subr_kobj.c revision 1.54 1 /* $NetBSD: subr_kobj.c,v 1.54 2016/07/08 08:55:48 maxv Exp $ */
2
3 /*-
4 * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software developed for The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1998-2000 Doug Rabson
34 * Copyright (c) 2004 Peter Wemm
35 * All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 *
46 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
47 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
48 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
49 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
50 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
51 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
52 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
53 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
54 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
55 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
56 * SUCH DAMAGE.
57 */
58
59 /*
60 * Kernel loader for ELF objects.
61 *
62 * TODO: adjust kmem_alloc() calls to avoid needless fragmentation.
63 */
64
65 #include <sys/cdefs.h>
66 __KERNEL_RCSID(0, "$NetBSD: subr_kobj.c,v 1.54 2016/07/08 08:55:48 maxv Exp $");
67
68 #ifdef _KERNEL_OPT
69 #include "opt_modular.h"
70 #endif
71
72 #include <sys/kobj_impl.h>
73
74 #ifdef MODULAR
75
76 #include <sys/param.h>
77 #include <sys/kernel.h>
78 #include <sys/kmem.h>
79 #include <sys/proc.h>
80 #include <sys/ksyms.h>
81 #include <sys/module.h>
82
83 #include <uvm/uvm_extern.h>
84
85 #define kobj_error(_kobj, ...) \
86 kobj_out(__func__, __LINE__, _kobj, __VA_ARGS__)
87
88 static int kobj_relocate(kobj_t, bool);
89 static int kobj_checksyms(kobj_t, bool);
90 static void kobj_out(const char *, int, kobj_t, const char *, ...)
91 __printflike(4, 5);
92 static void kobj_jettison(kobj_t);
93 static void kobj_free(kobj_t, void *, size_t);
94 static void kobj_close(kobj_t);
95 static int kobj_read_mem(kobj_t, void **, size_t, off_t, bool);
96 static void kobj_close_mem(kobj_t);
97
98 extern struct vm_map *module_map;
99
100 /*
101 * kobj_load_mem:
102 *
103 * Load an object already resident in memory. If size is not -1,
104 * the complete size of the object is known.
105 */
106 int
107 kobj_load_mem(kobj_t *kop, const char *name, void *base, ssize_t size)
108 {
109 kobj_t ko;
110
111 ko = kmem_zalloc(sizeof(*ko), KM_SLEEP);
112 if (ko == NULL) {
113 return ENOMEM;
114 }
115
116 ko->ko_type = KT_MEMORY;
117 kobj_setname(ko, name);
118 ko->ko_source = base;
119 ko->ko_memsize = size;
120 ko->ko_read = kobj_read_mem;
121 ko->ko_close = kobj_close_mem;
122
123 *kop = ko;
124 return kobj_load(ko);
125 }
126
127 /*
128 * kobj_close:
129 *
130 * Close an open ELF object.
131 */
132 static void
133 kobj_close(kobj_t ko)
134 {
135
136 if (ko->ko_source == NULL) {
137 return;
138 }
139
140 ko->ko_close(ko);
141 ko->ko_source = NULL;
142 }
143
144 static void
145 kobj_close_mem(kobj_t ko)
146 {
147
148 return;
149 }
150
151 /*
152 * kobj_load:
153 *
154 * Load an ELF object and prepare to link into the running kernel
155 * image.
156 */
157 int
158 kobj_load(kobj_t ko)
159 {
160 Elf_Ehdr *hdr;
161 Elf_Shdr *shdr;
162 Elf_Sym *es;
163 vaddr_t mapbase;
164 size_t mapsize;
165 int error;
166 int symtabindex;
167 int symstrindex;
168 int nsym;
169 int pb, rl, ra;
170 int alignmask;
171 int i, j;
172 void *addr;
173
174 KASSERT(ko->ko_type != KT_UNSET);
175 KASSERT(ko->ko_source != NULL);
176
177 shdr = NULL;
178 error = 0;
179 hdr = NULL;
180
181 /*
182 * Read the elf header from the file.
