subr_kobj.c revision 1.53 1 /* $NetBSD: subr_kobj.c,v 1.53 2016/07/07 06:55:43 msaitoh Exp $ */
2
3 /*-
4 * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software developed for The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1998-2000 Doug Rabson
34 * Copyright (c) 2004 Peter Wemm
35 * All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 *
46 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
47 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
48 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
49 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
50 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
51 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
52 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
53 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
54 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
55 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
56 * SUCH DAMAGE.
57 */
58
59 /*
60 * Kernel loader for ELF objects.
61 *
62 * TODO: adjust kmem_alloc() calls to avoid needless fragmentation.
63 */
64
65 #include <sys/cdefs.h>
66 __KERNEL_RCSID(0, "$NetBSD: subr_kobj.c,v 1.53 2016/07/07 06:55:43 msaitoh Exp $");
67
68 #ifdef _KERNEL_OPT
69 #include "opt_modular.h"
70 #endif
71
72 #include <sys/kobj_impl.h>
73
74 #ifdef MODULAR
75
76 #include <sys/param.h>
77 #include <sys/kernel.h>
78 #include <sys/kmem.h>
79 #include <sys/proc.h>
80 #include <sys/ksyms.h>
81 #include <sys/module.h>
82
83 #include <uvm/uvm_extern.h>
84
85 #define kobj_error(_kobj, ...) \
86 kobj_out(__func__, __LINE__, _kobj, __VA_ARGS__)
87
88 static int kobj_relocate(kobj_t, bool);
89 static int kobj_checksyms(kobj_t, bool);
90 static void kobj_out(const char *, int, kobj_t, const char *, ...)
91 __printflike(4, 5);
92 static void kobj_jettison(kobj_t);
93 static void kobj_free(kobj_t, void *, size_t);
94 static void kobj_close(kobj_t);
95 static int kobj_read_mem(kobj_t, void **, size_t, off_t, bool);
96 static void kobj_close_mem(kobj_t);
97
98 extern struct vm_map *module_map;
99
100 /*
101 * kobj_load_mem:
102 *
103 * Load an object already resident in memory. If size is not -1,
104 * the complete size of the object is known.
105 */
106 int
107 kobj_load_mem(kobj_t *kop, const char *name, void *base, ssize_t size)
108 {
109 kobj_t ko;
110
111 ko = kmem_zalloc(sizeof(*ko), KM_SLEEP);
112 if (ko == NULL) {
113 return ENOMEM;
114 }
115
116 ko->ko_type = KT_MEMORY;
117 kobj_setname(ko, name);
118 ko->ko_source = base;
119 ko->ko_memsize = size;
120 ko->ko_read = kobj_read_mem;
121 ko->ko_close = kobj_close_mem;
122
123 *kop = ko;
124 return kobj_load(ko);
125 }
126
127 /*
128 * kobj_close:
129 *
130 * Close an open ELF object.
131 */
132 static void
133 kobj_close(kobj_t ko)
134 {
135
136 if (ko->ko_source == NULL) {
137 return;
138 }
139
140 ko->ko_close(ko);
141 ko->ko_source = NULL;
142 }
143
144 static void
145 kobj_close_mem(kobj_t ko)
146 {
147
148 return;
149 }
150
151 /*
152 * kobj_load:
153 *
154 * Load an ELF object and prepare to link into the running kernel
155 * image.
156 */
157 int
158 kobj_load(kobj_t ko)
159 {
160 Elf_Ehdr *hdr;
161 Elf_Shdr *shdr;
162 Elf_Sym *es;
163 vaddr_t mapbase;
164 size_t mapsize;
165 int error;
166 int symtabindex;
167 int symstrindex;
168 int nsym;
169 int pb, rl, ra;
170 int alignmask;
171 int i, j;
172 void *addr;
173
174 KASSERT(ko->ko_type != KT_UNSET);
175 KASSERT(ko->ko_source != NULL);
176
177 shdr = NULL;
178 error = 0;
179 hdr = NULL;
180
181 /*
182 * Read the elf header from the file.
