subr_kobj.c revision 1.33 1 /* $NetBSD: subr_kobj.c,v 1.33 2009/01/08 01:03:24 pooka Exp $ */
2
3 /*-
4 * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software developed for The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1998-2000 Doug Rabson
34 * Copyright (c) 2004 Peter Wemm
35 * All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 *
46 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
47 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
48 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
49 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
50 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
51 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
52 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
53 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
54 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
55 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
56 * SUCH DAMAGE.
57 */
58
59 /*
60 * Kernel loader for ELF objects.
61 *
62 * TODO: adjust kmem_alloc() calls to avoid needless fragmentation.
63 */
64
65 #include <sys/cdefs.h>
66 __KERNEL_RCSID(0, "$NetBSD: subr_kobj.c,v 1.33 2009/01/08 01:03:24 pooka Exp $");
67
68 #define ELFSIZE ARCH_ELFSIZE
69
70 #include <sys/systm.h>
71 #include <sys/kobj.h>
72 #include <sys/errno.h>
73
74 #ifdef MODULAR
75
76 #include <sys/param.h>
77 #include <sys/kernel.h>
78 #include <sys/kmem.h>
79 #include <sys/proc.h>
80 #include <sys/namei.h>
81 #include <sys/vnode.h>
82 #include <sys/fcntl.h>
83 #include <sys/ksyms.h>
84 #include <sys/module.h>
85 #include <sys/exec.h>
86 #include <sys/exec_elf.h>
87
88 #include <machine/stdarg.h>
89
90 #include <uvm/uvm_extern.h>
91
92 typedef struct {
93 void *addr;
94 Elf_Off size;
95 int flags;
96 int sec; /* Original section */
97 const char *name;
98 } progent_t;
99
100 typedef struct {
101 Elf_Rel *rel;
102 int nrel;
103 int sec;
104 size_t size;
105 } relent_t;
106
107 typedef struct {
108 Elf_Rela *rela;
109 int nrela;
110 int sec;
111 size_t size;
112 } relaent_t;
113
114 typedef enum kobjtype {
115 KT_UNSET,
116 KT_VNODE,
117 KT_MEMORY
118 } kobjtype_t;
119
120 struct kobj {
121 char ko_name[MAXMODNAME];
122 kobjtype_t ko_type;
123 void *ko_source;
124 ssize_t ko_memsize;
125 vaddr_t ko_address; /* Relocation address */
126 Elf_Shdr *ko_shdr;
127 progent_t *ko_progtab;
128 relaent_t *ko_relatab;
129 relent_t *ko_reltab;
130 Elf_Sym *ko_symtab; /* Symbol table */
131 char *ko_strtab; /* String table */
132 char *ko_shstrtab; /* Section name string table */
133 size_t ko_size; /* Size of text/data/bss */
134 size_t ko_symcnt; /* Number of symbols */
135 size_t ko_strtabsz; /* Number of bytes in string table */
136 size_t ko_shstrtabsz; /* Number of bytes in scn str table */
137 size_t ko_shdrsz;
138 int ko_nrel;
139 int ko_nrela;
140 int ko_nprogtab;
141 bool ko_ksyms;
142 bool ko_loaded;
143 };
144
145 static int kobj_relocate(kobj_t, bool);
146 static int kobj_checksyms(kobj_t, bool);
147 static void kobj_error(const char *, ...);
148 static int kobj_read(kobj_t, void **, size_t, off_t);
149 static int kobj_read_bits(kobj_t, void *, size_t, off_t);
150 static void kobj_jettison(kobj_t);
151 static void kobj_free(kobj_t, void *, size_t);
152 static void kobj_close(kobj_t);
153 static int kobj_load(kobj_t);
154
155 extern struct vm_map *module_map;
156
157 /*
158 * kobj_load_file:
159 *
160 * Load an object located in the file system.
161 */
162 int
163 kobj_load_file(kobj_t *kop, const char *filename, const char *base,
164 bool autoload)
165 {
166 struct nameidata nd;
167 kauth_cred_t cred;
168 char *path;
169 int error;
170 kobj_t ko;
171
172 cred = kauth_cred_get();
173
174 ko = kmem_zalloc(sizeof(*ko), KM_SLEEP);
175 if (ko == NULL) {
176 return ENOMEM;
177 }
178
179 if (autoload) {
180 error = ENOENT;
181 } else {
182 NDINIT(&nd, LOOKUP, FOLLOW, UIO_SYSSPACE, filename);
183 error = vn_open(&nd, FREAD, 0);
184 }
185 if (error != 0) {
186 if (error != ENOENT) {
187 goto out;
188 }
189 path = PNBUF_GET();
190 snprintf(path, MAXPATHLEN - 1, "%s/%s/%s.kmod", base,
191 filename, filename);
192 NDINIT(&nd, LOOKUP, FOLLOW | NOCHROOT, UIO_SYSSPACE, path);
193 error = vn_open(&nd, FREAD, 0);
194 PNBUF_PUT(path);
195 }
196
197 out:
198 if (error != 0) {
199 kmem_free(ko, sizeof(*ko));
200 return error;
201 }
202
203 ko->ko_type = KT_VNODE;
204 ko->ko_source = nd.ni_vp;
205 *kop = ko;
206 return kobj_load(ko);
207 }
208
209 /*
210 * kobj_load_mem:
211 *
212 * Load an object already resident in memory. If size is not -1,
213 * the complete size of the object is known.
