subr_kobj.c revision 1.17 1 /* $NetBSD: subr_kobj.c,v 1.17 2008/05/19 17:33:42 jmcneill Exp $ */
2
3 /*-
4 * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 /*-
30 * Copyright (c) 1998-2000 Doug Rabson
31 * Copyright (c) 2004 Peter Wemm
32 * All rights reserved.
33 *
34 * Redistribution and use in source and binary forms, with or without
35 * modification, are permitted provided that the following conditions
36 * are met:
37 * 1. Redistributions of source code must retain the above copyright
38 * notice, this list of conditions and the following disclaimer.
39 * 2. Redistributions in binary form must reproduce the above copyright
40 * notice, this list of conditions and the following disclaimer in the
41 * documentation and/or other materials provided with the distribution.
42 *
43 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
44 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
45 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
46 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
47 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
48 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
49 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
50 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
51 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
52 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
53 * SUCH DAMAGE.
54 */
55
56 /*
57 * Kernel loader for ELF objects.
58 *
59 * TODO: adjust kmem_alloc() calls to avoid needless fragmentation.
60 */
61
62 #include "opt_modular.h"
63
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: subr_kobj.c,v 1.17 2008/05/19 17:33:42 jmcneill Exp $");
66
67 #define ELFSIZE ARCH_ELFSIZE
68
69 #include <sys/systm.h>
70 #include <sys/kobj.h>
71 #include <sys/errno.h>
72
73 #ifdef MODULAR
74
75 #include <sys/param.h>
76 #include <sys/kernel.h>
77 #include <sys/kmem.h>
78 #include <sys/proc.h>
79 #include <sys/namei.h>
80 #include <sys/vnode.h>
81 #include <sys/fcntl.h>
82 #include <sys/ksyms.h>
83 #include <sys/lkm.h>
84 #include <sys/exec.h>
85 #include <sys/exec_elf.h>
86
87 #include <machine/stdarg.h>
88
89 #include <uvm/uvm_extern.h>
90
91
92 typedef struct {
93 void *addr;
94 Elf_Off size;
95 int flags;
96 int sec; /* Original section */
97 const char *name;
98 } progent_t;
99
100 typedef struct {
101 Elf_Rel *rel;
102 int nrel;
103 int sec;
104 size_t size;
105 } relent_t;
106
107 typedef struct {
108 Elf_Rela *rela;
109 int nrela;
110 int sec;
111 size_t size;
112 } relaent_t;
113
114 typedef enum kobjtype {
115 KT_UNSET,
116 KT_VNODE,
117 KT_MEMORY
118 } kobjtype_t;
119
120 struct kobj {
121 char ko_name[MAXLKMNAME];
122 kobjtype_t ko_type;
123 void *ko_source;
124 ssize_t ko_memsize;
125 vaddr_t ko_address; /* Relocation address */
126 Elf_Shdr *ko_shdr;
127 progent_t *ko_progtab;
128 relaent_t *ko_relatab;
129 relent_t *ko_reltab;
130 Elf_Sym *ko_symtab; /* Symbol table */
131 char *ko_strtab; /* String table */
132 char *ko_shstrtab; /* Section name string table */
133 size_t ko_size; /* Size of text/data/bss */
134 size_t ko_symcnt; /* Number of symbols */
135 size_t ko_strtabsz; /* Number of bytes in string table */
136 size_t ko_shstrtabsz; /* Number of bytes in scn str table */
137 size_t ko_shdrsz;
138 int ko_nrel;
139 int ko_nrela;
140 int ko_nprogtab;
141 bool ko_ksyms;
142 bool ko_loaded;
143 };
144
145 static int kobj_relocate(kobj_t);
146 static void kobj_error(const char *, ...);
147 static int kobj_read(kobj_t, void **, size_t, off_t);
148 static int kobj_read_bits(kobj_t, void *, size_t, off_t);
149 static void kobj_release_mem(kobj_t);
150 static void kobj_free(kobj_t, void *, size_t);
151
152 extern struct vm_map *lkm_map;
153 static const char *kobj_path = "/modules"; /* XXX ??? */
154
155 /*
156 * kobj_open_file:
157 *
158 * Open an object located in the file system.
