subr_kobj.c revision 1.25 1 /* $NetBSD: subr_kobj.c,v 1.25 2008/11/12 12:36:16 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software developed for The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1998-2000 Doug Rabson
34 * Copyright (c) 2004 Peter Wemm
35 * All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 *
46 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
47 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
48 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
49 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
50 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
51 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
52 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
53 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
54 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
55 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
56 * SUCH DAMAGE.
57 */
58
59 /*
60 * Kernel loader for ELF objects.
61 *
62 * TODO: adjust kmem_alloc() calls to avoid needless fragmentation.
63 */
64
65 #include <sys/cdefs.h>
66 __KERNEL_RCSID(0, "$NetBSD: subr_kobj.c,v 1.25 2008/11/12 12:36:16 ad Exp $");
67
68 #define ELFSIZE ARCH_ELFSIZE
69
70 #include <sys/systm.h>
71 #include <sys/kobj.h>
72 #include <sys/errno.h>
73
74 #ifdef MODULAR
75
76 #include <sys/param.h>
77 #include <sys/kernel.h>
78 #include <sys/kmem.h>
79 #include <sys/proc.h>
80 #include <sys/namei.h>
81 #include <sys/vnode.h>
82 #include <sys/fcntl.h>
83 #include <sys/ksyms.h>
84 #include <sys/module.h>
85 #include <sys/exec.h>
86 #include <sys/exec_elf.h>
87
88 #include <machine/stdarg.h>
89
90 #include <uvm/uvm_extern.h>
91
92 typedef struct {
93 void *addr;
94 Elf_Off size;
95 int flags;
96 int sec; /* Original section */
97 const char *name;
98 } progent_t;
99
100 typedef struct {
101 Elf_Rel *rel;
102 int nrel;
103 int sec;
104 size_t size;
105 } relent_t;
106
107 typedef struct {
108 Elf_Rela *rela;
109 int nrela;
110 int sec;
111 size_t size;
112 } relaent_t;
113
114 typedef enum kobjtype {
115 KT_UNSET,
116 KT_VNODE,
117 KT_MEMORY
118 } kobjtype_t;
119
120 struct kobj {
121 char ko_name[MAXMODNAME];
122 kobjtype_t ko_type;
123 void *ko_source;
124 ssize_t ko_memsize;
125 vaddr_t ko_address; /* Relocation address */
126 Elf_Shdr *ko_shdr;
127 progent_t *ko_progtab;
128 relaent_t *ko_relatab;
129 relent_t *ko_reltab;
130 Elf_Sym *ko_symtab; /* Symbol table */
131 char *ko_strtab; /* String table */
132 char *ko_shstrtab; /* Section name string table */
133 size_t ko_size; /* Size of text/data/bss */
134 size_t ko_symcnt; /* Number of symbols */
135 size_t ko_strtabsz; /* Number of bytes in string table */
136 size_t ko_shstrtabsz; /* Number of bytes in scn str table */
137 size_t ko_shdrsz;
138 int ko_nrel;
139 int ko_nrela;
140 int ko_nprogtab;
141 bool ko_ksyms;
142 bool ko_loaded;
143 };
144
145 static int kobj_relocate(kobj_t, bool);
146 static int kobj_checkdup(kobj_t);
147 static void kobj_error(const char *, ...);
148 static int kobj_read(kobj_t, void **, size_t, off_t);
149 static int kobj_read_bits(kobj_t, void *, size_t, off_t);
150 static void kobj_jettison(kobj_t);
151 static void kobj_free(kobj_t, void *, size_t);
152 static void kobj_close(kobj_t);
153 static int kobj_load(kobj_t);
154
155 extern struct vm_map *module_map;
156
157 /*
158 * kobj_load_file:
159 *
160 * Load an object located in the file system.
