subr_kobj.c revision 1.12 1 /* $NetBSD: subr_kobj.c,v 1.12 2008/05/01 14:44:48 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 /*-
30 * Copyright (c) 1998-2000 Doug Rabson
31 * Copyright (c) 2004 Peter Wemm
32 * All rights reserved.
33 *
34 * Redistribution and use in source and binary forms, with or without
35 * modification, are permitted provided that the following conditions
36 * are met:
37 * 1. Redistributions of source code must retain the above copyright
38 * notice, this list of conditions and the following disclaimer.
39 * 2. Redistributions in binary form must reproduce the above copyright
40 * notice, this list of conditions and the following disclaimer in the
41 * documentation and/or other materials provided with the distribution.
42 *
43 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
44 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
45 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
46 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
47 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
48 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
49 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
50 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
51 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
52 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
53 * SUCH DAMAGE.
54 */
55
56 /*
57 * Kernel loader for ELF objects.
58 *
59 * TODO: adjust kmem_alloc() calls to avoid needless fragmentation.
60 */
61
62 #include "opt_modular.h"
63
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: subr_kobj.c,v 1.12 2008/05/01 14:44:48 ad Exp $");
66
67 #define ELFSIZE ARCH_ELFSIZE
68
69 #include <sys/param.h>
70 #include <sys/systm.h>
71 #include <sys/kernel.h>
72 #include <sys/kmem.h>
73 #include <sys/proc.h>
74 #include <sys/namei.h>
75 #include <sys/vnode.h>
76 #include <sys/fcntl.h>
77 #include <sys/kobj.h>
78 #include <sys/ksyms.h>
79 #include <sys/lkm.h>
80 #include <sys/exec.h>
81 #include <sys/exec_elf.h>
82
83 #include <machine/stdarg.h>
84
85 #include <uvm/uvm_extern.h>
86
87 #ifdef MODULAR
88
89 typedef struct {
90 void *addr;
91 Elf_Off size;
92 int flags;
93 int sec; /* Original section */
94 const char *name;
95 } progent_t;
96
97 typedef struct {
98 Elf_Rel *rel;
99 int nrel;
100 int sec;
101 size_t size;
102 } relent_t;
103
104 typedef struct {
105 Elf_Rela *rela;
106 int nrela;
107 int sec;
108 size_t size;
109 } relaent_t;
110
111 typedef enum kobjtype {
112 KT_UNSET,
113 KT_VNODE,
114 KT_MEMORY
115 } kobjtype_t;
116
117 struct kobj {
118 char ko_name[MAXLKMNAME];
119 kobjtype_t ko_type;
120 void *ko_source;
121 ssize_t ko_memsize;
122 vaddr_t ko_address; /* Relocation address */
123 Elf_Shdr *ko_shdr;
124 progent_t *ko_progtab;
125 relaent_t *ko_relatab;
126 relent_t *ko_reltab;
127 Elf_Sym *ko_symtab; /* Symbol table */
128 char *ko_strtab; /* String table */
129 char *ko_shstrtab; /* Section name string table */
130 size_t ko_size; /* Size of text/data/bss */
131 size_t ko_symcnt; /* Number of symbols */
132 size_t ko_strtabsz; /* Number of bytes in string table */
133 size_t ko_shstrtabsz; /* Number of bytes in scn str table */
134 size_t ko_shdrsz;
135 int ko_nrel;
136 int ko_nrela;
137 int ko_nprogtab;
138 bool ko_ksyms;
139 bool ko_loaded;
140 };
141
142 static int kobj_relocate(kobj_t);
143 static void kobj_error(const char *, ...);
144 static int kobj_read(kobj_t, void **, size_t, off_t);
145 static int kobj_read_bits(kobj_t, void *, size_t, off_t);
146 static void kobj_release_mem(kobj_t);
147 static void kobj_free(kobj_t, void *, size_t);
148
149 extern struct vm_map *lkm_map;
150 static const char *kobj_path = "/modules"; /* XXX ??? */
151
152 /*
153 * kobj_open_file:
154 *
155 * Open an object located in the file system.