159 */
160 int
161 kobj_open_file(kobj_t *kop, const char *filename)
162 {
163 struct nameidata nd;
164 kauth_cred_t cred;
165 char *path;
166 int error;
167 kobj_t ko;
168
169 cred = kauth_cred_get();
170
171 ko = kmem_zalloc(sizeof(*ko), KM_SLEEP);
172 if (ko == NULL) {
173 return ENOMEM;
174 }
175
176 /* XXX where to look? */
177 NDINIT(&nd, LOOKUP, FOLLOW, UIO_SYSSPACE, filename);
178 error = vn_open(&nd, FREAD, 0);
179 if (error != 0) {
180 if (error != ENOENT) {
181 goto out;
182 }
183 path = PNBUF_GET();
184 snprintf(path, MAXPATHLEN - 1, "%s/%s", kobj_path,
185 filename);
186 NDINIT(&nd, LOOKUP, FOLLOW, UIO_SYSSPACE, path);
187 error = vn_open(&nd, FREAD, 0);
188 if (error != 0) {
189 strlcat(path, ".o", MAXPATHLEN);
190 NDINIT(&nd, LOOKUP, FOLLOW, UIO_SYSSPACE, path);
191 error = vn_open(&nd, FREAD, 0);
192 }
193 PNBUF_PUT(path);
194 if (error != 0) {
195 goto out;
196 }
197 }
198
199 out:
200 if (error != 0) {
201 kmem_free(ko, sizeof(*ko));
202 } else {
203 ko->ko_type = KT_VNODE;
204 ko->ko_source = nd.ni_vp;
205 *kop = ko;
206 }
207 return error;
208 }
209
210 /*
211 * kobj_open_mem:
212 *
213 * Open a pre-loaded object already resident in memory. If size
214 * is not -1, the complete size of the object is known.
215 */
216 int
217 kobj_open_mem(kobj_t *kop, void *base, ssize_t size)
218 {
219 kobj_t ko;
220
221 ko = kmem_zalloc(sizeof(*ko), KM_SLEEP);
222 if (ko == NULL) {
223 return ENOMEM;
224 }
225
226 ko->ko_type = KT_MEMORY;
227 ko->ko_source = base;
228 ko->ko_memsize = size;
229 *kop = ko;
230
231 return 0;
232 }
233
234 /*
235 * kobj_close:
236 *
237 * Close an open ELF object. If the object was not successfully
238 * loaded, it will be destroyed.
239 */
240 void
241 kobj_close(kobj_t ko)
242 {
243
244 KASSERT(ko->ko_source != NULL);
245
246 switch (ko->ko_type) {
247 case KT_VNODE:
248 VOP_UNLOCK(ko->ko_source, 0);
249 vn_close(ko->ko_source, FREAD, kauth_cred_get());
250 break;
251 case KT_MEMORY:
252 /* nothing */
253 break;
254 default:
255 panic("kobj_close: unknown type");
256 break;
257 }
258
259 ko->ko_source = NULL;
260
261 /* If the object hasn't been loaded, then destroy it. */
262 if (!ko->ko_loaded) {
263 kobj_unload(ko);
264 }
265 }
266
267 /*
268 * kobj_load:
269 *
270 * Load an ELF object from the file system and link into the
271 * running kernel image.
272 */
273 int
274 kobj_load(kobj_t ko)
275 {
276 Elf_Ehdr *hdr;
277 Elf_Shdr *shdr;
278 Elf_Sym *es;
279 vaddr_t mapbase;
280 size_t mapsize;
281 int error;
282 int symtabindex;
283 int symstrindex;
284 int nsym;
285 int pb, rl, ra;
286 int alignmask;
287 int i, j;
288 void *addr;
289
290 KASSERT(ko->ko_type != KT_UNSET);
291 KASSERT(ko->ko_source != NULL);
292
293 shdr = NULL;
294 mapsize = 0;
295 error = 0;
296 hdr = NULL;
297
298 /*
299 * Read the elf header from the file.
300 */
301 error = kobj_read(ko, (void **)&hdr, sizeof(*hdr), 0);
302 if (error != 0)
303 goto out;
304 if (memcmp(hdr->e_ident, ELFMAG, SELFMAG) != 0) {
305 kobj_error("not an ELF object");
306 error = ENOEXEC;
307 goto out;
308 }
309
310 if (hdr->e_ident[EI_VERSION] != EV_CURRENT ||
311 hdr->e_version != EV_CURRENT) {
312 kobj_error("unsupported file version");
313 error = ENOEXEC;
314 goto out;
315 }
316 if (hdr->e_type != ET_REL) {
317 kobj_error("unsupported file type");
318 error = ENOEXEC;
319 goto out;
320 }
321 switch (hdr->e_machine) {
322 #if ELFSIZE == 32
323 ELF32_MACHDEP_ID_CASES
324 #else
325 ELF64_MACHDEP_ID_CASES
326 #endif
327 default:
328 kobj_error("unsupported machine");
329 error = ENOEXEC;
330 goto out;
331 }
332
333 ko->ko_nprogtab = 0;
334 ko->ko_shdr = 0;
335 ko->ko_nrel = 0;
336 ko->ko_nrela = 0;
337
338 /*
339 * Allocate and read in the section header.