161 */
162 int
163 kobj_load_file(kobj_t *kop, const char *filename, const char *base,
164 bool autoload)
165 {
166 struct nameidata nd;
167 kauth_cred_t cred;
168 char *path;
169 int error;
170 kobj_t ko;
171
172 cred = kauth_cred_get();
173
174 ko = kmem_zalloc(sizeof(*ko), KM_SLEEP);
175 if (ko == NULL) {
176 return ENOMEM;
177 }
178
179 if (autoload) {
180 error = ENOENT;
181 } else {
182 NDINIT(&nd, LOOKUP, FOLLOW, UIO_SYSSPACE, filename);
183 error = vn_open(&nd, FREAD, 0);
184 }
185 if (error != 0) {
186 if (error != ENOENT) {
187 goto out;
188 }
189 path = PNBUF_GET();
190 snprintf(path, MAXPATHLEN - 1, "%s/%s/%s.kmod", base,
191 filename, filename);
192 NDINIT(&nd, LOOKUP, FOLLOW, UIO_SYSSPACE, path);
193 error = vn_open(&nd, FREAD, 0);
194 if (error != 0) {
195 strlcat(path, ".o", MAXPATHLEN);
196 NDINIT(&nd, LOOKUP, FOLLOW, UIO_SYSSPACE, path);
197 error = vn_open(&nd, FREAD, 0);
198 }
199 PNBUF_PUT(path);
200 if (error != 0) {
201 goto out;
202 }
203 }
204
205 out:
206 if (error != 0) {
207 kmem_free(ko, sizeof(*ko));
208 return error;
209 }
210
211 ko->ko_type = KT_VNODE;
212 ko->ko_source = nd.ni_vp;
213 *kop = ko;
214 return kobj_load(ko);
215 }
216
217 /*
218 * kobj_load_mem:
219 *
220 * Load an object already resident in memory. If size is not -1,
221 * the complete size of the object is known.
222 */
223 int
224 kobj_load_mem(kobj_t *kop, void *base, ssize_t size)
225 {
226 kobj_t ko;
227
228 ko = kmem_zalloc(sizeof(*ko), KM_SLEEP);
229 if (ko == NULL) {
230 return ENOMEM;
231 }
232
233 ko->ko_type = KT_MEMORY;
234 ko->ko_source = base;
235 ko->ko_memsize = size;
236 *kop = ko;
237 return kobj_load(ko);
238 }
239
240 /*
241 * kobj_close:
242 *
243 * Close an open ELF object.
244 */
245 static void
246 kobj_close(kobj_t ko)
247 {
248
249 if (ko->ko_source == NULL) {
250 return;
251 }
252
253 switch (ko->ko_type) {
254 case KT_VNODE:
255 VOP_UNLOCK(ko->ko_source, 0);
256 vn_close(ko->ko_source, FREAD, kauth_cred_get());
257 break;
258 case KT_MEMORY:
259 /* nothing */
260 break;
261 default:
262 panic("kobj_close: unknown type");
263 break;
264 }
265
266 ko->ko_source = NULL;
267 }
268
269 /*
270 * kobj_load:
271 *
272 * Load an ELF object and prepare to link into the running kernel
273 * image.
274 */
275 static int
276 kobj_load(kobj_t ko)
277 {
278 Elf_Ehdr *hdr;
279 Elf_Shdr *shdr;
280 Elf_Sym *es;
281 vaddr_t mapbase;
282 size_t mapsize;
283 int error;
284 int symtabindex;
285 int symstrindex;
286 int nsym;
287 int pb, rl, ra;
288 int alignmask;
289 int i, j;
290 void *addr;
291
292 KASSERT(ko->ko_type != KT_UNSET);
293 KASSERT(ko->ko_source != NULL);
294
295 shdr = NULL;
296 mapsize = 0;
297 error = 0;
298 hdr = NULL;
299
300 /*
301 * Read the elf header from the file.
302 */
303 error = kobj_read(ko, (void **)&hdr, sizeof(*hdr), 0);
304 if (error != 0)
305 goto out;
306 if (memcmp(hdr->e_ident, ELFMAG, SELFMAG) != 0) {
307 kobj_error("not an ELF object");
308 error = ENOEXEC;
309 goto out;
310 }
311
312 if (hdr->e_ident[EI_VERSION] != EV_CURRENT ||
313 hdr->e_version != EV_CURRENT) {
314 kobj_error("unsupported file version");
315 error = ENOEXEC;
316 goto out;
317 }
318 if (hdr->e_type != ET_REL) {
319 kobj_error("unsupported file type");
320 error = ENOEXEC;
321 goto out;
322 }
323 switch (hdr->e_machine) {
324 #if ELFSIZE == 32
325 ELF32_MACHDEP_ID_CASES
326 #else
327 ELF64_MACHDEP_ID_CASES
328 #endif
329 default:
330 kobj_error("unsupported machine");
331 error = ENOEXEC;
332 goto out;
333 }
334
335 ko->ko_nprogtab = 0;
336 ko->ko_shdr = 0;
337 ko->ko_nrel = 0;
338 ko->ko_nrela = 0;
339
340 /*
341 * Allocate and read in the section header.
342 */
343 ko->ko_shdrsz = hdr->e_shnum * hdr->e_shentsize;
344 if (ko->ko_shdrsz == 0 || hdr->e_shoff == 0 ||
345 hdr->e_shentsize != sizeof(Elf_Shdr)) {
346 error = ENOEXEC;
347 goto out;
348 }
349 error = kobj_read(ko, (void **)&shdr, ko->ko_shdrsz, hdr->e_shoff);
350 if (error != 0) {
351 goto out;
352 }
353 ko->ko_shdr = shdr;
354
355 /*
356 * Scan the section header for information and table sizing.
