subr_kobj.c revision 1.15 1 /* $NetBSD: subr_kobj.c,v 1.15 2008/05/03 15:57:17 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 /*-
30 * Copyright (c) 1998-2000 Doug Rabson
31 * Copyright (c) 2004 Peter Wemm
32 * All rights reserved.
33 *
34 * Redistribution and use in source and binary forms, with or without
35 * modification, are permitted provided that the following conditions
36 * are met:
37 * 1. Redistributions of source code must retain the above copyright
38 * notice, this list of conditions and the following disclaimer.
39 * 2. Redistributions in binary form must reproduce the above copyright
40 * notice, this list of conditions and the following disclaimer in the
41 * documentation and/or other materials provided with the distribution.
42 *
43 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
44 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
45 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
46 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
47 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
48 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
49 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
50 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
51 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
52 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
53 * SUCH DAMAGE.
54 */
55
56 /*
57 * Kernel loader for ELF objects.
58 *
59 * TODO: adjust kmem_alloc() calls to avoid needless fragmentation.
60 */
61
62 #include "opt_modular.h"
63
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: subr_kobj.c,v 1.15 2008/05/03 15:57:17 ad Exp $");
66
67 #define ELFSIZE ARCH_ELFSIZE
68
69 #include <sys/param.h>
70 #include <sys/systm.h>
71 #include <sys/kernel.h>
72 #include <sys/kmem.h>
73 #include <sys/proc.h>
74 #include <sys/namei.h>
75 #include <sys/vnode.h>
76 #include <sys/fcntl.h>
77 #include <sys/kobj.h>
78 #include <sys/ksyms.h>
79 #include <sys/lkm.h>
80 #include <sys/exec.h>
81 #include <sys/exec_elf.h>
82
83 #include <machine/stdarg.h>
84
85 #include <uvm/uvm_extern.h>
86
87 #ifdef MODULAR
88
89 typedef struct {
90 void *addr;
91 Elf_Off size;
92 int flags;
93 int sec; /* Original section */
94 const char *name;
95 } progent_t;
96
97 typedef struct {
98 Elf_Rel *rel;
99 int nrel;
100 int sec;
101 size_t size;
102 } relent_t;
103
104 typedef struct {
105 Elf_Rela *rela;
106 int nrela;
107 int sec;
108 size_t size;
109 } relaent_t;
110
111 typedef enum kobjtype {
112 KT_UNSET,
113 KT_VNODE,
114 KT_MEMORY
115 } kobjtype_t;
116
117 struct kobj {
118 char ko_name[MAXLKMNAME];
119 kobjtype_t ko_type;
120 void *ko_source;
121 ssize_t ko_memsize;
122 vaddr_t ko_address; /* Relocation address */
123 Elf_Shdr *ko_shdr;
124 progent_t *ko_progtab;
125 relaent_t *ko_relatab;
126 relent_t *ko_reltab;
127 Elf_Sym *ko_symtab; /* Symbol table */
128 char *ko_strtab; /* String table */
129 char *ko_shstrtab; /* Section name string table */
130 size_t ko_size; /* Size of text/data/bss */
131 size_t ko_symcnt; /* Number of symbols */
132 size_t ko_strtabsz; /* Number of bytes in string table */
133 size_t ko_shstrtabsz; /* Number of bytes in scn str table */
134 size_t ko_shdrsz;
135 int ko_nrel;
136 int ko_nrela;
137 int ko_nprogtab;
138 bool ko_ksyms;
139 bool ko_loaded;
140 };
141
142 static int kobj_relocate(kobj_t);
143 static void kobj_error(const char *, ...);
144 static int kobj_read(kobj_t, void **, size_t, off_t);
145 static int kobj_read_bits(kobj_t, void *, size_t, off_t);
146 static void kobj_release_mem(kobj_t);
147 static void kobj_free(kobj_t, void *, size_t);
148
149 extern struct vm_map *lkm_map;
150 static const char *kobj_path = "/modules"; /* XXX ??? */
151
152 /*
153 * kobj_open_file:
154 *
155 * Open an object located in the file system.
