subr_kobj.c revision 1.24.2.2 1 /* $NetBSD: subr_kobj.c,v 1.24.2.2 2009/03/03 18:32:56 skrll Exp $ */
2
3 /*-
4 * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software developed for The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1998-2000 Doug Rabson
34 * Copyright (c) 2004 Peter Wemm
35 * All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 *
46 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
47 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
48 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
49 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
50 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
51 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
52 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
53 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
54 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
55 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
56 * SUCH DAMAGE.
57 */
58
59 /*
60 * Kernel loader for ELF objects.
61 *
62 * TODO: adjust kmem_alloc() calls to avoid needless fragmentation.
63 */
64
65 #include <sys/cdefs.h>
66 __KERNEL_RCSID(0, "$NetBSD: subr_kobj.c,v 1.24.2.2 2009/03/03 18:32:56 skrll Exp $");
67 #include "opt_modular.h"
68
69 #define ELFSIZE ARCH_ELFSIZE
70
71 #include <sys/systm.h>
72 #include <sys/kobj.h>
73 #include <sys/errno.h>
74
75 #ifdef MODULAR
76
77 #include <sys/param.h>
78 #include <sys/kernel.h>
79 #include <sys/kmem.h>
80 #include <sys/proc.h>
81 #include <sys/namei.h>
82 #include <sys/vnode.h>
83 #include <sys/fcntl.h>
84 #include <sys/ksyms.h>
85 #include <sys/module.h>
86 #include <sys/exec.h>
87 #include <sys/exec_elf.h>
88
89 #include <machine/stdarg.h>
90
91 #include <uvm/uvm_extern.h>
92
93 typedef struct {
94 void *addr;
95 Elf_Off size;
96 int flags;
97 int sec; /* Original section */
98 const char *name;
99 } progent_t;
100
101 typedef struct {
102 Elf_Rel *rel;
103 int nrel;
104 int sec;
105 size_t size;
106 } relent_t;
107
108 typedef struct {
109 Elf_Rela *rela;
110 int nrela;
111 int sec;
112 size_t size;
113 } relaent_t;
114
115 typedef enum kobjtype {
116 KT_UNSET,
117 KT_VNODE,
118 KT_MEMORY
119 } kobjtype_t;
120
121 struct kobj {
122 char ko_name[MAXMODNAME];
123 kobjtype_t ko_type;
124 void *ko_source;
125 ssize_t ko_memsize;
126 vaddr_t ko_address; /* Relocation address */
127 Elf_Shdr *ko_shdr;
128 progent_t *ko_progtab;
129 relaent_t *ko_relatab;
130 relent_t *ko_reltab;
131 Elf_Sym *ko_symtab; /* Symbol table */
132 char *ko_strtab; /* String table */
133 char *ko_shstrtab; /* Section name string table */
134 size_t ko_size; /* Size of text/data/bss */
135 size_t ko_symcnt; /* Number of symbols */
136 size_t ko_strtabsz; /* Number of bytes in string table */
137 size_t ko_shstrtabsz; /* Number of bytes in scn str table */
138 size_t ko_shdrsz;
139 int ko_nrel;
140 int ko_nrela;
141 int ko_nprogtab;
142 bool ko_ksyms;
143 bool ko_loaded;
144 };
145
146 static int kobj_relocate(kobj_t, bool);
147 static int kobj_checksyms(kobj_t, bool);
148 static void kobj_error(const char *, ...);
149 static int kobj_read(kobj_t, void **, size_t, off_t);
150 static int kobj_read_bits(kobj_t, void *, size_t, off_t);
151 static void kobj_jettison(kobj_t);
152 static void kobj_free(kobj_t, void *, size_t);
153 static void kobj_close(kobj_t);
154 static int kobj_load(kobj_t);
155
156 extern struct vm_map *module_map;
157
158 /*
159 * kobj_load_file:
160 *
161 * Load an object located in the file system.
162 */
163 int
164 kobj_load_file(kobj_t *kop, const char *filename, const char *base,
165 bool autoload)
166 {
167 struct nameidata nd;
168 kauth_cred_t cred;
169 char *path;
170 int error;
171 kobj_t ko;
172
173 cred = kauth_cred_get();
174
175 ko = kmem_zalloc(sizeof(*ko), KM_SLEEP);
176 if (ko == NULL) {
177 return ENOMEM;
178 }
179
180 if (autoload) {
181 error = ENOENT;
182 } else {
183 NDINIT(&nd, LOOKUP, FOLLOW, UIO_SYSSPACE, filename);
184 error = vn_open(&nd, FREAD, 0);
185 }
186 if (error != 0) {
187 if (error != ENOENT) {
188 goto out;
189 }
190 path = PNBUF_GET();
191 snprintf(path, MAXPATHLEN - 1, "%s/%s/%s.kmod", base,
192 filename, filename);
193 NDINIT(&nd, LOOKUP, FOLLOW | NOCHROOT, UIO_SYSSPACE, path);
194 error = vn_open(&nd, FREAD, 0);
195 PNBUF_PUT(path);
196 }
197
198 out:
199 if (error != 0) {
200 kmem_free(ko, sizeof(*ko));
201 return error;
202 }
203
204 ko->ko_type = KT_VNODE;
205 ko->ko_source = nd.ni_vp;
206 *kop = ko;
207 return kobj_load(ko);
208 }
209
210 /*
211 * kobj_load_mem:
212 *
213 * Load an object already resident in memory. If size is not -1,
214 * the complete size of the object is known.