214 */
215 int
216 kobj_load_mem(kobj_t *kop, void *base, ssize_t size)
217 {
218 kobj_t ko;
219
220 ko = kmem_zalloc(sizeof(*ko), KM_SLEEP);
221 if (ko == NULL) {
222 return ENOMEM;
223 }
224
225 ko->ko_type = KT_MEMORY;
226 ko->ko_source = base;
227 ko->ko_memsize = size;
228 *kop = ko;
229 return kobj_load(ko);
230 }
231
232 /*
233 * kobj_close:
234 *
235 * Close an open ELF object.
236 */
237 static void
238 kobj_close(kobj_t ko)
239 {
240
241 if (ko->ko_source == NULL) {
242 return;
243 }
244
245 switch (ko->ko_type) {
246 case KT_VNODE:
247 VOP_UNLOCK(ko->ko_source, 0);
248 vn_close(ko->ko_source, FREAD, kauth_cred_get());
249 break;
250 case KT_MEMORY:
251 /* nothing */
252 break;
253 default:
254 panic("kobj_close: unknown type");
255 break;
256 }
257
258 ko->ko_source = NULL;
259 }
260
261 /*
262 * kobj_load:
263 *
264 * Load an ELF object and prepare to link into the running kernel
265 * image.
266 */
267 static int
268 kobj_load(kobj_t ko)
269 {
270 Elf_Ehdr *hdr;
271 Elf_Shdr *shdr;
272 Elf_Sym *es;
273 vaddr_t mapbase;
274 size_t mapsize;
275 int error;
276 int symtabindex;
277 int symstrindex;
278 int nsym;
279 int pb, rl, ra;
280 int alignmask;
281 int i, j;
282 void *addr;
283
284 KASSERT(ko->ko_type != KT_UNSET);
285 KASSERT(ko->ko_source != NULL);
286
287 shdr = NULL;
288 mapsize = 0;
289 error = 0;
290 hdr = NULL;
291
292 /*
293 * Read the elf header from the file.
294 */
295 error = kobj_read(ko, (void **)&hdr, sizeof(*hdr), 0);
296 if (error != 0)
297 goto out;
298 if (memcmp(hdr->e_ident, ELFMAG, SELFMAG) != 0) {
299 kobj_error("not an ELF object");
300 error = ENOEXEC;
301 goto out;
302 }
303
304 if (hdr->e_ident[EI_VERSION] != EV_CURRENT ||
305 hdr->e_version != EV_CURRENT) {
306 kobj_error("unsupported file version");
307 error = ENOEXEC;
308 goto out;
309 }
310 if (hdr->e_type != ET_REL) {
311 kobj_error("unsupported file type");
312 error = ENOEXEC;
313 goto out;
314 }
315 switch (hdr->e_machine) {
316 #if ELFSIZE == 32
317 ELF32_MACHDEP_ID_CASES
318 #else
319 ELF64_MACHDEP_ID_CASES
320 #endif
321 default:
322 kobj_error("unsupported machine");
323 error = ENOEXEC;
324 goto out;
325 }
326
327 ko->ko_nprogtab = 0;
328 ko->ko_shdr = 0;
329 ko->ko_nrel = 0;
330 ko->ko_nrela = 0;
331
332 /*
333 * Allocate and read in the section header.
334 */
335 ko->ko_shdrsz = hdr->e_shnum * hdr->e_shentsize;
336 if (ko->ko_shdrsz == 0 || hdr->e_shoff == 0 ||
337 hdr->e_shentsize != sizeof(Elf_Shdr)) {
338 error = ENOEXEC;
339 goto out;
340 }
341 error = kobj_read(ko, (void **)&shdr, ko->ko_shdrsz, hdr->e_shoff);
342 if (error != 0) {
343 goto out;
344 }
345 ko->ko_shdr = shdr;
346
347 /*
348 * Scan the section header for information and table sizing.
