subr_kobj.c revision 1.50.6.1 1 /* $NetBSD: subr_kobj.c,v 1.50.6.1 2018/01/03 21:11:37 snj Exp $ */
2
3 /*-
4 * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software developed for The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1998-2000 Doug Rabson
34 * Copyright (c) 2004 Peter Wemm
35 * All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 *
46 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
47 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
48 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
49 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
50 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
51 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
52 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
53 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
54 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
55 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
56 * SUCH DAMAGE.
57 */
58
59 /*
60 * Kernel loader for ELF objects.
61 *
62 * TODO: adjust kmem_alloc() calls to avoid needless fragmentation.
63 */
64
65 #include <sys/cdefs.h>
66 __KERNEL_RCSID(0, "$NetBSD: subr_kobj.c,v 1.50.6.1 2018/01/03 21:11:37 snj Exp $");
67
68 #include "opt_modular.h"
69
70 #include <sys/kobj_impl.h>
71
72 #ifdef MODULAR
73
74 #include <sys/param.h>
75 #include <sys/kernel.h>
76 #include <sys/kmem.h>
77 #include <sys/proc.h>
78 #include <sys/ksyms.h>
79 #include <sys/module.h>
80
81 #include <uvm/uvm_extern.h>
82
83 #define kobj_error(_kobj, ...) \
84 kobj_out(__func__, __LINE__, _kobj, __VA_ARGS__)
85
86 static int kobj_relocate(kobj_t, bool);
87 static int kobj_checksyms(kobj_t, bool);
88 static void kobj_out(const char *, int, kobj_t, const char *, ...)
89 __printflike(4, 5);
90 static void kobj_jettison(kobj_t);
91 static void kobj_free(kobj_t, void *, size_t);
92 static void kobj_close(kobj_t);
93 static int kobj_read_mem(kobj_t, void **, size_t, off_t, bool);
94 static void kobj_close_mem(kobj_t);
95
96 extern struct vm_map *module_map;
97
98 /*
99 * kobj_load_mem:
100 *
101 * Load an object already resident in memory. If size is not -1,
102 * the complete size of the object is known.
103 */
104 int
105 kobj_load_mem(kobj_t *kop, const char *name, void *base, ssize_t size)
106 {
107 kobj_t ko;
108
109 ko = kmem_zalloc(sizeof(*ko), KM_SLEEP);
110 if (ko == NULL) {
111 return ENOMEM;
112 }
113
114 ko->ko_type = KT_MEMORY;
115 kobj_setname(ko, name);
116 ko->ko_source = base;
117 ko->ko_memsize = size;
118 ko->ko_read = kobj_read_mem;
119 ko->ko_close = kobj_close_mem;
120
121 *kop = ko;
122 return kobj_load(ko);
123 }
124
125 /*
126 * kobj_close:
127 *
128 * Close an open ELF object.
129 */
130 static void
131 kobj_close(kobj_t ko)
132 {
133
134 if (ko->ko_source == NULL) {
135 return;
136 }
137
138 ko->ko_close(ko);
139 ko->ko_source = NULL;
140 }
141
142 static void
143 kobj_close_mem(kobj_t ko)
144 {
145
146 return;
147 }
148
149 /*
150 * kobj_load:
151 *
152 * Load an ELF object and prepare to link into the running kernel
153 * image.
154 */
155 int
156 kobj_load(kobj_t ko)
157 {
158 Elf_Ehdr *hdr;
159 Elf_Shdr *shdr;
160 Elf_Sym *es;
161 vaddr_t mapbase;
162 size_t mapsize;
163 int error;
164 int symtabindex;
165 int symstrindex;
166 int nsym;
167 int pb, rl, ra;
168 int alignmask;
169 int i, j;
170 void *addr;
171
172 KASSERT(ko->ko_type != KT_UNSET);
173 KASSERT(ko->ko_source != NULL);
174
175 shdr = NULL;
176 error = 0;
177 hdr = NULL;
178
179 /*
180 * Read the elf header from the file.
