subr_kobj.c revision 1.40.4.2 1 /* $NetBSD: subr_kobj.c,v 1.40.4.2 2011/03/05 20:55:18 rmind Exp $ */
2
3 /*-
4 * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software developed for The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1998-2000 Doug Rabson
34 * Copyright (c) 2004 Peter Wemm
35 * All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 *
46 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
47 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
48 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
49 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
50 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
51 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
52 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
53 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
54 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
55 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
56 * SUCH DAMAGE.
57 */
58
59 /*
60 * Kernel loader for ELF objects.
61 *
62 * TODO: adjust kmem_alloc() calls to avoid needless fragmentation.
63 */
64
65 #include <sys/cdefs.h>
66 __KERNEL_RCSID(0, "$NetBSD: subr_kobj.c,v 1.40.4.2 2011/03/05 20:55:18 rmind Exp $");
67
68 #include "opt_modular.h"
69
70 #include <sys/kobj_impl.h>
71
72 #ifdef MODULAR
73
74 #include <sys/param.h>
75 #include <sys/kernel.h>
76 #include <sys/kmem.h>
77 #include <sys/proc.h>
78 #include <sys/ksyms.h>
79 #include <sys/module.h>
80
81 #include <machine/stdarg.h>
82
83 #include <uvm/uvm_extern.h>
84
85 static int kobj_relocate(kobj_t, bool);
86 static int kobj_checksyms(kobj_t, bool);
87 static void kobj_error(const char *, ...);
88 static void kobj_jettison(kobj_t);
89 static void kobj_free(kobj_t, void *, size_t);
90 static void kobj_close(kobj_t);
91 static int kobj_read_mem(kobj_t, void **, size_t, off_t, bool);
92 static void kobj_close_mem(kobj_t);
93
94 extern struct vm_map *module_map;
95
96 /*
97 * kobj_load_mem:
98 *
99 * Load an object already resident in memory. If size is not -1,
100 * the complete size of the object is known.
101 */
102 int
103 kobj_load_mem(kobj_t *kop, void *base, ssize_t size)
104 {
105 kobj_t ko;
106
107 ko = kmem_zalloc(sizeof(*ko), KM_SLEEP);
108 if (ko == NULL) {
109 return ENOMEM;
110 }
111
112 ko->ko_type = KT_MEMORY;
113 ko->ko_source = base;
114 ko->ko_memsize = size;
115 ko->ko_read = kobj_read_mem;
116 ko->ko_close = kobj_close_mem;
117
118 *kop = ko;
119 return kobj_load(ko);
120 }
121
122 /*
123 * kobj_close:
124 *
125 * Close an open ELF object.
126 */
127 static void
128 kobj_close(kobj_t ko)
129 {
130
131 if (ko->ko_source == NULL) {
132 return;
133 }
134
135 ko->ko_close(ko);
136 ko->ko_source = NULL;
137 }
138
139 static void
140 kobj_close_mem(kobj_t ko)
141 {
142
143 return;
144 }
145
146 /*
147 * kobj_load:
148 *
149 * Load an ELF object and prepare to link into the running kernel
150 * image.
151 */
152 int
153 kobj_load(kobj_t ko)
154 {
155 Elf_Ehdr *hdr;
156 Elf_Shdr *shdr;
157 Elf_Sym *es;
158 vaddr_t mapbase;
159 size_t mapsize;
160 int error;
161 int symtabindex;
162 int symstrindex;
163 int nsym;
164 int pb, rl, ra;
165 int alignmask;
166 int i, j;
167 void *addr;
168
169 KASSERT(ko->ko_type != KT_UNSET);
170 KASSERT(ko->ko_source != NULL);
171
172 shdr = NULL;
173 mapsize = 0;
174 error = 0;
175 hdr = NULL;
176
177 /*
178 * Read the elf header from the file.