349 */
350 nsym = 0;
351 symtabindex = -1;
352 symstrindex = -1;
353 for (i = 0; i < hdr->e_shnum; i++) {
354 switch (shdr[i].sh_type) {
355 case SHT_PROGBITS:
356 case SHT_NOBITS:
357 ko->ko_nprogtab++;
358 break;
359 case SHT_SYMTAB:
360 nsym++;
361 symtabindex = i;
362 symstrindex = shdr[i].sh_link;
363 break;
364 case SHT_REL:
365 ko->ko_nrel++;
366 break;
367 case SHT_RELA:
368 ko->ko_nrela++;
369 break;
370 case SHT_STRTAB:
371 break;
372 }
373 }
374 if (ko->ko_nprogtab == 0) {
375 kobj_error("file has no contents");
376 error = ENOEXEC;
377 goto out;
378 }
379 if (nsym != 1) {
380 /* Only allow one symbol table for now */
381 kobj_error("file has no valid symbol table");
382 error = ENOEXEC;
383 goto out;
384 }
385 if (symstrindex < 0 || symstrindex > hdr->e_shnum ||
386 shdr[symstrindex].sh_type != SHT_STRTAB) {
387 kobj_error("file has invalid symbol strings");
388 error = ENOEXEC;
389 goto out;
390 }
391
392 /*
393 * Allocate space for tracking the load chunks.
394 */
395 if (ko->ko_nprogtab != 0) {
396 ko->ko_progtab = kmem_zalloc(ko->ko_nprogtab *
397 sizeof(*ko->ko_progtab), KM_SLEEP);
398 if (ko->ko_progtab == NULL) {
399 error = ENOMEM;
400 goto out;
401 }
402 }
403 if (ko->ko_nrel != 0) {
404 ko->ko_reltab = kmem_zalloc(ko->ko_nrel *
405 sizeof(*ko->ko_reltab), KM_SLEEP);
406 if (ko->ko_reltab == NULL) {
407 error = ENOMEM;
408 goto out;
409 }
410 }
411 if (ko->ko_nrela != 0) {
412 ko->ko_relatab = kmem_zalloc(ko->ko_nrela *
413 sizeof(*ko->ko_relatab), KM_SLEEP);
414 if (ko->ko_relatab == NULL) {
415 error = ENOMEM;
416 goto out;
417 }
418 }
419 if (symtabindex == -1) {
420 kobj_error("lost symbol table index");
421 goto out;
422 }
423
424 /*
425 * Allocate space for and load the symbol table.
426 */
427 ko->ko_symcnt = shdr[symtabindex].sh_size / sizeof(Elf_Sym);
428 if (ko->ko_symcnt == 0) {
429 kobj_error("no symbol table");
430 goto out;
431 }
432 error = kobj_read(ko, (void **)&ko->ko_symtab,
433 ko->ko_symcnt * sizeof(Elf_Sym),
434 shdr[symtabindex].sh_offset);
435 if (error != 0) {
436 goto out;
437 }
438
439 /*
440 * Allocate space for and load the symbol strings.
441 */
442 ko->ko_strtabsz = shdr[symstrindex].sh_size;
443 if (ko->ko_strtabsz == 0) {
444 kobj_error("no symbol strings");
445 goto out;
446 }
447 error = kobj_read(ko, (void *)&ko->ko_strtab, ko->ko_strtabsz,
448 shdr[symstrindex].sh_offset);
449 if (error != 0) {
450 goto out;
451 }
452
453 /*
454 * Do we have a string table for the section names?
455 */
456 if (hdr->e_shstrndx != 0 && shdr[hdr->e_shstrndx].sh_size != 0 &&
457 shdr[hdr->e_shstrndx].sh_type == SHT_STRTAB) {
458 ko->ko_shstrtabsz = shdr[hdr->e_shstrndx].sh_size;
459 error = kobj_read(ko, (void **)&ko->ko_shstrtab,
460 shdr[hdr->e_shstrndx].sh_size,
461 shdr[hdr->e_shstrndx].sh_offset);
462 if (error != 0) {
463 goto out;
464 }
465 }
466
467 /*
468 * Size up code/data(progbits) and bss(nobits).
469 */
470 alignmask = 0;
471 mapbase = 0;
472 for (i = 0; i < hdr->e_shnum; i++) {
473 switch (shdr[i].sh_type) {
474 case SHT_PROGBITS:
475 case SHT_NOBITS:
476 if (mapbase == 0)
477 mapbase = shdr[i].sh_offset;
478 alignmask = shdr[i].sh_addralign - 1;
479 mapsize += alignmask;
480 mapsize &= ~alignmask;
481 mapsize += shdr[i].sh_size;
482 break;
483 }
484 }
485
486 /*
487 * We know how much space we need for the text/data/bss/etc.
