subr_kobj.c revision 1.34 1 /* $NetBSD: subr_kobj.c,v 1.34 2009/02/13 22:41:04 apb Exp $ */
2
3 /*-
4 * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software developed for The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1998-2000 Doug Rabson
34 * Copyright (c) 2004 Peter Wemm
35 * All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 *
46 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
47 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
48 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
49 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
50 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
51 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
52 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
53 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
54 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
55 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
56 * SUCH DAMAGE.
57 */
58
59 /*
60 * Kernel loader for ELF objects.
61 *
62 * TODO: adjust kmem_alloc() calls to avoid needless fragmentation.
63 */
64
65 #include <sys/cdefs.h>
66 __KERNEL_RCSID(0, "$NetBSD: subr_kobj.c,v 1.34 2009/02/13 22:41:04 apb Exp $");
67
68 #include "opt_modular.h"
69
70 #define ELFSIZE ARCH_ELFSIZE
71
72 #include <sys/systm.h>
73 #include <sys/kobj.h>
74 #include <sys/errno.h>
75
76 #ifdef MODULAR
77
78 #include <sys/param.h>
79 #include <sys/kernel.h>
80 #include <sys/kmem.h>
81 #include <sys/proc.h>
82 #include <sys/namei.h>
83 #include <sys/vnode.h>
84 #include <sys/fcntl.h>
85 #include <sys/ksyms.h>
86 #include <sys/module.h>
87 #include <sys/exec.h>
88 #include <sys/exec_elf.h>
89
90 #include <machine/stdarg.h>
91
92 #include <uvm/uvm_extern.h>
93
94 typedef struct {
95 void *addr;
96 Elf_Off size;
97 int flags;
98 int sec; /* Original section */
99 const char *name;
100 } progent_t;
101
102 typedef struct {
103 Elf_Rel *rel;
104 int nrel;
105 int sec;
106 size_t size;
107 } relent_t;
108
109 typedef struct {
110 Elf_Rela *rela;
111 int nrela;
112 int sec;
113 size_t size;
114 } relaent_t;
115
116 typedef enum kobjtype {
117 KT_UNSET,
118 KT_VNODE,
119 KT_MEMORY
120 } kobjtype_t;
121
122 struct kobj {
123 char ko_name[MAXMODNAME];
124 kobjtype_t ko_type;
125 void *ko_source;
126 ssize_t ko_memsize;
127 vaddr_t ko_address; /* Relocation address */
128 Elf_Shdr *ko_shdr;
129 progent_t *ko_progtab;
130 relaent_t *ko_relatab;
131 relent_t *ko_reltab;
132 Elf_Sym *ko_symtab; /* Symbol table */
133 char *ko_strtab; /* String table */
134 char *ko_shstrtab; /* Section name string table */
135 size_t ko_size; /* Size of text/data/bss */
136 size_t ko_symcnt; /* Number of symbols */
137 size_t ko_strtabsz; /* Number of bytes in string table */
138 size_t ko_shstrtabsz; /* Number of bytes in scn str table */
139 size_t ko_shdrsz;
140 int ko_nrel;
141 int ko_nrela;
142 int ko_nprogtab;
143 bool ko_ksyms;
144 bool ko_loaded;
145 };
146
147 static int kobj_relocate(kobj_t, bool);
148 static int kobj_checksyms(kobj_t, bool);
149 static void kobj_error(const char *, ...);
150 static int kobj_read(kobj_t, void **, size_t, off_t);
151 static int kobj_read_bits(kobj_t, void *, size_t, off_t);
152 static void kobj_jettison(kobj_t);
153 static void kobj_free(kobj_t, void *, size_t);
154 static void kobj_close(kobj_t);
155 static int kobj_load(kobj_t);
156
157 extern struct vm_map *module_map;
158
159 /*
160 * kobj_load_file:
161 *
162 * Load an object located in the file system.
163 */
164 int
165 kobj_load_file(kobj_t *kop, const char *filename, const char *base,
166 bool autoload)
167 {
168 struct nameidata nd;
169 kauth_cred_t cred;
170 char *path;
171 int error;
172 kobj_t ko;
173
174 cred = kauth_cred_get();
175
176 ko = kmem_zalloc(sizeof(*ko), KM_SLEEP);
177 if (ko == NULL) {
178 return ENOMEM;
179 }
180
181 if (autoload) {
182 error = ENOENT;
183 } else {
184 NDINIT(&nd, LOOKUP, FOLLOW, UIO_SYSSPACE, filename);
185 error = vn_open(&nd, FREAD, 0);
186 }
187 if (error != 0) {
188 if (error != ENOENT) {
189 goto out;
190 }
191 path = PNBUF_GET();
192 snprintf(path, MAXPATHLEN - 1, "%s/%s/%s.kmod", base,
193 filename, filename);
194 NDINIT(&nd, LOOKUP, FOLLOW | NOCHROOT, UIO_SYSSPACE, path);
195 error = vn_open(&nd, FREAD, 0);
196 PNBUF_PUT(path);
197 }
198
199 out:
200 if (error != 0) {
201 kmem_free(ko, sizeof(*ko));
202 return error;
203 }
204
205 ko->ko_type = KT_VNODE;
206 ko->ko_source = nd.ni_vp;
207 *kop = ko;
208 return kobj_load(ko);
209 }
210
211 /*
212 * kobj_load_mem:
213 *
214 * Load an object already resident in memory. If size is not -1,
215 * the complete size of the object is known.