156 */
157 int
158 kobj_open_file(kobj_t *kop, const char *filename)
159 {
160 struct nameidata nd;
161 kauth_cred_t cred;
162 char *path;
163 int error;
164 kobj_t ko;
165
166 cred = kauth_cred_get();
167
168 ko = kmem_zalloc(sizeof(*ko), KM_SLEEP);
169 if (ko == NULL) {
170 return ENOMEM;
171 }
172
173 /* XXX where to look? */
174 NDINIT(&nd, LOOKUP, FOLLOW, UIO_SYSSPACE, filename);
175 error = vn_open(&nd, FREAD, 0);
176 if (error != 0) {
177 if (error != ENOENT) {
178 goto out;
179 }
180 path = PNBUF_GET();
181 snprintf(path, MAXPATHLEN - 1, "%s/%s", kobj_path,
182 filename);
183 NDINIT(&nd, LOOKUP, FOLLOW, UIO_SYSSPACE, path);
184 error = vn_open(&nd, FREAD, 0);
185 if (error != 0) {
186 strlcat(path, ".o", MAXPATHLEN);
187 NDINIT(&nd, LOOKUP, FOLLOW, UIO_SYSSPACE, path);
188 error = vn_open(&nd, FREAD, 0);
189 }
190 PNBUF_PUT(path);
191 if (error != 0) {
192 goto out;
193 }
194 }
195
196 out:
197 if (error != 0) {
198 kmem_free(ko, sizeof(*ko));
199 } else {
200 ko->ko_type = KT_VNODE;
201 ko->ko_source = nd.ni_vp;
202 *kop = ko;
203 }
204 return error;
205 }
206
207 /*
208 * kobj_open_mem:
209 *
210 * Open a pre-loaded object already resident in memory. If size
211 * is not -1, the complete size of the object is known.
212 */
213 int
214 kobj_open_mem(kobj_t *kop, void *base, ssize_t size)
215 {
216 kobj_t ko;
217
218 ko = kmem_zalloc(sizeof(*ko), KM_SLEEP);
219 if (ko == NULL) {
220 return ENOMEM;
221 }
222
223 ko->ko_type = KT_MEMORY;
224 ko->ko_source = base;
225 ko->ko_memsize = size;
226 *kop = ko;
227
228 return 0;
229 }
230
231 /*
232 * kobj_close:
233 *
234 * Close an open ELF object. If the object was not successfully
235 * loaded, it will be destroyed.
236 */
237 void
238 kobj_close(kobj_t ko)
239 {
240
241 KASSERT(ko->ko_source != NULL);
242
243 switch (ko->ko_type) {
244 case KT_VNODE:
245 VOP_UNLOCK(ko->ko_source, 0);
246 vn_close(ko->ko_source, FREAD, kauth_cred_get());
247 break;
248 case KT_MEMORY:
249 /* nothing */
250 break;
251 default:
252 panic("kobj_close: unknown type");
253 break;
254 }
255
256 ko->ko_source = NULL;
257
258 /* If the object hasn't been loaded, then destroy it. */
259 if (!ko->ko_loaded) {
260 kobj_unload(ko);
261 }
262 }
263
264 /*
265 * kobj_load:
266 *
267 * Load an ELF object from the file system and link into the
268 * running kernel image.
269 */
270 int
271 kobj_load(kobj_t ko)
272 {
273 Elf_Ehdr *hdr;
274 Elf_Shdr *shdr;
275 Elf_Sym *es;
276 vaddr_t mapbase;
277 size_t mapsize;
278 int error;
279 int symtabindex;
280 int symstrindex;
281 int nsym;
282 int pb, rl, ra;
283 int alignmask;
284 int i, j;
285 void *addr;
286
287 KASSERT(ko->ko_type != KT_UNSET);
288 KASSERT(ko->ko_source != NULL);
289
290 shdr = NULL;
291 mapsize = 0;
292 error = 0;
293 hdr = NULL;
294
295 /*
296 * Read the elf header from the file.
297 */
298 error = kobj_read(ko, (void **)&hdr, sizeof(*hdr), 0);
299 if (error != 0)
300 goto out;
301 if (memcmp(hdr->e_ident, ELFMAG, SELFMAG) != 0) {
302 kobj_error("not an ELF object");
303 error = ENOEXEC;
304 goto out;
305 }
306
307 if (hdr->e_ident[EI_VERSION] != EV_CURRENT ||
308 hdr->e_version != EV_CURRENT) {
309 kobj_error("unsupported file version");
310 error = ENOEXEC;
311 goto out;
312 }
313 if (hdr->e_type != ET_REL) {
314 kobj_error("unsupported file type");
315 error = ENOEXEC;
316 goto out;
317 }
318 switch (hdr->e_machine) {
319 #if ELFSIZE == 32
320 ELF32_MACHDEP_ID_CASES
321 #else
322 ELF64_MACHDEP_ID_CASES
323 #endif
324 default:
325 kobj_error("unsupported machine");
326 error = ENOEXEC;
327 goto out;
328 }
329
330 ko->ko_nprogtab = 0;
331 ko->ko_shdr = 0;
332 ko->ko_nrel = 0;
333 ko->ko_nrela = 0;
334
335 /*
336 * Allocate and read in the section header.