215 */
216 int
217 kobj_load_mem(kobj_t *kop, void *base, ssize_t size)
218 {
219 kobj_t ko;
220
221 ko = kmem_zalloc(sizeof(*ko), KM_SLEEP);
222 if (ko == NULL) {
223 return ENOMEM;
224 }
225
226 ko->ko_type = KT_MEMORY;
227 ko->ko_source = base;
228 ko->ko_memsize = size;
229 *kop = ko;
230 return kobj_load(ko);
231 }
232
233 /*
234 * kobj_close:
235 *
236 * Close an open ELF object.
237 */
238 static void
239 kobj_close(kobj_t ko)
240 {
241
242 if (ko->ko_source == NULL) {
243 return;
244 }
245
246 switch (ko->ko_type) {
247 case KT_VNODE:
248 VOP_UNLOCK(ko->ko_source, 0);
249 vn_close(ko->ko_source, FREAD, kauth_cred_get());
250 break;
251 case KT_MEMORY:
252 /* nothing */
253 break;
254 default:
255 panic("kobj_close: unknown type");
256 break;
257 }
258
259 ko->ko_source = NULL;
260 }
261
262 /*
263 * kobj_load:
264 *
265 * Load an ELF object and prepare to link into the running kernel
266 * image.
267 */
268 static int
269 kobj_load(kobj_t ko)
270 {
271 Elf_Ehdr *hdr;
272 Elf_Shdr *shdr;
273 Elf_Sym *es;
274 vaddr_t mapbase;
275 size_t mapsize;
276 int error;
277 int symtabindex;
278 int symstrindex;
279 int nsym;
280 int pb, rl, ra;
281 int alignmask;
282 int i, j;
283 void *addr;
284
285 KASSERT(ko->ko_type != KT_UNSET);
286 KASSERT(ko->ko_source != NULL);
287
288 shdr = NULL;
289 mapsize = 0;
290 error = 0;
291 hdr = NULL;
292
293 /*
294 * Read the elf header from the file.
295 */
296 error = kobj_read(ko, (void **)&hdr, sizeof(*hdr), 0);
297 if (error != 0)
298 goto out;
299 if (memcmp(hdr->e_ident, ELFMAG, SELFMAG) != 0) {
300 kobj_error("not an ELF object");
301 error = ENOEXEC;
302 goto out;
303 }
304
305 if (hdr->e_ident[EI_VERSION] != EV_CURRENT ||
306 hdr->e_version != EV_CURRENT) {
307 kobj_error("unsupported file version");
308 error = ENOEXEC;
309 goto out;
310 }
311 if (hdr->e_type != ET_REL) {
312 kobj_error("unsupported file type");
313 error = ENOEXEC;
314 goto out;
315 }
316 switch (hdr->e_machine) {
317 #if ELFSIZE == 32
318 ELF32_MACHDEP_ID_CASES
319 #else
320 ELF64_MACHDEP_ID_CASES
321 #endif
322 default:
323 kobj_error("unsupported machine");
324 error = ENOEXEC;
325 goto out;
326 }
327
328 ko->ko_nprogtab = 0;
329 ko->ko_shdr = 0;
330 ko->ko_nrel = 0;
331 ko->ko_nrela = 0;
332
333 /*
334 * Allocate and read in the section header.
335 */
336 ko->ko_shdrsz = hdr->e_shnum * hdr->e_shentsize;
337 if (ko->ko_shdrsz == 0 || hdr->e_shoff == 0 ||
338 hdr->e_shentsize != sizeof(Elf_Shdr)) {
339 error = ENOEXEC;
340 goto out;
341 }
342 error = kobj_read(ko, (void **)&shdr, ko->ko_shdrsz, hdr->e_shoff);
343 if (error != 0) {
344 goto out;
345 }
346 ko->ko_shdr = shdr;
347
348 /*
349 * Scan the section header for information and table sizing.