216 */
217 int
218 kobj_load_mem(kobj_t *kop, void *base, ssize_t size)
219 {
220 kobj_t ko;
221
222 ko = kmem_zalloc(sizeof(*ko), KM_SLEEP);
223 if (ko == NULL) {
224 return ENOMEM;
225 }
226
227 ko->ko_type = KT_MEMORY;
228 ko->ko_source = base;
229 ko->ko_memsize = size;
230 *kop = ko;
231 return kobj_load(ko);
232 }
233
234 /*
235 * kobj_close:
236 *
237 * Close an open ELF object.
238 */
239 static void
240 kobj_close(kobj_t ko)
241 {
242
243 if (ko->ko_source == NULL) {
244 return;
245 }
246
247 switch (ko->ko_type) {
248 case KT_VNODE:
249 VOP_UNLOCK(ko->ko_source, 0);
250 vn_close(ko->ko_source, FREAD, kauth_cred_get());
251 break;
252 case KT_MEMORY:
253 /* nothing */
254 break;
255 default:
256 panic("kobj_close: unknown type");
257 break;
258 }
259
260 ko->ko_source = NULL;
261 }
262
263 /*
264 * kobj_load:
265 *
266 * Load an ELF object and prepare to link into the running kernel
267 * image.
268 */
269 static int
270 kobj_load(kobj_t ko)
271 {
272 Elf_Ehdr *hdr;
273 Elf_Shdr *shdr;
274 Elf_Sym *es;
275 vaddr_t mapbase;
276 size_t mapsize;
277 int error;
278 int symtabindex;
279 int symstrindex;
280 int nsym;
281 int pb, rl, ra;
282 int alignmask;
283 int i, j;
284 void *addr;
285
286 KASSERT(ko->ko_type != KT_UNSET);
287 KASSERT(ko->ko_source != NULL);
288
289 shdr = NULL;
290 mapsize = 0;
291 error = 0;
292 hdr = NULL;
293
294 /*
295 * Read the elf header from the file.
296 */
297 error = kobj_read(ko, (void **)&hdr, sizeof(*hdr), 0);
298 if (error != 0)
299 goto out;
300 if (memcmp(hdr->e_ident, ELFMAG, SELFMAG) != 0) {
301 kobj_error("not an ELF object");
302 error = ENOEXEC;
303 goto out;
304 }
305
306 if (hdr->e_ident[EI_VERSION] != EV_CURRENT ||
307 hdr->e_version != EV_CURRENT) {
308 kobj_error("unsupported file version");
309 error = ENOEXEC;
310 goto out;
311 }
312 if (hdr->e_type != ET_REL) {
313 kobj_error("unsupported file type");
314 error = ENOEXEC;
315 goto out;
316 }
317 switch (hdr->e_machine) {
318 #if ELFSIZE == 32
319 ELF32_MACHDEP_ID_CASES
320 #else
321 ELF64_MACHDEP_ID_CASES
322 #endif
323 default:
324 kobj_error("unsupported machine");
325 error = ENOEXEC;
326 goto out;
327 }
328
329 ko->ko_nprogtab = 0;
330 ko->ko_shdr = 0;
331 ko->ko_nrel = 0;
332 ko->ko_nrela = 0;
333
334 /*
335 * Allocate and read in the section header.
336 */
337 ko->ko_shdrsz = hdr->e_shnum * hdr->e_shentsize;
338 if (ko->ko_shdrsz == 0 || hdr->e_shoff == 0 ||
339 hdr->e_shentsize != sizeof(Elf_Shdr)) {
340 error = ENOEXEC;
341 goto out;
342 }
343 error = kobj_read(ko, (void **)&shdr, ko->ko_shdrsz, hdr->e_shoff);
344 if (error != 0) {
345 goto out;
346 }
347 ko->ko_shdr = shdr;
348
349 /*
350 * Scan the section header for information and table sizing.