181 */
182 error = ko->ko_read(ko, (void **)&hdr, sizeof(*hdr), 0, true);
183 if (error != 0) {
184 kobj_error(ko, "read failed %d", error);
185 goto out;
186 }
187 if (memcmp(hdr->e_ident, ELFMAG, SELFMAG) != 0) {
188 kobj_error(ko, "not an ELF object");
189 error = ENOEXEC;
190 goto out;
191 }
192
193 if (hdr->e_ident[EI_VERSION] != EV_CURRENT ||
194 hdr->e_version != EV_CURRENT) {
195 kobj_error(ko, "unsupported file version %d",
196 hdr->e_ident[EI_VERSION]);
197 error = ENOEXEC;
198 goto out;
199 }
200 if (hdr->e_type != ET_REL) {
201 kobj_error(ko, "unsupported file type %d", hdr->e_type);
202 error = ENOEXEC;
203 goto out;
204 }
205 switch (hdr->e_machine) {
206 #if ELFSIZE == 32
207 ELF32_MACHDEP_ID_CASES
208 #elif ELFSIZE == 64
209 ELF64_MACHDEP_ID_CASES
210 #else
211 #error not defined
212 #endif
213 default:
214 kobj_error(ko, "unsupported machine %d", hdr->e_machine);
215 error = ENOEXEC;
216 goto out;
217 }
218
219 ko->ko_nprogtab = 0;
220 ko->ko_shdr = 0;
221 ko->ko_nrel = 0;
222 ko->ko_nrela = 0;
223
224 /*
225 * Allocate and read in the section header.
226 */
227 if (hdr->e_shnum == 0 || hdr->e_shnum > ELF_MAXSHNUM ||
228 hdr->e_shoff == 0 || hdr->e_shentsize != sizeof(Elf_Shdr)) {
229 kobj_error(ko, "bad sizes");
230 error = ENOEXEC;
231 goto out;
232 }
233 ko->ko_shdrsz = hdr->e_shnum * sizeof(Elf_Shdr);
234 error = ko->ko_read(ko, (void **)&shdr, ko->ko_shdrsz, hdr->e_shoff,
235 true);
236 if (error != 0) {
237 kobj_error(ko, "read failed %d", error);
238 goto out;
239 }
240 ko->ko_shdr = shdr;
241
242 /*
243 * Scan the section header for information and table sizing.
244 */
245 nsym = 0;
246 symtabindex = symstrindex = -1;
247 for (i = 0; i < hdr->e_shnum; i++) {
248 switch (shdr[i].sh_type) {
249 case SHT_PROGBITS:
250 case SHT_NOBITS:
251 ko->ko_nprogtab++;
252 break;
253 case SHT_SYMTAB:
254 nsym++;
255 symtabindex = i;
256 symstrindex = shdr[i].sh_link;
257 break;
258 case SHT_REL:
259 if (shdr[shdr[i].sh_info].sh_type != SHT_PROGBITS)
260 continue;
261 ko->ko_nrel++;
262 break;
263 case SHT_RELA:
264 if (shdr[shdr[i].sh_info].sh_type != SHT_PROGBITS)
265 continue;
266 ko->ko_nrela++;
267 break;
268 case SHT_STRTAB:
269 break;
270 }
271 }
272 if (ko->ko_nprogtab == 0) {
273 kobj_error(ko, "file has no contents");
274 error = ENOEXEC;
275 goto out;
276 }
277 if (nsym != 1) {
278 /* Only allow one symbol table for now */
279 kobj_error(ko, "file has no valid symbol table");
280 error = ENOEXEC;
281 goto out;
282 }
283 KASSERT(symtabindex != -1);
284 KASSERT(symstrindex != -1);
285
286 if (symstrindex == SHN_UNDEF || symstrindex >= hdr->e_shnum ||
287 shdr[symstrindex].sh_type != SHT_STRTAB) {
288 kobj_error(ko, "file has invalid symbol strings");
289 error = ENOEXEC;
290 goto out;
291 }
292
293 /*
294 * Allocate space for tracking the load chunks.
295 */
296 if (ko->ko_nprogtab != 0) {
297 ko->ko_progtab = kmem_zalloc(ko->ko_nprogtab *
298 sizeof(*ko->ko_progtab), KM_SLEEP);
299 if (ko->ko_progtab == NULL) {
300 error = ENOMEM;
301 kobj_error(ko, "out of memory");
302 goto out;
303 }
304 }
305 if (ko->ko_nrel != 0) {
306 ko->ko_reltab = kmem_zalloc(ko->ko_nrel *
307 sizeof(*ko->ko_reltab), KM_SLEEP);
308 if (ko->ko_reltab == NULL) {
309 error = ENOMEM;
310 kobj_error(ko, "out of memory");
311 goto out;
312 }
313 }
314 if (ko->ko_nrela != 0) {
315 ko->ko_relatab = kmem_zalloc(ko->ko_nrela *
316 sizeof(*ko->ko_relatab), KM_SLEEP);
317 if (ko->ko_relatab == NULL) {
318 error = ENOMEM;
319 kobj_error(ko, "out of memory");
320 goto out;
321 }
322 }
323
324 /*
325 * Allocate space for and load the symbol table.