183 */
184 error = ko->ko_read(ko, (void **)&hdr, sizeof(*hdr), 0, true);
185 if (error != 0) {
186 kobj_error(ko, "read failed %d", error);
187 goto out;
188 }
189 if (memcmp(hdr->e_ident, ELFMAG, SELFMAG) != 0) {
190 kobj_error(ko, "not an ELF object");
191 error = ENOEXEC;
192 goto out;
193 }
194
195 if (hdr->e_ident[EI_VERSION] != EV_CURRENT ||
196 hdr->e_version != EV_CURRENT) {
197 kobj_error(ko, "unsupported file version %d",
198 hdr->e_ident[EI_VERSION]);
199 error = ENOEXEC;
200 goto out;
201 }
202 if (hdr->e_type != ET_REL) {
203 kobj_error(ko, "unsupported file type %d", hdr->e_type);
204 error = ENOEXEC;
205 goto out;
206 }
207 switch (hdr->e_machine) {
208 #if ELFSIZE == 32
209 ELF32_MACHDEP_ID_CASES
210 #elif ELFSIZE == 64
211 ELF64_MACHDEP_ID_CASES
212 #else
213 #error not defined
214 #endif
215 default:
216 kobj_error(ko, "unsupported machine %d", hdr->e_machine);
217 error = ENOEXEC;
218 goto out;
219 }
220
221 ko->ko_nprogtab = 0;
222 ko->ko_shdr = 0;
223 ko->ko_nrel = 0;
224 ko->ko_nrela = 0;
225
226 /*
227 * Allocate and read in the section header.
228 */
229 if (hdr->e_shnum == 0 || hdr->e_shnum > ELF_MAXSHNUM ||
230 hdr->e_shoff == 0 || hdr->e_shentsize != sizeof(Elf_Shdr)) {
231 kobj_error(ko, "bad sizes");
232 error = ENOEXEC;
233 goto out;
234 }
235 ko->ko_shdrsz = hdr->e_shnum * sizeof(Elf_Shdr);
236 error = ko->ko_read(ko, (void **)&shdr, ko->ko_shdrsz, hdr->e_shoff,
237 true);
238 if (error != 0) {
239 kobj_error(ko, "read failed %d", error);
240 goto out;
241 }
242 ko->ko_shdr = shdr;
243
244 /*
245 * Scan the section header for information and table sizing.
246 */
247 nsym = 0;
248 symtabindex = symstrindex = -1;
249 for (i = 0; i < hdr->e_shnum; i++) {
250 switch (shdr[i].sh_type) {
251 case SHT_PROGBITS:
252 case SHT_NOBITS:
253 ko->ko_nprogtab++;
254 break;
255 case SHT_SYMTAB:
256 nsym++;
257 symtabindex = i;
258 symstrindex = shdr[i].sh_link;
259 break;
260 case SHT_REL:
261 if (shdr[shdr[i].sh_info].sh_type != SHT_PROGBITS)
262 continue;
263 ko->ko_nrel++;
264 break;
265 case SHT_RELA:
266 if (shdr[shdr[i].sh_info].sh_type != SHT_PROGBITS)
267 continue;
268 ko->ko_nrela++;
269 break;
270 case SHT_STRTAB:
271 break;
272 }
273 }
274 if (ko->ko_nprogtab == 0) {
275 kobj_error(ko, "file has no contents");
276 error = ENOEXEC;
277 goto out;
278 }
279 if (nsym != 1) {
280 /* Only allow one symbol table for now */
281 kobj_error(ko, "file has no valid symbol table");
282 error = ENOEXEC;
283 goto out;
284 }
285 KASSERT(symtabindex != -1);
286 KASSERT(symstrindex != -1);
287
288 if (symstrindex == SHN_UNDEF || symstrindex >= hdr->e_shnum ||
289 shdr[symstrindex].sh_type != SHT_STRTAB) {
290 kobj_error(ko, "file has invalid symbol strings");
291 error = ENOEXEC;
292 goto out;
293 }
294
295 /*
296 * Allocate space for tracking the load chunks.