488 * This stuff needs to be in a single chunk so that profiling etc
489 * can get the bounds and gdb can associate offsets with modules.
490 */
491 if (mapsize == 0) {
492 kobj_error("no text/data/bss");
493 goto out;
494 }
495 if (ko->ko_type == KT_MEMORY) {
496 mapbase += (vaddr_t)ko->ko_source;
497 } else {
498 mapbase = uvm_km_alloc(module_map, round_page(mapsize),
499 0, UVM_KMF_WIRED | UVM_KMF_EXEC);
500 if (mapbase == 0) {
501 error = ENOMEM;
502 goto out;
503 }
504 }
505 ko->ko_address = mapbase;
506 ko->ko_size = mapsize;
507
508 /*
509 * Now load code/data(progbits), zero bss(nobits), allocate space
510 * for and load relocs
511 */
512 pb = 0;
513 rl = 0;
514 ra = 0;
515 alignmask = 0;
516 for (i = 0; i < hdr->e_shnum; i++) {
517 switch (shdr[i].sh_type) {
518 case SHT_PROGBITS:
519 case SHT_NOBITS:
520 alignmask = shdr[i].sh_addralign - 1;
521 if (ko->ko_type == KT_MEMORY) {
522 addr = (void *)(shdr[i].sh_offset +
523 (vaddr_t)ko->ko_source);
524 if (((vaddr_t)addr & alignmask) != 0) {
525 kobj_error("section %d not aligned\n",
526 i);
527 goto out;
528 }
529 } else {
530 mapbase += alignmask;
531 mapbase &= ~alignmask;
532 addr = (void *)mapbase;
533 mapbase += shdr[i].sh_size;
534 }
535 ko->ko_progtab[pb].addr = addr;
536 if (shdr[i].sh_type == SHT_PROGBITS) {
537 ko->ko_progtab[pb].name = "<<PROGBITS>>";
538 error = kobj_read_bits(ko, addr,
539 shdr[i].sh_size, shdr[i].sh_offset);
540 if (error != 0) {
541 goto out;
542 }
543 } else if (ko->ko_type == KT_MEMORY &&
544 shdr[i].sh_size != 0) {
545 kobj_error("non-loadable BSS section in "
546 "pre-loaded module");
547 error = EINVAL;
548 goto out;
549 } else {
550 ko->ko_progtab[pb].name = "<<NOBITS>>";
551 memset(addr, 0, shdr[i].sh_size);
552 }
553 ko->ko_progtab[pb].size = shdr[i].sh_size;
554 ko->ko_progtab[pb].sec = i;
555 if (ko->ko_shstrtab != NULL && shdr[i].sh_name != 0) {
556 ko->ko_progtab[pb].name =
557 ko->ko_shstrtab + shdr[i].sh_name;
558 }
559
560 /* Update all symbol values with the offset. */
561 for (j = 0; j < ko->ko_symcnt; j++) {
562 es = &ko->ko_symtab[j];
563 if (es->st_shndx != i) {
564 continue;
565 }
566 es->st_value += (Elf_Addr)addr;
567 }
568 pb++;
569 break;
570 case SHT_REL:
571 ko->ko_reltab[rl].size = shdr[i].sh_size;
572 ko->ko_reltab[rl].size -=
573 shdr[i].sh_size % sizeof(Elf_Rel);
574 if (ko->ko_reltab[rl].size != 0) {
575 ko->ko_reltab[rl].nrel =
576 shdr[i].sh_size / sizeof(Elf_Rel);
577 ko->ko_reltab[rl].sec = shdr[i].sh_info;
578 error = kobj_read(ko,
579 (void **)&ko->ko_reltab[rl].rel,
580 ko->ko_reltab[rl].size,
581 shdr[i].sh_offset);
582 if (error != 0) {
583 goto out;
584 }
585 }
586 rl++;
587 break;
588 case SHT_RELA:
589 ko->ko_relatab[ra].size = shdr[i].sh_size;
590 ko->ko_relatab[ra].size -=
591 shdr[i].sh_size % sizeof(Elf_Rela);
592 if (ko->ko_relatab[ra].size != 0) {
593 ko->ko_relatab[ra].nrela =
594 shdr[i].sh_size / sizeof(Elf_Rela);
595 ko->ko_relatab[ra].sec = shdr[i].sh_info;
596 error = kobj_read(ko,
597 (void **)&ko->ko_relatab[ra].rela,
598 shdr[i].sh_size,
599 shdr[i].sh_offset);
600 if (error != 0) {
601 goto out;
602 }
603 }
604 ra++;
605 break;
606 default:
607 break;
608 }
609 }
610 if (pb != ko->ko_nprogtab) {
611 panic("lost progbits");
612 }
613 if (rl != ko->ko_nrel) {
614 panic("lost rel");
615 }
616 if (ra != ko->ko_nrela) {
617 panic("lost rela");
618 }
619 if (ko->ko_type != KT_MEMORY && mapbase != ko->ko_address + mapsize) {
620 panic("mapbase 0x%lx != address %lx + mapsize %ld (0x%lx)\n",
621 (long)mapbase, (long)ko->ko_address, (long)mapsize,
622 (long)ko->ko_address + mapsize);
623 }
624
625 /*
626 * Perform local relocations only. Relocations relating to global
627 * symbols will be done by kobj_affix().