326 */
327 ko->ko_symcnt = shdr[symtabindex].sh_size / sizeof(Elf_Sym);
328 if (ko->ko_symcnt == 0) {
329 kobj_error(ko, "no symbol table");
330 error = ENOEXEC;
331 goto out;
332 }
333 error = ko->ko_read(ko, (void **)&ko->ko_symtab,
334 ko->ko_symcnt * sizeof(Elf_Sym),
335 shdr[symtabindex].sh_offset, true);
336 if (error != 0) {
337 kobj_error(ko, "read failed %d", error);
338 goto out;
339 }
340
341 /*
342 * Allocate space for and load the symbol strings.
343 */
344 ko->ko_strtabsz = shdr[symstrindex].sh_size;
345 if (ko->ko_strtabsz == 0) {
346 kobj_error(ko, "no symbol strings");
347 error = ENOEXEC;
348 goto out;
349 }
350 error = ko->ko_read(ko, (void *)&ko->ko_strtab, ko->ko_strtabsz,
351 shdr[symstrindex].sh_offset, true);
352 if (error != 0) {
353 kobj_error(ko, "read failed %d", error);
354 goto out;
355 }
356
357 /*
358 * Adjust module symbol namespace, if necessary (e.g. with rump)
359 */
360 error = kobj_renamespace(ko->ko_symtab, ko->ko_symcnt,
361 &ko->ko_strtab, &ko->ko_strtabsz);
362 if (error != 0) {
363 kobj_error(ko, "renamespace failed %d", error);
364 goto out;
365 }
366
367 /*
368 * Do we have a string table for the section names?
369 */
370 if (hdr->e_shstrndx != SHN_UNDEF) {
371 if (hdr->e_shstrndx >= hdr->e_shnum) {
372 kobj_error(ko, "bad shstrndx");
373 error = ENOEXEC;
374 goto out;
375 }
376 if (shdr[hdr->e_shstrndx].sh_size != 0 &&
377 shdr[hdr->e_shstrndx].sh_type == SHT_STRTAB) {
378 ko->ko_shstrtabsz = shdr[hdr->e_shstrndx].sh_size;
379 error = ko->ko_read(ko, (void **)&ko->ko_shstrtab,
380 shdr[hdr->e_shstrndx].sh_size,
381 shdr[hdr->e_shstrndx].sh_offset, true);
382 if (error != 0) {
383 kobj_error(ko, "read failed %d", error);
384 goto out;
385 }
386 }
387 }
388
389 /*
390 * Size up code/data(progbits) and bss(nobits).
391 */
392 alignmask = 0;
393 mapbase = 0;
394 mapsize = 0;
395 for (i = 0; i < hdr->e_shnum; i++) {
396 switch (shdr[i].sh_type) {
397 case SHT_PROGBITS:
398 case SHT_NOBITS:
399 if (mapbase == 0)
400 mapbase = shdr[i].sh_offset;
401 alignmask = shdr[i].sh_addralign - 1;
402 mapsize += alignmask;
403 mapsize &= ~alignmask;
404 mapsize += shdr[i].sh_size;
405 break;
406 }
407 }
408
409 /*
410 * We know how much space we need for the text/data/bss/etc.
411 * This stuff needs to be in a single chunk so that profiling etc
412 * can get the bounds and gdb can associate offsets with modules.