340 */
341 ko->ko_shdrsz = hdr->e_shnum * hdr->e_shentsize;
342 if (ko->ko_shdrsz == 0 || hdr->e_shoff == 0 ||
343 hdr->e_shentsize != sizeof(Elf_Shdr)) {
344 error = ENOEXEC;
345 goto out;
346 }
347 error = kobj_read(ko, (void **)&shdr, ko->ko_shdrsz, hdr->e_shoff);
348 if (error != 0) {
349 goto out;
350 }
351 ko->ko_shdr = shdr;
352
353 /*
354 * Scan the section header for information and table sizing.
355 */
356 nsym = 0;
357 symtabindex = -1;
358 symstrindex = -1;
359 for (i = 0; i < hdr->e_shnum; i++) {
360 switch (shdr[i].sh_type) {
361 case SHT_PROGBITS:
362 case SHT_NOBITS:
363 ko->ko_nprogtab++;
364 break;
365 case SHT_SYMTAB:
366 nsym++;
367 symtabindex = i;
368 symstrindex = shdr[i].sh_link;
369 break;
370 case SHT_REL:
371 ko->ko_nrel++;
372 break;
373 case SHT_RELA:
374 ko->ko_nrela++;
375 break;
376 case SHT_STRTAB:
377 break;
378 }
379 }
380 if (ko->ko_nprogtab == 0) {
381 kobj_error("file has no contents");
382 error = ENOEXEC;
383 goto out;
384 }
385 if (nsym != 1) {
386 /* Only allow one symbol table for now */
387 kobj_error("file has no valid symbol table");
388 error = ENOEXEC;
389 goto out;
390 }
391 if (symstrindex < 0 || symstrindex > hdr->e_shnum ||
392 shdr[symstrindex].sh_type != SHT_STRTAB) {
393 kobj_error("file has invalid symbol strings");
394 error = ENOEXEC;
395 goto out;
396 }
397
398 /*
399 * Allocate space for tracking the load chunks.
400 */
401 if (ko->ko_nprogtab != 0) {
402 ko->ko_progtab = kmem_zalloc(ko->ko_nprogtab *
403 sizeof(*ko->ko_progtab), KM_SLEEP);
404 if (ko->ko_progtab == NULL) {
405 error = ENOMEM;
406 goto out;
407 }
408 }
409 if (ko->ko_nrel != 0) {
410 ko->ko_reltab = kmem_zalloc(ko->ko_nrel *
411 sizeof(*ko->ko_reltab), KM_SLEEP);
412 if (ko->ko_reltab == NULL) {
413 error = ENOMEM;
414 goto out;
415 }
416 }
417 if (ko->ko_nrela != 0) {
418 ko->ko_relatab = kmem_zalloc(ko->ko_nrela *
419 sizeof(*ko->ko_relatab), KM_SLEEP);
420 if (ko->ko_relatab == NULL) {
421 error = ENOMEM;
422 goto out;
423 }
424 }
425 if (symtabindex == -1) {
426 kobj_error("lost symbol table index");
427 goto out;
428 }
429
430 /*
431 * Allocate space for and load the symbol table.
432 */
433 ko->ko_symcnt = shdr[symtabindex].sh_size / sizeof(Elf_Sym);
434 if (ko->ko_symcnt == 0) {
435 kobj_error("no symbol table");
436 goto out;
437 }
438 error = kobj_read(ko, (void **)&ko->ko_symtab,
439 ko->ko_symcnt * sizeof(Elf_Sym),
440 shdr[symtabindex].sh_offset);
441 if (error != 0) {
442 goto out;
443 }
444
445 /*
446 * Allocate space for and load the symbol strings.