337 */
338 ko->ko_shdrsz = hdr->e_shnum * hdr->e_shentsize;
339 if (ko->ko_shdrsz == 0 || hdr->e_shoff == 0 ||
340 hdr->e_shentsize != sizeof(Elf_Shdr)) {
341 error = ENOEXEC;
342 goto out;
343 }
344 error = kobj_read(ko, (void **)&shdr, ko->ko_shdrsz, hdr->e_shoff);
345 if (error != 0) {
346 goto out;
347 }
348 ko->ko_shdr = shdr;
349
350 /*
351 * Scan the section header for information and table sizing.
352 */
353 nsym = 0;
354 symtabindex = -1;
355 symstrindex = -1;
356 for (i = 0; i < hdr->e_shnum; i++) {
357 switch (shdr[i].sh_type) {
358 case SHT_PROGBITS:
359 case SHT_NOBITS:
360 ko->ko_nprogtab++;
361 break;
362 case SHT_SYMTAB:
363 nsym++;
364 symtabindex = i;
365 symstrindex = shdr[i].sh_link;
366 break;
367 case SHT_REL:
368 ko->ko_nrel++;
369 break;
370 case SHT_RELA:
371 ko->ko_nrela++;
372 break;
373 case SHT_STRTAB:
374 break;
375 }
376 }
377 if (ko->ko_nprogtab == 0) {
378 kobj_error("file has no contents");
379 error = ENOEXEC;
380 goto out;
381 }
382 if (nsym != 1) {
383 /* Only allow one symbol table for now */
384 kobj_error("file has no valid symbol table");
385 error = ENOEXEC;
386 goto out;
387 }
388 if (symstrindex < 0 || symstrindex > hdr->e_shnum ||
389 shdr[symstrindex].sh_type != SHT_STRTAB) {
390 kobj_error("file has invalid symbol strings");
391 error = ENOEXEC;
392 goto out;
393 }
394
395 /*
396 * Allocate space for tracking the load chunks.
397 */
398 if (ko->ko_nprogtab != 0) {
399 ko->ko_progtab = kmem_zalloc(ko->ko_nprogtab *
400 sizeof(*ko->ko_progtab), KM_SLEEP);
401 if (ko->ko_progtab == NULL) {
402 error = ENOMEM;
403 goto out;
404 }
405 }
406 if (ko->ko_nrel != 0) {
407 ko->ko_reltab = kmem_zalloc(ko->ko_nrel *
408 sizeof(*ko->ko_reltab), KM_SLEEP);
409 if (ko->ko_reltab == NULL) {
410 error = ENOMEM;
411 goto out;
412 }
413 }
414 if (ko->ko_nrela != 0) {
415 ko->ko_relatab = kmem_zalloc(ko->ko_nrela *
416 sizeof(*ko->ko_relatab), KM_SLEEP);
417 if (ko->ko_relatab == NULL) {
418 error = ENOMEM;
419 goto out;
420 }
421 }
422 if (symtabindex == -1) {
423 kobj_error("lost symbol table index");
424 goto out;
425 }
426
427 /*
428 * Allocate space for and load the symbol table.
429 */
430 ko->ko_symcnt = shdr[symtabindex].sh_size / sizeof(Elf_Sym);
431 if (ko->ko_symcnt == 0) {
432 kobj_error("no symbol table");
433 goto out;
434 }
435 error = kobj_read(ko, (void **)&ko->ko_symtab,
436 ko->ko_symcnt * sizeof(Elf_Sym),
437 shdr[symtabindex].sh_offset);
438 if (error != 0) {
439 goto out;
440 }
441
442 /*
443 * Allocate space for and load the symbol strings.