179 */
180 error = ko->ko_read(ko, (void **)&hdr, sizeof(*hdr), 0, true);
181 if (error != 0)
182 goto out;
183 if (memcmp(hdr->e_ident, ELFMAG, SELFMAG) != 0) {
184 kobj_error("not an ELF object");
185 error = ENOEXEC;
186 goto out;
187 }
188
189 if (hdr->e_ident[EI_VERSION] != EV_CURRENT ||
190 hdr->e_version != EV_CURRENT) {
191 kobj_error("unsupported file version");
192 error = ENOEXEC;
193 goto out;
194 }
195 if (hdr->e_type != ET_REL) {
196 kobj_error("unsupported file type");
197 error = ENOEXEC;
198 goto out;
199 }
200 switch (hdr->e_machine) {
201 #if ELFSIZE == 32
202 ELF32_MACHDEP_ID_CASES
203 #elif ELFSIZE == 64
204 ELF64_MACHDEP_ID_CASES
205 #else
206 #error not defined
207 #endif
208 default:
209 kobj_error("unsupported machine");
210 error = ENOEXEC;
211 goto out;
212 }
213
214 ko->ko_nprogtab = 0;
215 ko->ko_shdr = 0;
216 ko->ko_nrel = 0;
217 ko->ko_nrela = 0;
218
219 /*
220 * Allocate and read in the section header.
221 */
222 ko->ko_shdrsz = hdr->e_shnum * hdr->e_shentsize;
223 if (ko->ko_shdrsz == 0 || hdr->e_shoff == 0 ||
224 hdr->e_shentsize != sizeof(Elf_Shdr)) {
225 error = ENOEXEC;
226 goto out;
227 }
228 error = ko->ko_read(ko, (void **)&shdr, ko->ko_shdrsz, hdr->e_shoff,
229 true);
230 if (error != 0) {
231 goto out;
232 }
233 ko->ko_shdr = shdr;
234
235 /*
236 * Scan the section header for information and table sizing.
237 */
238 nsym = 0;
239 symtabindex = -1;
240 symstrindex = -1;
241 for (i = 0; i < hdr->e_shnum; i++) {
242 switch (shdr[i].sh_type) {
243 case SHT_PROGBITS:
244 case SHT_NOBITS:
245 ko->ko_nprogtab++;
246 break;
247 case SHT_SYMTAB:
248 nsym++;
249 symtabindex = i;
250 symstrindex = shdr[i].sh_link;
251 break;
252 case SHT_REL:
253 ko->ko_nrel++;
254 break;
255 case SHT_RELA:
256 ko->ko_nrela++;
257 break;
258 case SHT_STRTAB:
259 break;
260 }
261 }
262 if (ko->ko_nprogtab == 0) {
263 kobj_error("file has no contents");
264 error = ENOEXEC;
265 goto out;
266 }
267 if (nsym != 1) {
268 /* Only allow one symbol table for now */
269 kobj_error("file has no valid symbol table");
270 error = ENOEXEC;
271 goto out;
272 }
273 if (symstrindex < 0 || symstrindex > hdr->e_shnum ||
274 shdr[symstrindex].sh_type != SHT_STRTAB) {
275 kobj_error("file has invalid symbol strings");
276 error = ENOEXEC;
277 goto out;
278 }
279
280 /*
281 * Allocate space for tracking the load chunks.
282 */
283 if (ko->ko_nprogtab != 0) {
284 ko->ko_progtab = kmem_zalloc(ko->ko_nprogtab *
285 sizeof(*ko->ko_progtab), KM_SLEEP);
286 if (ko->ko_progtab == NULL) {
287 error = ENOMEM;
288 goto out;
289 }
290 }
291 if (ko->ko_nrel != 0) {
292 ko->ko_reltab = kmem_zalloc(ko->ko_nrel *
293 sizeof(*ko->ko_reltab), KM_SLEEP);
294 if (ko->ko_reltab == NULL) {
295 error = ENOMEM;
296 goto out;
297 }
298 }
299 if (ko->ko_nrela != 0) {
300 ko->ko_relatab = kmem_zalloc(ko->ko_nrela *
301 sizeof(*ko->ko_relatab), KM_SLEEP);
302 if (ko->ko_relatab == NULL) {
303 error = ENOMEM;
304 goto out;
305 }
306 }
307 if (symtabindex == -1) {
308 kobj_error("lost symbol table index");
309 goto out;
310 }
311
312 /*
313 * Allocate space for and load the symbol table.