183 */
184 error = ko->ko_read(ko, (void **)&hdr, sizeof(*hdr), 0, true);
185 if (error != 0) {
186 kobj_error(ko, "read failed %d", error);
187 goto out;
188 }
189 if (memcmp(hdr->e_ident, ELFMAG, SELFMAG) != 0) {
190 kobj_error(ko, "not an ELF object");
191 error = ENOEXEC;
192 goto out;
193 }
194
195 if (hdr->e_ident[EI_VERSION] != EV_CURRENT ||
196 hdr->e_version != EV_CURRENT) {
197 kobj_error(ko, "unsupported file version %d",
198 hdr->e_ident[EI_VERSION]);
199 error = ENOEXEC;
200 goto out;
201 }
202 if (hdr->e_type != ET_REL) {
203 kobj_error(ko, "unsupported file type %d", hdr->e_type);
204 error = ENOEXEC;
205 goto out;
206 }
207 switch (hdr->e_machine) {
208 #if ELFSIZE == 32
209 ELF32_MACHDEP_ID_CASES
210 #elif ELFSIZE == 64
211 ELF64_MACHDEP_ID_CASES
212 #else
213 #error not defined
214 #endif
215 default:
216 kobj_error(ko, "unsupported machine %d", hdr->e_machine);
217 error = ENOEXEC;
218 goto out;
219 }
220
221 ko->ko_nprogtab = 0;
222 ko->ko_shdr = 0;
223 ko->ko_nrel = 0;
224 ko->ko_nrela = 0;
225
226 /*
227 * Allocate and read in the section header.
228 */
229 if (hdr->e_shnum == 0 || hdr->e_shnum > ELF_MAXSHNUM ||
230 hdr->e_shoff == 0 || hdr->e_shentsize != sizeof(Elf_Shdr)) {
231 kobj_error(ko, "bad sizes");
232 error = ENOEXEC;
233 goto out;
234 }
235 ko->ko_shdrsz = hdr->e_shnum * sizeof(Elf_Shdr);
236 error = ko->ko_read(ko, (void **)&shdr, ko->ko_shdrsz, hdr->e_shoff,
237 true);
238 if (error != 0) {
239 kobj_error(ko, "read failed %d", error);
240 goto out;
241 }
242 ko->ko_shdr = shdr;
243
244 /*
245 * Scan the section header for information and table sizing.
246 */
247 nsym = 0;
248 symtabindex = symstrindex = -1;
249 for (i = 0; i < hdr->e_shnum; i++) {
250 switch (shdr[i].sh_type) {
251 case SHT_PROGBITS:
252 case SHT_NOBITS:
253 ko->ko_nprogtab++;
254 break;
255 case SHT_SYMTAB:
256 nsym++;
257 symtabindex = i;
258 symstrindex = shdr[i].sh_link;
259 break;
260 case SHT_REL:
261 if (shdr[shdr[i].sh_info].sh_type != SHT_PROGBITS)
262 continue;
263 ko->ko_nrel++;
264 break;
265 case SHT_RELA:
266 if (shdr[shdr[i].sh_info].sh_type != SHT_PROGBITS)
267 continue;
268 ko->ko_nrela++;
269 break;
270 case SHT_STRTAB:
271 break;
272 }
273 }
274 if (ko->ko_nprogtab == 0) {
275 kobj_error(ko, "file has no contents");
276 error = ENOEXEC;
277 goto out;
278 }
279 if (nsym != 1) {
280 /* Only allow one symbol table for now */
281 kobj_error(ko, "file has no valid symbol table");
282 error = ENOEXEC;
283 goto out;
284 }
285 KASSERT(symtabindex != -1);
286 KASSERT(symstrindex != -1);
287
288 if (symstrindex == SHN_UNDEF || symstrindex >= hdr->e_shnum ||
289 shdr[symstrindex].sh_type != SHT_STRTAB) {
290 kobj_error(ko, "file has invalid symbol strings");
291 error = ENOEXEC;
292 goto out;
293 }
294
295 /*
296 * Allocate space for tracking the load chunks.
297 */
298 if (ko->ko_nprogtab != 0) {
299 ko->ko_progtab = kmem_zalloc(ko->ko_nprogtab *
300 sizeof(*ko->ko_progtab), KM_SLEEP);
301 if (ko->ko_progtab == NULL) {
302 error = ENOMEM;
303 kobj_error(ko, "out of memory");
304 goto out;
305 }
306 }
307 if (ko->ko_nrel != 0) {
308 ko->ko_reltab = kmem_zalloc(ko->ko_nrel *
309 sizeof(*ko->ko_reltab), KM_SLEEP);
310 if (ko->ko_reltab == NULL) {
311 error = ENOMEM;
312 kobj_error(ko, "out of memory");
313 goto out;
314 }
315 }
316 if (ko->ko_nrela != 0) {
317 ko->ko_relatab = kmem_zalloc(ko->ko_nrela *
318 sizeof(*ko->ko_relatab), KM_SLEEP);
319 if (ko->ko_relatab == NULL) {
320 error = ENOMEM;
321 kobj_error(ko, "out of memory");
322 goto out;
323 }
324 }
325
326 /*
327 * Allocate space for and load the symbol table.