444 */
445 ko->ko_strtabsz = shdr[symstrindex].sh_size;
446 if (ko->ko_strtabsz == 0) {
447 kobj_error("no symbol strings");
448 goto out;
449 }
450 error = kobj_read(ko, (void *)&ko->ko_strtab, ko->ko_strtabsz,
451 shdr[symstrindex].sh_offset);
452 if (error != 0) {
453 goto out;
454 }
455
456 /*
457 * Do we have a string table for the section names?
458 */
459 if (hdr->e_shstrndx != 0 && shdr[hdr->e_shstrndx].sh_size != 0 &&
460 shdr[hdr->e_shstrndx].sh_type == SHT_STRTAB) {
461 ko->ko_shstrtabsz = shdr[hdr->e_shstrndx].sh_size;
462 error = kobj_read(ko, (void *)&ko->ko_shstrtab,
463 shdr[hdr->e_shstrndx].sh_size,
464 shdr[hdr->e_shstrndx].sh_offset);
465 if (error != 0) {
466 goto out;
467 }
468 }
469
470 /*
471 * Size up code/data(progbits) and bss(nobits).
472 */
473 alignmask = 0;
474 mapbase = 0;
475 for (i = 0; i < hdr->e_shnum; i++) {
476 switch (shdr[i].sh_type) {
477 case SHT_PROGBITS:
478 case SHT_NOBITS:
479 if (mapbase == 0)
480 mapbase = shdr[i].sh_offset;
481 alignmask = shdr[i].sh_addralign - 1;
482 mapsize += alignmask;
483 mapsize &= ~alignmask;
484 mapsize += shdr[i].sh_size;
485 break;
486 }
487 }
488
489 /*
490 * We know how much space we need for the text/data/bss/etc.
491 * This stuff needs to be in a single chunk so that profiling etc
492 * can get the bounds and gdb can associate offsets with modules.
493 */
494 if (mapsize == 0) {
495 kobj_error("no text/data/bss");
496 goto out;
497 }
498 if (ko->ko_type == KT_MEMORY) {
499 mapbase += (vaddr_t)ko->ko_source;
500 } else {
501 mapbase = uvm_km_alloc(lkm_map, round_page(mapsize),
502 0, UVM_KMF_WIRED | UVM_KMF_EXEC);
503 if (mapbase == 0) {
504 error = ENOMEM;
505 goto out;
506 }
507 }
508 ko->ko_address = mapbase;
509 ko->ko_size = mapsize;
510
511 /*
512 * Now load code/data(progbits), zero bss(nobits), allocate space
513 * for and load relocs
514 */
515 pb = 0;
516 rl = 0;
517 ra = 0;
518 alignmask = 0;
519 for (i = 0; i < hdr->e_shnum; i++) {
520 switch (shdr[i].sh_type) {
521 case SHT_PROGBITS:
522 case SHT_NOBITS:
523 alignmask = shdr[i].sh_addralign - 1;
524 if (ko->ko_type == KT_MEMORY) {
525 addr = (void *)(shdr[i].sh_offset +
526 (vaddr_t)ko->ko_source);
527 if (((vaddr_t)addr & alignmask) != 0) {
528 kobj_error("section %d not aligned\n",
529 i);
530 goto out;
531 }
532 } else {
533 mapbase += alignmask;
534 mapbase &= ~alignmask;
535 addr = (void *)mapbase;
536 mapbase += shdr[i].sh_size;
537 }
538 ko->ko_progtab[pb].addr = addr;
539 if (shdr[i].sh_type == SHT_PROGBITS) {
540 ko->ko_progtab[pb].name = "<<PROGBITS>>";
541 error = kobj_read_bits(ko, addr,
542 shdr[i].sh_size, shdr[i].sh_offset);
543 if (error != 0) {
544 goto out;
545 }
546 } else if (ko->ko_type == KT_MEMORY &&
547 shdr[i].sh_size != 0) {
548 kobj_error("non-loadable BSS section in "
549 "pre-loaded module");
550 goto out;
551 } else {
552 ko->ko_progtab[pb].name = "<<NOBITS>>";
553 memset(addr, 0, shdr[i].sh_size);
554 }
555 ko->ko_progtab[pb].size = shdr[i].sh_size;
556 ko->ko_progtab[pb].sec = i;
557 if (ko->ko_shstrtab != NULL && shdr[i].sh_name != 0) {
558 ko->ko_progtab[pb].name =
559 ko->ko_shstrtab + shdr[i].sh_name;
560 }