628 */
629 error = kobj_checksyms(ko, false);
630 if (error == 0) {
631 error = kobj_relocate(ko, true);
632 }
633 out:
634 if (hdr != NULL) {
635 kobj_free(ko, hdr, sizeof(*hdr));
636 }
637 kobj_close(ko);
638 if (error != 0) {
639 kobj_unload(ko);
640 }
641
642 return error;
643 }
644
645 /*
646 * kobj_unload:
647 *
648 * Unload an object previously loaded by kobj_load().
649 */
650 void
651 kobj_unload(kobj_t ko)
652 {
653 int error;
654
655 kobj_close(ko);
656 kobj_jettison(ko);
657
658 /*
659 * Notify MD code that a module has been unloaded.
660 */
661 if (ko->ko_loaded) {
662 error = kobj_machdep(ko, (void *)ko->ko_address, ko->ko_size,
663 false);
664 if (error != 0) {
665 kobj_error("machine dependent deinit failed");
666 }
667 }
668 if (ko->ko_address != 0 && ko->ko_type != KT_MEMORY) {
669 uvm_km_free(module_map, ko->ko_address, round_page(ko->ko_size),
670 UVM_KMF_WIRED);
671 }
672 if (ko->ko_ksyms == true) {
673 ksyms_modunload(ko->ko_name);
674 }
675 if (ko->ko_symtab != NULL) {
676 kobj_free(ko, ko->ko_symtab, ko->ko_symcnt * sizeof(Elf_Sym));
677 }
678 if (ko->ko_strtab != NULL) {
679 kobj_free(ko, ko->ko_strtab, ko->ko_strtabsz);
680 }
681 if (ko->ko_progtab != NULL) {
682 kobj_free(ko, ko->ko_progtab, ko->ko_nprogtab *
683 sizeof(*ko->ko_progtab));
684 ko->ko_progtab = NULL;
685 }
686 if (ko->ko_shstrtab) {
687 kobj_free(ko, ko->ko_shstrtab, ko->ko_shstrtabsz);
688 ko->ko_shstrtab = NULL;
689 }
690
691 kmem_free(ko, sizeof(*ko));
692 }
693
694 /*
695 * kobj_stat:
696 *
697 * Return size and load address of an object.
698 */
699 void
700 kobj_stat(kobj_t ko, vaddr_t *address, size_t *size)
701 {
702
703 if (address != NULL) {
704 *address = ko->ko_address;
705 }
706 if (size != NULL) {
707 *size = ko->ko_size;
708 }
709 }
710
711 /*
712 * kobj_affix:
713 *
714 * Set an object's name and perform global relocs. May only be
715 * called after the module and any requisite modules are loaded.
716 */
717 int
718 kobj_affix(kobj_t ko, const char *name)
719 {
720 int error;
721
722 KASSERT(ko->ko_ksyms == false);
723 KASSERT(ko->ko_loaded == false);
724
725 strlcpy(ko->ko_name, name, sizeof(ko->ko_name));
726
727 /* Cache addresses of undefined symbols. */
728 error = kobj_checksyms(ko, true);
729
730 /* Now do global relocations. */
731 if (error == 0)
732 error = kobj_relocate(ko, false);
733
734 /*
735 * Now that we know the name, register the symbol table.
736 * Do after global relocations because ksyms will pack
737 * the table.
738 */
739 if (error == 0) {
740 ksyms_modload(ko->ko_name, ko->ko_symtab, ko->ko_symcnt *
741 sizeof(Elf_Sym), ko->ko_strtab, ko->ko_strtabsz);
742 ko->ko_ksyms = true;
743 }
744
745 /* Jettison unneeded memory post-link. */
746 kobj_jettison(ko);
747
748 /*
749 * Notify MD code that a module has been loaded.
750 *
751 * Most architectures use this opportunity to flush their caches.
752 */
753 if (error == 0) {
754 error = kobj_machdep(ko, (void *)ko->ko_address, ko->ko_size,
755 true);
756 if (error != 0) {
757 kobj_error("machine dependent init failed");
758 }
759 ko->ko_loaded = true;
760 }
761
762 /* If there was an error, destroy the whole object. */
763 if (error != 0) {
764 kobj_unload(ko);
765 }
766
767 return error;
768 }
769
770 /*
771 * kobj_find_section:
772 *
773 * Given a section name, search the loaded object and return
774 * virtual address if present and loaded.