350 */
351 nsym = 0;
352 symtabindex = -1;
353 symstrindex = -1;
354 for (i = 0; i < hdr->e_shnum; i++) {
355 switch (shdr[i].sh_type) {
356 case SHT_PROGBITS:
357 case SHT_NOBITS:
358 ko->ko_nprogtab++;
359 break;
360 case SHT_SYMTAB:
361 nsym++;
362 symtabindex = i;
363 symstrindex = shdr[i].sh_link;
364 break;
365 case SHT_REL:
366 ko->ko_nrel++;
367 break;
368 case SHT_RELA:
369 ko->ko_nrela++;
370 break;
371 case SHT_STRTAB:
372 break;
373 }
374 }
375 if (ko->ko_nprogtab == 0) {
376 kobj_error("file has no contents");
377 error = ENOEXEC;
378 goto out;
379 }
380 if (nsym != 1) {
381 /* Only allow one symbol table for now */
382 kobj_error("file has no valid symbol table");
383 error = ENOEXEC;
384 goto out;
385 }
386 if (symstrindex < 0 || symstrindex > hdr->e_shnum ||
387 shdr[symstrindex].sh_type != SHT_STRTAB) {
388 kobj_error("file has invalid symbol strings");
389 error = ENOEXEC;
390 goto out;
391 }
392
393 /*
394 * Allocate space for tracking the load chunks.
395 */
396 if (ko->ko_nprogtab != 0) {
397 ko->ko_progtab = kmem_zalloc(ko->ko_nprogtab *
398 sizeof(*ko->ko_progtab), KM_SLEEP);
399 if (ko->ko_progtab == NULL) {
400 error = ENOMEM;
401 goto out;
402 }
403 }
404 if (ko->ko_nrel != 0) {
405 ko->ko_reltab = kmem_zalloc(ko->ko_nrel *
406 sizeof(*ko->ko_reltab), KM_SLEEP);
407 if (ko->ko_reltab == NULL) {
408 error = ENOMEM;
409 goto out;
410 }
411 }
412 if (ko->ko_nrela != 0) {
413 ko->ko_relatab = kmem_zalloc(ko->ko_nrela *
414 sizeof(*ko->ko_relatab), KM_SLEEP);
415 if (ko->ko_relatab == NULL) {
416 error = ENOMEM;
417 goto out;
418 }
419 }
420 if (symtabindex == -1) {
421 kobj_error("lost symbol table index");
422 goto out;
423 }
424
425 /*
426 * Allocate space for and load the symbol table.
427 */
428 ko->ko_symcnt = shdr[symtabindex].sh_size / sizeof(Elf_Sym);
429 if (ko->ko_symcnt == 0) {
430 kobj_error("no symbol table");
431 goto out;
432 }
433 error = kobj_read(ko, (void **)&ko->ko_symtab,
434 ko->ko_symcnt * sizeof(Elf_Sym),
435 shdr[symtabindex].sh_offset);
436 if (error != 0) {
437 goto out;
438 }
439
440 /*
441 * Allocate space for and load the symbol strings.
442 */
443 ko->ko_strtabsz = shdr[symstrindex].sh_size;
444 if (ko->ko_strtabsz == 0) {
445 kobj_error("no symbol strings");
446 goto out;
447 }
448 error = kobj_read(ko, (void *)&ko->ko_strtab, ko->ko_strtabsz,
449 shdr[symstrindex].sh_offset);
450 if (error != 0) {
451 goto out;
452 }
453
454 /*
455 * Do we have a string table for the section names?
456 */
457 if (hdr->e_shstrndx != 0 && shdr[hdr->e_shstrndx].sh_size != 0 &&
458 shdr[hdr->e_shstrndx].sh_type == SHT_STRTAB) {
459 ko->ko_shstrtabsz = shdr[hdr->e_shstrndx].sh_size;
460 error = kobj_read(ko, (void **)&ko->ko_shstrtab,
461 shdr[hdr->e_shstrndx].sh_size,
462 shdr[hdr->e_shstrndx].sh_offset);
463 if (error != 0) {
464 goto out;
465 }
466 }
467
468 /*
469 * Size up code/data(progbits) and bss(nobits).
470 */
471 alignmask = 0;
472 mapbase = 0;
473 for (i = 0; i < hdr->e_shnum; i++) {
474 switch (shdr[i].sh_type) {
475 case SHT_PROGBITS:
476 case SHT_NOBITS:
477 if (mapbase == 0)
478 mapbase = shdr[i].sh_offset;
479 alignmask = shdr[i].sh_addralign - 1;
480 mapsize += alignmask;
481 mapsize &= ~alignmask;
482 mapsize += shdr[i].sh_size;
483 break;
484 }
485 }
486
487 /*
488 * We know how much space we need for the text/data/bss/etc.