314 */
315 ko->ko_symcnt = shdr[symtabindex].sh_size / sizeof(Elf_Sym);
316 if (ko->ko_symcnt == 0) {
317 kobj_error("no symbol table");
318 goto out;
319 }
320 error = ko->ko_read(ko, (void **)&ko->ko_symtab,
321 ko->ko_symcnt * sizeof(Elf_Sym),
322 shdr[symtabindex].sh_offset, true);
323 if (error != 0) {
324 goto out;
325 }
326
327 /*
328 * Allocate space for and load the symbol strings.
329 */
330 ko->ko_strtabsz = shdr[symstrindex].sh_size;
331 if (ko->ko_strtabsz == 0) {
332 kobj_error("no symbol strings");
333 goto out;
334 }
335 error = ko->ko_read(ko, (void *)&ko->ko_strtab, ko->ko_strtabsz,
336 shdr[symstrindex].sh_offset, true);
337 if (error != 0) {
338 goto out;
339 }
340
341 /*
342 * Adjust module symbol namespace, if necessary (e.g. with rump)
343 */
344 error = kobj_renamespace(ko->ko_symtab, ko->ko_symcnt,
345 &ko->ko_strtab, &ko->ko_strtabsz);
346 if (error != 0) {
347 goto out;
348 }
349
350 /*
351 * Do we have a string table for the section names?
352 */
353 if (hdr->e_shstrndx != 0 && shdr[hdr->e_shstrndx].sh_size != 0 &&
354 shdr[hdr->e_shstrndx].sh_type == SHT_STRTAB) {
355 ko->ko_shstrtabsz = shdr[hdr->e_shstrndx].sh_size;
356 error = ko->ko_read(ko, (void **)&ko->ko_shstrtab,
357 shdr[hdr->e_shstrndx].sh_size,
358 shdr[hdr->e_shstrndx].sh_offset, true);
359 if (error != 0) {
360 goto out;
361 }
362 }
363
364 /*
365 * Size up code/data(progbits) and bss(nobits).
366 */
367 alignmask = 0;
368 mapbase = 0;
369 for (i = 0; i < hdr->e_shnum; i++) {
370 switch (shdr[i].sh_type) {
371 case SHT_PROGBITS:
372 case SHT_NOBITS:
373 if (mapbase == 0)
374 mapbase = shdr[i].sh_offset;
375 alignmask = shdr[i].sh_addralign - 1;
376 mapsize += alignmask;
377 mapsize &= ~alignmask;
378 mapsize += shdr[i].sh_size;
379 break;
380 }
381 }
382
383 /*
384 * We know how much space we need for the text/data/bss/etc.
385 * This stuff needs to be in a single chunk so that profiling etc
386 * can get the bounds and gdb can associate offsets with modules.