328 */
329 ko->ko_symcnt = shdr[symtabindex].sh_size / sizeof(Elf_Sym);
330 if (ko->ko_symcnt == 0) {
331 kobj_error(ko, "no symbol table");
332 error = ENOEXEC;
333 goto out;
334 }
335 error = ko->ko_read(ko, (void **)&ko->ko_symtab,
336 ko->ko_symcnt * sizeof(Elf_Sym),
337 shdr[symtabindex].sh_offset, true);
338 if (error != 0) {
339 kobj_error(ko, "read failed %d", error);
340 goto out;
341 }
342
343 /*
344 * Allocate space for and load the symbol strings.
345 */
346 ko->ko_strtabsz = shdr[symstrindex].sh_size;
347 if (ko->ko_strtabsz == 0) {
348 kobj_error(ko, "no symbol strings");
349 error = ENOEXEC;
350 goto out;
351 }
352 error = ko->ko_read(ko, (void *)&ko->ko_strtab, ko->ko_strtabsz,
353 shdr[symstrindex].sh_offset, true);
354 if (error != 0) {
355 kobj_error(ko, "read failed %d", error);
356 goto out;
357 }
358
359 /*
360 * Adjust module symbol namespace, if necessary (e.g. with rump)
361 */
362 error = kobj_renamespace(ko->ko_symtab, ko->ko_symcnt,
363 &ko->ko_strtab, &ko->ko_strtabsz);
364 if (error != 0) {
365 kobj_error(ko, "renamespace failed %d", error);
366 goto out;
367 }
368
369 /*
370 * Do we have a string table for the section names?
371 */
372 if (hdr->e_shstrndx != SHN_UNDEF) {
373 if (hdr->e_shstrndx >= hdr->e_shnum) {
374 kobj_error(ko, "bad shstrndx");
375 error = ENOEXEC;
376 goto out;
377 }
378 if (shdr[hdr->e_shstrndx].sh_size != 0 &&
379 shdr[hdr->e_shstrndx].sh_type == SHT_STRTAB) {
380 ko->ko_shstrtabsz = shdr[hdr->e_shstrndx].sh_size;
381 error = ko->ko_read(ko, (void **)&ko->ko_shstrtab,
382 shdr[hdr->e_shstrndx].sh_size,
383 shdr[hdr->e_shstrndx].sh_offset, true);
384 if (error != 0) {
385 kobj_error(ko, "read failed %d", error);
386 goto out;
387 }
388 }
389 }
390
391 /*
392 * Size up code/data(progbits) and bss(nobits).
393 */
394 alignmask = 0;
395 mapbase = 0;
396 mapsize = 0;
397 for (i = 0; i < hdr->e_shnum; i++) {
398 switch (shdr[i].sh_type) {
399 case SHT_PROGBITS:
400 case SHT_NOBITS:
401 if (mapbase == 0)
402 mapbase = shdr[i].sh_offset;
403 alignmask = shdr[i].sh_addralign - 1;
404 mapsize += alignmask;
405 mapsize &= ~alignmask;
406 mapsize += shdr[i].sh_size;
407 break;
408 }
409 }
410
411 /*
412 * We know how much space we need for the text/data/bss/etc.
413 * This stuff needs to be in a single chunk so that profiling etc
414 * can get the bounds and gdb can associate offsets with modules.