489 * This stuff needs to be in a single chunk so that profiling etc
490 * can get the bounds and gdb can associate offsets with modules.
491 */
492 if (mapsize == 0) {
493 kobj_error("no text/data/bss");
494 goto out;
495 }
496 if (ko->ko_type == KT_MEMORY) {
497 mapbase += (vaddr_t)ko->ko_source;
498 } else {
499 mapbase = uvm_km_alloc(module_map, round_page(mapsize),
500 0, UVM_KMF_WIRED | UVM_KMF_EXEC);
501 if (mapbase == 0) {
502 error = ENOMEM;
503 goto out;
504 }
505 }
506 ko->ko_address = mapbase;
507 ko->ko_size = mapsize;
508
509 /*
510 * Now load code/data(progbits), zero bss(nobits), allocate space
511 * for and load relocs
512 */
513 pb = 0;
514 rl = 0;
515 ra = 0;
516 alignmask = 0;
517 for (i = 0; i < hdr->e_shnum; i++) {
518 switch (shdr[i].sh_type) {
519 case SHT_PROGBITS:
520 case SHT_NOBITS:
521 alignmask = shdr[i].sh_addralign - 1;
522 if (ko->ko_type == KT_MEMORY) {
523 addr = (void *)(shdr[i].sh_offset +
524 (vaddr_t)ko->ko_source);
525 if (((vaddr_t)addr & alignmask) != 0) {
526 kobj_error("section %d not aligned\n",
527 i);
528 goto out;
529 }
530 } else {
531 mapbase += alignmask;
532 mapbase &= ~alignmask;
533 addr = (void *)mapbase;
534 mapbase += shdr[i].sh_size;
535 }
536 ko->ko_progtab[pb].addr = addr;
537 if (shdr[i].sh_type == SHT_PROGBITS) {
538 ko->ko_progtab[pb].name = "<<PROGBITS>>";
539 error = kobj_read_bits(ko, addr,
540 shdr[i].sh_size, shdr[i].sh_offset);
541 if (error != 0) {
542 goto out;
543 }
544 } else if (ko->ko_type == KT_MEMORY &&
545 shdr[i].sh_size != 0) {
546 kobj_error("non-loadable BSS section in "
547 "pre-loaded module");
548 error = EINVAL;
549 goto out;
550 } else {
551 ko->ko_progtab[pb].name = "<<NOBITS>>";
552 memset(addr, 0, shdr[i].sh_size);
553 }
554 ko->ko_progtab[pb].size = shdr[i].sh_size;
555 ko->ko_progtab[pb].sec = i;
556 if (ko->ko_shstrtab != NULL && shdr[i].sh_name != 0) {
557 ko->ko_progtab[pb].name =
558 ko->ko_shstrtab + shdr[i].sh_name;
559 }
560
561 /* Update all symbol values with the offset. */
562 for (j = 0; j < ko->ko_symcnt; j++) {
563 es = &ko->ko_symtab[j];
564 if (es->st_shndx != i) {
565 continue;
566 }
567 es->st_value += (Elf_Addr)addr;
568 }
569 pb++;
570 break;
571 case SHT_REL:
572 ko->ko_reltab[rl].size = shdr[i].sh_size;
573 ko->ko_reltab[rl].size -=
574 shdr[i].sh_size % sizeof(Elf_Rel);
575 if (ko->ko_reltab[rl].size != 0) {
576 ko->ko_reltab[rl].nrel =
577 shdr[i].sh_size / sizeof(Elf_Rel);
578 ko->ko_reltab[rl].sec = shdr[i].sh_info;
579 error = kobj_read(ko,
580 (void **)&ko->ko_reltab[rl].rel,
581 ko->ko_reltab[rl].size,
582 shdr[i].sh_offset);
583 if (error != 0) {
584 goto out;
585 }
586 }
587 rl++;
588 break;
589 case SHT_RELA:
590 ko->ko_relatab[ra].size = shdr[i].sh_size;
591 ko->ko_relatab[ra].size -=
592 shdr[i].sh_size % sizeof(Elf_Rela);
593 if (ko->ko_relatab[ra].size != 0) {
594 ko->ko_relatab[ra].nrela =
595 shdr[i].sh_size / sizeof(Elf_Rela);
596 ko->ko_relatab[ra].sec = shdr[i].sh_info;
597 error = kobj_read(ko,
598 (void **)&ko->ko_relatab[ra].rela,
599 shdr[i].sh_size,
600 shdr[i].sh_offset);
601 if (error != 0) {
602 goto out;
603 }
604 }
605 ra++;
606 break;
607 default:
608 break;
609 }
610 }
611 if (pb != ko->ko_nprogtab) {
612 panic("lost progbits");
613 }
614 if (rl != ko->ko_nrel) {
615 panic("lost rel");
616 }
617 if (ra != ko->ko_nrela) {
618 panic("lost rela");
619 }
620 if (ko->ko_type != KT_MEMORY && mapbase != ko->ko_address + mapsize) {
621 panic("mapbase 0x%lx != address %lx + mapsize %ld (0x%lx)\n",
622 (long)mapbase, (long)ko->ko_address, (long)mapsize,
623 (long)ko->ko_address + mapsize);
624 }
625
626 /*
627 * Perform local relocations only. Relocations relating to global
628 * symbols will be done by kobj_affix().