156 */
157 int
158 kobj_open_file(kobj_t *kop, const char *filename)
159 {
160 struct nameidata nd;
161 kauth_cred_t cred;
162 char *path;
163 int error;
164 kobj_t ko;
165
166 cred = kauth_cred_get();
167
168 ko = kmem_zalloc(sizeof(*ko), KM_SLEEP);
169 if (ko == NULL) {
170 return ENOMEM;
171 }
172
173 /* XXX where to look? */
174 NDINIT(&nd, LOOKUP, FOLLOW, UIO_SYSSPACE, filename);
175 error = vn_open(&nd, FREAD, 0);
176 if (error != 0) {
177 if (error != ENOENT) {
178 goto out;
179 }
180 path = PNBUF_GET();
181 snprintf(path, MAXPATHLEN - 1, "%s/%s", kobj_path,
182 filename);
183 NDINIT(&nd, LOOKUP, FOLLOW, UIO_SYSSPACE, path);
184 error = vn_open(&nd, FREAD, 0);
185 if (error != 0) {
186 strlcat(path, ".o", MAXPATHLEN);
187 NDINIT(&nd, LOOKUP, FOLLOW, UIO_SYSSPACE, path);
188 error = vn_open(&nd, FREAD, 0);
189 }
190 PNBUF_PUT(path);
191 if (error != 0) {
192 goto out;
193 }
194 }
195
196 out:
197 if (error != 0) {
198 kmem_free(ko, sizeof(*ko));
199 } else {
200 ko->ko_type = KT_VNODE;
201 ko->ko_source = nd.ni_vp;
202 *kop = ko;
203 }
204 return error;
205 }
206
207 /*
208 * kobj_open_mem:
209 *
210 * Open a pre-loaded object already resident in memory. If size
211 * is not -1, the complete size of the object is known.
212 */
213 int
214 kobj_open_mem(kobj_t *kop, void *base, ssize_t size)
215 {
216 kobj_t ko;
217
218 ko = kmem_zalloc(sizeof(*ko), KM_SLEEP);
219 if (ko == NULL) {
220 return ENOMEM;
221 }
222
223 ko->ko_type = KT_MEMORY;
224 ko->ko_source = base;
225 ko->ko_memsize = size;
226 *kop = ko;
227
228 return 0;
229 }
230
231 /*
232 * kobj_close:
233 *
234 * Close an open ELF object. If the object was not successfully
235 * loaded, it will be destroyed.
236 */
237 void
238 kobj_close(kobj_t ko)
239 {
240
241 KASSERT(ko->ko_source != NULL);
242
243 switch (ko->ko_type) {
244 case KT_VNODE:
245 VOP_UNLOCK(ko->ko_source, 0);
246 vn_close(ko->ko_source, FREAD, kauth_cred_get());
247 break;
248 case KT_MEMORY:
249 /* nothing */
250 break;
251 default:
252 panic("kobj_close: unknown type");
253 break;
254 }
255
256 ko->ko_source = NULL;
257
258 /* Program table and section strings are no longer needed. */
259 if (ko->ko_progtab != NULL) {
260 kobj_free(ko, ko->ko_progtab, ko->ko_nprogtab *
261 sizeof(*ko->ko_progtab));
262 ko->ko_progtab = NULL;
263 }
264 if (ko->ko_shstrtab) {
265 kobj_free(ko, ko->ko_shstrtab, ko->ko_shstrtabsz);
266 ko->ko_shstrtab = NULL;
267 }
268
269 /* If the object hasn't been loaded, then destroy it. */
270 if (!ko->ko_loaded) {
271 kobj_unload(ko);
272 }
273 }
274
275 /*
276 * kobj_load:
277 *
278 * Load an ELF object from the file system and link into the
279 * running kernel image.
280 */
281 int
282 kobj_load(kobj_t ko)
283 {
284 Elf_Ehdr *hdr;
285 Elf_Shdr *shdr;
286 Elf_Sym *es;
287 vaddr_t mapbase;
288 size_t mapsize;
289 int error;
290 int symtabindex;
291 int symstrindex;
292 int nsym;
293 int pb, rl, ra;
294 int alignmask;
295 int i, j;
296
297 KASSERT(ko->ko_type != KT_UNSET);
298 KASSERT(ko->ko_source != NULL);
299
300 shdr = NULL;
301 mapsize = 0;
302 error = 0;
303 hdr = NULL;
304
305 /*
306 * Read the elf header from the file.