387 */
388 if (mapsize == 0) {
389 kobj_error("no text/data/bss");
390 goto out;
391 }
392 if (ko->ko_type == KT_MEMORY) {
393 mapbase += (vaddr_t)ko->ko_source;
394 } else {
395 mapbase = uvm_km_alloc(module_map, round_page(mapsize),
396 0, UVM_KMF_WIRED | UVM_KMF_EXEC);
397 if (mapbase == 0) {
398 error = ENOMEM;
399 goto out;
400 }
401 }
402 ko->ko_address = mapbase;
403 ko->ko_size = mapsize;
404
405 /*
406 * Now load code/data(progbits), zero bss(nobits), allocate space
407 * for and load relocs
408 */
409 pb = 0;
410 rl = 0;
411 ra = 0;
412 alignmask = 0;
413 for (i = 0; i < hdr->e_shnum; i++) {
414 switch (shdr[i].sh_type) {
415 case SHT_PROGBITS:
416 case SHT_NOBITS:
417 alignmask = shdr[i].sh_addralign - 1;
418 if (ko->ko_type == KT_MEMORY) {
419 addr = (void *)(shdr[i].sh_offset +
420 (vaddr_t)ko->ko_source);
421 if (((vaddr_t)addr & alignmask) != 0) {
422 kobj_error("section %d not aligned\n",
423 i);
424 goto out;
425 }
426 } else {
427 mapbase += alignmask;
428 mapbase &= ~alignmask;
429 addr = (void *)mapbase;
430 mapbase += shdr[i].sh_size;
431 }
432 ko->ko_progtab[pb].addr = addr;
433 if (shdr[i].sh_type == SHT_PROGBITS) {
434 ko->ko_progtab[pb].name = "<<PROGBITS>>";
435 error = ko->ko_read(ko, &addr,
436 shdr[i].sh_size, shdr[i].sh_offset, false);
437 if (error != 0) {
438 goto out;
439 }
440 } else if (ko->ko_type == KT_MEMORY &&
441 shdr[i].sh_size != 0) {
442 kobj_error("non-loadable BSS section in "
443 "pre-loaded module");
444 error = EINVAL;
445 goto out;
446 } else {
447 ko->ko_progtab[pb].name = "<<NOBITS>>";
448 memset(addr, 0, shdr[i].sh_size);
449 }
450 ko->ko_progtab[pb].size = shdr[i].sh_size;
451 ko->ko_progtab[pb].sec = i;
452 if (ko->ko_shstrtab != NULL && shdr[i].sh_name != 0) {
453 ko->ko_progtab[pb].name =
454 ko->ko_shstrtab + shdr[i].sh_name;
455 }
456
457 /* Update all symbol values with the offset. */
458 for (j = 0; j < ko->ko_symcnt; j++) {
459 es = &ko->ko_symtab[j];
460 if (es->st_shndx != i) {
461 continue;
462 }
463 es->st_value += (Elf_Addr)addr;
464 }
465 pb++;
466 break;
467 case SHT_REL:
468 ko->ko_reltab[rl].size = shdr[i].sh_size;
469 ko->ko_reltab[rl].size -=
470 shdr[i].sh_size % sizeof(Elf_Rel);
471 if (ko->ko_reltab[rl].size != 0) {
472 ko->ko_reltab[rl].nrel =
473 shdr[i].sh_size / sizeof(Elf_Rel);
474 ko->ko_reltab[rl].sec = shdr[i].sh_info;
475 error = ko->ko_read(ko,
476 (void **)&ko->ko_reltab[rl].rel,
477 ko->ko_reltab[rl].size,
478 shdr[i].sh_offset, true);
479 if (error != 0) {
480 goto out;
481 }
482 }
483 rl++;
484 break;
485 case SHT_RELA:
486 ko->ko_relatab[ra].size = shdr[i].sh_size;
487 ko->ko_relatab[ra].size -=
488 shdr[i].sh_size % sizeof(Elf_Rela);
489 if (ko->ko_relatab[ra].size != 0) {
490 ko->ko_relatab[ra].nrela =
491 shdr[i].sh_size / sizeof(Elf_Rela);
492 ko->ko_relatab[ra].sec = shdr[i].sh_info;
493 error = ko->ko_read(ko,
494 (void **)&ko->ko_relatab[ra].rela,
495 shdr[i].sh_size,
496 shdr[i].sh_offset, true);
497 if (error != 0) {
498 goto out;
499 }
500 }
501 ra++;
502 break;
503 default:
504 break;
505 }
506 }
507 if (pb != ko->ko_nprogtab) {
508 panic("lost progbits");
509 }
510 if (rl != ko->ko_nrel) {
511 panic("lost rel");
512 }
513 if (ra != ko->ko_nrela) {
514 panic("lost rela");
515 }
516 if (ko->ko_type != KT_MEMORY && mapbase != ko->ko_address + mapsize) {
517 panic("mapbase 0x%lx != address %lx + mapsize %ld (0x%lx)\n",
518 (long)mapbase, (long)ko->ko_address, (long)mapsize,
519 (long)ko->ko_address + mapsize);
520 }
521
522 /*
523 * Perform local relocations only. Relocations relating to global
524 * symbols will be done by kobj_affix().