413 */
414 if (mapsize == 0) {
415 kobj_error(ko, "no text/data/bss");
416 error = ENOEXEC;
417 goto out;
418 }
419 if (ko->ko_type == KT_MEMORY) {
420 mapbase += (vaddr_t)ko->ko_source;
421 } else {
422 mapbase = uvm_km_alloc(module_map, round_page(mapsize),
423 0, UVM_KMF_WIRED | UVM_KMF_EXEC);
424 if (mapbase == 0) {
425 kobj_error(ko, "out of memory");
426 error = ENOMEM;
427 goto out;
428 }
429 }
430 ko->ko_address = mapbase;
431 ko->ko_size = mapsize;
432
433 /*
434 * Now load code/data(progbits), zero bss(nobits), allocate space
435 * for and load relocs
436 */
437 pb = 0;
438 rl = 0;
439 ra = 0;
440 alignmask = 0;
441 for (i = 0; i < hdr->e_shnum; i++) {
442 switch (shdr[i].sh_type) {
443 case SHT_PROGBITS:
444 case SHT_NOBITS:
445 alignmask = shdr[i].sh_addralign - 1;
446 if (ko->ko_type == KT_MEMORY) {
447 addr = (void *)(shdr[i].sh_offset +
448 (vaddr_t)ko->ko_source);
449 if (((vaddr_t)addr & alignmask) != 0) {
450 kobj_error(ko,
451 "section %d not aligned", i);
452 error = ENOEXEC;
453 goto out;
454 }
455 } else {
456 mapbase += alignmask;
457 mapbase &= ~alignmask;
458 addr = (void *)mapbase;
459 mapbase += shdr[i].sh_size;
460 }
461 ko->ko_progtab[pb].addr = addr;
462 if (shdr[i].sh_type == SHT_PROGBITS) {
463 ko->ko_progtab[pb].name = "<<PROGBITS>>";
464 error = ko->ko_read(ko, &addr,
465 shdr[i].sh_size, shdr[i].sh_offset, false);
466 if (error != 0) {
467 kobj_error(ko, "read failed %d", error);
468 goto out;
469 }
470 } else if (ko->ko_type == KT_MEMORY &&
471 shdr[i].sh_size != 0) {
472 kobj_error(ko, "non-loadable BSS "
473 "section in pre-loaded module");
474 error = ENOEXEC;
475 goto out;
476 } else {
477 ko->ko_progtab[pb].name = "<<NOBITS>>";
478 memset(addr, 0, shdr[i].sh_size);
479 }
480 ko->ko_progtab[pb].size = shdr[i].sh_size;
481 ko->ko_progtab[pb].sec = i;
482 if (ko->ko_shstrtab != NULL && shdr[i].sh_name != 0) {
483 ko->ko_progtab[pb].name =
484 ko->ko_shstrtab + shdr[i].sh_name;
485 }
486
487 /* Update all symbol values with the offset. */
488 for (j = 0; j < ko->ko_symcnt; j++) {
489 es = &ko->ko_symtab[j];
490 if (es->st_shndx != i) {
491 continue;
492 }
493 es->st_value += (Elf_Addr)addr;
494 }
495 pb++;
496 break;
497 case SHT_REL:
498 if (shdr[shdr[i].sh_info].sh_type != SHT_PROGBITS)
499 break;
500 ko->ko_reltab[rl].size = shdr[i].sh_size;
501 ko->ko_reltab[rl].size -=
502 shdr[i].sh_size % sizeof(Elf_Rel);
503 if (ko->ko_reltab[rl].size != 0) {
504 ko->ko_reltab[rl].nrel =
505 shdr[i].sh_size / sizeof(Elf_Rel);
506 ko->ko_reltab[rl].sec = shdr[i].sh_info;
507 error = ko->ko_read(ko,
508 (void **)&ko->ko_reltab[rl].rel,
509 ko->ko_reltab[rl].size,
510 shdr[i].sh_offset, true);
511 if (error != 0) {
512 kobj_error(ko, "read failed %d",
513 error);
514 goto out;
515 }
516 }
517 rl++;
518 break;
519 case SHT_RELA:
520 if (shdr[shdr[i].sh_info].sh_type != SHT_PROGBITS)
521 break;
522 ko->ko_relatab[ra].size = shdr[i].sh_size;
523 ko->ko_relatab[ra].size -=
524 shdr[i].sh_size % sizeof(Elf_Rela);
525 if (ko->ko_relatab[ra].size != 0) {
526 ko->ko_relatab[ra].nrela =
527 shdr[i].sh_size / sizeof(Elf_Rela);
528 ko->ko_relatab[ra].sec = shdr[i].sh_info;
529 error = ko->ko_read(ko,
530 (void **)&ko->ko_relatab[ra].rela,
531 shdr[i].sh_size,
532 shdr[i].sh_offset, true);
533 if (error != 0) {
534 kobj_error(ko, "read failed %d", error);
535 goto out;
536 }
537 }
538 ra++;
539 break;
540 default:
541 break;
542 }
543 }
544 if (pb != ko->ko_nprogtab) {
545 panic("%s:%d: %s: lost progbits", __func__, __LINE__,
546 ko->ko_name);
547 }
548 if (rl != ko->ko_nrel) {
549 panic("%s:%d: %s: lost rel", __func__, __LINE__,
550 ko->ko_name);
551 }
552 if (ra != ko->ko_nrela) {
553 panic("%s:%d: %s: lost rela", __func__, __LINE__,
554 ko->ko_name);
555 }
556 if (ko->ko_type != KT_MEMORY && mapbase != ko->ko_address + mapsize) {
557 panic("%s:%d: %s: "
558 "mapbase 0x%lx != address %lx + mapsize %ld (0x%lx)\n",
559 __func__, __LINE__, ko->ko_name,
560 (long)mapbase, (long)ko->ko_address, (long)mapsize,
561 (long)ko->ko_address + mapsize);
562 }
563
564 /*
565 * Perform local relocations only. Relocations relating to global
566 * symbols will be done by kobj_affix().