629 */
630 error = kobj_checksyms(ko, false);
631 if (error == 0) {
632 error = kobj_relocate(ko, true);
633 }
634 out:
635 if (hdr != NULL) {
636 kobj_free(ko, hdr, sizeof(*hdr));
637 }
638 kobj_close(ko);
639 if (error != 0) {
640 kobj_unload(ko);
641 }
642
643 return error;
644 }
645
646 /*
647 * kobj_unload:
648 *
649 * Unload an object previously loaded by kobj_load().
650 */
651 void
652 kobj_unload(kobj_t ko)
653 {
654 int error;
655
656 kobj_close(ko);
657 kobj_jettison(ko);
658
659 /*
660 * Notify MD code that a module has been unloaded.
661 */
662 if (ko->ko_loaded) {
663 error = kobj_machdep(ko, (void *)ko->ko_address, ko->ko_size,
664 false);
665 if (error != 0) {
666 kobj_error("machine dependent deinit failed");
667 }
668 }
669 if (ko->ko_address != 0 && ko->ko_type != KT_MEMORY) {
670 uvm_km_free(module_map, ko->ko_address, round_page(ko->ko_size),
671 UVM_KMF_WIRED);
672 }
673 if (ko->ko_ksyms == true) {
674 ksyms_modunload(ko->ko_name);
675 }
676 if (ko->ko_symtab != NULL) {
677 kobj_free(ko, ko->ko_symtab, ko->ko_symcnt * sizeof(Elf_Sym));
678 }
679 if (ko->ko_strtab != NULL) {
680 kobj_free(ko, ko->ko_strtab, ko->ko_strtabsz);
681 }
682 if (ko->ko_progtab != NULL) {
683 kobj_free(ko, ko->ko_progtab, ko->ko_nprogtab *
684 sizeof(*ko->ko_progtab));
685 ko->ko_progtab = NULL;
686 }
687 if (ko->ko_shstrtab) {
688 kobj_free(ko, ko->ko_shstrtab, ko->ko_shstrtabsz);
689 ko->ko_shstrtab = NULL;
690 }
691
692 kmem_free(ko, sizeof(*ko));
693 }
694
695 /*
696 * kobj_stat:
697 *
698 * Return size and load address of an object.
699 */
700 void
701 kobj_stat(kobj_t ko, vaddr_t *address, size_t *size)
702 {
703
704 if (address != NULL) {
705 *address = ko->ko_address;
706 }
707 if (size != NULL) {
708 *size = ko->ko_size;
709 }
710 }
711
712 /*
713 * kobj_affix:
714 *
715 * Set an object's name and perform global relocs. May only be
716 * called after the module and any requisite modules are loaded.
717 */
718 int
719 kobj_affix(kobj_t ko, const char *name)
720 {
721 int error;
722
723 KASSERT(ko->ko_ksyms == false);
724 KASSERT(ko->ko_loaded == false);
725
726 strlcpy(ko->ko_name, name, sizeof(ko->ko_name));
727
728 /* Cache addresses of undefined symbols. */
729 error = kobj_checksyms(ko, true);
730
731 /* Now do global relocations. */
732 if (error == 0)
733 error = kobj_relocate(ko, false);
734
735 /*
736 * Now that we know the name, register the symbol table.
737 * Do after global relocations because ksyms will pack
738 * the table.
739 */
740 if (error == 0) {
741 ksyms_modload(ko->ko_name, ko->ko_symtab, ko->ko_symcnt *
742 sizeof(Elf_Sym), ko->ko_strtab, ko->ko_strtabsz);
743 ko->ko_ksyms = true;
744 }
745
746 /* Jettison unneeded memory post-link. */
747 kobj_jettison(ko);
748
749 /*
750 * Notify MD code that a module has been loaded.
751 *
752 * Most architectures use this opportunity to flush their caches.
753 */
754 if (error == 0) {
755 error = kobj_machdep(ko, (void *)ko->ko_address, ko->ko_size,
756 true);
757 if (error != 0) {
758 kobj_error("machine dependent init failed");
759 }
760 ko->ko_loaded = true;
761 }
762
763 /* If there was an error, destroy the whole object. */
764 if (error != 0) {
765 kobj_unload(ko);
766 }
767
768 return error;
769 }
770
771 /*
772 * kobj_find_section:
773 *
774 * Given a section name, search the loaded object and return
775 * virtual address if present and loaded.