351 */
352 nsym = 0;
353 symtabindex = -1;
354 symstrindex = -1;
355 for (i = 0; i < hdr->e_shnum; i++) {
356 switch (shdr[i].sh_type) {
357 case SHT_PROGBITS:
358 case SHT_NOBITS:
359 ko->ko_nprogtab++;
360 break;
361 case SHT_SYMTAB:
362 nsym++;
363 symtabindex = i;
364 symstrindex = shdr[i].sh_link;
365 break;
366 case SHT_REL:
367 ko->ko_nrel++;
368 break;
369 case SHT_RELA:
370 ko->ko_nrela++;
371 break;
372 case SHT_STRTAB:
373 break;
374 }
375 }
376 if (ko->ko_nprogtab == 0) {
377 kobj_error("file has no contents");
378 error = ENOEXEC;
379 goto out;
380 }
381 if (nsym != 1) {
382 /* Only allow one symbol table for now */
383 kobj_error("file has no valid symbol table");
384 error = ENOEXEC;
385 goto out;
386 }
387 if (symstrindex < 0 || symstrindex > hdr->e_shnum ||
388 shdr[symstrindex].sh_type != SHT_STRTAB) {
389 kobj_error("file has invalid symbol strings");
390 error = ENOEXEC;
391 goto out;
392 }
393
394 /*
395 * Allocate space for tracking the load chunks.
396 */
397 if (ko->ko_nprogtab != 0) {
398 ko->ko_progtab = kmem_zalloc(ko->ko_nprogtab *
399 sizeof(*ko->ko_progtab), KM_SLEEP);
400 if (ko->ko_progtab == NULL) {
401 error = ENOMEM;
402 goto out;
403 }
404 }
405 if (ko->ko_nrel != 0) {
406 ko->ko_reltab = kmem_zalloc(ko->ko_nrel *
407 sizeof(*ko->ko_reltab), KM_SLEEP);
408 if (ko->ko_reltab == NULL) {
409 error = ENOMEM;
410 goto out;
411 }
412 }
413 if (ko->ko_nrela != 0) {
414 ko->ko_relatab = kmem_zalloc(ko->ko_nrela *
415 sizeof(*ko->ko_relatab), KM_SLEEP);
416 if (ko->ko_relatab == NULL) {
417 error = ENOMEM;
418 goto out;
419 }
420 }
421 if (symtabindex == -1) {
422 kobj_error("lost symbol table index");
423 goto out;
424 }
425
426 /*
427 * Allocate space for and load the symbol table.
428 */
429 ko->ko_symcnt = shdr[symtabindex].sh_size / sizeof(Elf_Sym);
430 if (ko->ko_symcnt == 0) {
431 kobj_error("no symbol table");
432 goto out;
433 }
434 error = kobj_read(ko, (void **)&ko->ko_symtab,
435 ko->ko_symcnt * sizeof(Elf_Sym),
436 shdr[symtabindex].sh_offset);
437 if (error != 0) {
438 goto out;
439 }
440
441 /*
442 * Allocate space for and load the symbol strings.
443 */
444 ko->ko_strtabsz = shdr[symstrindex].sh_size;
445 if (ko->ko_strtabsz == 0) {
446 kobj_error("no symbol strings");
447 goto out;
448 }
449 error = kobj_read(ko, (void *)&ko->ko_strtab, ko->ko_strtabsz,
450 shdr[symstrindex].sh_offset);
451 if (error != 0) {
452 goto out;
453 }
454
455 /*
456 * Do we have a string table for the section names?
457 */
458 if (hdr->e_shstrndx != 0 && shdr[hdr->e_shstrndx].sh_size != 0 &&
459 shdr[hdr->e_shstrndx].sh_type == SHT_STRTAB) {
460 ko->ko_shstrtabsz = shdr[hdr->e_shstrndx].sh_size;
461 error = kobj_read(ko, (void **)&ko->ko_shstrtab,
462 shdr[hdr->e_shstrndx].sh_size,
463 shdr[hdr->e_shstrndx].sh_offset);
464 if (error != 0) {
465 goto out;
466 }
467 }
468
469 /*
470 * Size up code/data(progbits) and bss(nobits).
471 */
472 alignmask = 0;
473 mapbase = 0;
474 for (i = 0; i < hdr->e_shnum; i++) {
475 switch (shdr[i].sh_type) {
476 case SHT_PROGBITS:
477 case SHT_NOBITS:
478 if (mapbase == 0)
479 mapbase = shdr[i].sh_offset;
480 alignmask = shdr[i].sh_addralign - 1;
481 mapsize += alignmask;
482 mapsize &= ~alignmask;
483 mapsize += shdr[i].sh_size;
484 break;
485 }
486 }
487
488 /*
489 * We know how much space we need for the text/data/bss/etc.