447 */
448 ko->ko_strtabsz = shdr[symstrindex].sh_size;
449 if (ko->ko_strtabsz == 0) {
450 kobj_error("no symbol strings");
451 goto out;
452 }
453 error = kobj_read(ko, (void *)&ko->ko_strtab, ko->ko_strtabsz,
454 shdr[symstrindex].sh_offset);
455 if (error != 0) {
456 goto out;
457 }
458
459 /*
460 * Do we have a string table for the section names?
461 */
462 if (hdr->e_shstrndx != 0 && shdr[hdr->e_shstrndx].sh_size != 0 &&
463 shdr[hdr->e_shstrndx].sh_type == SHT_STRTAB) {
464 ko->ko_shstrtabsz = shdr[hdr->e_shstrndx].sh_size;
465 error = kobj_read(ko, (void *)&ko->ko_shstrtab,
466 shdr[hdr->e_shstrndx].sh_size,
467 shdr[hdr->e_shstrndx].sh_offset);
468 if (error != 0) {
469 goto out;
470 }
471 }
472
473 /*
474 * Size up code/data(progbits) and bss(nobits).
475 */
476 alignmask = 0;
477 mapbase = 0;
478 for (i = 0; i < hdr->e_shnum; i++) {
479 switch (shdr[i].sh_type) {
480 case SHT_PROGBITS:
481 case SHT_NOBITS:
482 if (mapbase == 0)
483 mapbase = shdr[i].sh_offset;
484 alignmask = shdr[i].sh_addralign - 1;
485 mapsize += alignmask;
486 mapsize &= ~alignmask;
487 mapsize += shdr[i].sh_size;
488 break;
489 }
490 }
491
492 /*
493 * We know how much space we need for the text/data/bss/etc.
494 * This stuff needs to be in a single chunk so that profiling etc
495 * can get the bounds and gdb can associate offsets with modules.
496 */
497 if (mapsize == 0) {
498 kobj_error("no text/data/bss");
499 goto out;
500 }
501 if (ko->ko_type == KT_MEMORY) {
502 mapbase += (vaddr_t)ko->ko_source;
503 } else {
504 mapbase = uvm_km_alloc(lkm_map, round_page(mapsize),
505 0, UVM_KMF_WIRED | UVM_KMF_EXEC);
506 if (mapbase == 0) {
507 error = ENOMEM;
508 goto out;
509 }
510 }
511 ko->ko_address = mapbase;
512 ko->ko_size = mapsize;
513
514 /*
515 * Now load code/data(progbits), zero bss(nobits), allocate space
516 * for and load relocs
517 */
518 pb = 0;
519 rl = 0;
520 ra = 0;
521 alignmask = 0;
522 for (i = 0; i < hdr->e_shnum; i++) {
523 switch (shdr[i].sh_type) {
524 case SHT_PROGBITS:
525 case SHT_NOBITS:
526 alignmask = shdr[i].sh_addralign - 1;
527 if (ko->ko_type == KT_MEMORY) {
528 addr = (void *)(shdr[i].sh_offset +
529 (vaddr_t)ko->ko_source);
530 if (((vaddr_t)addr & alignmask) != 0) {
531 kobj_error("section %d not aligned\n",
532 i);
533 goto out;
534 }
535 } else {
536 mapbase += alignmask;
537 mapbase &= ~alignmask;
538 addr = (void *)mapbase;
539 mapbase += shdr[i].sh_size;
540 }
541 ko->ko_progtab[pb].addr = addr;
542 if (shdr[i].sh_type == SHT_PROGBITS) {
543 ko->ko_progtab[pb].name = "<<PROGBITS>>";
544 error = kobj_read_bits(ko, addr,
545 shdr[i].sh_size, shdr[i].sh_offset);
546 if (error != 0) {
547 goto out;
548 }
549 } else if (ko->ko_type == KT_MEMORY &&
550 shdr[i].sh_size != 0) {
551 kobj_error("non-loadable BSS section in "
552 "pre-loaded module");
553 error = EINVAL;
554 goto out;
555 } else {
556 ko->ko_progtab[pb].name = "<<NOBITS>>";
557 memset(addr, 0, shdr[i].sh_size);
558 }
559 ko->ko_progtab[pb].size = shdr[i].sh_size;
560 ko->ko_progtab[pb].sec = i;
561 if (ko->ko_shstrtab != NULL && shdr[i].sh_name != 0) {
562 ko->ko_progtab[pb].name =
563 ko->ko_shstrtab + shdr[i].sh_name;