567 */
568 error = kobj_checksyms(ko, false);
569 if (error == 0) {
570 error = kobj_relocate(ko, true);
571 }
572 out:
573 if (hdr != NULL) {
574 kobj_free(ko, hdr, sizeof(*hdr));
575 }
576 kobj_close(ko);
577 if (error != 0) {
578 kobj_unload(ko);
579 }
580
581 return error;
582 }
583
584 /*
585 * kobj_unload:
586 *
587 * Unload an object previously loaded by kobj_load().
588 */
589 void
590 kobj_unload(kobj_t ko)
591 {
592 int error;
593
594 kobj_close(ko);
595 kobj_jettison(ko);
596
597 /*
598 * Notify MD code that a module has been unloaded.
599 */
600 if (ko->ko_loaded) {
601 error = kobj_machdep(ko, (void *)ko->ko_address, ko->ko_size,
602 false);
603 if (error != 0)
604 kobj_error(ko, "machine dependent deinit failed %d",
605 error);
606 }
607 if (ko->ko_address != 0 && ko->ko_type != KT_MEMORY) {
608 uvm_km_free(module_map, ko->ko_address, round_page(ko->ko_size),
609 UVM_KMF_WIRED);
610 }
611 if (ko->ko_ksyms == true) {
612 ksyms_modunload(ko->ko_name);
613 }
614 if (ko->ko_symtab != NULL) {
615 kobj_free(ko, ko->ko_symtab, ko->ko_symcnt * sizeof(Elf_Sym));
616 }
617 if (ko->ko_strtab != NULL) {
618 kobj_free(ko, ko->ko_strtab, ko->ko_strtabsz);
619 }
620 if (ko->ko_progtab != NULL) {
621 kobj_free(ko, ko->ko_progtab, ko->ko_nprogtab *
622 sizeof(*ko->ko_progtab));
623 ko->ko_progtab = NULL;
624 }
625 if (ko->ko_shstrtab) {
626 kobj_free(ko, ko->ko_shstrtab, ko->ko_shstrtabsz);
627 ko->ko_shstrtab = NULL;
628 }
629
630 kmem_free(ko, sizeof(*ko));
631 }
632
633 /*
634 * kobj_stat:
635 *
636 * Return size and load address of an object.
637 */
638 int
639 kobj_stat(kobj_t ko, vaddr_t *address, size_t *size)
640 {
641
642 if (address != NULL) {
643 *address = ko->ko_address;
644 }
645 if (size != NULL) {
646 *size = ko->ko_size;
647 }
648 return 0;
649 }
650
651 /*
652 * kobj_affix:
653 *
654 * Set an object's name and perform global relocs. May only be
655 * called after the module and any requisite modules are loaded.
656 */
657 int
658 kobj_affix(kobj_t ko, const char *name)
659 {
660 int error;
661
662 KASSERT(ko->ko_ksyms == false);
663 KASSERT(ko->ko_loaded == false);
664
665 kobj_setname(ko, name);
666
667 /* Cache addresses of undefined symbols. */
668 error = kobj_checksyms(ko, true);
669
670 /* Now do global relocations. */
671 if (error == 0)
672 error = kobj_relocate(ko, false);
673
674 /*
675 * Now that we know the name, register the symbol table.
676 * Do after global relocations because ksyms will pack
677 * the table.
678 */
679 if (error == 0) {
680 ksyms_modload(ko->ko_name, ko->ko_symtab, ko->ko_symcnt *
681 sizeof(Elf_Sym), ko->ko_strtab, ko->ko_strtabsz);
682 ko->ko_ksyms = true;
683 }
684
685 /* Jettison unneeded memory post-link. */
686 kobj_jettison(ko);
687
688 /*
689 * Notify MD code that a module has been loaded.
690 *
691 * Most architectures use this opportunity to flush their caches.