490 * This stuff needs to be in a single chunk so that profiling etc
491 * can get the bounds and gdb can associate offsets with modules.
492 */
493 if (mapsize == 0) {
494 kobj_error("no text/data/bss");
495 goto out;
496 }
497 if (ko->ko_type == KT_MEMORY) {
498 mapbase += (vaddr_t)ko->ko_source;
499 } else {
500 mapbase = uvm_km_alloc(module_map, round_page(mapsize),
501 0, UVM_KMF_WIRED | UVM_KMF_EXEC);
502 if (mapbase == 0) {
503 error = ENOMEM;
504 goto out;
505 }
506 }
507 ko->ko_address = mapbase;
508 ko->ko_size = mapsize;
509
510 /*
511 * Now load code/data(progbits), zero bss(nobits), allocate space
512 * for and load relocs
513 */
514 pb = 0;
515 rl = 0;
516 ra = 0;
517 alignmask = 0;
518 for (i = 0; i < hdr->e_shnum; i++) {
519 switch (shdr[i].sh_type) {
520 case SHT_PROGBITS:
521 case SHT_NOBITS:
522 alignmask = shdr[i].sh_addralign - 1;
523 if (ko->ko_type == KT_MEMORY) {
524 addr = (void *)(shdr[i].sh_offset +
525 (vaddr_t)ko->ko_source);
526 if (((vaddr_t)addr & alignmask) != 0) {
527 kobj_error("section %d not aligned\n",
528 i);
529 goto out;
530 }
531 } else {
532 mapbase += alignmask;
533 mapbase &= ~alignmask;
534 addr = (void *)mapbase;
535 mapbase += shdr[i].sh_size;
536 }
537 ko->ko_progtab[pb].addr = addr;
538 if (shdr[i].sh_type == SHT_PROGBITS) {
539 ko->ko_progtab[pb].name = "<<PROGBITS>>";
540 error = kobj_read_bits(ko, addr,
541 shdr[i].sh_size, shdr[i].sh_offset);
542 if (error != 0) {
543 goto out;
544 }
545 } else if (ko->ko_type == KT_MEMORY &&
546 shdr[i].sh_size != 0) {
547 kobj_error("non-loadable BSS section in "
548 "pre-loaded module");
549 error = EINVAL;
550 goto out;
551 } else {
552 ko->ko_progtab[pb].name = "<<NOBITS>>";
553 memset(addr, 0, shdr[i].sh_size);
554 }
555 ko->ko_progtab[pb].size = shdr[i].sh_size;
556 ko->ko_progtab[pb].sec = i;
557 if (ko->ko_shstrtab != NULL && shdr[i].sh_name != 0) {
558 ko->ko_progtab[pb].name =
559 ko->ko_shstrtab + shdr[i].sh_name;
560 }
561
562 /* Update all symbol values with the offset. */
563 for (j = 0; j < ko->ko_symcnt; j++) {
564 es = &ko->ko_symtab[j];
565 if (es->st_shndx != i) {
566 continue;
567 }
568 es->st_value += (Elf_Addr)addr;
569 }
570 pb++;
571 break;
572 case SHT_REL:
573 ko->ko_reltab[rl].size = shdr[i].sh_size;
574 ko->ko_reltab[rl].size -=
575 shdr[i].sh_size % sizeof(Elf_Rel);
576 if (ko->ko_reltab[rl].size != 0) {
577 ko->ko_reltab[rl].nrel =
578 shdr[i].sh_size / sizeof(Elf_Rel);
579 ko->ko_reltab[rl].sec = shdr[i].sh_info;
580 error = kobj_read(ko,
581 (void **)&ko->ko_reltab[rl].rel,
582 ko->ko_reltab[rl].size,
583 shdr[i].sh_offset);
584 if (error != 0) {
585 goto out;
586 }
587 }
588 rl++;
589 break;
590 case SHT_RELA:
591 ko->ko_relatab[ra].size = shdr[i].sh_size;
592 ko->ko_relatab[ra].size -=
593 shdr[i].sh_size % sizeof(Elf_Rela);
594 if (ko->ko_relatab[ra].size != 0) {
595 ko->ko_relatab[ra].nrela =
596 shdr[i].sh_size / sizeof(Elf_Rela);
597 ko->ko_relatab[ra].sec = shdr[i].sh_info;
598 error = kobj_read(ko,
599 (void **)&ko->ko_relatab[ra].rela,
600 shdr[i].sh_size,
601 shdr[i].sh_offset);
602 if (error != 0) {
603 goto out;
604 }
605 }
606 ra++;
607 break;
608 default:
609 break;
610 }
611 }
612 if (pb != ko->ko_nprogtab) {
613 panic("lost progbits");
614 }
615 if (rl != ko->ko_nrel) {
616 panic("lost rel");
617 }
618 if (ra != ko->ko_nrela) {
619 panic("lost rela");
620 }
621 if (ko->ko_type != KT_MEMORY && mapbase != ko->ko_address + mapsize) {
622 panic("mapbase 0x%lx != address %lx + mapsize %ld (0x%lx)\n",
623 (long)mapbase, (long)ko->ko_address, (long)mapsize,
624 (long)ko->ko_address + mapsize);
625 }
626
627 /*
628 * Perform local relocations only. Relocations relating to global
629 * symbols will be done by kobj_affix().