357 */
358 nsym = 0;
359 symtabindex = -1;
360 symstrindex = -1;
361 for (i = 0; i < hdr->e_shnum; i++) {
362 switch (shdr[i].sh_type) {
363 case SHT_PROGBITS:
364 case SHT_NOBITS:
365 ko->ko_nprogtab++;
366 break;
367 case SHT_SYMTAB:
368 nsym++;
369 symtabindex = i;
370 symstrindex = shdr[i].sh_link;
371 break;
372 case SHT_REL:
373 ko->ko_nrel++;
374 break;
375 case SHT_RELA:
376 ko->ko_nrela++;
377 break;
378 case SHT_STRTAB:
379 break;
380 }
381 }
382 if (ko->ko_nprogtab == 0) {
383 kobj_error("file has no contents");
384 error = ENOEXEC;
385 goto out;
386 }
387 if (nsym != 1) {
388 /* Only allow one symbol table for now */
389 kobj_error("file has no valid symbol table");
390 error = ENOEXEC;
391 goto out;
392 }
393 if (symstrindex < 0 || symstrindex > hdr->e_shnum ||
394 shdr[symstrindex].sh_type != SHT_STRTAB) {
395 kobj_error("file has invalid symbol strings");
396 error = ENOEXEC;
397 goto out;
398 }
399
400 /*
401 * Allocate space for tracking the load chunks.
402 */
403 if (ko->ko_nprogtab != 0) {
404 ko->ko_progtab = kmem_zalloc(ko->ko_nprogtab *
405 sizeof(*ko->ko_progtab), KM_SLEEP);
406 if (ko->ko_progtab == NULL) {
407 error = ENOMEM;
408 goto out;
409 }
410 }
411 if (ko->ko_nrel != 0) {
412 ko->ko_reltab = kmem_zalloc(ko->ko_nrel *
413 sizeof(*ko->ko_reltab), KM_SLEEP);
414 if (ko->ko_reltab == NULL) {
415 error = ENOMEM;
416 goto out;
417 }
418 }
419 if (ko->ko_nrela != 0) {
420 ko->ko_relatab = kmem_zalloc(ko->ko_nrela *
421 sizeof(*ko->ko_relatab), KM_SLEEP);
422 if (ko->ko_relatab == NULL) {
423 error = ENOMEM;
424 goto out;
425 }
426 }
427 if (symtabindex == -1) {
428 kobj_error("lost symbol table index");
429 goto out;
430 }
431
432 /*
433 * Allocate space for and load the symbol table.
434 */
435 ko->ko_symcnt = shdr[symtabindex].sh_size / sizeof(Elf_Sym);
436 if (ko->ko_symcnt == 0) {
437 kobj_error("no symbol table");
438 goto out;
439 }
440 error = kobj_read(ko, (void **)&ko->ko_symtab,
441 ko->ko_symcnt * sizeof(Elf_Sym),
442 shdr[symtabindex].sh_offset);
443 if (error != 0) {
444 goto out;
445 }
446
447 /*
448 * Allocate space for and load the symbol strings.
449 */
450 ko->ko_strtabsz = shdr[symstrindex].sh_size;
451 if (ko->ko_strtabsz == 0) {
452 kobj_error("no symbol strings");
453 goto out;
454 }
455 error = kobj_read(ko, (void *)&ko->ko_strtab, ko->ko_strtabsz,
456 shdr[symstrindex].sh_offset);
457 if (error != 0) {
458 goto out;
459 }
460
461 /*
462 * Do we have a string table for the section names?
463 */
464 if (hdr->e_shstrndx != 0 && shdr[hdr->e_shstrndx].sh_size != 0 &&
465 shdr[hdr->e_shstrndx].sh_type == SHT_STRTAB) {
466 ko->ko_shstrtabsz = shdr[hdr->e_shstrndx].sh_size;
467 error = kobj_read(ko, (void *)&ko->ko_shstrtab,
468 shdr[hdr->e_shstrndx].sh_size,
469 shdr[hdr->e_shstrndx].sh_offset);
470 if (error != 0) {
471 goto out;
472 }
473 }
474
475 /*
476 * Size up code/data(progbits) and bss(nobits).
477 */
478 alignmask = 0;
479 mapbase = 0;
480 for (i = 0; i < hdr->e_shnum; i++) {
481 switch (shdr[i].sh_type) {
482 case SHT_PROGBITS:
483 case SHT_NOBITS:
484 if (mapbase == 0)
485 mapbase = shdr[i].sh_offset;
486 alignmask = shdr[i].sh_addralign - 1;
487 mapsize += alignmask;
488 mapsize &= ~alignmask;
489 mapsize += shdr[i].sh_size;
490 break;
491 }
492 }
493
494 /*
495 * We know how much space we need for the text/data/bss/etc.