297 */
298 if (ko->ko_nprogtab != 0) {
299 ko->ko_progtab = kmem_zalloc(ko->ko_nprogtab *
300 sizeof(*ko->ko_progtab), KM_SLEEP);
301 if (ko->ko_progtab == NULL) {
302 error = ENOMEM;
303 kobj_error(ko, "out of memory");
304 goto out;
305 }
306 }
307 if (ko->ko_nrel != 0) {
308 ko->ko_reltab = kmem_zalloc(ko->ko_nrel *
309 sizeof(*ko->ko_reltab), KM_SLEEP);
310 if (ko->ko_reltab == NULL) {
311 error = ENOMEM;
312 kobj_error(ko, "out of memory");
313 goto out;
314 }
315 }
316 if (ko->ko_nrela != 0) {
317 ko->ko_relatab = kmem_zalloc(ko->ko_nrela *
318 sizeof(*ko->ko_relatab), KM_SLEEP);
319 if (ko->ko_relatab == NULL) {
320 error = ENOMEM;
321 kobj_error(ko, "out of memory");
322 goto out;
323 }
324 }
325
326 /*
327 * Allocate space for and load the symbol table.
328 */
329 ko->ko_symcnt = shdr[symtabindex].sh_size / sizeof(Elf_Sym);
330 if (ko->ko_symcnt == 0) {
331 kobj_error(ko, "no symbol table");
332 error = ENOEXEC;
333 goto out;
334 }
335 error = ko->ko_read(ko, (void **)&ko->ko_symtab,
336 ko->ko_symcnt * sizeof(Elf_Sym),
337 shdr[symtabindex].sh_offset, true);
338 if (error != 0) {
339 kobj_error(ko, "read failed %d", error);
340 goto out;
341 }
342
343 /*
344 * Allocate space for and load the symbol strings.
345 */
346 ko->ko_strtabsz = shdr[symstrindex].sh_size;
347 if (ko->ko_strtabsz == 0) {
348 kobj_error(ko, "no symbol strings");
349 error = ENOEXEC;
350 goto out;
351 }
352 error = ko->ko_read(ko, (void *)&ko->ko_strtab, ko->ko_strtabsz,
353 shdr[symstrindex].sh_offset, true);
354 if (error != 0) {
355 kobj_error(ko, "read failed %d", error);
356 goto out;
357 }
358
359 /*
360 * Adjust module symbol namespace, if necessary (e.g. with rump)
361 */
362 error = kobj_renamespace(ko->ko_symtab, ko->ko_symcnt,
363 &ko->ko_strtab, &ko->ko_strtabsz);
364 if (error != 0) {
365 kobj_error(ko, "renamespace failed %d", error);
366 goto out;
367 }
368
369 /*
370 * Do we have a string table for the section names?
371 */
372 if (hdr->e_shstrndx != SHN_UNDEF) {
373 if (hdr->e_shstrndx >= hdr->e_shnum) {
374 kobj_error(ko, "bad shstrndx");
375 error = ENOEXEC;
376 goto out;
377 }
378 if (shdr[hdr->e_shstrndx].sh_size != 0 &&
379 shdr[hdr->e_shstrndx].sh_type == SHT_STRTAB) {
380 ko->ko_shstrtabsz = shdr[hdr->e_shstrndx].sh_size;
381 error = ko->ko_read(ko, (void **)&ko->ko_shstrtab,
382 shdr[hdr->e_shstrndx].sh_size,
383 shdr[hdr->e_shstrndx].sh_offset, true);
384 if (error != 0) {
385 kobj_error(ko, "read failed %d", error);
386 goto out;
387 }
388 }
389 }
390
391 /*
392 * Size up code/data(progbits) and bss(nobits).
393 */
394 alignmask = 0;
395 mapsize = 0;
396 for (i = 0; i < hdr->e_shnum; i++) {
397 switch (shdr[i].sh_type) {
398 case SHT_PROGBITS:
399 case SHT_NOBITS:
400 alignmask = shdr[i].sh_addralign - 1;
401 mapsize += alignmask;
402 mapsize &= ~alignmask;
403 mapsize += shdr[i].sh_size;
404 break;
405 }
406 }
407
408 /*
409 * We know how much space we need for the text/data/bss/etc.