415 */
416 if (mapsize == 0) {
417 kobj_error(ko, "no text/data/bss");
418 error = ENOEXEC;
419 goto out;
420 }
421 if (ko->ko_type == KT_MEMORY) {
422 mapbase += (vaddr_t)ko->ko_source;
423 } else {
424 mapbase = uvm_km_alloc(module_map, round_page(mapsize),
425 0, UVM_KMF_WIRED | UVM_KMF_EXEC);
426 if (mapbase == 0) {
427 kobj_error(ko, "out of memory");
428 error = ENOMEM;
429 goto out;
430 }
431 }
432 ko->ko_address = mapbase;
433 ko->ko_size = mapsize;
434
435 /*
436 * Now load code/data(progbits), zero bss(nobits), allocate space
437 * for and load relocs
438 */
439 pb = 0;
440 rl = 0;
441 ra = 0;
442 alignmask = 0;
443 for (i = 0; i < hdr->e_shnum; i++) {
444 switch (shdr[i].sh_type) {
445 case SHT_PROGBITS:
446 case SHT_NOBITS:
447 alignmask = shdr[i].sh_addralign - 1;
448 if (ko->ko_type == KT_MEMORY) {
449 addr = (void *)(shdr[i].sh_offset +
450 (vaddr_t)ko->ko_source);
451 if (((vaddr_t)addr & alignmask) != 0) {
452 kobj_error(ko,
453 "section %d not aligned", i);
454 error = ENOEXEC;
455 goto out;
456 }
457 } else {
458 mapbase += alignmask;
459 mapbase &= ~alignmask;
460 addr = (void *)mapbase;
461 mapbase += shdr[i].sh_size;
462 }
463 ko->ko_progtab[pb].addr = addr;
464 if (shdr[i].sh_type == SHT_PROGBITS) {
465 ko->ko_progtab[pb].name = "<<PROGBITS>>";
466 error = ko->ko_read(ko, &addr,
467 shdr[i].sh_size, shdr[i].sh_offset, false);
468 if (error != 0) {
469 kobj_error(ko, "read failed %d", error);
470 goto out;
471 }
472 } else if (ko->ko_type == KT_MEMORY &&
473 shdr[i].sh_size != 0) {
474 kobj_error(ko, "non-loadable BSS "
475 "section in pre-loaded module");
476 error = ENOEXEC;
477 goto out;
478 } else {
479 ko->ko_progtab[pb].name = "<<NOBITS>>";
480 memset(addr, 0, shdr[i].sh_size);
481 }
482 ko->ko_progtab[pb].size = shdr[i].sh_size;
483 ko->ko_progtab[pb].sec = i;
484 if (ko->ko_shstrtab != NULL && shdr[i].sh_name != 0) {
485 ko->ko_progtab[pb].name =
486 ko->ko_shstrtab + shdr[i].sh_name;
487 }
488
489 /* Update all symbol values with the offset. */
490 for (j = 0; j < ko->ko_symcnt; j++) {
491 es = &ko->ko_symtab[j];
492 if (es->st_shndx != i) {
493 continue;
494 }
495 es->st_value += (Elf_Addr)addr;
496 }
497 pb++;
498 break;
499 case SHT_REL:
500 if (shdr[shdr[i].sh_info].sh_type != SHT_PROGBITS)
501 break;
502 ko->ko_reltab[rl].size = shdr[i].sh_size;
503 ko->ko_reltab[rl].size -=
504 shdr[i].sh_size % sizeof(Elf_Rel);
505 if (ko->ko_reltab[rl].size != 0) {
506 ko->ko_reltab[rl].nrel =
507 shdr[i].sh_size / sizeof(Elf_Rel);
508 ko->ko_reltab[rl].sec = shdr[i].sh_info;
509 error = ko->ko_read(ko,
510 (void **)&ko->ko_reltab[rl].rel,
511 ko->ko_reltab[rl].size,
512 shdr[i].sh_offset, true);
513 if (error != 0) {
514 kobj_error(ko, "read failed %d",
515 error);
516 goto out;
517 }
518 }
519 rl++;
520 break;
521 case SHT_RELA:
522 if (shdr[shdr[i].sh_info].sh_type != SHT_PROGBITS)
523 break;
524 ko->ko_relatab[ra].size = shdr[i].sh_size;
525 ko->ko_relatab[ra].size -=
526 shdr[i].sh_size % sizeof(Elf_Rela);
527 if (ko->ko_relatab[ra].size != 0) {
528 ko->ko_relatab[ra].nrela =
529 shdr[i].sh_size / sizeof(Elf_Rela);
530 ko->ko_relatab[ra].sec = shdr[i].sh_info;
531 error = ko->ko_read(ko,
532 (void **)&ko->ko_relatab[ra].rela,
533 shdr[i].sh_size,
534 shdr[i].sh_offset, true);
535 if (error != 0) {
536 kobj_error(ko, "read failed %d", error);
537 goto out;
538 }
539 }
540 ra++;
541 break;
542 default:
543 break;
544 }
545 }
546 if (pb != ko->ko_nprogtab) {
547 panic("%s:%d: %s: lost progbits", __func__, __LINE__,
548 ko->ko_name);
549 }
550 if (rl != ko->ko_nrel) {
551 panic("%s:%d: %s: lost rel", __func__, __LINE__,
552 ko->ko_name);
553 }
554 if (ra != ko->ko_nrela) {
555 panic("%s:%d: %s: lost rela", __func__, __LINE__,
556 ko->ko_name);
557 }
558 if (ko->ko_type != KT_MEMORY && mapbase != ko->ko_address + mapsize) {
559 panic("%s:%d: %s: "
560 "mapbase 0x%lx != address %lx + mapsize %ld (0x%lx)\n",
561 __func__, __LINE__, ko->ko_name,
562 (long)mapbase, (long)ko->ko_address, (long)mapsize,
563 (long)ko->ko_address + mapsize);
564 }
565
566 /*
567 * Perform local relocations only. Relocations relating to global
568 * symbols will be done by kobj_affix().