561
562 /* Update all symbol values with the offset. */
563 for (j = 0; j < ko->ko_symcnt; j++) {
564 es = &ko->ko_symtab[j];
565 if (es->st_shndx != i) {
566 continue;
567 }
568 es->st_value += (Elf_Addr)addr;
569 }
570 pb++;
571 break;
572 case SHT_REL:
573 ko->ko_reltab[rl].size = shdr[i].sh_size;
574 ko->ko_reltab[rl].size -=
575 shdr[i].sh_size % sizeof(Elf_Rel);
576 if (ko->ko_reltab[rl].size != 0) {
577 ko->ko_reltab[rl].nrel =
578 shdr[i].sh_size / sizeof(Elf_Rel);
579 ko->ko_reltab[rl].sec = shdr[i].sh_info;
580 error = kobj_read(ko,
581 (void **)&ko->ko_reltab[rl].rel,
582 ko->ko_reltab[rl].size,
583 shdr[i].sh_offset);
584 if (error != 0) {
585 goto out;
586 }
587 }
588 rl++;
589 break;
590 case SHT_RELA:
591 ko->ko_relatab[ra].size = shdr[i].sh_size;
592 ko->ko_relatab[ra].size -=
593 shdr[i].sh_size % sizeof(Elf_Rela);
594 if (ko->ko_relatab[ra].size != 0) {
595 ko->ko_relatab[ra].nrela =
596 shdr[i].sh_size / sizeof(Elf_Rela);
597 ko->ko_relatab[ra].sec = shdr[i].sh_info;
598 error = kobj_read(ko,
599 (void **)&ko->ko_relatab[ra].rela,
600 shdr[i].sh_size,
601 shdr[i].sh_offset);
602 if (error != 0) {
603 goto out;
604 }
605 }
606 ra++;
607 break;
608 default:
609 break;
610 }
611 }
612 if (pb != ko->ko_nprogtab) {
613 panic("lost progbits");
614 }
615 if (rl != ko->ko_nrel) {
616 panic("lost rel");
617 }
618 if (ra != ko->ko_nrela) {
619 panic("lost rela");
620 }
621 if (ko->ko_type != KT_MEMORY && mapbase != ko->ko_address + mapsize) {
622 panic("mapbase 0x%lx != address %lx + mapsize %ld (0x%lx)\n",
623 (long)mapbase, (long)ko->ko_address, (long)mapsize,
624 (long)ko->ko_address + mapsize);
625 }
626
627 /*
628 * Perform relocations. Done before registering with ksyms,
629 * which will pack our symbol table.
630 */
631 error = kobj_relocate(ko);
632 if (error != 0) {
633 goto out;
634 }
635
636 /*
637 * Notify MD code that a module has been loaded.
638 */
639 error = kobj_machdep(ko, (void *)ko->ko_address, ko->ko_size, true);
640 if (error != 0) {
641 kobj_error("machine dependent init failed");
642 goto out;
643 }
644 ko->ko_loaded = true;
645 out:
646 kobj_release_mem(ko);
647 if (hdr != NULL) {
648 kobj_free(ko, hdr, sizeof(*hdr));
649 }
650
651 return error;
652 }
653
654 /*
655 * kobj_unload:
656 *
657 * Unload an object previously loaded by kobj_load().
658 */
659 void
660 kobj_unload(kobj_t ko)
661 {
662 int error;
663
664 if (ko->ko_address != 0 && ko->ko_type != KT_MEMORY) {
665 uvm_km_free(lkm_map, ko->ko_address, round_page(ko->ko_size),
666 UVM_KMF_WIRED);
667 }
668 if (ko->ko_ksyms == true) {
669 ksyms_delsymtab(ko->ko_name);
670 }
671 if (ko->ko_symtab != NULL) {
672 kobj_free(ko, ko->ko_symtab, ko->ko_symcnt * sizeof(Elf_Sym));
673 }
674 if (ko->ko_strtab != NULL) {
675 kobj_free(ko, ko->ko_strtab, ko->ko_strtabsz);
676 }
677 if (ko->ko_progtab != NULL) {
678 kobj_free(ko, ko->ko_progtab, ko->ko_nprogtab *
679 sizeof(*ko->ko_progtab));
680 ko->ko_progtab = NULL;
681 }
682 if (ko->ko_shstrtab) {
683 kobj_free(ko, ko->ko_shstrtab, ko->ko_shstrtabsz);
684 ko->ko_shstrtab = NULL;
685 }
686
687 /*
688 * Notify MD code that a module has been unloaded.