564 }
565
566 /* Update all symbol values with the offset. */
567 for (j = 0; j < ko->ko_symcnt; j++) {
568 es = &ko->ko_symtab[j];
569 if (es->st_shndx != i) {
570 continue;
571 }
572 es->st_value += (Elf_Addr)addr;
573 }
574 pb++;
575 break;
576 case SHT_REL:
577 ko->ko_reltab[rl].size = shdr[i].sh_size;
578 ko->ko_reltab[rl].size -=
579 shdr[i].sh_size % sizeof(Elf_Rel);
580 if (ko->ko_reltab[rl].size != 0) {
581 ko->ko_reltab[rl].nrel =
582 shdr[i].sh_size / sizeof(Elf_Rel);
583 ko->ko_reltab[rl].sec = shdr[i].sh_info;
584 error = kobj_read(ko,
585 (void **)&ko->ko_reltab[rl].rel,
586 ko->ko_reltab[rl].size,
587 shdr[i].sh_offset);
588 if (error != 0) {
589 goto out;
590 }
591 }
592 rl++;
593 break;
594 case SHT_RELA:
595 ko->ko_relatab[ra].size = shdr[i].sh_size;
596 ko->ko_relatab[ra].size -=
597 shdr[i].sh_size % sizeof(Elf_Rela);
598 if (ko->ko_relatab[ra].size != 0) {
599 ko->ko_relatab[ra].nrela =
600 shdr[i].sh_size / sizeof(Elf_Rela);
601 ko->ko_relatab[ra].sec = shdr[i].sh_info;
602 error = kobj_read(ko,
603 (void **)&ko->ko_relatab[ra].rela,
604 shdr[i].sh_size,
605 shdr[i].sh_offset);
606 if (error != 0) {
607 goto out;
608 }
609 }
610 ra++;
611 break;
612 default:
613 break;
614 }
615 }
616 if (pb != ko->ko_nprogtab) {
617 panic("lost progbits");
618 }
619 if (rl != ko->ko_nrel) {
620 panic("lost rel");
621 }
622 if (ra != ko->ko_nrela) {
623 panic("lost rela");
624 }
625 if (ko->ko_type != KT_MEMORY && mapbase != ko->ko_address + mapsize) {
626 panic("mapbase 0x%lx != address %lx + mapsize %ld (0x%lx)\n",
627 (long)mapbase, (long)ko->ko_address, (long)mapsize,
628 (long)ko->ko_address + mapsize);
629 }
630
631 /*
632 * Perform relocations. Done before registering with ksyms,
633 * which will pack our symbol table.
634 */
635 error = kobj_relocate(ko);
636 if (error != 0) {
637 goto out;
638 }
639
640 /*
641 * Notify MD code that a module has been loaded.
642 */
643 error = kobj_machdep(ko, (void *)ko->ko_address, ko->ko_size, true);
644 if (error != 0) {
645 kobj_error("machine dependent init failed");
646 goto out;
647 }
648 ko->ko_loaded = true;
649 out:
650 kobj_release_mem(ko);
651 if (hdr != NULL) {
652 kobj_free(ko, hdr, sizeof(*hdr));
653 }
654
655 return error;
656 }
657
658 /*
659 * kobj_unload:
660 *
661 * Unload an object previously loaded by kobj_load().
662 */
663 void
664 kobj_unload(kobj_t ko)
665 {
666 int error;
667
668 if (ko->ko_address != 0 && ko->ko_type != KT_MEMORY) {
669 uvm_km_free(lkm_map, ko->ko_address, round_page(ko->ko_size),
670 UVM_KMF_WIRED);
671 }
672 if (ko->ko_ksyms == true) {
673 ksyms_delsymtab(ko->ko_name);
674 }
675 if (ko->ko_symtab != NULL) {
676 kobj_free(ko, ko->ko_symtab, ko->ko_symcnt * sizeof(Elf_Sym));
677 }
678 if (ko->ko_strtab != NULL) {
679 kobj_free(ko, ko->ko_strtab, ko->ko_strtabsz);
680 }
681 if (ko->ko_progtab != NULL) {
682 kobj_free(ko, ko->ko_progtab, ko->ko_nprogtab *
683 sizeof(*ko->ko_progtab));
684 ko->ko_progtab = NULL;
685 }
686 if (ko->ko_shstrtab) {
687 kobj_free(ko, ko->ko_shstrtab, ko->ko_shstrtabsz);
688 ko->ko_shstrtab = NULL;
689 }
690
691 /*
692 * Notify MD code that a module has been unloaded.