569 */
570 error = kobj_checksyms(ko, false);
571 if (error == 0) {
572 error = kobj_relocate(ko, true);
573 }
574 out:
575 if (hdr != NULL) {
576 kobj_free(ko, hdr, sizeof(*hdr));
577 }
578 kobj_close(ko);
579 if (error != 0) {
580 kobj_unload(ko);
581 }
582
583 return error;
584 }
585
586 /*
587 * kobj_unload:
588 *
589 * Unload an object previously loaded by kobj_load().
590 */
591 void
592 kobj_unload(kobj_t ko)
593 {
594 int error;
595
596 kobj_close(ko);
597 kobj_jettison(ko);
598
599 /*
600 * Notify MD code that a module has been unloaded.
601 */
602 if (ko->ko_loaded) {
603 error = kobj_machdep(ko, (void *)ko->ko_address, ko->ko_size,
604 false);
605 if (error != 0)
606 kobj_error(ko, "machine dependent deinit failed %d",
607 error);
608 }
609 if (ko->ko_address != 0 && ko->ko_type != KT_MEMORY) {
610 uvm_km_free(module_map, ko->ko_address, round_page(ko->ko_size),
611 UVM_KMF_WIRED);
612 }
613 if (ko->ko_ksyms == true) {
614 ksyms_modunload(ko->ko_name);
615 }
616 if (ko->ko_symtab != NULL) {
617 kobj_free(ko, ko->ko_symtab, ko->ko_symcnt * sizeof(Elf_Sym));
618 }
619 if (ko->ko_strtab != NULL) {
620 kobj_free(ko, ko->ko_strtab, ko->ko_strtabsz);
621 }
622 if (ko->ko_progtab != NULL) {
623 kobj_free(ko, ko->ko_progtab, ko->ko_nprogtab *
624 sizeof(*ko->ko_progtab));
625 ko->ko_progtab = NULL;
626 }
627 if (ko->ko_shstrtab) {
628 kobj_free(ko, ko->ko_shstrtab, ko->ko_shstrtabsz);
629 ko->ko_shstrtab = NULL;
630 }
631
632 kmem_free(ko, sizeof(*ko));
633 }
634
635 /*
636 * kobj_stat:
637 *
638 * Return size and load address of an object.
639 */
640 int
641 kobj_stat(kobj_t ko, vaddr_t *address, size_t *size)
642 {
643
644 if (address != NULL) {
645 *address = ko->ko_address;
646 }
647 if (size != NULL) {
648 *size = ko->ko_size;
649 }
650 return 0;
651 }
652
653 /*
654 * kobj_affix:
655 *
656 * Set an object's name and perform global relocs. May only be
657 * called after the module and any requisite modules are loaded.
658 */
659 int
660 kobj_affix(kobj_t ko, const char *name)
661 {
662 int error;
663
664 KASSERT(ko->ko_ksyms == false);
665 KASSERT(ko->ko_loaded == false);
666
667 kobj_setname(ko, name);
668
669 /* Cache addresses of undefined symbols. */
670 error = kobj_checksyms(ko, true);
671
672 /* Now do global relocations. */
673 if (error == 0)
674 error = kobj_relocate(ko, false);
675
676 /*
677 * Now that we know the name, register the symbol table.
678 * Do after global relocations because ksyms will pack
679 * the table.
680 */
681 if (error == 0) {
682 ksyms_modload(ko->ko_name, ko->ko_symtab, ko->ko_symcnt *
683 sizeof(Elf_Sym), ko->ko_strtab, ko->ko_strtabsz);
684 ko->ko_ksyms = true;
685 }
686
687 /* Jettison unneeded memory post-link. */
688 kobj_jettison(ko);
689
690 /*
691 * Notify MD code that a module has been loaded.
692 *
693 * Most architectures use this opportunity to flush their caches.