630 */
631 error = kobj_checksyms(ko, false);
632 if (error == 0) {
633 error = kobj_relocate(ko, true);
634 }
635 out:
636 if (hdr != NULL) {
637 kobj_free(ko, hdr, sizeof(*hdr));
638 }
639 kobj_close(ko);
640 if (error != 0) {
641 kobj_unload(ko);
642 }
643
644 return error;
645 }
646
647 /*
648 * kobj_unload:
649 *
650 * Unload an object previously loaded by kobj_load().
651 */
652 void
653 kobj_unload(kobj_t ko)
654 {
655 int error;
656
657 kobj_close(ko);
658 kobj_jettison(ko);
659
660 /*
661 * Notify MD code that a module has been unloaded.
662 */
663 if (ko->ko_loaded) {
664 error = kobj_machdep(ko, (void *)ko->ko_address, ko->ko_size,
665 false);
666 if (error != 0) {
667 kobj_error("machine dependent deinit failed");
668 }
669 }
670 if (ko->ko_address != 0 && ko->ko_type != KT_MEMORY) {
671 uvm_km_free(module_map, ko->ko_address, round_page(ko->ko_size),
672 UVM_KMF_WIRED);
673 }
674 if (ko->ko_ksyms == true) {
675 ksyms_modunload(ko->ko_name);
676 }
677 if (ko->ko_symtab != NULL) {
678 kobj_free(ko, ko->ko_symtab, ko->ko_symcnt * sizeof(Elf_Sym));
679 }
680 if (ko->ko_strtab != NULL) {
681 kobj_free(ko, ko->ko_strtab, ko->ko_strtabsz);
682 }
683 if (ko->ko_progtab != NULL) {
684 kobj_free(ko, ko->ko_progtab, ko->ko_nprogtab *
685 sizeof(*ko->ko_progtab));
686 ko->ko_progtab = NULL;
687 }
688 if (ko->ko_shstrtab) {
689 kobj_free(ko, ko->ko_shstrtab, ko->ko_shstrtabsz);
690 ko->ko_shstrtab = NULL;
691 }
692
693 kmem_free(ko, sizeof(*ko));
694 }
695
696 /*
697 * kobj_stat:
698 *
699 * Return size and load address of an object.
700 */
701 void
702 kobj_stat(kobj_t ko, vaddr_t *address, size_t *size)
703 {
704
705 if (address != NULL) {
706 *address = ko->ko_address;
707 }
708 if (size != NULL) {
709 *size = ko->ko_size;
710 }
711 }
712
713 /*
714 * kobj_affix:
715 *
716 * Set an object's name and perform global relocs. May only be
717 * called after the module and any requisite modules are loaded.
718 */
719 int
720 kobj_affix(kobj_t ko, const char *name)
721 {
722 int error;
723
724 KASSERT(ko->ko_ksyms == false);
725 KASSERT(ko->ko_loaded == false);
726
727 strlcpy(ko->ko_name, name, sizeof(ko->ko_name));
728
729 /* Cache addresses of undefined symbols. */
730 error = kobj_checksyms(ko, true);
731
732 /* Now do global relocations. */
733 if (error == 0)
734 error = kobj_relocate(ko, false);
735
736 /*
737 * Now that we know the name, register the symbol table.
738 * Do after global relocations because ksyms will pack
739 * the table.
740 */
741 if (error == 0) {
742 ksyms_modload(ko->ko_name, ko->ko_symtab, ko->ko_symcnt *
743 sizeof(Elf_Sym), ko->ko_strtab, ko->ko_strtabsz);
744 ko->ko_ksyms = true;
745 }
746
747 /* Jettison unneeded memory post-link. */
748 kobj_jettison(ko);
749
750 /*
751 * Notify MD code that a module has been loaded.
752 *
753 * Most architectures use this opportunity to flush their caches.
754 */
755 if (error == 0) {
756 error = kobj_machdep(ko, (void *)ko->ko_address, ko->ko_size,
757 true);
758 if (error != 0) {
759 kobj_error("machine dependent init failed");
760 }
761 ko->ko_loaded = true;
762 }
763
764 /* If there was an error, destroy the whole object. */
765 if (error != 0) {
766 kobj_unload(ko);
767 }
768
769 return error;
770 }
771
772 /*
773 * kobj_find_section:
774 *
775 * Given a section name, search the loaded object and return
776 * virtual address if present and loaded.