693 */
694 if (ko->ko_loaded) {
695 error = kobj_machdep(ko, (void *)ko->ko_address, ko->ko_size,
696 false);
697 if (error != 0) {
698 kobj_error("machine dependent deinit failed");
699 }
700 }
701
702 kmem_free(ko, sizeof(*ko));
703 }
704
705 /*
706 * kobj_stat:
707 *
708 * Return size and load address of an object.
709 */
710 void
711 kobj_stat(kobj_t ko, vaddr_t *address, size_t *size)
712 {
713
714 if (address != NULL) {
715 *address = ko->ko_address;
716 }
717 if (size != NULL) {
718 *size = ko->ko_size;
719 }
720 }
721
722 /*
723 * kobj_set_name:
724 *
725 * Set an object's name. Used only for symbol table lookups.
726 * May only be called after the module is loaded.
727 */
728 int
729 kobj_set_name(kobj_t ko, const char *name)
730 {
731 int error;
732
733 KASSERT(ko->ko_loaded);
734
735 strlcpy(ko->ko_name, name, sizeof(ko->ko_name));
736
737 /*
738 * Now that we know the name, register the symbol table.
739 */
740 error = ksyms_addsymtab(ko->ko_name, ko->ko_symtab, ko->ko_symcnt *
741 sizeof(Elf_Sym), ko->ko_strtab, ko->ko_strtabsz);
742 if (error != 0) {
743 kobj_error("unable to register module symbol table");
744 } else {
745 ko->ko_ksyms = true;
746 }
747
748 return error;
749 }
750
751 /*
752 * kobj_find_section:
753 *
754 * Given a section name, search the loaded object and return
755 * virtual address if present and loaded.
756 */
757 int
758 kobj_find_section(kobj_t ko, const char *name, void **addr, size_t *size)
759 {
760 int i;
761
762 KASSERT(ko->ko_progtab != NULL);
763
764 for (i = 0; i < ko->ko_nprogtab; i++) {
765 if (strcmp(ko->ko_progtab[i].name, name) == 0) {
766 if (addr != NULL) {
767 *addr = ko->ko_progtab[i].addr;
768 }
769 if (size != NULL) {
770 *size = ko->ko_progtab[i].size;
771 }
772 return 0;
773 }
774 }
775
776 return ENOENT;
777 }
778
779 /*
780 * kobj_release_mem:
781 *
782 * Release object data not needed after loading.
783 */
784 static void
785 kobj_release_mem(kobj_t ko)
786 {
787 int i;
788
789 for (i = 0; i < ko->ko_nrel; i++) {
790 if (ko->ko_reltab[i].rel) {
791 kobj_free(ko, ko->ko_reltab[i].rel,
792 ko->ko_reltab[i].size);
793 }
794 }
795 for (i = 0; i < ko->ko_nrela; i++) {
796 if (ko->ko_relatab[i].rela) {
797 kobj_free(ko, ko->ko_relatab[i].rela,
798 ko->ko_relatab[i].size);
799 }
800 }
801 if (ko->ko_reltab != NULL) {
802 kobj_free(ko, ko->ko_reltab, ko->ko_nrel *
803 sizeof(*ko->ko_reltab));
804 ko->ko_reltab = NULL;
805 ko->ko_nrel = 0;
806 }
807 if (ko->ko_relatab != NULL) {
808 kobj_free(ko, ko->ko_relatab, ko->ko_nrela *
809 sizeof(*ko->ko_relatab));
810 ko->ko_relatab = NULL;
811 ko->ko_nrela = 0;
812 }
813 if (ko->ko_shdr != NULL) {
814 kobj_free(ko, ko->ko_shdr, ko->ko_shdrsz);
815 ko->ko_shdr = NULL;
816 }
817 }
818
819 /*
820 * kobj_sym_lookup:
821 *
822 * Symbol lookup function to be used when the symbol index
823 * is known (ie during relocation).