694 */
695 if (error == 0) {
696 error = kobj_machdep(ko, (void *)ko->ko_address, ko->ko_size,
697 true);
698 if (error != 0)
699 kobj_error(ko, "machine dependent init failed %d",
700 error);
701 ko->ko_loaded = true;
702 }
703
704 /* If there was an error, destroy the whole object. */
705 if (error != 0) {
706 kobj_unload(ko);
707 }
708
709 return error;
710 }
711
712 /*
713 * kobj_find_section:
714 *
715 * Given a section name, search the loaded object and return
716 * virtual address if present and loaded.
717 */
718 int
719 kobj_find_section(kobj_t ko, const char *name, void **addr, size_t *size)
720 {
721 int i;
722
723 KASSERT(ko->ko_progtab != NULL);
724
725 for (i = 0; i < ko->ko_nprogtab; i++) {
726 if (strcmp(ko->ko_progtab[i].name, name) == 0) {
727 if (addr != NULL) {
728 *addr = ko->ko_progtab[i].addr;
729 }
730 if (size != NULL) {
731 *size = ko->ko_progtab[i].size;
732 }
733 return 0;
734 }
735 }
736
737 return ENOENT;
738 }
739
740 /*
741 * kobj_jettison:
742 *
743 * Release object data not needed after performing relocations.
744 */
745 static void
746 kobj_jettison(kobj_t ko)
747 {
748 int i;
749
750 if (ko->ko_reltab != NULL) {
751 for (i = 0; i < ko->ko_nrel; i++) {
752 if (ko->ko_reltab[i].rel) {
753 kobj_free(ko, ko->ko_reltab[i].rel,
754 ko->ko_reltab[i].size);
755 }
756 }
757 kobj_free(ko, ko->ko_reltab, ko->ko_nrel *
758 sizeof(*ko->ko_reltab));
759 ko->ko_reltab = NULL;
760 ko->ko_nrel = 0;
761 }
762 if (ko->ko_relatab != NULL) {
763 for (i = 0; i < ko->ko_nrela; i++) {
764 if (ko->ko_relatab[i].rela) {
765 kobj_free(ko, ko->ko_relatab[i].rela,
766 ko->ko_relatab[i].size);
767 }
768 }
769 kobj_free(ko, ko->ko_relatab, ko->ko_nrela *
770 sizeof(*ko->ko_relatab));
771 ko->ko_relatab = NULL;
772 ko->ko_nrela = 0;
773 }
774 if (ko->ko_shdr != NULL) {
775 kobj_free(ko, ko->ko_shdr, ko->ko_shdrsz);
776 ko->ko_shdr = NULL;
777 }
778 }
779
780 /*
781 * kobj_sym_lookup:
782 *
783 * Symbol lookup function to be used when the symbol index
784 * is known (ie during relocation).
785 */
786 uintptr_t
787 kobj_sym_lookup(kobj_t ko, uintptr_t symidx)
788 {
789 const Elf_Sym *sym;
790 const char *symbol;
791
792 /* Don't even try to lookup the symbol if the index is bogus. */
793 if (symidx >= ko->ko_symcnt)
794 return 0;
795
796 sym = ko->ko_symtab + symidx;
797
798 /* Quick answer if there is a definition included. */
799 if (sym->st_shndx != SHN_UNDEF) {
800 return (uintptr_t)sym->st_value;
801 }
802
803 /* If we get here, then it is undefined and needs a lookup. */
804 switch (ELF_ST_BIND(sym->st_info)) {
805 case STB_LOCAL:
806 /* Local, but undefined? huh? */
807 kobj_error(ko, "local symbol undefined");
808 return 0;
809
810 case STB_GLOBAL:
811 /* Relative to Data or Function name */
812 symbol = ko->ko_strtab + sym->st_name;
813
814 /* Force a lookup failure if the symbol name is bogus. */
815 if (*symbol == 0) {
816 kobj_error(ko, "bad symbol name");
817 return 0;
818 }
819
820 return (uintptr_t)sym->st_value;
821
822 case STB_WEAK:
823 kobj_error(ko, "weak symbols not supported");
824 return 0;
825
826 default:
827 return 0;
828 }
829 }
830
831 /*
832 * kobj_findbase:
833 *
834 * Return base address of the given section.