776 */
777 int
778 kobj_find_section(kobj_t ko, const char *name, void **addr, size_t *size)
779 {
780 int i;
781
782 KASSERT(ko->ko_progtab != NULL);
783
784 for (i = 0; i < ko->ko_nprogtab; i++) {
785 if (strcmp(ko->ko_progtab[i].name, name) == 0) {
786 if (addr != NULL) {
787 *addr = ko->ko_progtab[i].addr;
788 }
789 if (size != NULL) {
790 *size = ko->ko_progtab[i].size;
791 }
792 return 0;
793 }
794 }
795
796 return ENOENT;
797 }
798
799 /*
800 * kobj_jettison:
801 *
802 * Release object data not needed after performing relocations.
803 */
804 static void
805 kobj_jettison(kobj_t ko)
806 {
807 int i;
808
809 for (i = 0; i < ko->ko_nrel; i++) {
810 if (ko->ko_reltab[i].rel) {
811 kobj_free(ko, ko->ko_reltab[i].rel,
812 ko->ko_reltab[i].size);
813 }
814 }
815 for (i = 0; i < ko->ko_nrela; i++) {
816 if (ko->ko_relatab[i].rela) {
817 kobj_free(ko, ko->ko_relatab[i].rela,
818 ko->ko_relatab[i].size);
819 }
820 }
821 if (ko->ko_reltab != NULL) {
822 kobj_free(ko, ko->ko_reltab, ko->ko_nrel *
823 sizeof(*ko->ko_reltab));
824 ko->ko_reltab = NULL;
825 ko->ko_nrel = 0;
826 }
827 if (ko->ko_relatab != NULL) {
828 kobj_free(ko, ko->ko_relatab, ko->ko_nrela *
829 sizeof(*ko->ko_relatab));
830 ko->ko_relatab = NULL;
831 ko->ko_nrela = 0;
832 }
833 if (ko->ko_shdr != NULL) {
834 kobj_free(ko, ko->ko_shdr, ko->ko_shdrsz);
835 ko->ko_shdr = NULL;
836 }
837 }
838
839 /*
840 * kobj_sym_lookup:
841 *
842 * Symbol lookup function to be used when the symbol index
843 * is known (ie during relocation).
844 */
845 uintptr_t
846 kobj_sym_lookup(kobj_t ko, uintptr_t symidx)
847 {
848 const Elf_Sym *sym;
849 const char *symbol;
850
851 /* Don't even try to lookup the symbol if the index is bogus. */
852 if (symidx >= ko->ko_symcnt)
853 return 0;
854
855 sym = ko->ko_symtab + symidx;
856
857 /* Quick answer if there is a definition included. */
858 if (sym->st_shndx != SHN_UNDEF) {
859 return (uintptr_t)sym->st_value;
860 }
861
862 /* If we get here, then it is undefined and needs a lookup. */
863 switch (ELF_ST_BIND(sym->st_info)) {
864 case STB_LOCAL:
865 /* Local, but undefined? huh? */
866 kobj_error("local symbol undefined");
867 return 0;
868
869 case STB_GLOBAL:
870 /* Relative to Data or Function name */
871 symbol = ko->ko_strtab + sym->st_name;
872
873 /* Force a lookup failure if the symbol name is bogus. */
874 if (*symbol == 0) {
875 kobj_error("bad symbol name");
876 return 0;
877 }
878
879 return (uintptr_t)sym->st_value;
880
881 case STB_WEAK:
882 kobj_error("weak symbols not supported\n");
883 return 0;
884
885 default:
886 return 0;
887 }
888 }
889
890 /*
891 * kobj_findbase:
892 *
893 * Return base address of the given section.
894 */
895 static uintptr_t
896 kobj_findbase(kobj_t ko, int sec)
897 {
898 int i;
899
900 for (i = 0; i < ko->ko_nprogtab; i++) {
901 if (sec == ko->ko_progtab[i].sec) {
902 return (uintptr_t)ko->ko_progtab[i].addr;
903 }
904 }
905 return 0;
906 }
907
908 /*
909 * kobj_checksyms:
910 *
911 * Scan symbol table for duplicates or resolve references to
912 * exernal symbols.