777 */
778 int
779 kobj_find_section(kobj_t ko, const char *name, void **addr, size_t *size)
780 {
781 int i;
782
783 KASSERT(ko->ko_progtab != NULL);
784
785 for (i = 0; i < ko->ko_nprogtab; i++) {
786 if (strcmp(ko->ko_progtab[i].name, name) == 0) {
787 if (addr != NULL) {
788 *addr = ko->ko_progtab[i].addr;
789 }
790 if (size != NULL) {
791 *size = ko->ko_progtab[i].size;
792 }
793 return 0;
794 }
795 }
796
797 return ENOENT;
798 }
799
800 /*
801 * kobj_jettison:
802 *
803 * Release object data not needed after performing relocations.
804 */
805 static void
806 kobj_jettison(kobj_t ko)
807 {
808 int i;
809
810 for (i = 0; i < ko->ko_nrel; i++) {
811 if (ko->ko_reltab[i].rel) {
812 kobj_free(ko, ko->ko_reltab[i].rel,
813 ko->ko_reltab[i].size);
814 }
815 }
816 for (i = 0; i < ko->ko_nrela; i++) {
817 if (ko->ko_relatab[i].rela) {
818 kobj_free(ko, ko->ko_relatab[i].rela,
819 ko->ko_relatab[i].size);
820 }
821 }
822 if (ko->ko_reltab != NULL) {
823 kobj_free(ko, ko->ko_reltab, ko->ko_nrel *
824 sizeof(*ko->ko_reltab));
825 ko->ko_reltab = NULL;
826 ko->ko_nrel = 0;
827 }
828 if (ko->ko_relatab != NULL) {
829 kobj_free(ko, ko->ko_relatab, ko->ko_nrela *
830 sizeof(*ko->ko_relatab));
831 ko->ko_relatab = NULL;
832 ko->ko_nrela = 0;
833 }
834 if (ko->ko_shdr != NULL) {
835 kobj_free(ko, ko->ko_shdr, ko->ko_shdrsz);
836 ko->ko_shdr = NULL;
837 }
838 }
839
840 /*
841 * kobj_sym_lookup:
842 *
843 * Symbol lookup function to be used when the symbol index
844 * is known (ie during relocation).
845 */
846 uintptr_t
847 kobj_sym_lookup(kobj_t ko, uintptr_t symidx)
848 {
849 const Elf_Sym *sym;
850 const char *symbol;
851
852 /* Don't even try to lookup the symbol if the index is bogus. */
853 if (symidx >= ko->ko_symcnt)
854 return 0;
855
856 sym = ko->ko_symtab + symidx;
857
858 /* Quick answer if there is a definition included. */
859 if (sym->st_shndx != SHN_UNDEF) {
860 return (uintptr_t)sym->st_value;
861 }
862
863 /* If we get here, then it is undefined and needs a lookup. */
864 switch (ELF_ST_BIND(sym->st_info)) {
865 case STB_LOCAL:
866 /* Local, but undefined? huh? */
867 kobj_error("local symbol undefined");
868 return 0;
869
870 case STB_GLOBAL:
871 /* Relative to Data or Function name */
872 symbol = ko->ko_strtab + sym->st_name;
873
874 /* Force a lookup failure if the symbol name is bogus. */
875 if (*symbol == 0) {
876 kobj_error("bad symbol name");
877 return 0;
878 }
879
880 return (uintptr_t)sym->st_value;
881
882 case STB_WEAK:
883 kobj_error("weak symbols not supported\n");
884 return 0;
885
886 default:
887 return 0;
888 }
889 }
890
891 /*
892 * kobj_findbase:
893 *
894 * Return base address of the given section.
895 */
896 static uintptr_t
897 kobj_findbase(kobj_t ko, int sec)
898 {
899 int i;
900
901 for (i = 0; i < ko->ko_nprogtab; i++) {
902 if (sec == ko->ko_progtab[i].sec) {
903 return (uintptr_t)ko->ko_progtab[i].addr;
904 }
905 }
906 return 0;
907 }
908
909 /*
910 * kobj_checksyms:
911 *
912 * Scan symbol table for duplicates or resolve references to
913 * exernal symbols.