496 * This stuff needs to be in a single chunk so that profiling etc
497 * can get the bounds and gdb can associate offsets with modules.
498 */
499 if (mapsize == 0) {
500 kobj_error("no text/data/bss");
501 goto out;
502 }
503 if (ko->ko_type == KT_MEMORY) {
504 mapbase += (vaddr_t)ko->ko_source;
505 } else {
506 mapbase = uvm_km_alloc(module_map, round_page(mapsize),
507 0, UVM_KMF_WIRED | UVM_KMF_EXEC);
508 if (mapbase == 0) {
509 error = ENOMEM;
510 goto out;
511 }
512 }
513 ko->ko_address = mapbase;
514 ko->ko_size = mapsize;
515
516 /*
517 * Now load code/data(progbits), zero bss(nobits), allocate space
518 * for and load relocs
519 */
520 pb = 0;
521 rl = 0;
522 ra = 0;
523 alignmask = 0;
524 for (i = 0; i < hdr->e_shnum; i++) {
525 switch (shdr[i].sh_type) {
526 case SHT_PROGBITS:
527 case SHT_NOBITS:
528 alignmask = shdr[i].sh_addralign - 1;
529 if (ko->ko_type == KT_MEMORY) {
530 addr = (void *)(shdr[i].sh_offset +
531 (vaddr_t)ko->ko_source);
532 if (((vaddr_t)addr & alignmask) != 0) {
533 kobj_error("section %d not aligned\n",
534 i);
535 goto out;
536 }
537 } else {
538 mapbase += alignmask;
539 mapbase &= ~alignmask;
540 addr = (void *)mapbase;
541 mapbase += shdr[i].sh_size;
542 }
543 ko->ko_progtab[pb].addr = addr;
544 if (shdr[i].sh_type == SHT_PROGBITS) {
545 ko->ko_progtab[pb].name = "<<PROGBITS>>";
546 error = kobj_read_bits(ko, addr,
547 shdr[i].sh_size, shdr[i].sh_offset);
548 if (error != 0) {
549 goto out;
550 }
551 } else if (ko->ko_type == KT_MEMORY &&
552 shdr[i].sh_size != 0) {
553 kobj_error("non-loadable BSS section in "
554 "pre-loaded module");
555 error = EINVAL;
556 goto out;
557 } else {
558 ko->ko_progtab[pb].name = "<<NOBITS>>";
559 memset(addr, 0, shdr[i].sh_size);
560 }
561 ko->ko_progtab[pb].size = shdr[i].sh_size;
562 ko->ko_progtab[pb].sec = i;
563 if (ko->ko_shstrtab != NULL && shdr[i].sh_name != 0) {
564 ko->ko_progtab[pb].name =
565 ko->ko_shstrtab + shdr[i].sh_name;
566 }
567
568 /* Update all symbol values with the offset. */
569 for (j = 0; j < ko->ko_symcnt; j++) {
570 es = &ko->ko_symtab[j];
571 if (es->st_shndx != i) {
572 continue;
573 }
574 es->st_value += (Elf_Addr)addr;
575 }
576 pb++;
577 break;
578 case SHT_REL:
579 ko->ko_reltab[rl].size = shdr[i].sh_size;
580 ko->ko_reltab[rl].size -=
581 shdr[i].sh_size % sizeof(Elf_Rel);
582 if (ko->ko_reltab[rl].size != 0) {
583 ko->ko_reltab[rl].nrel =
584 shdr[i].sh_size / sizeof(Elf_Rel);
585 ko->ko_reltab[rl].sec = shdr[i].sh_info;
586 error = kobj_read(ko,
587 (void **)&ko->ko_reltab[rl].rel,
588 ko->ko_reltab[rl].size,
589 shdr[i].sh_offset);
590 if (error != 0) {
591 goto out;
592 }
593 }
594 rl++;
595 break;
596 case SHT_RELA:
597 ko->ko_relatab[ra].size = shdr[i].sh_size;
598 ko->ko_relatab[ra].size -=
599 shdr[i].sh_size % sizeof(Elf_Rela);
600 if (ko->ko_relatab[ra].size != 0) {
601 ko->ko_relatab[ra].nrela =
602 shdr[i].sh_size / sizeof(Elf_Rela);
603 ko->ko_relatab[ra].sec = shdr[i].sh_info;
604 error = kobj_read(ko,
605 (void **)&ko->ko_relatab[ra].rela,
606 shdr[i].sh_size,
607 shdr[i].sh_offset);
608 if (error != 0) {
609 goto out;
610 }
611 }
612 ra++;
613 break;
614 default:
615 break;
616 }
617 }
618 if (pb != ko->ko_nprogtab) {
619 panic("lost progbits");
620 }
621 if (rl != ko->ko_nrel) {
622 panic("lost rel");
623 }
624 if (ra != ko->ko_nrela) {
625 panic("lost rela");
626 }
627 if (ko->ko_type != KT_MEMORY && mapbase != ko->ko_address + mapsize) {
628 panic("mapbase 0x%lx != address %lx + mapsize %ld (0x%lx)\n",
629 (long)mapbase, (long)ko->ko_address, (long)mapsize,
630 (long)ko->ko_address + mapsize);
631 }
632
633 /*
634 * Perform local relocations only. Relocations relating to global
635 * symbols will be done by kobj_affix().