689 */
690 if (ko->ko_loaded) {
691 error = kobj_machdep(ko, (void *)ko->ko_address, ko->ko_size,
692 false);
693 if (error != 0) {
694 kobj_error("machine dependent deinit failed");
695 }
696 }
697
698 kmem_free(ko, sizeof(*ko));
699 }
700
701 /*
702 * kobj_stat:
703 *
704 * Return size and load address of an object.
705 */
706 void
707 kobj_stat(kobj_t ko, vaddr_t *address, size_t *size)
708 {
709
710 if (address != NULL) {
711 *address = ko->ko_address;
712 }
713 if (size != NULL) {
714 *size = ko->ko_size;
715 }
716 }
717
718 /*
719 * kobj_set_name:
720 *
721 * Set an object's name. Used only for symbol table lookups.
722 * May only be called after the module is loaded.
723 */
724 int
725 kobj_set_name(kobj_t ko, const char *name)
726 {
727 int error;
728
729 KASSERT(ko->ko_loaded);
730
731 strlcpy(ko->ko_name, name, sizeof(ko->ko_name));
732
733 /*
734 * Now that we know the name, register the symbol table.
735 */
736 error = ksyms_addsymtab(ko->ko_name, ko->ko_symtab, ko->ko_symcnt *
737 sizeof(Elf_Sym), ko->ko_strtab, ko->ko_strtabsz);
738 if (error != 0) {
739 kobj_error("unable to register module symbol table");
740 } else {
741 ko->ko_ksyms = true;
742 }
743
744 return error;
745 }
746
747 /*
748 * kobj_find_section:
749 *
750 * Given a section name, search the loaded object and return
751 * virtual address if present and loaded.
752 */
753 int
754 kobj_find_section(kobj_t ko, const char *name, void **addr, size_t *size)
755 {
756 int i;
757
758 KASSERT(ko->ko_progtab != NULL);
759
760 for (i = 0; i < ko->ko_nprogtab; i++) {
761 if (strcmp(ko->ko_progtab[i].name, name) == 0) {
762 if (addr != NULL) {
763 *addr = ko->ko_progtab[i].addr;
764 }
765 if (size != NULL) {
766 *size = ko->ko_progtab[i].size;
767 }
768 return 0;
769 }
770 }
771
772 return ENOENT;
773 }
774
775 /*
776 * kobj_release_mem:
777 *
778 * Release object data not needed after loading.
779 */
780 static void
781 kobj_release_mem(kobj_t ko)
782 {
783 int i;
784
785 for (i = 0; i < ko->ko_nrel; i++) {
786 if (ko->ko_reltab[i].rel) {
787 kobj_free(ko, ko->ko_reltab[i].rel,
788 ko->ko_reltab[i].size);
789 }
790 }
791 for (i = 0; i < ko->ko_nrela; i++) {
792 if (ko->ko_relatab[i].rela) {
793 kobj_free(ko, ko->ko_relatab[i].rela,
794 ko->ko_relatab[i].size);
795 }
796 }
797 if (ko->ko_reltab != NULL) {
798 kobj_free(ko, ko->ko_reltab, ko->ko_nrel *
799 sizeof(*ko->ko_reltab));
800 ko->ko_reltab = NULL;
801 ko->ko_nrel = 0;
802 }
803 if (ko->ko_relatab != NULL) {
804 kobj_free(ko, ko->ko_relatab, ko->ko_nrela *
805 sizeof(*ko->ko_relatab));
806 ko->ko_relatab = NULL;
807 ko->ko_nrela = 0;
808 }
809 if (ko->ko_shdr != NULL) {
810 kobj_free(ko, ko->ko_shdr, ko->ko_shdrsz);
811 ko->ko_shdr = NULL;
812 }
813 }
814
815 /*
816 * kobj_sym_lookup:
817 *
818 * Symbol lookup function to be used when the symbol index
819 * is known (ie during relocation).