775 */
776 int
777 kobj_find_section(kobj_t ko, const char *name, void **addr, size_t *size)
778 {
779 int i;
780
781 KASSERT(ko->ko_progtab != NULL);
782
783 for (i = 0; i < ko->ko_nprogtab; i++) {
784 if (strcmp(ko->ko_progtab[i].name, name) == 0) {
785 if (addr != NULL) {
786 *addr = ko->ko_progtab[i].addr;
787 }
788 if (size != NULL) {
789 *size = ko->ko_progtab[i].size;
790 }
791 return 0;
792 }
793 }
794
795 return ENOENT;
796 }
797
798 /*
799 * kobj_jettison:
800 *
801 * Release object data not needed after performing relocations.
802 */
803 static void
804 kobj_jettison(kobj_t ko)
805 {
806 int i;
807
808 for (i = 0; i < ko->ko_nrel; i++) {
809 if (ko->ko_reltab[i].rel) {
810 kobj_free(ko, ko->ko_reltab[i].rel,
811 ko->ko_reltab[i].size);
812 }
813 }
814 for (i = 0; i < ko->ko_nrela; i++) {
815 if (ko->ko_relatab[i].rela) {
816 kobj_free(ko, ko->ko_relatab[i].rela,
817 ko->ko_relatab[i].size);
818 }
819 }
820 if (ko->ko_reltab != NULL) {
821 kobj_free(ko, ko->ko_reltab, ko->ko_nrel *
822 sizeof(*ko->ko_reltab));
823 ko->ko_reltab = NULL;
824 ko->ko_nrel = 0;
825 }
826 if (ko->ko_relatab != NULL) {
827 kobj_free(ko, ko->ko_relatab, ko->ko_nrela *
828 sizeof(*ko->ko_relatab));
829 ko->ko_relatab = NULL;
830 ko->ko_nrela = 0;
831 }
832 if (ko->ko_shdr != NULL) {
833 kobj_free(ko, ko->ko_shdr, ko->ko_shdrsz);
834 ko->ko_shdr = NULL;
835 }
836 }
837
838 /*
839 * kobj_sym_lookup:
840 *
841 * Symbol lookup function to be used when the symbol index
842 * is known (ie during relocation).
843 */
844 uintptr_t
845 kobj_sym_lookup(kobj_t ko, uintptr_t symidx)
846 {
847 const Elf_Sym *sym;
848 const char *symbol;
849
850 /* Don't even try to lookup the symbol if the index is bogus. */
851 if (symidx >= ko->ko_symcnt)
852 return 0;
853
854 sym = ko->ko_symtab + symidx;
855
856 /* Quick answer if there is a definition included. */
857 if (sym->st_shndx != SHN_UNDEF) {
858 return (uintptr_t)sym->st_value;
859 }
860
861 /* If we get here, then it is undefined and needs a lookup. */
862 switch (ELF_ST_BIND(sym->st_info)) {
863 case STB_LOCAL:
864 /* Local, but undefined? huh? */
865 kobj_error("local symbol undefined");
866 return 0;
867
868 case STB_GLOBAL:
869 /* Relative to Data or Function name */
870 symbol = ko->ko_strtab + sym->st_name;
871
872 /* Force a lookup failure if the symbol name is bogus. */
873 if (*symbol == 0) {
874 kobj_error("bad symbol name");
875 return 0;
876 }
877
878 return (uintptr_t)sym->st_value;
879
880 case STB_WEAK:
881 kobj_error("weak symbols not supported\n");
882 return 0;
883
884 default:
885 return 0;
886 }
887 }
888
889 /*
890 * kobj_findbase:
891 *
892 * Return base address of the given section.
893 */
894 static uintptr_t
895 kobj_findbase(kobj_t ko, int sec)
896 {
897 int i;
898
899 for (i = 0; i < ko->ko_nprogtab; i++) {
900 if (sec == ko->ko_progtab[i].sec) {
901 return (uintptr_t)ko->ko_progtab[i].addr;
902 }
903 }
904 return 0;
905 }
906
907 /*
908 * kobj_checksyms:
909 *
910 * Scan symbol table for duplicates or resolve references to
911 * exernal symbols.