636 */
637 error = kobj_checkdup(ko);
638 if (error == 0) {
639 error = kobj_relocate(ko, true);
640 }
641 out:
642 if (hdr != NULL) {
643 kobj_free(ko, hdr, sizeof(*hdr));
644 }
645 kobj_close(ko);
646 if (error != 0) {
647 kobj_unload(ko);
648 }
649
650 return error;
651 }
652
653 /*
654 * kobj_unload:
655 *
656 * Unload an object previously loaded by kobj_load().
657 */
658 void
659 kobj_unload(kobj_t ko)
660 {
661 int error;
662
663 kobj_close(ko);
664 kobj_jettison(ko);
665
666 /*
667 * Notify MD code that a module has been unloaded.
668 */
669 if (ko->ko_loaded) {
670 error = kobj_machdep(ko, (void *)ko->ko_address, ko->ko_size,
671 false);
672 if (error != 0) {
673 kobj_error("machine dependent deinit failed");
674 }
675 }
676 if (ko->ko_address != 0 && ko->ko_type != KT_MEMORY) {
677 uvm_km_free(module_map, ko->ko_address, round_page(ko->ko_size),
678 UVM_KMF_WIRED);
679 }
680 if (ko->ko_ksyms == true) {
681 ksyms_modunload(ko->ko_name);
682 }
683 if (ko->ko_symtab != NULL) {
684 kobj_free(ko, ko->ko_symtab, ko->ko_symcnt * sizeof(Elf_Sym));
685 }
686 if (ko->ko_strtab != NULL) {
687 kobj_free(ko, ko->ko_strtab, ko->ko_strtabsz);
688 }
689 if (ko->ko_progtab != NULL) {
690 kobj_free(ko, ko->ko_progtab, ko->ko_nprogtab *
691 sizeof(*ko->ko_progtab));
692 ko->ko_progtab = NULL;
693 }
694 if (ko->ko_shstrtab) {
695 kobj_free(ko, ko->ko_shstrtab, ko->ko_shstrtabsz);
696 ko->ko_shstrtab = NULL;
697 }
698
699 kmem_free(ko, sizeof(*ko));
700 }
701
702 /*
703 * kobj_stat:
704 *
705 * Return size and load address of an object.
706 */
707 void
708 kobj_stat(kobj_t ko, vaddr_t *address, size_t *size)
709 {
710
711 if (address != NULL) {
712 *address = ko->ko_address;
713 }
714 if (size != NULL) {
715 *size = ko->ko_size;
716 }
717 }
718
719 /*
720 * kobj_affix:
721 *
722 * Set an object's name and perform global relocs. May only be
723 * called after the module and any requisite modules are loaded.
724 */
725 int
726 kobj_affix(kobj_t ko, const char *name)
727 {
728 int error;
729
730 KASSERT(ko->ko_ksyms == false);
731 KASSERT(ko->ko_loaded == false);
732
733 strlcpy(ko->ko_name, name, sizeof(ko->ko_name));
734
735 /* Now do global relocations. */
736 error = kobj_relocate(ko, false);
737
738 /*
739 * Now that we know the name, register the symbol table.
740 * Do after global relocations because ksyms will pack
741 * the table.
742 */
743 ksyms_modload(ko->ko_name, ko->ko_symtab, ko->ko_symcnt *
744 sizeof(Elf_Sym), ko->ko_strtab, ko->ko_strtabsz);
745 ko->ko_ksyms = true;
746
747 /* Jettison unneeded memory post-link. */
748 kobj_jettison(ko);
749
750 /* Notify MD code that a module has been loaded. */
751 if (error == 0) {
752 error = kobj_machdep(ko, (void *)ko->ko_address, ko->ko_size,
753 true);
754 if (error != 0) {
755 kobj_error("machine dependent init failed");
756 }
757 ko->ko_loaded = true;
758 }
759
760 /* If there was an error, destroy the whole object. */
761 if (error != 0) {
762 kobj_unload(ko);
763 }
764
765 return error;
766 }
767
768 /*
769 * kobj_find_section:
770 *
771 * Given a section name, search the loaded object and return
772 * virtual address if present and loaded.