307 */
308 error = kobj_read(ko, (void **)&hdr, sizeof(*hdr), 0);
309 if (error != 0)
310 goto out;
311 if (memcmp(hdr->e_ident, ELFMAG, SELFMAG) != 0) {
312 kobj_error("not an ELF object");
313 error = ENOEXEC;
314 goto out;
315 }
316
317 if (hdr->e_ident[EI_VERSION] != EV_CURRENT ||
318 hdr->e_version != EV_CURRENT) {
319 kobj_error("unsupported file version");
320 error = ENOEXEC;
321 goto out;
322 }
323 if (hdr->e_type != ET_REL) {
324 kobj_error("unsupported file type");
325 error = ENOEXEC;
326 goto out;
327 }
328 switch (hdr->e_machine) {
329 #if ELFSIZE == 32
330 ELF32_MACHDEP_ID_CASES
331 #else
332 ELF64_MACHDEP_ID_CASES
333 #endif
334 default:
335 kobj_error("unsupported machine");
336 error = ENOEXEC;
337 goto out;
338 }
339
340 ko->ko_nprogtab = 0;
341 ko->ko_shdr = 0;
342 ko->ko_nrel = 0;
343 ko->ko_nrela = 0;
344
345 /*
346 * Allocate and read in the section header.
347 */
348 ko->ko_shdrsz = hdr->e_shnum * hdr->e_shentsize;
349 if (ko->ko_shdrsz == 0 || hdr->e_shoff == 0 ||
350 hdr->e_shentsize != sizeof(Elf_Shdr)) {
351 error = ENOEXEC;
352 goto out;
353 }
354 error = kobj_read(ko, (void **)&shdr, ko->ko_shdrsz, hdr->e_shoff);
355 if (error != 0) {
356 goto out;
357 }
358 ko->ko_shdr = shdr;
359
360 /*
361 * Scan the section header for information and table sizing.
362 */
363 nsym = 0;
364 symtabindex = -1;
365 symstrindex = -1;
366 for (i = 0; i < hdr->e_shnum; i++) {
367 switch (shdr[i].sh_type) {
368 case SHT_PROGBITS:
369 case SHT_NOBITS:
370 ko->ko_nprogtab++;
371 break;
372 case SHT_SYMTAB:
373 nsym++;
374 symtabindex = i;
375 symstrindex = shdr[i].sh_link;
376 break;
377 case SHT_REL:
378 ko->ko_nrel++;
379 break;
380 case SHT_RELA:
381 ko->ko_nrela++;
382 break;
383 case SHT_STRTAB:
384 break;
385 }
386 }
387 if (ko->ko_nprogtab == 0) {
388 kobj_error("file has no contents");
389 error = ENOEXEC;
390 goto out;
391 }
392 if (nsym != 1) {
393 /* Only allow one symbol table for now */
394 kobj_error("file has no valid symbol table");
395 error = ENOEXEC;
396 goto out;
397 }
398 if (symstrindex < 0 || symstrindex > hdr->e_shnum ||
399 shdr[symstrindex].sh_type != SHT_STRTAB) {
400 kobj_error("file has invalid symbol strings");
401 error = ENOEXEC;
402 goto out;
403 }
404
405 /*
406 * Allocate space for tracking the load chunks.
407 */
408 if (ko->ko_nprogtab != 0) {
409 ko->ko_progtab = kmem_zalloc(ko->ko_nprogtab *
410 sizeof(*ko->ko_progtab), KM_SLEEP);
411 if (ko->ko_progtab == NULL) {
412 error = ENOMEM;
413 goto out;
414 }
415 }
416 if (ko->ko_nrel != 0) {
417 ko->ko_reltab = kmem_zalloc(ko->ko_nrel *
418 sizeof(*ko->ko_reltab), KM_SLEEP);
419 if (ko->ko_reltab == NULL) {
420 error = ENOMEM;
421 goto out;
422 }
423 }
424 if (ko->ko_nrela != 0) {
425 ko->ko_relatab = kmem_zalloc(ko->ko_nrela *
426 sizeof(*ko->ko_relatab), KM_SLEEP);
427 if (ko->ko_relatab == NULL) {
428 error = ENOMEM;
429 goto out;
430 }
431 }
432 if (symtabindex == -1) {
433 kobj_error("lost symbol table index");
434 goto out;
435 }
436
437 /*
438 * Allocate space for and load the symbol table.