820 */
821 uintptr_t
822 kobj_sym_lookup(kobj_t ko, uintptr_t symidx)
823 {
824 const Elf_Sym *sym;
825 const char *symbol;
826 int error;
827 u_long addr;
828
829 /* Don't even try to lookup the symbol if the index is bogus. */
830 if (symidx >= ko->ko_symcnt)
831 return 0;
832
833 sym = ko->ko_symtab + symidx;
834
835 /* Quick answer if there is a definition included. */
836 if (sym->st_shndx != SHN_UNDEF) {
837 return sym->st_value;
838 }
839
840 /* If we get here, then it is undefined and needs a lookup. */
841 switch (ELF_ST_BIND(sym->st_info)) {
842 case STB_LOCAL:
843 /* Local, but undefined? huh? */
844 kobj_error("local symbol undefined");
845 return 0;
846
847 case STB_GLOBAL:
848 /* Relative to Data or Function name */
849 symbol = ko->ko_strtab + sym->st_name;
850
851 /* Force a lookup failure if the symbol name is bogus. */
852 if (*symbol == 0) {
853 kobj_error("bad symbol name");
854 return 0;
855 }
856
857 error = ksyms_getval(NULL, symbol, &addr, KSYMS_ANY);
858 if (error != 0) {
859 kobj_error("symbol %s undefined", symbol);
860 return (uintptr_t)0;
861 }
862 return (uintptr_t)addr;
863
864 case STB_WEAK:
865 kobj_error("weak symbols not supported\n");
866 return 0;
867
868 default:
869 return 0;
870 }
871 }
872
873 /*
874 * kobj_findbase:
875 *
876 * Return base address of the given section.
877 */
878 static uintptr_t
879 kobj_findbase(kobj_t ko, int sec)
880 {
881 int i;
882
883 for (i = 0; i < ko->ko_nprogtab; i++) {
884 if (sec == ko->ko_progtab[i].sec) {
885 return (uintptr_t)ko->ko_progtab[i].addr;
886 }
887 }
888 return 0;
889 }
890
891 /*
892 * kobj_relocate:
893 *
894 * Resolve all relocations for the loaded object.
895 */
896 static int
897 kobj_relocate(kobj_t ko)
898 {
899 const Elf_Rel *rellim;
900 const Elf_Rel *rel;
901 const Elf_Rela *relalim;
902 const Elf_Rela *rela;
903 const Elf_Sym *sym;
904 uintptr_t base;
905 int i, error;
906 uintptr_t symidx;
907
908 /*
909 * Perform relocations without addend if there are any.
910 */
911 for (i = 0; i < ko->ko_nrel; i++) {
912 rel = ko->ko_reltab[i].rel;
913 if (rel == NULL) {
914 continue;
915 }
916 rellim = rel + ko->ko_reltab[i].nrel;
917 base = kobj_findbase(ko, ko->ko_reltab[i].sec);
918 if (base == 0) {
919 panic("lost base for e_reltab");
920 }
921 for (; rel < rellim; rel++) {
922 symidx = ELF_R_SYM(rel->r_info);
923 if (symidx >= ko->ko_symcnt) {
924 continue;
925 }
926 sym = ko->ko_symtab + symidx;
927 error = kobj_reloc(ko, base, rel, false,
928 ELF_ST_BIND(sym->st_info) == STB_LOCAL);
929 if (error != 0) {
930 return ENOENT;
931 }
932 }
933 }
934
935 /*
936 * Perform relocations with addend if there are any.
937 */
938 for (i = 0; i < ko->ko_nrela; i++) {
939 rela = ko->ko_relatab[i].rela;
940 if (rela == NULL) {
941 continue;
942 }
943 relalim = rela + ko->ko_relatab[i].nrela;
944 base = kobj_findbase(ko, ko->ko_relatab[i].sec);
945 if (base == 0) {
946 panic("lost base for e_relatab");
947 }
948 for (; rela < relalim; rela++) {
949 symidx = ELF_R_SYM(rela->r_info);
950 if (symidx >= ko->ko_symcnt) {
951 continue;
952 }
953 sym = ko->ko_symtab + symidx;
954 error = kobj_reloc(ko, base, rela, true,
955 ELF_ST_BIND(sym->st_info) == STB_LOCAL);
956 if (error != 0) {
957 return ENOENT;
958 }
959 }
960 }
961
962 return 0;
963 }
964
965 /*
966 * kobj_error:
967 *
968 * Utility function: log an error.
969 */
970 static void
971 kobj_error(const char *fmt, ...)
972 {
973 va_list ap;
974
975 va_start(ap, fmt);
976 printf("WARNING: linker error: ");
977 vprintf(fmt, ap);
978 printf("\n");
979 va_end(ap);
980 }
981
982 /*
983 * kobj_read:
984 *
985 * Utility function: read from the object.