692 */
693 if (error == 0) {
694 error = kobj_machdep(ko, (void *)ko->ko_address, ko->ko_size,
695 true);
696 if (error != 0)
697 kobj_error(ko, "machine dependent init failed %d",
698 error);
699 ko->ko_loaded = true;
700 }
701
702 /* If there was an error, destroy the whole object. */
703 if (error != 0) {
704 kobj_unload(ko);
705 }
706
707 return error;
708 }
709
710 /*
711 * kobj_find_section:
712 *
713 * Given a section name, search the loaded object and return
714 * virtual address if present and loaded.
715 */
716 int
717 kobj_find_section(kobj_t ko, const char *name, void **addr, size_t *size)
718 {
719 int i;
720
721 KASSERT(ko->ko_progtab != NULL);
722
723 for (i = 0; i < ko->ko_nprogtab; i++) {
724 if (strcmp(ko->ko_progtab[i].name, name) == 0) {
725 if (addr != NULL) {
726 *addr = ko->ko_progtab[i].addr;
727 }
728 if (size != NULL) {
729 *size = ko->ko_progtab[i].size;
730 }
731 return 0;
732 }
733 }
734
735 return ENOENT;
736 }
737
738 /*
739 * kobj_jettison:
740 *
741 * Release object data not needed after performing relocations.
742 */
743 static void
744 kobj_jettison(kobj_t ko)
745 {
746 int i;
747
748 if (ko->ko_reltab != NULL) {
749 for (i = 0; i < ko->ko_nrel; i++) {
750 if (ko->ko_reltab[i].rel) {
751 kobj_free(ko, ko->ko_reltab[i].rel,
752 ko->ko_reltab[i].size);
753 }
754 }
755 kobj_free(ko, ko->ko_reltab, ko->ko_nrel *
756 sizeof(*ko->ko_reltab));
757 ko->ko_reltab = NULL;
758 ko->ko_nrel = 0;
759 }
760 if (ko->ko_relatab != NULL) {
761 for (i = 0; i < ko->ko_nrela; i++) {
762 if (ko->ko_relatab[i].rela) {
763 kobj_free(ko, ko->ko_relatab[i].rela,
764 ko->ko_relatab[i].size);
765 }
766 }
767 kobj_free(ko, ko->ko_relatab, ko->ko_nrela *
768 sizeof(*ko->ko_relatab));
769 ko->ko_relatab = NULL;
770 ko->ko_nrela = 0;
771 }
772 if (ko->ko_shdr != NULL) {
773 kobj_free(ko, ko->ko_shdr, ko->ko_shdrsz);
774 ko->ko_shdr = NULL;
775 }
776 }
777
778 /*
779 * kobj_sym_lookup:
780 *
781 * Symbol lookup function to be used when the symbol index
782 * is known (ie during relocation).
783 */
784 uintptr_t
785 kobj_sym_lookup(kobj_t ko, uintptr_t symidx)
786 {
787 const Elf_Sym *sym;
788 const char *symbol;
789
790 /* Don't even try to lookup the symbol if the index is bogus. */
791 if (symidx >= ko->ko_symcnt)
792 return 0;
793
794 sym = ko->ko_symtab + symidx;
795
796 /* Quick answer if there is a definition included. */
797 if (sym->st_shndx != SHN_UNDEF) {
798 return (uintptr_t)sym->st_value;
799 }
800
801 /* If we get here, then it is undefined and needs a lookup. */
802 switch (ELF_ST_BIND(sym->st_info)) {
803 case STB_LOCAL:
804 /* Local, but undefined? huh? */
805 kobj_error(ko, "local symbol undefined");
806 return 0;
807
808 case STB_GLOBAL:
809 /* Relative to Data or Function name */
810 symbol = ko->ko_strtab + sym->st_name;
811
812 /* Force a lookup failure if the symbol name is bogus. */
813 if (*symbol == 0) {
814 kobj_error(ko, "bad symbol name");
815 return 0;
816 }
817
818 return (uintptr_t)sym->st_value;
819
820 case STB_WEAK:
821 kobj_error(ko, "weak symbols not supported");
822 return 0;
823
824 default:
825 return 0;
826 }
827 }
828
829 /*
830 * kobj_findbase:
831 *
832 * Return base address of the given section.