439 */
440 ko->ko_symcnt = shdr[symtabindex].sh_size / sizeof(Elf_Sym);
441 if (ko->ko_symcnt == 0) {
442 kobj_error("no symbol table");
443 goto out;
444 }
445 error = kobj_read(ko, (void **)&ko->ko_symtab,
446 ko->ko_symcnt * sizeof(Elf_Sym),
447 shdr[symtabindex].sh_offset);
448 if (error != 0) {
449 goto out;
450 }
451
452 /*
453 * Allocate space for and load the symbol strings.
454 */
455 ko->ko_strtabsz = shdr[symstrindex].sh_size;
456 if (ko->ko_strtabsz == 0) {
457 kobj_error("no symbol strings");
458 goto out;
459 }
460 error = kobj_read(ko, (void *)&ko->ko_strtab, ko->ko_strtabsz,
461 shdr[symstrindex].sh_offset);
462 if (error != 0) {
463 goto out;
464 }
465
466 /*
467 * Do we have a string table for the section names?
468 */
469 if (hdr->e_shstrndx != 0 && shdr[hdr->e_shstrndx].sh_size != 0 &&
470 shdr[hdr->e_shstrndx].sh_type == SHT_STRTAB) {
471 ko->ko_shstrtabsz = shdr[hdr->e_shstrndx].sh_size;
472 error = kobj_read(ko, (void *)&ko->ko_shstrtab,
473 shdr[hdr->e_shstrndx].sh_size,
474 shdr[hdr->e_shstrndx].sh_offset);
475 if (error != 0) {
476 goto out;
477 }
478 }
479
480 /*
481 * Size up code/data(progbits) and bss(nobits).
482 */
483 alignmask = 0;
484 mapbase = 0;
485 for (i = 0; i < hdr->e_shnum; i++) {
486 switch (shdr[i].sh_type) {
487 case SHT_PROGBITS:
488 case SHT_NOBITS:
489 if (mapbase == 0)
490 mapbase = shdr[i].sh_offset;
491 alignmask = shdr[i].sh_addralign - 1;
492 mapsize += alignmask;
493 mapsize &= ~alignmask;
494 mapsize += shdr[i].sh_size;
495 break;
496 }
497 }
498
499 /*
500 * We know how much space we need for the text/data/bss/etc.
501 * This stuff needs to be in a single chunk so that profiling etc
502 * can get the bounds and gdb can associate offsets with modules.
503 */
504 if (mapsize == 0) {
505 kobj_error("no text/data/bss");
506 goto out;
507 }
508 if (ko->ko_type == KT_MEMORY) {
509 mapbase += (vaddr_t)ko->ko_source;
510 } else {
511 mapbase = uvm_km_alloc(lkm_map, round_page(mapsize), 0,
512 UVM_KMF_WIRED | UVM_KMF_EXEC);
513 if (mapbase == 0) {
514 error = ENOMEM;
515 goto out;
516 }
517 }
518 ko->ko_address = mapbase;
519 ko->ko_size = mapsize;
520
521 /*
522 * Now load code/data(progbits), zero bss(nobits), allocate space
523 * for and load relocs
524 */
525 pb = 0;
526 rl = 0;
527 ra = 0;
528 alignmask = 0;
529 for (i = 0; i < hdr->e_shnum; i++) {
530 switch (shdr[i].sh_type) {
531 case SHT_PROGBITS:
532 case SHT_NOBITS:
533 alignmask = shdr[i].sh_addralign - 1;
534 mapbase += alignmask;
535 mapbase &= ~alignmask;
536 ko->ko_progtab[pb].addr = (void *)mapbase;
537 if (shdr[i].sh_type == SHT_PROGBITS) {
538 ko->ko_progtab[pb].name = "<<PROGBITS>>";
539 error = kobj_read_bits(ko,
540 ko->ko_progtab[pb].addr, shdr[i].sh_size,
541 shdr[i].sh_offset);
542 if (error != 0) {
543 goto out;
544 }
545 } else {
546 ko->ko_progtab[pb].name = "<<NOBITS>>";
547 memset(ko->ko_progtab[pb].addr, 0,
548 shdr[i].sh_size);
549 }
550 ko->ko_progtab[pb].size = shdr[i].sh_size;
551 ko->ko_progtab[pb].sec = i;
552 if (ko->ko_shstrtab != NULL && shdr[i].sh_name != 0) {