525 */
526 error = kobj_checksyms(ko, false);
527 if (error == 0) {
528 error = kobj_relocate(ko, true);
529 }
530 out:
531 if (hdr != NULL) {
532 kobj_free(ko, hdr, sizeof(*hdr));
533 }
534 kobj_close(ko);
535 if (error != 0) {
536 kobj_unload(ko);
537 }
538
539 return error;
540 }
541
542 /*
543 * kobj_unload:
544 *
545 * Unload an object previously loaded by kobj_load().
546 */
547 void
548 kobj_unload(kobj_t ko)
549 {
550 int error;
551
552 kobj_close(ko);
553 kobj_jettison(ko);
554
555 /*
556 * Notify MD code that a module has been unloaded.
557 */
558 if (ko->ko_loaded) {
559 error = kobj_machdep(ko, (void *)ko->ko_address, ko->ko_size,
560 false);
561 if (error != 0) {
562 kobj_error("machine dependent deinit failed");
563 }
564 }
565 if (ko->ko_address != 0 && ko->ko_type != KT_MEMORY) {
566 uvm_km_free(module_map, ko->ko_address, round_page(ko->ko_size),
567 UVM_KMF_WIRED);
568 }
569 if (ko->ko_ksyms == true) {
570 ksyms_modunload(ko->ko_name);
571 }
572 if (ko->ko_symtab != NULL) {
573 kobj_free(ko, ko->ko_symtab, ko->ko_symcnt * sizeof(Elf_Sym));
574 }
575 if (ko->ko_strtab != NULL) {
576 kobj_free(ko, ko->ko_strtab, ko->ko_strtabsz);
577 }
578 if (ko->ko_progtab != NULL) {
579 kobj_free(ko, ko->ko_progtab, ko->ko_nprogtab *
580 sizeof(*ko->ko_progtab));
581 ko->ko_progtab = NULL;
582 }
583 if (ko->ko_shstrtab) {
584 kobj_free(ko, ko->ko_shstrtab, ko->ko_shstrtabsz);
585 ko->ko_shstrtab = NULL;
586 }
587
588 kmem_free(ko, sizeof(*ko));
589 }
590
591 /*
592 * kobj_stat:
593 *
594 * Return size and load address of an object.
595 */
596 int
597 kobj_stat(kobj_t ko, vaddr_t *address, size_t *size)
598 {
599
600 if (address != NULL) {
601 *address = ko->ko_address;
602 }
603 if (size != NULL) {
604 *size = ko->ko_size;
605 }
606 return 0;
607 }
608
609 /*
610 * kobj_affix:
611 *
612 * Set an object's name and perform global relocs. May only be
613 * called after the module and any requisite modules are loaded.
614 */
615 int
616 kobj_affix(kobj_t ko, const char *name)
617 {
618 int error;
619
620 KASSERT(ko->ko_ksyms == false);
621 KASSERT(ko->ko_loaded == false);
622
623 strlcpy(ko->ko_name, name, sizeof(ko->ko_name));
624
625 /* Cache addresses of undefined symbols. */
626 error = kobj_checksyms(ko, true);
627
628 /* Now do global relocations. */
629 if (error == 0)
630 error = kobj_relocate(ko, false);
631
632 /*
633 * Now that we know the name, register the symbol table.
634 * Do after global relocations because ksyms will pack
635 * the table.
636 */
637 if (error == 0) {
638 ksyms_modload(ko->ko_name, ko->ko_symtab, ko->ko_symcnt *
639 sizeof(Elf_Sym), ko->ko_strtab, ko->ko_strtabsz);
640 ko->ko_ksyms = true;
641 }
642
643 /* Jettison unneeded memory post-link. */
644 kobj_jettison(ko);
645
646 /*
647 * Notify MD code that a module has been loaded.