410 * This stuff needs to be in a single chunk so that profiling etc
411 * can get the bounds and gdb can associate offsets with modules.
412 */
413 if (mapsize == 0) {
414 kobj_error(ko, "no text/data/bss");
415 error = ENOEXEC;
416 goto out;
417 }
418
419 mapbase = uvm_km_alloc(module_map, round_page(mapsize),
420 0, UVM_KMF_WIRED | UVM_KMF_EXEC);
421 if (mapbase == 0) {
422 kobj_error(ko, "out of memory");
423 error = ENOMEM;
424 goto out;
425 }
426
427 ko->ko_address = mapbase;
428 ko->ko_size = mapsize;
429
430 /*
431 * Now load code/data(progbits), zero bss(nobits), allocate space
432 * for and load relocs
433 */
434 pb = 0;
435 rl = 0;
436 ra = 0;
437 alignmask = 0;
438 for (i = 0; i < hdr->e_shnum; i++) {
439 switch (shdr[i].sh_type) {
440 case SHT_PROGBITS:
441 case SHT_NOBITS:
442 alignmask = shdr[i].sh_addralign - 1;
443 mapbase += alignmask;
444 mapbase &= ~alignmask;
445 addr = (void *)mapbase;
446 mapbase += shdr[i].sh_size;
447
448 ko->ko_progtab[pb].addr = addr;
449 if (shdr[i].sh_type == SHT_PROGBITS) {
450 ko->ko_progtab[pb].name = "<<PROGBITS>>";
451 error = ko->ko_read(ko, &addr,
452 shdr[i].sh_size, shdr[i].sh_offset, false);
453 if (error != 0) {
454 kobj_error(ko, "read failed %d", error);
455 goto out;
456 }
457 } else { /* SHT_NOBITS */
458 ko->ko_progtab[pb].name = "<<NOBITS>>";
459 memset(addr, 0, shdr[i].sh_size);
460 }
461
462 ko->ko_progtab[pb].size = shdr[i].sh_size;
463 ko->ko_progtab[pb].sec = i;
464 if (ko->ko_shstrtab != NULL && shdr[i].sh_name != 0) {
465 ko->ko_progtab[pb].name =
466 ko->ko_shstrtab + shdr[i].sh_name;
467 }
468
469 /* Update all symbol values with the offset. */
470 for (j = 0; j < ko->ko_symcnt; j++) {
471 es = &ko->ko_symtab[j];
472 if (es->st_shndx != i) {
473 continue;
474 }
475 es->st_value += (Elf_Addr)addr;
476 }
477 pb++;
478 break;
479 case SHT_REL:
480 if (shdr[shdr[i].sh_info].sh_type != SHT_PROGBITS)
481 break;
482 ko->ko_reltab[rl].size = shdr[i].sh_size;
483 ko->ko_reltab[rl].size -=
484 shdr[i].sh_size % sizeof(Elf_Rel);
485 if (ko->ko_reltab[rl].size != 0) {
486 ko->ko_reltab[rl].nrel =
487 shdr[i].sh_size / sizeof(Elf_Rel);
488 ko->ko_reltab[rl].sec = shdr[i].sh_info;
489 error = ko->ko_read(ko,
490 (void **)&ko->ko_reltab[rl].rel,
491 ko->ko_reltab[rl].size,
492 shdr[i].sh_offset, true);
493 if (error != 0) {
494 kobj_error(ko, "read failed %d",
495 error);
496 goto out;
497 }
498 }
499 rl++;
500 break;
501 case SHT_RELA:
502 if (shdr[shdr[i].sh_info].sh_type != SHT_PROGBITS)
503 break;
504 ko->ko_relatab[ra].size = shdr[i].sh_size;
505 ko->ko_relatab[ra].size -=
506 shdr[i].sh_size % sizeof(Elf_Rela);
507 if (ko->ko_relatab[ra].size != 0) {
508 ko->ko_relatab[ra].nrela =
509 shdr[i].sh_size / sizeof(Elf_Rela);