553 ko->ko_progtab[pb].name =
554 ko->ko_shstrtab + shdr[i].sh_name;
555 }
556
557 /* Update all symbol values with the offset. */
558 for (j = 0; j < ko->ko_symcnt; j++) {
559 es = &ko->ko_symtab[j];
560 if (es->st_shndx != i) {
561 continue;
562 }
563 es->st_value +=
564 (Elf_Addr)ko->ko_progtab[pb].addr;
565 }
566 mapbase += shdr[i].sh_size;
567 pb++;
568 break;
569 case SHT_REL:
570 ko->ko_reltab[rl].size = shdr[i].sh_size;
571 ko->ko_reltab[rl].size -=
572 shdr[i].sh_size % sizeof(Elf_Rel);
573 if (ko->ko_reltab[rl].size != 0) {
574 ko->ko_reltab[rl].nrel =
575 shdr[i].sh_size / sizeof(Elf_Rel);
576 ko->ko_reltab[rl].sec = shdr[i].sh_info;
577 error = kobj_read(ko,
578 (void **)&ko->ko_reltab[rl].rel,
579 ko->ko_reltab[rl].size,
580 shdr[i].sh_offset);
581 if (error != 0) {
582 goto out;
583 }
584 }
585 rl++;
586 break;
587 case SHT_RELA:
588 ko->ko_relatab[ra].size = shdr[i].sh_size;
589 ko->ko_relatab[ra].size -=
590 shdr[i].sh_size % sizeof(Elf_Rela);
591 if (ko->ko_relatab[ra].size != 0) {
592 ko->ko_relatab[ra].nrela =
593 shdr[i].sh_size / sizeof(Elf_Rela);
594 ko->ko_relatab[ra].sec = shdr[i].sh_info;
595 error = kobj_read(ko,
596 (void **)&ko->ko_relatab[ra].rela,
597 shdr[i].sh_size,
598 shdr[i].sh_offset);
599 if (error != 0) {
600 goto out;
601 }
602 }
603 ra++;
604 break;
605 }
606 }
607 if (pb != ko->ko_nprogtab) {
608 panic("lost progbits");
609 }
610 if (rl != ko->ko_nrel) {
611 panic("lost rel");
612 }
613 if (ra != ko->ko_nrela) {
614 panic("lost rela");
615 }
616 if (mapbase != ko->ko_address + mapsize) {
617 panic("mapbase 0x%lx != address %lx + mapsize 0x%lx (0x%lx)\n",
618 (long)mapbase, (long)ko->ko_address, (long)mapsize,
619 (long)ko->ko_address + mapsize);
620 }
621
622 /*
623 * Perform relocations. Done before registering with ksyms,
624 * which will pack our symbol table.
625 */
626 error = kobj_relocate(ko);
627 if (error != 0) {
628 goto out;
629 }
630
631 /*
632 * Notify MD code that a module has been loaded.
633 */
634 error = kobj_machdep(ko, (void *)ko->ko_address, ko->ko_size, true);
635 if (error != 0) {
636 kobj_error("machine dependent init failed");
637 goto out;
638 }
639 ko->ko_loaded = true;
640 out:
641 kobj_release_mem(ko);
642 if (hdr != NULL) {
643 kobj_free(ko, hdr, sizeof(*hdr));
644 }
645
646 return error;
647 }
648
649 /*
650 * kobj_unload:
651 *
652 * Unload an object previously loaded by kobj_load().
653 */
654 void
655 kobj_unload(kobj_t ko)
656 {
657 int error;
658
659 KASSERT(ko->ko_progtab == NULL);
660 KASSERT(ko->ko_shstrtab == NULL);
661
662 if (ko->ko_address != 0 && ko->ko_type != KT_MEMORY) {
663 uvm_km_free(lkm_map, ko->ko_address, round_page(ko->ko_size),
664 UVM_KMF_WIRED);
665 }
666 if (ko->ko_ksyms == true) {
667 ksyms_delsymtab(ko->ko_name);
668 }
669 if (ko->ko_symtab != NULL) {
670 kobj_free(ko, ko->ko_symtab, ko->ko_symcnt * sizeof(Elf_Sym));
671 }
672 if (ko->ko_strtab != NULL) {
673 kobj_free(ko, ko->ko_strtab, ko->ko_strtabsz);
674 }
675
676 /*
677 * Notify MD code that a module has been unloaded.