833 */
834 static uintptr_t
835 kobj_findbase(kobj_t ko, int sec)
836 {
837 int i;
838
839 for (i = 0; i < ko->ko_nprogtab; i++) {
840 if (sec == ko->ko_progtab[i].sec) {
841 return (uintptr_t)ko->ko_progtab[i].addr;
842 }
843 }
844 return 0;
845 }
846
847 /*
848 * kobj_checksyms:
849 *
850 * Scan symbol table for duplicates or resolve references to
851 * exernal symbols.
852 */
853 static int
854 kobj_checksyms(kobj_t ko, bool undefined)
855 {
856 unsigned long rval;
857 Elf_Sym *sym, *ms;
858 const char *name;
859 int error;
860
861 error = 0;
862
863 for (ms = (sym = ko->ko_symtab) + ko->ko_symcnt; sym < ms; sym++) {
864 /* Check validity of the symbol. */
865 if (ELF_ST_BIND(sym->st_info) != STB_GLOBAL ||
866 sym->st_name == 0)
867 continue;
868 if (undefined != (sym->st_shndx == SHN_UNDEF)) {
869 continue;
870 }
871
872 /*
873 * Look it up. Don't need to lock, as it is known that
874 * the symbol tables aren't going to change (we hold
875 * module_lock).
876 */
877 name = ko->ko_strtab + sym->st_name;
878 if (ksyms_getval_unlocked(NULL, name, &rval,
879 KSYMS_EXTERN) != 0) {
880 if (undefined) {
881 kobj_error(ko, "symbol `%s' not found",
882 name);
883 error = ENOEXEC;
884 }
885 continue;
886 }
887
888 /* Save values of undefined globals. */
889 if (undefined) {
890 sym->st_value = (Elf_Addr)rval;
891 continue;
892 }
893
894 /* Check (and complain) about differing values. */
895 if (sym->st_value == rval) {
896 continue;
897 }
898 if (strcmp(name, "_bss_start") == 0 ||
899 strcmp(name, "__bss_start") == 0 ||
900 strcmp(name, "_bss_end__") == 0 ||
901 strcmp(name, "__bss_end__") == 0 ||
902 strcmp(name, "_edata") == 0 ||
903 strcmp(name, "_end") == 0 ||
904 strcmp(name, "__end") == 0 ||
905 strcmp(name, "__end__") == 0 ||
906 strncmp(name, "__start_link_set_", 17) == 0 ||
907 strncmp(name, "__stop_link_set_", 16) == 0) {
908 continue;
909 }
910 kobj_error(ko, "global symbol `%s' redefined",
911 name);
912 error = ENOEXEC;
913 }
914
915 return error;
916 }
917
918 /*
919 * kobj_relocate:
920 *
921 * Resolve relocations for the loaded object.
922 */
923 static int
924 kobj_relocate(kobj_t ko, bool local)
925 {
926 const Elf_Rel *rellim;
927 const Elf_Rel *rel;
928 const Elf_Rela *relalim;
929 const Elf_Rela *rela;
930 const Elf_Sym *sym;
931 uintptr_t base;
932 int i, error;
933 uintptr_t symidx;
934
935 /*
936 * Perform relocations without addend if there are any.
937 */
938 for (i = 0; i < ko->ko_nrel; i++) {
939 rel = ko->ko_reltab[i].rel;
940 if (rel == NULL) {
941 continue;
942 }
943 rellim = rel + ko->ko_reltab[i].nrel;
944 base = kobj_findbase(ko, ko->ko_reltab[i].sec);
945 if (base == 0) {
946 panic("%s:%d: %s: lost base for e_reltab[%d] sec %d",
947 __func__, __LINE__, ko->ko_name, i,
948 ko->ko_reltab[i].sec);
949 }
950 for (; rel < rellim; rel++) {
951 symidx = ELF_R_SYM(rel->r_info);
952 if (symidx >= ko->ko_symcnt) {
953 continue;
954 }
955 sym = ko->ko_symtab + symidx;
956 if (local != (ELF_ST_BIND(sym->st_info) == STB_LOCAL)) {
957 continue;
958 }
959 error = kobj_reloc(ko, base, rel, false, local);
960 if (error != 0) {
961 return ENOENT;
962 }
963 }
964 }
965
966 /*
967 * Perform relocations with addend if there are any.