648 *
649 * Most architectures use this opportunity to flush their caches.
650 */
651 if (error == 0) {
652 error = kobj_machdep(ko, (void *)ko->ko_address, ko->ko_size,
653 true);
654 if (error != 0) {
655 kobj_error("machine dependent init failed");
656 }
657 ko->ko_loaded = true;
658 }
659
660 /* If there was an error, destroy the whole object. */
661 if (error != 0) {
662 kobj_unload(ko);
663 }
664
665 return error;
666 }
667
668 /*
669 * kobj_find_section:
670 *
671 * Given a section name, search the loaded object and return
672 * virtual address if present and loaded.
673 */
674 int
675 kobj_find_section(kobj_t ko, const char *name, void **addr, size_t *size)
676 {
677 int i;
678
679 KASSERT(ko->ko_progtab != NULL);
680
681 for (i = 0; i < ko->ko_nprogtab; i++) {
682 if (strcmp(ko->ko_progtab[i].name, name) == 0) {
683 if (addr != NULL) {
684 *addr = ko->ko_progtab[i].addr;
685 }
686 if (size != NULL) {
687 *size = ko->ko_progtab[i].size;
688 }
689 return 0;
690 }
691 }
692
693 return ENOENT;
694 }
695
696 /*
697 * kobj_jettison:
698 *
699 * Release object data not needed after performing relocations.
700 */
701 static void
702 kobj_jettison(kobj_t ko)
703 {
704 int i;
705
706 if (ko->ko_reltab != NULL) {
707 for (i = 0; i < ko->ko_nrel; i++) {
708 if (ko->ko_reltab[i].rel) {
709 kobj_free(ko, ko->ko_reltab[i].rel,
710 ko->ko_reltab[i].size);
711 }
712 }
713 kobj_free(ko, ko->ko_reltab, ko->ko_nrel *
714 sizeof(*ko->ko_reltab));
715 ko->ko_reltab = NULL;
716 ko->ko_nrel = 0;
717 }
718 if (ko->ko_relatab != NULL) {
719 for (i = 0; i < ko->ko_nrela; i++) {
720 if (ko->ko_relatab[i].rela) {
721 kobj_free(ko, ko->ko_relatab[i].rela,
722 ko->ko_relatab[i].size);
723 }
724 }
725 kobj_free(ko, ko->ko_relatab, ko->ko_nrela *
726 sizeof(*ko->ko_relatab));
727 ko->ko_relatab = NULL;
728 ko->ko_nrela = 0;
729 }
730 if (ko->ko_shdr != NULL) {
731 kobj_free(ko, ko->ko_shdr, ko->ko_shdrsz);
732 ko->ko_shdr = NULL;
733 }
734 }
735
736 /*
737 * kobj_sym_lookup:
738 *
739 * Symbol lookup function to be used when the symbol index
740 * is known (ie during relocation).
741 */
742 uintptr_t
743 kobj_sym_lookup(kobj_t ko, uintptr_t symidx)
744 {
745 const Elf_Sym *sym;
746 const char *symbol;
747
748 /* Don't even try to lookup the symbol if the index is bogus. */
749 if (symidx >= ko->ko_symcnt)
750 return 0;
751
752 sym = ko->ko_symtab + symidx;
753
754 /* Quick answer if there is a definition included. */
755 if (sym->st_shndx != SHN_UNDEF) {
756 return (uintptr_t)sym->st_value;
757 }
758
759 /* If we get here, then it is undefined and needs a lookup. */
760 switch (ELF_ST_BIND(sym->st_info)) {
761 case STB_LOCAL:
762 /* Local, but undefined? huh? */
763 kobj_error("local symbol undefined");
764 return 0;
765
766 case STB_GLOBAL:
767 /* Relative to Data or Function name */
768 symbol = ko->ko_strtab + sym->st_name;
769
770 /* Force a lookup failure if the symbol name is bogus. */
771 if (*symbol == 0) {
772 kobj_error("bad symbol name");
773 return 0;
774 }
775
776 return (uintptr_t)sym->st_value;
777
778 case STB_WEAK:
779 kobj_error("weak symbols not supported\n");
780 return 0;
781
782 default:
783 return 0;
784 }
785 }
786
787 /*
788 * kobj_findbase:
789 *
790 * Return base address of the given section.