678 */
679 if (ko->ko_loaded) {
680 error = kobj_machdep(ko, (void *)ko->ko_address, ko->ko_size,
681 false);
682 if (error != 0) {
683 kobj_error("machine dependent deinit failed");
684 }
685 }
686
687 kmem_free(ko, sizeof(*ko));
688 }
689
690 /*
691 * kobj_stat:
692 *
693 * Return size and load address of an object.
694 */
695 void
696 kobj_stat(kobj_t ko, vaddr_t *address, size_t *size)
697 {
698
699 if (address != NULL) {
700 *address = ko->ko_address;
701 }
702 if (size != NULL) {
703 *size = ko->ko_size;
704 }
705 }
706
707 /*
708 * kobj_set_name:
709 *
710 * Set an object's name. Used only for symbol table lookups.
711 * May only be called after the module is loaded.
712 */
713 int
714 kobj_set_name(kobj_t ko, const char *name)
715 {
716 int error;
717
718 KASSERT(ko->ko_loaded);
719
720 strlcpy(ko->ko_name, name, sizeof(ko->ko_name));
721
722 /*
723 * Now that we know the name, register the symbol table.
724 */
725 error = ksyms_addsymtab(ko->ko_name, ko->ko_symtab, ko->ko_symcnt *
726 sizeof(Elf_Sym), ko->ko_strtab, ko->ko_strtabsz);
727 if (error != 0) {
728 kobj_error("unable to register module symbol table");
729 } else {
730 ko->ko_ksyms = true;
731 }
732
733 return error;
734 }
735
736 /*
737 * kobj_find_section:
738 *
739 * Given a section name, search the loaded object and return
740 * virtual address if present and loaded.
741 */
742 int
743 kobj_find_section(kobj_t ko, const char *name, void **addr, size_t *size)
744 {
745 int i;
746
747 KASSERT(ko->ko_progtab != NULL);
748
749 for (i = 0; i < ko->ko_nprogtab; i++) {
750 if (strcmp(ko->ko_progtab[i].name, name) == 0) {
751 if (addr != NULL) {
752 *addr = ko->ko_progtab[i].addr;
753 }
754 if (size != NULL) {
755 *size = ko->ko_progtab[i].size;
756 }
757 return 0;
758 }
759 }
760
761 return ENOENT;
762 }
763
764 /*
765 * kobj_release_mem:
766 *
767 * Release object data not needed after loading.
768 */
769 static void
770 kobj_release_mem(kobj_t ko)
771 {
772 int i;
773
774 for (i = 0; i < ko->ko_nrel; i++) {
775 if (ko->ko_reltab[i].rel) {
776 kobj_free(ko, ko->ko_reltab[i].rel,
777 ko->ko_reltab[i].size);
778 }
779 }
780 for (i = 0; i < ko->ko_nrela; i++) {
781 if (ko->ko_relatab[i].rela) {
782 kobj_free(ko, ko->ko_relatab[i].rela,
783 ko->ko_relatab[i].size);
784 }
785 }
786 if (ko->ko_reltab != NULL) {
787 kobj_free(ko, ko->ko_reltab, ko->ko_nrel *
788 sizeof(*ko->ko_reltab));
789 ko->ko_reltab = NULL;
790 ko->ko_nrel = 0;
791 }
792 if (ko->ko_relatab != NULL) {
793 kobj_free(ko, ko->ko_relatab, ko->ko_nrela *
794 sizeof(*ko->ko_relatab));
795 ko->ko_relatab = NULL;
796 ko->ko_nrela = 0;
797 }
798 if (ko->ko_shdr != NULL) {
799 kobj_free(ko, ko->ko_shdr, ko->ko_shdrsz);
800 ko->ko_shdr = NULL;
801 }
802 }
803
804 /*
805 * kobj_sym_lookup:
806 *
807 * Symbol lookup function to be used when the symbol index
808 * is known (ie during relocation).