824 */
825 uintptr_t
826 kobj_sym_lookup(kobj_t ko, uintptr_t symidx)
827 {
828 const Elf_Sym *sym;
829 const char *symbol;
830 int error;
831 u_long addr;
832
833 /* Don't even try to lookup the symbol if the index is bogus. */
834 if (symidx >= ko->ko_symcnt)
835 return 0;
836
837 sym = ko->ko_symtab + symidx;
838
839 /* Quick answer if there is a definition included. */
840 if (sym->st_shndx != SHN_UNDEF) {
841 return sym->st_value;
842 }
843
844 /* If we get here, then it is undefined and needs a lookup. */
845 switch (ELF_ST_BIND(sym->st_info)) {
846 case STB_LOCAL:
847 /* Local, but undefined? huh? */
848 kobj_error("local symbol undefined");
849 return 0;
850
851 case STB_GLOBAL:
852 /* Relative to Data or Function name */
853 symbol = ko->ko_strtab + sym->st_name;
854
855 /* Force a lookup failure if the symbol name is bogus. */
856 if (*symbol == 0) {
857 kobj_error("bad symbol name");
858 return 0;
859 }
860
861 error = ksyms_getval(NULL, symbol, &addr, KSYMS_ANY);
862 if (error != 0) {
863 kobj_error("symbol %s undefined", symbol);
864 return (uintptr_t)0;
865 }
866 return (uintptr_t)addr;
867
868 case STB_WEAK:
869 kobj_error("weak symbols not supported\n");
870 return 0;
871
872 default:
873 return 0;
874 }
875 }
876
877 /*
878 * kobj_findbase:
879 *
880 * Return base address of the given section.
881 */
882 static uintptr_t
883 kobj_findbase(kobj_t ko, int sec)
884 {
885 int i;
886
887 for (i = 0; i < ko->ko_nprogtab; i++) {
888 if (sec == ko->ko_progtab[i].sec) {
889 return (uintptr_t)ko->ko_progtab[i].addr;
890 }
891 }
892 return 0;
893 }
894
895 /*
896 * kobj_relocate:
897 *
898 * Resolve all relocations for the loaded object.
899 */
900 static int
901 kobj_relocate(kobj_t ko)
902 {
903 const Elf_Rel *rellim;
904 const Elf_Rel *rel;
905 const Elf_Rela *relalim;
906 const Elf_Rela *rela;
907 const Elf_Sym *sym;
908 uintptr_t base;
909 int i, error;
910 uintptr_t symidx;
911
912 /*
913 * Perform relocations without addend if there are any.
914 */
915 for (i = 0; i < ko->ko_nrel; i++) {
916 rel = ko->ko_reltab[i].rel;
917 if (rel == NULL) {
918 continue;
919 }
920 rellim = rel + ko->ko_reltab[i].nrel;
921 base = kobj_findbase(ko, ko->ko_reltab[i].sec);
922 if (base == 0) {
923 panic("lost base for e_reltab");
924 }
925 for (; rel < rellim; rel++) {
926 symidx = ELF_R_SYM(rel->r_info);
927 if (symidx >= ko->ko_symcnt) {
928 continue;
929 }
930 sym = ko->ko_symtab + symidx;
931 error = kobj_reloc(ko, base, rel, false,
932 ELF_ST_BIND(sym->st_info) == STB_LOCAL);
933 if (error != 0) {
934 return ENOENT;
935 }
936 }
937 }
938
939 /*
940 * Perform relocations with addend if there are any.
941 */
942 for (i = 0; i < ko->ko_nrela; i++) {
943 rela = ko->ko_relatab[i].rela;
944 if (rela == NULL) {
945 continue;
946 }
947 relalim = rela + ko->ko_relatab[i].nrela;
948 base = kobj_findbase(ko, ko->ko_relatab[i].sec);
949 if (base == 0) {
950 panic("lost base for e_relatab");
951 }
952 for (; rela < relalim; rela++) {
953 symidx = ELF_R_SYM(rela->r_info);
954 if (symidx >= ko->ko_symcnt) {
955 continue;
956 }
957 sym = ko->ko_symtab + symidx;
958 error = kobj_reloc(ko, base, rela, true,
959 ELF_ST_BIND(sym->st_info) == STB_LOCAL);
960 if (error != 0) {
961 return ENOENT;
962 }
963 }
964 }
965
966 return 0;
967 }
968
969 /*
970 * kobj_error:
971 *
972 * Utility function: log an error.
973 */
974 static void
975 kobj_error(const char *fmt, ...)
976 {
977 va_list ap;
978
979 va_start(ap, fmt);
980 printf("WARNING: linker error: ");
981 vprintf(fmt, ap);
982 printf("\n");
983 va_end(ap);
984 }
985
986 /*
987 * kobj_read:
988 *
989 * Utility function: read from the object.