773 */
774 int
775 kobj_find_section(kobj_t ko, const char *name, void **addr, size_t *size)
776 {
777 int i;
778
779 KASSERT(ko->ko_progtab != NULL);
780
781 for (i = 0; i < ko->ko_nprogtab; i++) {
782 if (strcmp(ko->ko_progtab[i].name, name) == 0) {
783 if (addr != NULL) {
784 *addr = ko->ko_progtab[i].addr;
785 }
786 if (size != NULL) {
787 *size = ko->ko_progtab[i].size;
788 }
789 return 0;
790 }
791 }
792
793 return ENOENT;
794 }
795
796 /*
797 * kobj_jettison:
798 *
799 * Release object data not needed after performing relocations.
800 */
801 static void
802 kobj_jettison(kobj_t ko)
803 {
804 int i;
805
806 for (i = 0; i < ko->ko_nrel; i++) {
807 if (ko->ko_reltab[i].rel) {
808 kobj_free(ko, ko->ko_reltab[i].rel,
809 ko->ko_reltab[i].size);
810 }
811 }
812 for (i = 0; i < ko->ko_nrela; i++) {
813 if (ko->ko_relatab[i].rela) {
814 kobj_free(ko, ko->ko_relatab[i].rela,
815 ko->ko_relatab[i].size);
816 }
817 }
818 if (ko->ko_reltab != NULL) {
819 kobj_free(ko, ko->ko_reltab, ko->ko_nrel *
820 sizeof(*ko->ko_reltab));
821 ko->ko_reltab = NULL;
822 ko->ko_nrel = 0;
823 }
824 if (ko->ko_relatab != NULL) {
825 kobj_free(ko, ko->ko_relatab, ko->ko_nrela *
826 sizeof(*ko->ko_relatab));
827 ko->ko_relatab = NULL;
828 ko->ko_nrela = 0;
829 }
830 if (ko->ko_shdr != NULL) {
831 kobj_free(ko, ko->ko_shdr, ko->ko_shdrsz);
832 ko->ko_shdr = NULL;
833 }
834 }
835
836 /*
837 * kobj_sym_lookup:
838 *
839 * Symbol lookup function to be used when the symbol index
840 * is known (ie during relocation).
841 */
842 uintptr_t
843 kobj_sym_lookup(kobj_t ko, uintptr_t symidx)
844 {
845 const Elf_Sym *sym;
846 const char *symbol;
847 int error;
848 u_long addr;
849
850 /* Don't even try to lookup the symbol if the index is bogus. */
851 if (symidx >= ko->ko_symcnt)
852 return 0;
853
854 sym = ko->ko_symtab + symidx;
855
856 /* Quick answer if there is a definition included. */
857 if (sym->st_shndx != SHN_UNDEF) {
858 return sym->st_value;
859 }
860
861 /* If we get here, then it is undefined and needs a lookup. */
862 switch (ELF_ST_BIND(sym->st_info)) {
863 case STB_LOCAL:
864 /* Local, but undefined? huh? */
865 kobj_error("local symbol undefined");
866 return 0;
867
868 case STB_GLOBAL:
869 /* Relative to Data or Function name */
870 symbol = ko->ko_strtab + sym->st_name;
871
872 /* Force a lookup failure if the symbol name is bogus. */
873 if (*symbol == 0) {
874 kobj_error("bad symbol name");
875 return 0;
876 }
877
878 /*
879 * Don't need to lock, as it is known that the symbol
880 * tables aren't going to change (we hold module_lock).
881 */
882 error = ksyms_getval(NULL, symbol, &addr, KSYMS_ANY);
883 if (error != 0) {
884 kobj_error("symbol `%s' not found", symbol);
885 return (uintptr_t)0;
886 }
887 return (uintptr_t)addr;
888
889 case STB_WEAK:
890 kobj_error("weak symbols not supported\n");
891 return 0;
892
893 default:
894 return 0;
895 }
896 }
897
898 /*
899 * kobj_findbase:
900 *
901 * Return base address of the given section.
902 */
903 static uintptr_t
904 kobj_findbase(kobj_t ko, int sec)
905 {
906 int i;
907
908 for (i = 0; i < ko->ko_nprogtab; i++) {
909 if (sec == ko->ko_progtab[i].sec) {
910 return (uintptr_t)ko->ko_progtab[i].addr;
911 }
912 }
913 return 0;
914 }
915
916 /*
917 * kobj_checkdup:
918 *
919 * Scan symbol table for duplicates.