914 */
915 static int
916 kobj_checksyms(kobj_t ko, bool undefined)
917 {
918 unsigned long rval;
919 Elf_Sym *sym, *ms;
920 const char *name;
921 int error;
922
923 error = 0;
924
925 for (ms = (sym = ko->ko_symtab) + ko->ko_symcnt; sym < ms; sym++) {
926 /* Check validity of the symbol. */
927 if (ELF_ST_BIND(sym->st_info) != STB_GLOBAL ||
928 sym->st_name == 0)
929 continue;
930 if (undefined != (sym->st_shndx == SHN_UNDEF)) {
931 continue;
932 }
933
934 /*
935 * Look it up. Don't need to lock, as it is known that
936 * the symbol tables aren't going to change (we hold
937 * module_lock).
938 */
939 name = ko->ko_strtab + sym->st_name;
940 if (ksyms_getval_unlocked(NULL, name, &rval,
941 KSYMS_EXTERN) != 0) {
942 if (undefined) {
943 kobj_error("symbol `%s' not found", name);
944 error = ENOEXEC;
945 }
946 continue;
947 }
948
949 /* Save values of undefined globals. */
950 if (undefined) {
951 sym->st_value = (Elf_Addr)rval;
952 continue;
953 }
954
955 /* Check (and complain) about differing values. */
956 if (sym->st_value == rval) {
957 continue;
958 }
959 if (strcmp(name, "_bss_start") == 0 ||
960 strcmp(name, "__bss_start") == 0 ||
961 strcmp(name, "_bss_end__") == 0 ||
962 strcmp(name, "__bss_end__") == 0 ||
963 strcmp(name, "_edata") == 0 ||
964 strcmp(name, "_end") == 0 ||
965 strcmp(name, "__end") == 0 ||
966 strcmp(name, "__end__") == 0 ||
967 strncmp(name, "__start_link_set_", 17) == 0 ||
968 strncmp(name, "__stop_link_set_", 16)) {
969 continue;
970 }
971 kobj_error("global symbol `%s' redefined\n", name);
972 error = ENOEXEC;
973 }
974
975 return error;
976 }
977
978 /*
979 * kobj_relocate:
980 *
981 * Resolve relocations for the loaded object.
982 */
983 static int
984 kobj_relocate(kobj_t ko, bool local)
985 {
986 const Elf_Rel *rellim;
987 const Elf_Rel *rel;
988 const Elf_Rela *relalim;
989 const Elf_Rela *rela;
990 const Elf_Sym *sym;
991 uintptr_t base;
992 int i, error;
993 uintptr_t symidx;
994
995 /*
996 * Perform relocations without addend if there are any.
997 */
998 for (i = 0; i < ko->ko_nrel; i++) {
999 rel = ko->ko_reltab[i].rel;
1000 if (rel == NULL) {
1001 continue;
1002 }
1003 rellim = rel + ko->ko_reltab[i].nrel;
1004 base = kobj_findbase(ko, ko->ko_reltab[i].sec);
1005 if (base == 0) {
1006 panic("lost base for e_reltab");
1007 }
1008 for (; rel < rellim; rel++) {
1009 symidx = ELF_R_SYM(rel->r_info);
1010 if (symidx >= ko->ko_symcnt) {
1011 continue;
1012 }
1013 sym = ko->ko_symtab + symidx;
1014 if (local != (ELF_ST_BIND(sym->st_info) == STB_LOCAL)) {
1015 continue;
1016 }
1017 error = kobj_reloc(ko, base, rel, false, local);
1018 if (error != 0) {
1019 return ENOENT;
1020 }
1021 }
1022 }
1023
1024 /*
1025 * Perform relocations with addend if there are any.
1026 */
1027 for (i = 0; i < ko->ko_nrela; i++) {
1028 rela = ko->ko_relatab[i].rela;
1029 if (rela == NULL) {
1030 continue;
1031 }
1032 relalim = rela + ko->ko_relatab[i].nrela;
1033 base = kobj_findbase(ko, ko->ko_relatab[i].sec);
1034 if (base == 0) {
1035 panic("lost base for e_relatab");
1036 }
1037 for (; rela < relalim; rela++) {
1038 symidx = ELF_R_SYM(rela->r_info);
1039 if (symidx >= ko->ko_symcnt) {
1040 continue;
1041 }
1042 sym = ko->ko_symtab + symidx;
1043 if (local != (ELF_ST_BIND(sym->st_info) == STB_LOCAL)) {
1044 continue;
1045 }
1046 error = kobj_reloc(ko, base, rela, true, local);
1047 if (error != 0) {
1048 return ENOENT;
1049 }
1050 }
1051 }
1052
1053 return 0;
1054 }
1055
1056 /*
1057 * kobj_error:
1058 *
1059 * Utility function: log an error.
1060 */
1061 static void
1062 kobj_error(const char *fmt, ...)