913 */
914 static int
915 kobj_checksyms(kobj_t ko, bool undefined)
916 {
917 unsigned long rval;
918 Elf_Sym *sym, *ms;
919 const char *name;
920 int error;
921
922 error = 0;
923
924 for (ms = (sym = ko->ko_symtab) + ko->ko_symcnt; sym < ms; sym++) {
925 /* Check validity of the symbol. */
926 if (ELF_ST_BIND(sym->st_info) != STB_GLOBAL ||
927 sym->st_name == 0)
928 continue;
929 if (undefined != (sym->st_shndx == SHN_UNDEF)) {
930 continue;
931 }
932
933 /*
934 * Look it up. Don't need to lock, as it is known that
935 * the symbol tables aren't going to change (we hold
936 * module_lock).
937 */
938 name = ko->ko_strtab + sym->st_name;
939 if (ksyms_getval_unlocked(NULL, name, &rval,
940 KSYMS_EXTERN) != 0) {
941 if (undefined) {
942 kobj_error("symbol `%s' not found", name);
943 error = ENOEXEC;
944 }
945 continue;
946 }
947
948 /* Save values of undefined globals. */
949 if (undefined) {
950 sym->st_value = (Elf_Addr)rval;
951 continue;
952 }
953
954 /* Check (and complain) about differing values. */
955 if (sym->st_value == rval) {
956 continue;
957 }
958 if (strcmp(name, "_bss_start") == 0 ||
959 strcmp(name, "__bss_start") == 0 ||
960 strcmp(name, "_bss_end__") == 0 ||
961 strcmp(name, "__bss_end__") == 0 ||
962 strcmp(name, "_edata") == 0 ||
963 strcmp(name, "_end") == 0 ||
964 strcmp(name, "__end") == 0 ||
965 strcmp(name, "__end__") == 0 ||
966 strncmp(name, "__start_link_set_", 17) == 0 ||
967 strncmp(name, "__stop_link_set_", 16)) {
968 continue;
969 }
970 kobj_error("global symbol `%s' redefined\n", name);
971 error = ENOEXEC;
972 }
973
974 return error;
975 }
976
977 /*
978 * kobj_relocate:
979 *
980 * Resolve relocations for the loaded object.
981 */
982 static int
983 kobj_relocate(kobj_t ko, bool local)
984 {
985 const Elf_Rel *rellim;
986 const Elf_Rel *rel;
987 const Elf_Rela *relalim;
988 const Elf_Rela *rela;
989 const Elf_Sym *sym;
990 uintptr_t base;
991 int i, error;
992 uintptr_t symidx;
993
994 /*
995 * Perform relocations without addend if there are any.
996 */
997 for (i = 0; i < ko->ko_nrel; i++) {
998 rel = ko->ko_reltab[i].rel;
999 if (rel == NULL) {
1000 continue;
1001 }
1002 rellim = rel + ko->ko_reltab[i].nrel;
1003 base = kobj_findbase(ko, ko->ko_reltab[i].sec);
1004 if (base == 0) {
1005 panic("lost base for e_reltab");
1006 }
1007 for (; rel < rellim; rel++) {
1008 symidx = ELF_R_SYM(rel->r_info);
1009 if (symidx >= ko->ko_symcnt) {
1010 continue;
1011 }
1012 sym = ko->ko_symtab + symidx;
1013 if (local != (ELF_ST_BIND(sym->st_info) == STB_LOCAL)) {
1014 continue;
1015 }
1016 error = kobj_reloc(ko, base, rel, false, local);
1017 if (error != 0) {
1018 return ENOENT;
1019 }
1020 }
1021 }
1022
1023 /*
1024 * Perform relocations with addend if there are any.
1025 */
1026 for (i = 0; i < ko->ko_nrela; i++) {
1027 rela = ko->ko_relatab[i].rela;
1028 if (rela == NULL) {
1029 continue;
1030 }
1031 relalim = rela + ko->ko_relatab[i].nrela;
1032 base = kobj_findbase(ko, ko->ko_relatab[i].sec);
1033 if (base == 0) {
1034 panic("lost base for e_relatab");
1035 }
1036 for (; rela < relalim; rela++) {
1037 symidx = ELF_R_SYM(rela->r_info);
1038 if (symidx >= ko->ko_symcnt) {
1039 continue;
1040 }
1041 sym = ko->ko_symtab + symidx;
1042 if (local != (ELF_ST_BIND(sym->st_info) == STB_LOCAL)) {
1043 continue;
1044 }
1045 error = kobj_reloc(ko, base, rela, true, local);
1046 if (error != 0) {
1047 return ENOENT;
1048 }
1049 }
1050 }
1051
1052 return 0;
1053 }
1054
1055 /*
1056 * kobj_error:
1057 *
1058 * Utility function: log an error.
1059 */
1060 static void
1061 kobj_error(const char *fmt, ...)