920 */
921 static int
922 kobj_checkdup(kobj_t ko)
923 {
924 unsigned long rval;
925 Elf_Sym *sym, *ms;
926 const char *name;
927 bool dup;
928
929 dup = false;
930 for (ms = (sym = ko->ko_symtab) + ko->ko_symcnt; sym < ms; sym++) {
931 /* Check validity of the symbol. */
932 if (ELF_ST_BIND(sym->st_info) != STB_GLOBAL ||
933 sym->st_name == 0)
934 continue;
935
936 /* Check if the symbol already exists */
937 name = ko->ko_strtab + sym->st_name;
938 if (ksyms_getval(NULL, name, &rval, KSYMS_EXTERN) != 0) {
939 continue;
940 }
941
942 /* Check (and complain) about differing values */
943 if (sym->st_value == rval || sym->st_shndx == SHN_UNDEF) {
944 continue;
945 }
946 if (strcmp(name, "_bss_start") == 0 ||
947 strcmp(name, "__bss_start") == 0 ||
948 strcmp(name, "_bss_end__") == 0 ||
949 strcmp(name, "__bss_end__") == 0 ||
950 strcmp(name, "_edata") == 0 ||
951 strcmp(name, "_end") == 0 ||
952 strcmp(name, "__end") == 0 ||
953 strcmp(name, "__end__") == 0 ||
954 strncmp(name, "__start_link_set_", 17) == 0 ||
955 strncmp(name, "__stop_link_set_", 16)) {
956 continue;
957 }
958 kobj_error("global symbol `%s' redefined\n", name);
959 dup = true;
960 }
961
962 return dup ? EEXIST : 0;
963 }
964
965 /*
966 * kobj_relocate:
967 *
968 * Resolve relocations for the loaded object.
969 */
970 static int
971 kobj_relocate(kobj_t ko, bool local)
972 {
973 const Elf_Rel *rellim;
974 const Elf_Rel *rel;
975 const Elf_Rela *relalim;
976 const Elf_Rela *rela;
977 const Elf_Sym *sym;
978 uintptr_t base;
979 int i, error;
980 uintptr_t symidx;
981
982 /*
983 * Perform relocations without addend if there are any.
984 */
985 for (i = 0; i < ko->ko_nrel; i++) {
986 rel = ko->ko_reltab[i].rel;
987 if (rel == NULL) {
988 continue;
989 }
990 rellim = rel + ko->ko_reltab[i].nrel;
991 base = kobj_findbase(ko, ko->ko_reltab[i].sec);
992 if (base == 0) {
993 panic("lost base for e_reltab");
994 }
995 for (; rel < rellim; rel++) {
996 symidx = ELF_R_SYM(rel->r_info);
997 if (symidx >= ko->ko_symcnt) {
998 continue;
999 }
1000 sym = ko->ko_symtab + symidx;
1001 if (local != (ELF_ST_BIND(sym->st_info) == STB_LOCAL)) {
1002 continue;
1003 }
1004 error = kobj_reloc(ko, base, rel, false, local);
1005 if (error != 0) {
1006 return ENOENT;
1007 }
1008 }
1009 }
1010
1011 /*
1012 * Perform relocations with addend if there are any.
1013 */
1014 for (i = 0; i < ko->ko_nrela; i++) {
1015 rela = ko->ko_relatab[i].rela;
1016 if (rela == NULL) {
1017 continue;
1018 }
1019 relalim = rela + ko->ko_relatab[i].nrela;
1020 base = kobj_findbase(ko, ko->ko_relatab[i].sec);
1021 if (base == 0) {
1022 panic("lost base for e_relatab");
1023 }
1024 for (; rela < relalim; rela++) {
1025 symidx = ELF_R_SYM(rela->r_info);
1026 if (symidx >= ko->ko_symcnt) {
1027 continue;
1028 }
1029 sym = ko->ko_symtab + symidx;
1030 if (local != (ELF_ST_BIND(sym->st_info) == STB_LOCAL)) {
1031 continue;
1032 }
1033 error = kobj_reloc(ko, base, rela, true, local);
1034 if (error != 0) {
1035 return ENOENT;
1036 }
1037 }
1038 }
1039
1040 return 0;
1041 }
1042
1043 /*
1044 * kobj_error:
1045 *
1046 * Utility function: log an error.
1047 */
1048 static void
1049 kobj_error(const char *fmt, ...)