912 */
913 static int
914 kobj_checksyms(kobj_t ko, bool undefined)
915 {
916 unsigned long rval;
917 Elf_Sym *sym, *ms;
918 const char *name;
919 int error;
920
921 error = 0;
922
923 for (ms = (sym = ko->ko_symtab) + ko->ko_symcnt; sym < ms; sym++) {
924 /* Check validity of the symbol. */
925 if (ELF_ST_BIND(sym->st_info) != STB_GLOBAL ||
926 sym->st_name == 0)
927 continue;
928 if (undefined != (sym->st_shndx == SHN_UNDEF)) {
929 continue;
930 }
931
932 /*
933 * Look it up. Don't need to lock, as it is known that
934 * the symbol tables aren't going to change (we hold
935 * module_lock).
936 */
937 name = ko->ko_strtab + sym->st_name;
938 if (ksyms_getval_unlocked(NULL, name, &rval,
939 KSYMS_EXTERN) != 0) {
940 if (undefined) {
941 kobj_error("symbol `%s' not found", name);
942 error = ENOEXEC;
943 }
944 continue;
945 }
946
947 /* Save values of undefined globals. */
948 if (undefined) {
949 sym->st_value = (Elf_Addr)rval;
950 continue;
951 }
952
953 /* Check (and complain) about differing values. */
954 if (sym->st_value == rval) {
955 continue;
956 }
957 if (strcmp(name, "_bss_start") == 0 ||
958 strcmp(name, "__bss_start") == 0 ||
959 strcmp(name, "_bss_end__") == 0 ||
960 strcmp(name, "__bss_end__") == 0 ||
961 strcmp(name, "_edata") == 0 ||
962 strcmp(name, "_end") == 0 ||
963 strcmp(name, "__end") == 0 ||
964 strcmp(name, "__end__") == 0 ||
965 strncmp(name, "__start_link_set_", 17) == 0 ||
966 strncmp(name, "__stop_link_set_", 16)) {
967 continue;
968 }
969 kobj_error("global symbol `%s' redefined\n", name);
970 error = ENOEXEC;
971 }
972
973 return error;
974 }
975
976 /*
977 * kobj_relocate:
978 *
979 * Resolve relocations for the loaded object.
980 */
981 static int
982 kobj_relocate(kobj_t ko, bool local)
983 {
984 const Elf_Rel *rellim;
985 const Elf_Rel *rel;
986 const Elf_Rela *relalim;
987 const Elf_Rela *rela;
988 const Elf_Sym *sym;
989 uintptr_t base;
990 int i, error;
991 uintptr_t symidx;
992
993 /*
994 * Perform relocations without addend if there are any.
995 */
996 for (i = 0; i < ko->ko_nrel; i++) {
997 rel = ko->ko_reltab[i].rel;
998 if (rel == NULL) {
999 continue;
1000 }
1001 rellim = rel + ko->ko_reltab[i].nrel;
1002 base = kobj_findbase(ko, ko->ko_reltab[i].sec);
1003 if (base == 0) {
1004 panic("lost base for e_reltab");
1005 }
1006 for (; rel < rellim; rel++) {
1007 symidx = ELF_R_SYM(rel->r_info);
1008 if (symidx >= ko->ko_symcnt) {
1009 continue;
1010 }
1011 sym = ko->ko_symtab + symidx;
1012 if (local != (ELF_ST_BIND(sym->st_info) == STB_LOCAL)) {
1013 continue;
1014 }
1015 error = kobj_reloc(ko, base, rel, false, local);
1016 if (error != 0) {
1017 return ENOENT;
1018 }
1019 }
1020 }
1021
1022 /*
1023 * Perform relocations with addend if there are any.
1024 */
1025 for (i = 0; i < ko->ko_nrela; i++) {
1026 rela = ko->ko_relatab[i].rela;
1027 if (rela == NULL) {
1028 continue;
1029 }
1030 relalim = rela + ko->ko_relatab[i].nrela;
1031 base = kobj_findbase(ko, ko->ko_relatab[i].sec);
1032 if (base == 0) {
1033 panic("lost base for e_relatab");
1034 }
1035 for (; rela < relalim; rela++) {
1036 symidx = ELF_R_SYM(rela->r_info);
1037 if (symidx >= ko->ko_symcnt) {
1038 continue;
1039 }
1040 sym = ko->ko_symtab + symidx;
1041 if (local != (ELF_ST_BIND(sym->st_info) == STB_LOCAL)) {
1042 continue;
1043 }
1044 error = kobj_reloc(ko, base, rela, true, local);
1045 if (error != 0) {
1046 return ENOENT;
1047 }
1048 }
1049 }
1050
1051 return 0;
1052 }
1053
1054 /*
1055 * kobj_error:
1056 *
1057 * Utility function: log an error.
1058 */
1059 static void
1060 kobj_error(const char *fmt, ...)