791 */
792 static uintptr_t
793 kobj_findbase(kobj_t ko, int sec)
794 {
795 int i;
796
797 for (i = 0; i < ko->ko_nprogtab; i++) {
798 if (sec == ko->ko_progtab[i].sec) {
799 return (uintptr_t)ko->ko_progtab[i].addr;
800 }
801 }
802 return 0;
803 }
804
805 /*
806 * kobj_checksyms:
807 *
808 * Scan symbol table for duplicates or resolve references to
809 * exernal symbols.
810 */
811 static int
812 kobj_checksyms(kobj_t ko, bool undefined)
813 {
814 unsigned long rval;
815 Elf_Sym *sym, *ms;
816 const char *name;
817 int error;
818
819 error = 0;
820
821 for (ms = (sym = ko->ko_symtab) + ko->ko_symcnt; sym < ms; sym++) {
822 /* Check validity of the symbol. */
823 if (ELF_ST_BIND(sym->st_info) != STB_GLOBAL ||
824 sym->st_name == 0)
825 continue;
826 if (undefined != (sym->st_shndx == SHN_UNDEF)) {
827 continue;
828 }
829
830 /*
831 * Look it up. Don't need to lock, as it is known that
832 * the symbol tables aren't going to change (we hold
833 * module_lock).
834 */
835 name = ko->ko_strtab + sym->st_name;
836 if (ksyms_getval_unlocked(NULL, name, &rval,
837 KSYMS_EXTERN) != 0) {
838 if (undefined) {
839 kobj_error("symbol `%s' not found", name);
840 error = ENOEXEC;
841 }
842 continue;
843 }
844
845 /* Save values of undefined globals. */
846 if (undefined) {
847 sym->st_value = (Elf_Addr)rval;
848 continue;
849 }
850
851 /* Check (and complain) about differing values. */
852 if (sym->st_value == rval) {
853 continue;
854 }
855 if (strcmp(name, "_bss_start") == 0 ||
856 strcmp(name, "__bss_start") == 0 ||
857 strcmp(name, "_bss_end__") == 0 ||
858 strcmp(name, "__bss_end__") == 0 ||
859 strcmp(name, "_edata") == 0 ||
860 strcmp(name, "_end") == 0 ||
861 strcmp(name, "__end") == 0 ||
862 strcmp(name, "__end__") == 0 ||
863 strncmp(name, "__start_link_set_", 17) == 0 ||
864 strncmp(name, "__stop_link_set_", 16)) {
865 continue;
866 }
867 kobj_error("global symbol `%s' redefined\n", name);
868 error = ENOEXEC;
869 }
870
871 return error;
872 }
873
874 /*
875 * kobj_relocate:
876 *
877 * Resolve relocations for the loaded object.
878 */
879 static int
880 kobj_relocate(kobj_t ko, bool local)
881 {
882 const Elf_Rel *rellim;
883 const Elf_Rel *rel;
884 const Elf_Rela *relalim;
885 const Elf_Rela *rela;
886 const Elf_Sym *sym;
887 uintptr_t base;
888 int i, error;
889 uintptr_t symidx;
890
891 /*
892 * Perform relocations without addend if there are any.