1050 {
1051 va_list ap;
1052
1053 va_start(ap, fmt);
1054 printf("WARNING: linker error: ");
1055 vprintf(fmt, ap);
1056 printf("\n");
1057 va_end(ap);
1058 }
1059
1060 /*
1061 * kobj_read:
1062 *
1063 * Utility function: read from the object.
1064 */
1065 static int
1066 kobj_read(kobj_t ko, void **basep, size_t size, off_t off)
1067 {
1068 size_t resid;
1069 void *base;
1070 int error;
1071
1072 KASSERT(ko->ko_source != NULL);
1073
1074 switch (ko->ko_type) {
1075 case KT_VNODE:
1076 base = kmem_alloc(size, KM_SLEEP);
1077 if (base == NULL) {
1078 error = ENOMEM;
1079 break;
1080 }
1081 error = vn_rdwr(UIO_READ, ko->ko_source, base, size, off,
1082 UIO_SYSSPACE, IO_NODELOCKED, curlwp->l_cred, &resid,
1083 curlwp);
1084 if (error == 0 && resid != 0) {
1085 error = EINVAL;
1086 }
1087 if (error != 0) {
1088 kmem_free(base, size);
1089 base = NULL;
1090 }
1091 break;
1092 case KT_MEMORY:
1093 if (ko->ko_memsize != -1 && off + size > ko->ko_memsize) {
1094 kobj_error("kobj_read: preloaded object short");
1095 error = EINVAL;
1096 base = NULL;
1097 } else {
1098 base = (uint8_t *)ko->ko_source + off;
1099 error = 0;
1100 }
1101 break;
1102 default:
1103 panic("kobj_read: invalid type");
1104 }
1105
1106 *basep = base;
1107 return error;
1108 }
1109
1110 /*
1111 * kobj_read_bits:
1112 *
1113 * Utility function: load a section from the object.
1114 */
1115 static int
1116 kobj_read_bits(kobj_t ko, void *base, size_t size, off_t off)
1117 {
1118 size_t resid;
1119 int error;
1120
1121 KASSERT(ko->ko_source != NULL);
1122
1123 switch (ko->ko_type) {
1124 case KT_VNODE:
1125 KASSERT((uintptr_t)base >= (uintptr_t)ko->ko_address);
1126 KASSERT((uintptr_t)base + size <=
1127 (uintptr_t)ko->ko_address + ko->ko_size);
1128 error = vn_rdwr(UIO_READ, ko->ko_source, base, size, off,
1129 UIO_SYSSPACE, IO_NODELOCKED, curlwp->l_cred, &resid,
1130 curlwp);
1131 if (error == 0 && resid != 0) {
1132 error = EINVAL;
1133 }
1134 break;
1135 case KT_MEMORY:
1136 if (ko->ko_memsize != -1 && off + size > ko->ko_memsize) {
1137 kobj_error("kobj_read_bits: preloaded object short");
1138 error = EINVAL;
1139 } else if ((uint8_t *)base != (uint8_t *)ko->ko_source + off) {
1140 kobj_error("kobj_read_bits: object not aligned");
1141 kobj_error("source=%p base=%p off=%d size=%zd",
1142 ko->ko_source, base, (int)off, size);
1143 error = EINVAL;
1144 } else {
1145 /* Nothing to do. Loading in-situ. */
1146 error = 0;
1147 }
1148 break;
1149 default:
1150 panic("kobj_read: invalid type");
1151 }
1152
1153 return error;
1154 }
1155
1156 /*
1157 * kobj_free:
1158 *
1159 * Utility function: free memory if it was allocated from the heap.
1160 */
1161 static void
1162 kobj_free(kobj_t ko, void *base, size_t size)
1163 {
1164
1165 if (ko->ko_type != KT_MEMORY)
1166 kmem_free(base, size);
1167 }
1168
1169 #else /* MODULAR */
1170
1171 int
1172 kobj_load_file(kobj_t *kop, const char *name, const char *base, bool autoload)
1173 {
1174
1175 return ENOSYS;
1176 }
1177
1178 int
1179 kobj_load_mem(kobj_t *kop, void *base, ssize_t size)
1180 {
1181
1182 return ENOSYS;
1183 }
1184
1185 void
1186 kobj_unload(kobj_t ko)
1187 {
1188
1189 panic("not modular");
1190 }
1191
1192 void
1193 kobj_stat(kobj_t ko, vaddr_t *base, size_t *size)
1194 {
1195
1196 panic("not modular");
1197 }
1198
1199 int
1200 kobj_affix(kobj_t ko, const char *name)
1201 {
1202
1203 panic("not modular");
1204 }
1205
1206 int
1207 kobj_find_section(kobj_t ko, const char *name, void **addr, size_t *size)
1208 {
1209
1210 panic("not modular");
1211 }
1212
1213 #endif /* MODULAR */
1214