968 */
969 for (i = 0; i < ko->ko_nrela; i++) {
970 rela = ko->ko_relatab[i].rela;
971 if (rela == NULL) {
972 continue;
973 }
974 relalim = rela + ko->ko_relatab[i].nrela;
975 base = kobj_findbase(ko, ko->ko_relatab[i].sec);
976 if (base == 0) {
977 panic("%s:%d: %s: lost base for e_relatab[%d] sec %d",
978 __func__, __LINE__, ko->ko_name, i,
979 ko->ko_relatab[i].sec);
980 }
981 for (; rela < relalim; rela++) {
982 symidx = ELF_R_SYM(rela->r_info);
983 if (symidx >= ko->ko_symcnt) {
984 continue;
985 }
986 sym = ko->ko_symtab + symidx;
987 if (local != (ELF_ST_BIND(sym->st_info) == STB_LOCAL)) {
988 continue;
989 }
990 error = kobj_reloc(ko, base, rela, true, local);
991 if (error != 0) {
992 return ENOENT;
993 }
994 }
995 }
996
997 return 0;
998 }
999
1000 /*
1001 * kobj_out:
1002 *
1003 * Utility function: log an error.
1004 */
1005 static void
1006 kobj_out(const char *fname, int lnum, kobj_t ko, const char *fmt, ...)
1007 {
1008 va_list ap;
1009
1010 printf("%s, %d: [%s]: linker error: ", fname, lnum, ko->ko_name);
1011 va_start(ap, fmt);
1012 vprintf(fmt, ap);
1013 va_end(ap);
1014 printf("\n");
1015 }
1016
1017 static int
1018 kobj_read_mem(kobj_t ko, void **basep, size_t size, off_t off,
1019 bool allocate)
1020 {
1021 void *base = *basep;
1022 int error;
1023
1024 if (ko->ko_memsize != -1 && off + size > ko->ko_memsize) {
1025 kobj_error(ko, "preloaded object short");
1026 error = EINVAL;
1027 base = NULL;
1028 } else if (allocate) {
1029 base = (uint8_t *)ko->ko_source + off;
1030 error = 0;
1031 } else if ((uint8_t *)base != (uint8_t *)ko->ko_source + off) {
1032 kobj_error(ko, "object not aligned");
1033 kobj_error(ko, "source=%p base=%p off=%d "
1034 "size=%zu", ko->ko_source, base, (int)off, size);
1035 error = EINVAL;
1036 } else {
1037 /* Nothing to do. Loading in-situ. */
1038 error = 0;
1039 }
1040
1041 if (allocate)
1042 *basep = base;
1043
1044 return error;
1045 }
1046
1047 /*
1048 * kobj_free:
1049 *
1050 * Utility function: free memory if it was allocated from the heap.
1051 */
1052 static void
1053 kobj_free(kobj_t ko, void *base, size_t size)
1054 {
1055
1056 if (ko->ko_type != KT_MEMORY)
1057 kmem_free(base, size);
1058 }
1059
1060 extern char module_base[];
1061
1062 void
1063 kobj_setname(kobj_t ko, const char *name)
1064 {
1065 const char *d = name, *dots = "";
1066 size_t len, dlen;
1067
1068 for (char *s = module_base; *d == *s; d++, s++)
1069 continue;
1070
1071 if (d == name)
1072 name = "";
1073 else
1074 name = "%M";
1075 dlen = strlen(d);
1076 len = dlen + strlen(name);
1077 if (len >= sizeof(ko->ko_name)) {
1078 len = (len - sizeof(ko->ko_name)) + 5; /* dots + NUL */
1079 if (dlen >= len) {
1080 d += len;
1081 dots = "/...";
1082 }
1083 }
1084 snprintf(ko->ko_name, sizeof(ko->ko_name), "%s%s%s", name, dots, d);
1085 }
1086
1087 #else /* MODULAR */
1088
1089 int
1090 kobj_load_mem(kobj_t *kop, const char *name, void *base, ssize_t size)
1091 {
1092
1093 return ENOSYS;
1094 }
1095
1096 void
1097 kobj_unload(kobj_t ko)
1098 {
1099
1100 panic("not modular");
1101 }
1102
1103 int
1104 kobj_stat(kobj_t ko, vaddr_t *base, size_t *size)
1105 {
1106
1107 return ENOSYS;
1108 }
1109
1110 int
1111 kobj_affix(kobj_t ko, const char *name)
1112 {
1113
1114 panic("not modular");
1115 }
1116
1117 int
1118 kobj_find_section(kobj_t ko, const char *name, void **addr, size_t *size)
1119 {
1120
1121 panic("not modular");
1122 }
1123
1124 void
1125 kobj_setname(kobj_t ko, const char *name)
1126 {
1127
1128 panic("not modular");
1129 }
1130
1131 #endif /* MODULAR */
1132