986 */
987 static int
988 kobj_read(kobj_t ko, void **basep, size_t size, off_t off)
989 {
990 size_t resid;
991 void *base;
992 int error;
993
994 KASSERT(ko->ko_source != NULL);
995
996 switch (ko->ko_type) {
997 case KT_VNODE:
998 base = kmem_alloc(size, KM_SLEEP);
999 if (base == NULL) {
1000 error = ENOMEM;
1001 break;
1002 }
1003 error = vn_rdwr(UIO_READ, ko->ko_source, base, size, off,
1004 UIO_SYSSPACE, IO_NODELOCKED, curlwp->l_cred, &resid,
1005 curlwp);
1006 if (error == 0 && resid != 0) {
1007 kmem_free(base, size);
1008 error = EINVAL;
1009 }
1010 break;
1011 case KT_MEMORY:
1012 if (ko->ko_memsize != -1 && off + size > ko->ko_memsize) {
1013 kobj_error("kobj_read: preloaded object short");
1014 error = EINVAL;
1015 base = NULL;
1016 } else {
1017 base = (uint8_t *)ko->ko_source + off;
1018 error = 0;
1019 }
1020 break;
1021 default:
1022 panic("kobj_read: invalid type");
1023 }
1024
1025 *basep = base;
1026 return error;
1027 }
1028
1029 /*
1030 * kobj_read_bits:
1031 *
1032 * Utility function: load a section from the object.
1033 */
1034 static int
1035 kobj_read_bits(kobj_t ko, void *base, size_t size, off_t off)
1036 {
1037 size_t resid;
1038 int error;
1039
1040 KASSERT(ko->ko_source != NULL);
1041
1042 switch (ko->ko_type) {
1043 case KT_VNODE:
1044 error = vn_rdwr(UIO_READ, ko->ko_source, base, size, off,
1045 UIO_SYSSPACE, IO_NODELOCKED, curlwp->l_cred, &resid,
1046 curlwp);
1047 if (error == 0 && resid != 0) {
1048 error = EINVAL;
1049 }
1050 break;
1051 case KT_MEMORY:
1052 if (ko->ko_memsize != -1 && off + size > ko->ko_memsize) {
1053 kobj_error("kobj_read_bits: preloaded object short");
1054 error = EINVAL;
1055 } else if ((uint8_t *)base != (uint8_t *)ko->ko_source + off) {
1056 kobj_error("kobj_read_bits: object not aligned");
1057 kobj_error("source=%p base=%p off=%d size=%zd",
1058 ko->ko_source, base, (int)off, size);
1059 error = EINVAL;
1060 } else {
1061 /* Nothing to do. Loading in-situ. */
1062 error = 0;
1063 }
1064 break;
1065 default:
1066 panic("kobj_read: invalid type");
1067 }
1068
1069 return error;
1070 }
1071
1072 /*
1073 * kobj_free:
1074 *
1075 * Utility function: free memory if it was allocated from the heap.
1076 */
1077 static void
1078 kobj_free(kobj_t ko, void *base, size_t size)
1079 {
1080
1081 if (ko->ko_type != KT_MEMORY)
1082 kmem_free(base, size);
1083 }
1084
1085 #else /* MODULAR */
1086
1087 int
1088 kobj_open_file(kobj_t *kop, const char *name)
1089 {
1090
1091 return ENOSYS;
1092 }
1093
1094 int
1095 kobj_open_mem(kobj_t *kop, void *base, ssize_t size)
1096 {
1097
1098 return ENOSYS;
1099 }
1100
1101 void
1102 kobj_close(kobj_t ko)
1103 {
1104
1105 panic("not modular");
1106 }
1107
1108 int
1109 kobj_load(kobj_t ko)
1110 {
1111
1112 panic("not modular");
1113 }
1114
1115 void
1116 kobj_unload(kobj_t ko)
1117 {
1118
1119 panic("not modular");
1120 }
1121
1122 void
1123 kobj_stat(kobj_t ko, vaddr_t *base, size_t *size)
1124 {
1125
1126 panic("not modular");
1127 }
1128
1129 int
1130 kobj_set_name(kobj_t ko, const char *name)
1131 {
1132
1133 panic("not modular");
1134 }
1135
1136 int
1137 kobj_find_section(kobj_t ko, const char *name, void **addr, size_t *size)
1138 {
1139
1140 panic("not modular");
1141 }
1142
1143 #endif /* MODULAR */
1144