809 */
810 uintptr_t
811 kobj_sym_lookup(kobj_t ko, uintptr_t symidx)
812 {
813 const Elf_Sym *sym;
814 const char *symbol;
815 int error;
816 u_long addr;
817
818 /* Don't even try to lookup the symbol if the index is bogus. */
819 if (symidx >= ko->ko_symcnt)
820 return 0;
821
822 sym = ko->ko_symtab + symidx;
823
824 /* Quick answer if there is a definition included. */
825 if (sym->st_shndx != SHN_UNDEF) {
826 return sym->st_value;
827 }
828
829 /* If we get here, then it is undefined and needs a lookup. */
830 switch (ELF_ST_BIND(sym->st_info)) {
831 case STB_LOCAL:
832 /* Local, but undefined? huh? */
833 kobj_error("local symbol undefined");
834 return 0;
835
836 case STB_GLOBAL:
837 /* Relative to Data or Function name */
838 symbol = ko->ko_strtab + sym->st_name;
839
840 /* Force a lookup failure if the symbol name is bogus. */
841 if (*symbol == 0) {
842 kobj_error("bad symbol name");
843 return 0;
844 }
845
846 error = ksyms_getval(NULL, symbol, &addr, KSYMS_ANY);
847 if (error != 0) {
848 kobj_error("symbol %s undefined", symbol);
849 return (uintptr_t)0;
850 }
851 return (uintptr_t)addr;
852
853 case STB_WEAK:
854 kobj_error("weak symbols not supported\n");
855 return 0;
856
857 default:
858 return 0;
859 }
860 }
861
862 /*
863 * kobj_findbase:
864 *
865 * Return base address of the given section.
866 */
867 static uintptr_t
868 kobj_findbase(kobj_t ko, int sec)
869 {
870 int i;
871
872 for (i = 0; i < ko->ko_nprogtab; i++) {
873 if (sec == ko->ko_progtab[i].sec) {
874 return (uintptr_t)ko->ko_progtab[i].addr;
875 }
876 }
877 return 0;
878 }
879
880 /*
881 * kobj_relocate:
882 *
883 * Resolve all relocations for the loaded object.
884 */
885 static int
886 kobj_relocate(kobj_t ko)
887 {
888 const Elf_Rel *rellim;
889 const Elf_Rel *rel;
890 const Elf_Rela *relalim;
891 const Elf_Rela *rela;
892 const Elf_Sym *sym;
893 uintptr_t base;
894 int i, error;
895 uintptr_t symidx;
896
897 /*
898 * Perform relocations without addend if there are any.
899 */
900 for (i = 0; i < ko->ko_nrel; i++) {
901 rel = ko->ko_reltab[i].rel;
902 if (rel == NULL) {
903 continue;
904 }
905 rellim = rel + ko->ko_reltab[i].nrel;
906 base = kobj_findbase(ko, ko->ko_reltab[i].sec);
907 if (base == 0) {
908 panic("lost base for e_reltab");
909 }
910 for (; rel < rellim; rel++) {
911 symidx = ELF_R_SYM(rel->r_info);
912 if (symidx >= ko->ko_symcnt) {
913 continue;
914 }
915 sym = ko->ko_symtab + symidx;
916 error = kobj_reloc(ko, base, rel, false,
917 ELF_ST_BIND(sym->st_info) == STB_LOCAL);
918 if (error != 0) {
919 return ENOENT;
920 }
921 }
922 }
923
924 /*
925 * Perform relocations with addend if there are any.
926 */
927 for (i = 0; i < ko->ko_nrela; i++) {
928 rela = ko->ko_relatab[i].rela;
929 if (rela == NULL) {
930 continue;
931 }
932 relalim = rela + ko->ko_relatab[i].nrela;
933 base = kobj_findbase(ko, ko->ko_relatab[i].sec);
934 if (base == 0) {
935 panic("lost base for e_relatab");
936 }
937 for (; rela < relalim; rela++) {
938 symidx = ELF_R_SYM(rela->r_info);
939 if (symidx >= ko->ko_symcnt) {
940 continue;
941 }
942 sym = ko->ko_symtab + symidx;
943 error = kobj_reloc(ko, base, rela, true,
944 ELF_ST_BIND(sym->st_info) == STB_LOCAL);
945 if (error != 0) {
946 return ENOENT;
947 }
948 }
949 }
950
951 return 0;
952 }
953
954 /*
955 * kobj_error:
956 *
957 * Utility function: log an error.
958 */
959 static void
960 kobj_error(const char *fmt, ...)
961 {
962 va_list ap;
963
964 va_start(ap, fmt);
965 printf("WARNING: linker error: ");
966 vprintf(fmt, ap);
967 printf("\n");
968 va_end(ap);
969 }
970
971 /*
972 * kobj_read:
973 *
974 * Utility function: read from the object.