1062 {
1063 va_list ap;
1064
1065 va_start(ap, fmt);
1066 printf("WARNING: linker error: ");
1067 vprintf(fmt, ap);
1068 printf("\n");
1069 va_end(ap);
1070 }
1071
1072 /*
1073 * kobj_read:
1074 *
1075 * Utility function: read from the object.
1076 */
1077 static int
1078 kobj_read(kobj_t ko, void **basep, size_t size, off_t off)
1079 {
1080 size_t resid;
1081 void *base;
1082 int error;
1083
1084 KASSERT(ko->ko_source != NULL);
1085
1086 switch (ko->ko_type) {
1087 case KT_VNODE:
1088 base = kmem_alloc(size, KM_SLEEP);
1089 if (base == NULL) {
1090 error = ENOMEM;
1091 break;
1092 }
1093 error = vn_rdwr(UIO_READ, ko->ko_source, base, size, off,
1094 UIO_SYSSPACE, IO_NODELOCKED, curlwp->l_cred, &resid,
1095 curlwp);
1096 if (error == 0 && resid != 0) {
1097 error = EINVAL;
1098 }
1099 if (error != 0) {
1100 kmem_free(base, size);
1101 base = NULL;
1102 }
1103 break;
1104 case KT_MEMORY:
1105 if (ko->ko_memsize != -1 && off + size > ko->ko_memsize) {
1106 kobj_error("kobj_read: preloaded object short");
1107 error = EINVAL;
1108 base = NULL;
1109 } else {
1110 base = (uint8_t *)ko->ko_source + off;
1111 error = 0;
1112 }
1113 break;
1114 default:
1115 panic("kobj_read: invalid type");
1116 }
1117
1118 *basep = base;
1119 return error;
1120 }
1121
1122 /*
1123 * kobj_read_bits:
1124 *
1125 * Utility function: load a section from the object.
1126 */
1127 static int
1128 kobj_read_bits(kobj_t ko, void *base, size_t size, off_t off)
1129 {
1130 size_t resid;
1131 int error;
1132
1133 KASSERT(ko->ko_source != NULL);
1134
1135 switch (ko->ko_type) {
1136 case KT_VNODE:
1137 KASSERT((uintptr_t)base >= (uintptr_t)ko->ko_address);
1138 KASSERT((uintptr_t)base + size <=
1139 (uintptr_t)ko->ko_address + ko->ko_size);
1140 error = vn_rdwr(UIO_READ, ko->ko_source, base, size, off,
1141 UIO_SYSSPACE, IO_NODELOCKED, curlwp->l_cred, &resid,
1142 curlwp);
1143 if (error == 0 && resid != 0) {
1144 error = EINVAL;
1145 }
1146 break;
1147 case KT_MEMORY:
1148 if (ko->ko_memsize != -1 && off + size > ko->ko_memsize) {
1149 kobj_error("kobj_read_bits: preloaded object short");
1150 error = EINVAL;
1151 } else if ((uint8_t *)base != (uint8_t *)ko->ko_source + off) {
1152 kobj_error("kobj_read_bits: object not aligned");
1153 kobj_error("source=%p base=%p off=%d size=%zd",
1154 ko->ko_source, base, (int)off, size);
1155 error = EINVAL;
1156 } else {
1157 /* Nothing to do. Loading in-situ. */
1158 error = 0;
1159 }
1160 break;
1161 default:
1162 panic("kobj_read: invalid type");
1163 }
1164
1165 return error;
1166 }
1167
1168 /*
1169 * kobj_free:
1170 *
1171 * Utility function: free memory if it was allocated from the heap.
1172 */
1173 static void
1174 kobj_free(kobj_t ko, void *base, size_t size)
1175 {
1176
1177 if (ko->ko_type != KT_MEMORY)
1178 kmem_free(base, size);
1179 }
1180
1181 #else /* MODULAR */
1182
1183 int
1184 kobj_load_file(kobj_t *kop, const char *name, const char *base, bool autoload)
1185 {
1186
1187 return ENOSYS;
1188 }
1189
1190 int
1191 kobj_load_mem(kobj_t *kop, void *base, ssize_t size)
1192 {
1193
1194 return ENOSYS;
1195 }
1196
1197 void
1198 kobj_unload(kobj_t ko)
1199 {
1200
1201 panic("not modular");
1202 }
1203
1204 void
1205 kobj_stat(kobj_t ko, vaddr_t *base, size_t *size)
1206 {
1207
1208 panic("not modular");
1209 }
1210
1211 int
1212 kobj_affix(kobj_t ko, const char *name)
1213 {
1214
1215 panic("not modular");
1216 }
1217
1218 int
1219 kobj_find_section(kobj_t ko, const char *name, void **addr, size_t *size)
1220 {
1221
1222 panic("not modular");
1223 }
1224
1225 #endif /* MODULAR */
1226