893 */
894 for (i = 0; i < ko->ko_nrel; i++) {
895 rel = ko->ko_reltab[i].rel;
896 if (rel == NULL) {
897 continue;
898 }
899 rellim = rel + ko->ko_reltab[i].nrel;
900 base = kobj_findbase(ko, ko->ko_reltab[i].sec);
901 if (base == 0) {
902 panic("lost base for e_reltab");
903 }
904 for (; rel < rellim; rel++) {
905 symidx = ELF_R_SYM(rel->r_info);
906 if (symidx >= ko->ko_symcnt) {
907 continue;
908 }
909 sym = ko->ko_symtab + symidx;
910 if (local != (ELF_ST_BIND(sym->st_info) == STB_LOCAL)) {
911 continue;
912 }
913 error = kobj_reloc(ko, base, rel, false, local);
914 if (error != 0) {
915 return ENOENT;
916 }
917 }
918 }
919
920 /*
921 * Perform relocations with addend if there are any.
922 */
923 for (i = 0; i < ko->ko_nrela; i++) {
924 rela = ko->ko_relatab[i].rela;
925 if (rela == NULL) {
926 continue;
927 }
928 relalim = rela + ko->ko_relatab[i].nrela;
929 base = kobj_findbase(ko, ko->ko_relatab[i].sec);
930 if (base == 0) {
931 panic("lost base for e_relatab");
932 }
933 for (; rela < relalim; rela++) {
934 symidx = ELF_R_SYM(rela->r_info);
935 if (symidx >= ko->ko_symcnt) {
936 continue;
937 }
938 sym = ko->ko_symtab + symidx;
939 if (local != (ELF_ST_BIND(sym->st_info) == STB_LOCAL)) {
940 continue;
941 }
942 error = kobj_reloc(ko, base, rela, true, local);
943 if (error != 0) {
944 return ENOENT;
945 }
946 }
947 }
948
949 return 0;
950 }
951
952 /*
953 * kobj_error:
954 *
955 * Utility function: log an error.
956 */
957 static void
958 kobj_error(const char *fmt, ...)
959 {
960 va_list ap;
961
962 va_start(ap, fmt);
963 printf("WARNING: linker error: ");
964 vprintf(fmt, ap);
965 printf("\n");
966 va_end(ap);
967 }
968
969 static int
970 kobj_read_mem(kobj_t ko, void **basep, size_t size, off_t off,
971 bool allocate)
972 {
973 void *base = *basep;
974 int error;
975
976 if (ko->ko_memsize != -1 && off + size > ko->ko_memsize) {
977 kobj_error("kobj_read_mem: preloaded object short");
978 error = EINVAL;
979 base = NULL;
980 } else if (allocate) {
981 base = (uint8_t *)ko->ko_source + off;
982 error = 0;
983 } else if ((uint8_t *)base != (uint8_t *)ko->ko_source + off) {
984 kobj_error("kobj_read_mem: object not aligned");
985 kobj_error("source=%p base=%p off=%d size=%zd",
986 ko->ko_source, base, (int)off, size);
987 error = EINVAL;
988 } else {
989 /* Nothing to do. Loading in-situ. */
990 error = 0;
991 }
992
993 if (allocate)
994 *basep = base;
995
996 return error;
997 }
998
999 /*
1000 * kobj_free:
1001 *
1002 * Utility function: free memory if it was allocated from the heap.
1003 */
1004 static void
1005 kobj_free(kobj_t ko, void *base, size_t size)
1006 {
1007
1008 if (ko->ko_type != KT_MEMORY)
1009 kmem_free(base, size);
1010 }
1011
1012 #else /* MODULAR */
1013
1014 int
1015 kobj_load_mem(kobj_t *kop, void *base, ssize_t size)
1016 {
1017
1018 return ENOSYS;
1019 }
1020
1021 void
1022 kobj_unload(kobj_t ko)
1023 {
1024
1025 panic("not modular");
1026 }
1027
1028 int
1029 kobj_stat(kobj_t ko, vaddr_t *base, size_t *size)
1030 {
1031
1032 return ENOSYS;
1033 }
1034
1035 int
1036 kobj_affix(kobj_t ko, const char *name)
1037 {
1038
1039 panic("not modular");
1040 }
1041
1042 int
1043 kobj_find_section(kobj_t ko, const char *name, void **addr, size_t *size)
1044 {
1045
1046 panic("not modular");
1047 }
1048
1049 #endif /* MODULAR */
1050