990 */
991 static int
992 kobj_read(kobj_t ko, void **basep, size_t size, off_t off)
993 {
994 size_t resid;
995 void *base;
996 int error;
997
998 KASSERT(ko->ko_source != NULL);
999
1000 switch (ko->ko_type) {
1001 case KT_VNODE:
1002 base = kmem_alloc(size, KM_SLEEP);
1003 if (base == NULL) {
1004 error = ENOMEM;
1005 break;
1006 }
1007 error = vn_rdwr(UIO_READ, ko->ko_source, base, size, off,
1008 UIO_SYSSPACE, IO_NODELOCKED, curlwp->l_cred, &resid,
1009 curlwp);
1010 if (error == 0 && resid != 0) {
1011 kmem_free(base, size);
1012 error = EINVAL;
1013 }
1014 break;
1015 case KT_MEMORY:
1016 if (ko->ko_memsize != -1 && off + size > ko->ko_memsize) {
1017 kobj_error("kobj_read: preloaded object short");
1018 error = EINVAL;
1019 base = NULL;
1020 } else {
1021 base = (uint8_t *)ko->ko_source + off;
1022 error = 0;
1023 }
1024 break;
1025 default:
1026 panic("kobj_read: invalid type");
1027 }
1028
1029 *basep = base;
1030 return error;
1031 }
1032
1033 /*
1034 * kobj_read_bits:
1035 *
1036 * Utility function: load a section from the object.
1037 */
1038 static int
1039 kobj_read_bits(kobj_t ko, void *base, size_t size, off_t off)
1040 {
1041 size_t resid;
1042 int error;
1043
1044 KASSERT(ko->ko_source != NULL);
1045
1046 switch (ko->ko_type) {
1047 case KT_VNODE:
1048 error = vn_rdwr(UIO_READ, ko->ko_source, base, size, off,
1049 UIO_SYSSPACE, IO_NODELOCKED, curlwp->l_cred, &resid,
1050 curlwp);
1051 if (error == 0 && resid != 0) {
1052 error = EINVAL;
1053 }
1054 break;
1055 case KT_MEMORY:
1056 if (ko->ko_memsize != -1 && off + size > ko->ko_memsize) {
1057 kobj_error("kobj_read_bits: preloaded object short");
1058 error = EINVAL;
1059 } else if ((uint8_t *)base != (uint8_t *)ko->ko_source + off) {
1060 kobj_error("kobj_read_bits: object not aligned");
1061 kobj_error("source=%p base=%p off=%d size=%zd",
1062 ko->ko_source, base, (int)off, size);
1063 error = EINVAL;
1064 } else {
1065 /* Nothing to do. Loading in-situ. */
1066 error = 0;
1067 }
1068 break;
1069 default:
1070 panic("kobj_read: invalid type");
1071 }
1072
1073 return error;
1074 }
1075
1076 /*
1077 * kobj_free:
1078 *
1079 * Utility function: free memory if it was allocated from the heap.
1080 */
1081 static void
1082 kobj_free(kobj_t ko, void *base, size_t size)
1083 {
1084
1085 if (ko->ko_type != KT_MEMORY)
1086 kmem_free(base, size);
1087 }
1088
1089 #else /* MODULAR */
1090
1091 int
1092 kobj_open_file(kobj_t *kop, const char *name)
1093 {
1094
1095 return ENOSYS;
1096 }
1097
1098 int
1099 kobj_open_mem(kobj_t *kop, void *base, ssize_t size)
1100 {
1101
1102 return ENOSYS;
1103 }
1104
1105 void
1106 kobj_close(kobj_t ko)
1107 {
1108
1109 panic("not modular");
1110 }
1111
1112 int
1113 kobj_load(kobj_t ko)
1114 {
1115
1116 panic("not modular");
1117 }
1118
1119 void
1120 kobj_unload(kobj_t ko)
1121 {
1122
1123 panic("not modular");
1124 }
1125
1126 void
1127 kobj_stat(kobj_t ko, vaddr_t *base, size_t *size)
1128 {
1129
1130 panic("not modular");
1131 }
1132
1133 int
1134 kobj_set_name(kobj_t ko, const char *name)
1135 {
1136
1137 panic("not modular");
1138 }
1139
1140 int
1141 kobj_find_section(kobj_t ko, const char *name, void **addr, size_t *size)
1142 {
1143
1144 panic("not modular");
1145 }
1146
1147 #endif /* MODULAR */
1148