1063 {
1064 va_list ap;
1065
1066 va_start(ap, fmt);
1067 printf("WARNING: linker error: ");
1068 vprintf(fmt, ap);
1069 printf("\n");
1070 va_end(ap);
1071 }
1072
1073 /*
1074 * kobj_read:
1075 *
1076 * Utility function: read from the object.
1077 */
1078 static int
1079 kobj_read(kobj_t ko, void **basep, size_t size, off_t off)
1080 {
1081 size_t resid;
1082 void *base;
1083 int error;
1084
1085 KASSERT(ko->ko_source != NULL);
1086
1087 switch (ko->ko_type) {
1088 case KT_VNODE:
1089 base = kmem_alloc(size, KM_SLEEP);
1090 if (base == NULL) {
1091 error = ENOMEM;
1092 break;
1093 }
1094 error = vn_rdwr(UIO_READ, ko->ko_source, base, size, off,
1095 UIO_SYSSPACE, IO_NODELOCKED, curlwp->l_cred, &resid,
1096 curlwp);
1097 if (error == 0 && resid != 0) {
1098 error = EINVAL;
1099 }
1100 if (error != 0) {
1101 kmem_free(base, size);
1102 base = NULL;
1103 }
1104 break;
1105 case KT_MEMORY:
1106 if (ko->ko_memsize != -1 && off + size > ko->ko_memsize) {
1107 kobj_error("kobj_read: preloaded object short");
1108 error = EINVAL;
1109 base = NULL;
1110 } else {
1111 base = (uint8_t *)ko->ko_source + off;
1112 error = 0;
1113 }
1114 break;
1115 default:
1116 panic("kobj_read: invalid type");
1117 }
1118
1119 *basep = base;
1120 return error;
1121 }
1122
1123 /*
1124 * kobj_read_bits:
1125 *
1126 * Utility function: load a section from the object.
1127 */
1128 static int
1129 kobj_read_bits(kobj_t ko, void *base, size_t size, off_t off)
1130 {
1131 size_t resid;
1132 int error;
1133
1134 KASSERT(ko->ko_source != NULL);
1135
1136 switch (ko->ko_type) {
1137 case KT_VNODE:
1138 KASSERT((uintptr_t)base >= (uintptr_t)ko->ko_address);
1139 KASSERT((uintptr_t)base + size <=
1140 (uintptr_t)ko->ko_address + ko->ko_size);
1141 error = vn_rdwr(UIO_READ, ko->ko_source, base, size, off,
1142 UIO_SYSSPACE, IO_NODELOCKED, curlwp->l_cred, &resid,
1143 curlwp);
1144 if (error == 0 && resid != 0) {
1145 error = EINVAL;
1146 }
1147 break;
1148 case KT_MEMORY:
1149 if (ko->ko_memsize != -1 && off + size > ko->ko_memsize) {
1150 kobj_error("kobj_read_bits: preloaded object short");
1151 error = EINVAL;
1152 } else if ((uint8_t *)base != (uint8_t *)ko->ko_source + off) {
1153 kobj_error("kobj_read_bits: object not aligned");
1154 kobj_error("source=%p base=%p off=%d size=%zd",
1155 ko->ko_source, base, (int)off, size);
1156 error = EINVAL;
1157 } else {
1158 /* Nothing to do. Loading in-situ. */
1159 error = 0;
1160 }
1161 break;
1162 default:
1163 panic("kobj_read: invalid type");
1164 }
1165
1166 return error;
1167 }
1168
1169 /*
1170 * kobj_free:
1171 *
1172 * Utility function: free memory if it was allocated from the heap.
1173 */
1174 static void
1175 kobj_free(kobj_t ko, void *base, size_t size)
1176 {
1177
1178 if (ko->ko_type != KT_MEMORY)
1179 kmem_free(base, size);
1180 }
1181
1182 #else /* MODULAR */
1183
1184 int
1185 kobj_load_file(kobj_t *kop, const char *name, const char *base, bool autoload)
1186 {
1187
1188 return ENOSYS;
1189 }
1190
1191 int
1192 kobj_load_mem(kobj_t *kop, void *base, ssize_t size)
1193 {
1194
1195 return ENOSYS;
1196 }
1197
1198 void
1199 kobj_unload(kobj_t ko)
1200 {
1201
1202 panic("not modular");
1203 }
1204
1205 void
1206 kobj_stat(kobj_t ko, vaddr_t *base, size_t *size)
1207 {
1208
1209 panic("not modular");
1210 }
1211
1212 int
1213 kobj_affix(kobj_t ko, const char *name)
1214 {
1215
1216 panic("not modular");
1217 }
1218
1219 int
1220 kobj_find_section(kobj_t ko, const char *name, void **addr, size_t *size)
1221 {
1222
1223 panic("not modular");
1224 }
1225
1226 #endif /* MODULAR */
1227