1061 {
1062 va_list ap;
1063
1064 va_start(ap, fmt);
1065 printf("WARNING: linker error: ");
1066 vprintf(fmt, ap);
1067 printf("\n");
1068 va_end(ap);
1069 }
1070
1071 /*
1072 * kobj_read:
1073 *
1074 * Utility function: read from the object.
1075 */
1076 static int
1077 kobj_read(kobj_t ko, void **basep, size_t size, off_t off)
1078 {
1079 size_t resid;
1080 void *base;
1081 int error;
1082
1083 KASSERT(ko->ko_source != NULL);
1084
1085 switch (ko->ko_type) {
1086 case KT_VNODE:
1087 base = kmem_alloc(size, KM_SLEEP);
1088 if (base == NULL) {
1089 error = ENOMEM;
1090 break;
1091 }
1092 error = vn_rdwr(UIO_READ, ko->ko_source, base, size, off,
1093 UIO_SYSSPACE, IO_NODELOCKED, curlwp->l_cred, &resid,
1094 curlwp);
1095 if (error == 0 && resid != 0) {
1096 error = EINVAL;
1097 }
1098 if (error != 0) {
1099 kmem_free(base, size);
1100 base = NULL;
1101 }
1102 break;
1103 case KT_MEMORY:
1104 if (ko->ko_memsize != -1 && off + size > ko->ko_memsize) {
1105 kobj_error("kobj_read: preloaded object short");
1106 error = EINVAL;
1107 base = NULL;
1108 } else {
1109 base = (uint8_t *)ko->ko_source + off;
1110 error = 0;
1111 }
1112 break;
1113 default:
1114 panic("kobj_read: invalid type");
1115 }
1116
1117 *basep = base;
1118 return error;
1119 }
1120
1121 /*
1122 * kobj_read_bits:
1123 *
1124 * Utility function: load a section from the object.
1125 */
1126 static int
1127 kobj_read_bits(kobj_t ko, void *base, size_t size, off_t off)
1128 {
1129 size_t resid;
1130 int error;
1131
1132 KASSERT(ko->ko_source != NULL);
1133
1134 switch (ko->ko_type) {
1135 case KT_VNODE:
1136 KASSERT((uintptr_t)base >= (uintptr_t)ko->ko_address);
1137 KASSERT((uintptr_t)base + size <=
1138 (uintptr_t)ko->ko_address + ko->ko_size);
1139 error = vn_rdwr(UIO_READ, ko->ko_source, base, size, off,
1140 UIO_SYSSPACE, IO_NODELOCKED, curlwp->l_cred, &resid,
1141 curlwp);
1142 if (error == 0 && resid != 0) {
1143 error = EINVAL;
1144 }
1145 break;
1146 case KT_MEMORY:
1147 if (ko->ko_memsize != -1 && off + size > ko->ko_memsize) {
1148 kobj_error("kobj_read_bits: preloaded object short");
1149 error = EINVAL;
1150 } else if ((uint8_t *)base != (uint8_t *)ko->ko_source + off) {
1151 kobj_error("kobj_read_bits: object not aligned");
1152 kobj_error("source=%p base=%p off=%d size=%zd",
1153 ko->ko_source, base, (int)off, size);
1154 error = EINVAL;
1155 } else {
1156 /* Nothing to do. Loading in-situ. */
1157 error = 0;
1158 }
1159 break;
1160 default:
1161 panic("kobj_read: invalid type");
1162 }
1163
1164 return error;
1165 }
1166
1167 /*
1168 * kobj_free:
1169 *
1170 * Utility function: free memory if it was allocated from the heap.
1171 */
1172 static void
1173 kobj_free(kobj_t ko, void *base, size_t size)
1174 {
1175
1176 if (ko->ko_type != KT_MEMORY)
1177 kmem_free(base, size);
1178 }
1179
1180 #else /* MODULAR */
1181
1182 int
1183 kobj_load_file(kobj_t *kop, const char *name, const char *base, bool autoload)
1184 {
1185
1186 return ENOSYS;
1187 }
1188
1189 int
1190 kobj_load_mem(kobj_t *kop, void *base, ssize_t size)
1191 {
1192
1193 return ENOSYS;
1194 }
1195
1196 void
1197 kobj_unload(kobj_t ko)
1198 {
1199
1200 panic("not modular");
1201 }
1202
1203 void
1204 kobj_stat(kobj_t ko, vaddr_t *base, size_t *size)
1205 {
1206
1207 panic("not modular");
1208 }
1209
1210 int
1211 kobj_affix(kobj_t ko, const char *name)
1212 {
1213
1214 panic("not modular");
1215 }
1216
1217 int
1218 kobj_find_section(kobj_t ko, const char *name, void **addr, size_t *size)
1219 {
1220
1221 panic("not modular");
1222 }
1223
1224 #endif /* MODULAR */
1225