941 if (error != 0) {
942 return ENOENT;
943 }
944 }
945 }
946
947 /*
948 * Perform relocations with addend if there are any.
949 */
950 for (i = 0; i < ko->ko_nrela; i++) {
951 rela = ko->ko_relatab[i].rela;
952 if (rela == NULL) {
953 continue;
954 }
955 relalim = rela + ko->ko_relatab[i].nrela;
956 base = kobj_findbase(ko, ko->ko_relatab[i].sec);
957 if (base == 0) {
958 panic("lost base for e_relatab");
959 }
960 for (; rela < relalim; rela++) {
961 symidx = ELF_R_SYM(rela->r_info);
962 if (symidx >= ko->ko_symcnt) {
963 continue;
964 }
965 sym = ko->ko_symtab + symidx;
966 error = kobj_reloc(ko, base, rela, true,
967 ELF_ST_BIND(sym->st_info) == STB_LOCAL);
968 if (error != 0) {
969 return ENOENT;
970 }
971 }
972 }
973
974 return 0;
975 }
976
977 /*
978 * kobj_error:
979 *
980 * Utility function: log an error.
981 */
982 static void
983 kobj_error(const char *fmt, ...)
984 {
985 va_list ap;
986
987 va_start(ap, fmt);
988 printf("WARNING: linker error: ");
989 vprintf(fmt, ap);
990 printf("\n");
991 va_end(ap);
992 }
993
994 /*
995 * kobj_read:
996 *
997 * Utility function: read from the object.
998 */
999 static int
1000 kobj_read(kobj_t ko, void *base, size_t size, off_t off)
1001 {
1002 size_t resid;
1003 int error;
1004
1005 KASSERT(ko->ko_source != NULL);
1006
1007 switch (ko->ko_type) {
1008 case KT_VNODE:
1009 error = vn_rdwr(UIO_READ, ko->ko_source, base, size, off,
1010 UIO_SYSSPACE, IO_NODELOCKED, curlwp->l_cred, &resid,
1011 curlwp);
1012 if (error == 0 && resid != 0) {
1013 error = EINVAL;
1014 }
1015 break;
1016 case KT_MEMORY:
1017 if (ko->ko_memsize != -1 && off + size > ko->ko_memsize) {
1018 kobj_error("kobj_read: preloaded object short");
1019 error = EINVAL;
1020 } else {
1021 memcpy(base, (uint8_t *)ko->ko_source + off, size);
1022 error = 0;
1023 }
1024 break;
1025 default:
1026 panic("kobj_read: invalid type");
1027 }
1028
1029 return error;
1030 }
1031
1032 #else /* MODULAR */
1033
1034 int
1035 kobj_open_file(kobj_t *kop, const char *name)
1036 {
1037
1038 return ENOSYS;
1039 }
1040
1041 int
1042 kobj_open_mem(kobj_t *kop, void *base, ssize_t size)
1043 {
1044
1045 return ENOSYS;
1046 }
1047
1048 void
1049 kobj_close(kobj_t ko)
1050 {
1051
1052 panic("not modular");
1053 }
1054
1055 int
1056 kobj_load(kobj_t ko)
1057 {
1058
1059 panic("not modular");
1060 }
1061
1062 void
1063 kobj_unload(kobj_t ko)
1064 {
1065
1066 panic("not modular");
1067 }
1068
1069 void
1070 kobj_stat(kobj_t ko, vaddr_t *base, size_t *size)
1071 {
1072
1073 panic("not modular");
1074 }
1075
1076 int
1077 kobj_set_name(kobj_t ko, const char *name)
1078 {
1079
1080 panic("not modular");
1081 }
1082
1083 int
1084 kobj_find_section(kobj_t ko, const char *name, void **addr, size_t *size)
1085 {
1086
1087 panic("not modular");
1088 }
1089
1090 #endif /* MODULAR */
1091