835 */
836 static uintptr_t
837 kobj_findbase(kobj_t ko, int sec)
838 {
839 int i;
840
841 for (i = 0; i < ko->ko_nprogtab; i++) {
842 if (sec == ko->ko_progtab[i].sec) {
843 return (uintptr_t)ko->ko_progtab[i].addr;
844 }
845 }
846 return 0;
847 }
848
849 /*
850 * kobj_checksyms:
851 *
852 * Scan symbol table for duplicates or resolve references to
853 * exernal symbols.
854 */
855 static int
856 kobj_checksyms(kobj_t ko, bool undefined)
857 {
858 unsigned long rval;
859 Elf_Sym *sym, *ms;
860 const char *name;
861 int error;
862
863 error = 0;
864
865 for (ms = (sym = ko->ko_symtab) + ko->ko_symcnt; sym < ms; sym++) {
866 /* Check validity of the symbol. */
867 if (ELF_ST_BIND(sym->st_info) != STB_GLOBAL ||
868 sym->st_name == 0)
869 continue;
870 if (undefined != (sym->st_shndx == SHN_UNDEF)) {
871 continue;
872 }
873
874 /*
875 * Look it up. Don't need to lock, as it is known that
876 * the symbol tables aren't going to change (we hold
877 * module_lock).
878 */
879 name = ko->ko_strtab + sym->st_name;
880 if (ksyms_getval_unlocked(NULL, name, &rval,
881 KSYMS_EXTERN) != 0) {
882 if (undefined) {
883 kobj_error(ko, "symbol `%s' not found",
884 name);
885 error = ENOEXEC;
886 }
887 continue;
888 }
889
890 /* Save values of undefined globals. */
891 if (undefined) {
892 sym->st_value = (Elf_Addr)rval;
893 continue;
894 }
895
896 /* Check (and complain) about differing values. */
897 if (sym->st_value == rval) {
898 continue;
899 }
900 if (strcmp(name, "_bss_start") == 0 ||
901 strcmp(name, "__bss_start") == 0 ||
902 strcmp(name, "_bss_end__") == 0 ||
903 strcmp(name, "__bss_end__") == 0 ||
904 strcmp(name, "_edata") == 0 ||
905 strcmp(name, "_end") == 0 ||
906 strcmp(name, "__end") == 0 ||
907 strcmp(name, "__end__") == 0 ||
908 strncmp(name, "__start_link_set_", 17) == 0 ||
909 strncmp(name, "__stop_link_set_", 16) == 0) {
910 continue;
911 }
912 kobj_error(ko, "global symbol `%s' redefined",
913 name);
914 error = ENOEXEC;
915 }
916
917 return error;
918 }
919
920 /*
921 * kobj_relocate:
922 *
923 * Resolve relocations for the loaded object.
924 */
925 static int
926 kobj_relocate(kobj_t ko, bool local)
927 {
928 const Elf_Rel *rellim;
929 const Elf_Rel *rel;
930 const Elf_Rela *relalim;
931 const Elf_Rela *rela;
932 const Elf_Sym *sym;
933 uintptr_t base;
934 int i, error;
935 uintptr_t symidx;
936
937 /*
938 * Perform relocations without addend if there are any.
939 */
940 for (i = 0; i < ko->ko_nrel; i++) {
941 rel = ko->ko_reltab[i].rel;
942 if (rel == NULL) {
943 continue;
944 }
945 rellim = rel + ko->ko_reltab[i].nrel;
946 base = kobj_findbase(ko, ko->ko_reltab[i].sec);
947 if (base == 0) {
948 panic("%s:%d: %s: lost base for e_reltab[%d] sec %d",
949 __func__, __LINE__, ko->ko_name, i,
950 ko->ko_reltab[i].sec);
951 }
952 for (; rel < rellim; rel++) {
953 symidx = ELF_R_SYM(rel->r_info);
954 if (symidx >= ko->ko_symcnt) {
955 continue;
956 }
957 sym = ko->ko_symtab + symidx;
958 if (local != (ELF_ST_BIND(sym->st_info) == STB_LOCAL)) {
959 continue;
960 }
961 error = kobj_reloc(ko, base, rel, false, local);
962 if (error != 0) {
963 return ENOENT;
964 }
965 }
966 }
967
968 /*
969 * Perform relocations with addend if there are any.