975 */
976 static int
977 kobj_read(kobj_t ko, void **basep, size_t size, off_t off)
978 {
979 size_t resid;
980 void *base;
981 int error;
982
983 KASSERT(ko->ko_source != NULL);
984
985 switch (ko->ko_type) {
986 case KT_VNODE:
987 base = kmem_alloc(size, KM_SLEEP);
988 if (base == NULL) {
989 error = ENOMEM;
990 break;
991 }
992 error = vn_rdwr(UIO_READ, ko->ko_source, base, size, off,
993 UIO_SYSSPACE, IO_NODELOCKED, curlwp->l_cred, &resid,
994 curlwp);
995 if (error == 0 && resid != 0) {
996 kmem_free(base, size);
997 error = EINVAL;
998 }
999 break;
1000 case KT_MEMORY:
1001 if (ko->ko_memsize != -1 && off + size > ko->ko_memsize) {
1002 kobj_error("kobj_read: preloaded object short");
1003 error = EINVAL;
1004 base = NULL;
1005 } else {
1006 base = (uint8_t *)ko->ko_source + off;
1007 error = 0;
1008 }
1009 break;
1010 default:
1011 panic("kobj_read: invalid type");
1012 }
1013
1014 *basep = base;
1015 return error;
1016 }
1017
1018 /*
1019 * kobj_read_bits:
1020 *
1021 * Utility function: load a section from the object.
1022 */
1023 static int
1024 kobj_read_bits(kobj_t ko, void *base, size_t size, off_t off)
1025 {
1026 size_t resid;
1027 int error;
1028
1029 KASSERT(ko->ko_source != NULL);
1030
1031 switch (ko->ko_type) {
1032 case KT_VNODE:
1033 error = vn_rdwr(UIO_READ, ko->ko_source, base, size, off,
1034 UIO_SYSSPACE, IO_NODELOCKED, curlwp->l_cred, &resid,
1035 curlwp);
1036 if (error == 0 && resid != 0) {
1037 error = EINVAL;
1038 }
1039 break;
1040 case KT_MEMORY:
1041 if (ko->ko_memsize != -1 && off + size > ko->ko_memsize) {
1042 kobj_error("kobj_read_bits: preloaded object short");
1043 error = EINVAL;
1044 } else if ((uint8_t *)base != (uint8_t *)ko->ko_source + off) {
1045 kobj_error("kobj_read_bits: object not aligned");
1046 kobj_error("source=%p base=%p off=%d size=%zd",
1047 ko->ko_source, base, (int)off, size);
1048 error = EINVAL;
1049 } else {
1050 /* Nothing to do. Loading in-situ. */
1051 error = 0;
1052 }
1053 break;
1054 default:
1055 panic("kobj_read: invalid type");
1056 }
1057
1058 return error;
1059 }
1060
1061 /*
1062 * kobj_free:
1063 *
1064 * Utility function: free memory if it was allocated from the heap.
1065 */
1066 static void
1067 kobj_free(kobj_t ko, void *base, size_t size)
1068 {
1069
1070 if (ko->ko_type != KT_MEMORY)
1071 kmem_free(base, size);
1072 }
1073
1074 #else /* MODULAR */
1075
1076 int
1077 kobj_open_file(kobj_t *kop, const char *name)
1078 {
1079
1080 return ENOSYS;
1081 }
1082
1083 int
1084 kobj_open_mem(kobj_t *kop, void *base, ssize_t size)
1085 {
1086
1087 return ENOSYS;
1088 }
1089
1090 void
1091 kobj_close(kobj_t ko)
1092 {
1093
1094 panic("not modular");
1095 }
1096
1097 int
1098 kobj_load(kobj_t ko)
1099 {
1100
1101 panic("not modular");
1102 }
1103
1104 void
1105 kobj_unload(kobj_t ko)
1106 {
1107
1108 panic("not modular");
1109 }
1110
1111 void
1112 kobj_stat(kobj_t ko, vaddr_t *base, size_t *size)
1113 {
1114
1115 panic("not modular");
1116 }
1117
1118 int
1119 kobj_set_name(kobj_t ko, const char *name)
1120 {
1121
1122 panic("not modular");
1123 }
1124
1125 int
1126 kobj_find_section(kobj_t ko, const char *name, void **addr, size_t *size)
1127 {
1128
1129 panic("not modular");
1130 }
1131
1132 #endif /* MODULAR */
1133