970 */
971 for (i = 0; i < ko->ko_nrela; i++) {
972 rela = ko->ko_relatab[i].rela;
973 if (rela == NULL) {
974 continue;
975 }
976 relalim = rela + ko->ko_relatab[i].nrela;
977 base = kobj_findbase(ko, ko->ko_relatab[i].sec);
978 if (base == 0) {
979 panic("%s:%d: %s: lost base for e_relatab[%d] sec %d",
980 __func__, __LINE__, ko->ko_name, i,
981 ko->ko_relatab[i].sec);
982 }
983 for (; rela < relalim; rela++) {
984 symidx = ELF_R_SYM(rela->r_info);
985 if (symidx >= ko->ko_symcnt) {
986 continue;
987 }
988 sym = ko->ko_symtab + symidx;
989 if (local != (ELF_ST_BIND(sym->st_info) == STB_LOCAL)) {
990 continue;
991 }
992 error = kobj_reloc(ko, base, rela, true, local);
993 if (error != 0) {
994 return ENOENT;
995 }
996 }
997 }
998
999 return 0;
1000 }
1001
1002 /*
1003 * kobj_out:
1004 *
1005 * Utility function: log an error.
1006 */
1007 static void
1008 kobj_out(const char *fname, int lnum, kobj_t ko, const char *fmt, ...)
1009 {
1010 va_list ap;
1011
1012 printf("%s, %d: [%s]: linker error: ", fname, lnum, ko->ko_name);
1013 va_start(ap, fmt);
1014 vprintf(fmt, ap);
1015 va_end(ap);
1016 printf("\n");
1017 }
1018
1019 static int
1020 kobj_read_mem(kobj_t ko, void **basep, size_t size, off_t off,
1021 bool allocate)
1022 {
1023 void *base = *basep;
1024 int error;
1025
1026 if (ko->ko_memsize != -1 && off + size > ko->ko_memsize) {
1027 kobj_error(ko, "preloaded object short");
1028 error = EINVAL;
1029 base = NULL;
1030 } else if (allocate) {
1031 base = (uint8_t *)ko->ko_source + off;
1032 error = 0;
1033 } else if ((uint8_t *)base != (uint8_t *)ko->ko_source + off) {
1034 kobj_error(ko, "object not aligned");
1035 kobj_error(ko, "source=%p base=%p off=%d "
1036 "size=%zu", ko->ko_source, base, (int)off, size);
1037 error = EINVAL;
1038 } else {
1039 /* Nothing to do. Loading in-situ. */
1040 error = 0;
1041 }
1042
1043 if (allocate)
1044 *basep = base;
1045
1046 return error;
1047 }
1048
1049 /*
1050 * kobj_free:
1051 *
1052 * Utility function: free memory if it was allocated from the heap.
1053 */
1054 static void
1055 kobj_free(kobj_t ko, void *base, size_t size)
1056 {
1057
1058 if (ko->ko_type != KT_MEMORY)
1059 kmem_free(base, size);
1060 }
1061
1062 extern char module_base[];
1063
1064 void
1065 kobj_setname(kobj_t ko, const char *name)
1066 {
1067 const char *d = name, *dots = "";
1068 size_t len, dlen;
1069
1070 for (char *s = module_base; *d == *s; d++, s++)
1071 continue;
1072
1073 if (d == name)
1074 name = "";
1075 else
1076 name = "%M";
1077 dlen = strlen(d);
1078 len = dlen + strlen(name);
1079 if (len >= sizeof(ko->ko_name)) {
1080 len = (len - sizeof(ko->ko_name)) + 5; /* dots + NUL */
1081 if (dlen >= len) {
1082 d += len;
1083 dots = "/...";
1084 }
1085 }
1086 snprintf(ko->ko_name, sizeof(ko->ko_name), "%s%s%s", name, dots, d);
1087 }
1088
1089 #else /* MODULAR */
1090
1091 int
1092 kobj_load_mem(kobj_t *kop, const char *name, void *base, ssize_t size)
1093 {
1094
1095 return ENOSYS;
1096 }
1097
1098 void
1099 kobj_unload(kobj_t ko)
1100 {
1101
1102 panic("not modular");
1103 }
1104
1105 int
1106 kobj_stat(kobj_t ko, vaddr_t *base, size_t *size)
1107 {
1108
1109 return ENOSYS;
1110 }
1111
1112 int
1113 kobj_affix(kobj_t ko, const char *name)
1114 {
1115
1116 panic("not modular");
1117 }
1118
1119 int
1120 kobj_find_section(kobj_t ko, const char *name, void **addr, size_t *size)
1121 {
1122
1123 panic("not modular");
1124 }
1125
1126 void
1127 kobj_setname(kobj_t ko, const char *name)
1128 {
1129
1130 panic("not modular");
1131 }
1132
1133 #endif /* MODULAR */
1134