510 ko->ko_relatab[ra].sec = shdr[i].sh_info;
511 error = ko->ko_read(ko,
512 (void **)&ko->ko_relatab[ra].rela,
513 shdr[i].sh_size,
514 shdr[i].sh_offset, true);
515 if (error != 0) {
516 kobj_error(ko, "read failed %d", error);
517 goto out;
518 }
519 }
520 ra++;
521 break;
522 default:
523 break;
524 }
525 }
526 if (pb != ko->ko_nprogtab) {
527 panic("%s:%d: %s: lost progbits", __func__, __LINE__,
528 ko->ko_name);
529 }
530 if (rl != ko->ko_nrel) {
531 panic("%s:%d: %s: lost rel", __func__, __LINE__,
532 ko->ko_name);
533 }
534 if (ra != ko->ko_nrela) {
535 panic("%s:%d: %s: lost rela", __func__, __LINE__,
536 ko->ko_name);
537 }
538 if (mapbase != ko->ko_address + mapsize) {
539 panic("%s:%d: %s: "
540 "mapbase 0x%lx != address %lx + mapsize %ld (0x%lx)\n",
541 __func__, __LINE__, ko->ko_name,
542 (long)mapbase, (long)ko->ko_address, (long)mapsize,
543 (long)ko->ko_address + mapsize);
544 }
545
546 /*
547 * Perform local relocations only. Relocations relating to global
548 * symbols will be done by kobj_affix().
549 */
550 error = kobj_checksyms(ko, false);
551 if (error == 0) {
552 error = kobj_relocate(ko, true);
553 }
554 out:
555 if (hdr != NULL) {
556 kobj_free(ko, hdr, sizeof(*hdr));
557 }
558 kobj_close(ko);
559 if (error != 0) {
560 kobj_unload(ko);
561 }
562
563 return error;
564 }
565
566 /*
567 * kobj_unload:
568 *
569 * Unload an object previously loaded by kobj_load().
570 */
571 void
572 kobj_unload(kobj_t ko)
573 {
574 int error;
575
576 kobj_close(ko);
577 kobj_jettison(ko);
578
579 /*
580 * Notify MD code that a module has been unloaded.
581 */
582 if (ko->ko_loaded) {
583 error = kobj_machdep(ko, (void *)ko->ko_address, ko->ko_size,
584 false);
585 if (error != 0)
586 kobj_error(ko, "machine dependent deinit failed %d",
587 error);
588 }
589 if (ko->ko_address != 0) {
590 uvm_km_free(module_map, ko->ko_address, round_page(ko->ko_size),
591 UVM_KMF_WIRED);
592 }
593 if (ko->ko_ksyms == true) {
594 ksyms_modunload(ko->ko_name);
595 }
596 if (ko->ko_symtab != NULL) {
597 kobj_free(ko, ko->ko_symtab, ko->ko_symcnt * sizeof(Elf_Sym));
598 }
599 if (ko->ko_strtab != NULL) {
600 kobj_free(ko, ko->ko_strtab, ko->ko_strtabsz);
601 }
602 if (ko->ko_progtab != NULL) {
603 kobj_free(ko, ko->ko_progtab, ko->ko_nprogtab *
604 sizeof(*ko->ko_progtab));
605 ko->ko_progtab = NULL;
606 }
607 if (ko->ko_shstrtab) {
608 kobj_free(ko, ko->ko_shstrtab, ko->ko_shstrtabsz);
609 ko->ko_shstrtab = NULL;
610 }
611
612 kmem_free(ko, sizeof(*ko));
613 }
614
615 /*
616 * kobj_stat:
617 *
618 * Return size and load address of an object.
619 */
620 int
621 kobj_stat(kobj_t ko, vaddr_t *address, size_t *size)
622 {
623
624 if (address != NULL) {
625 *address = ko->ko_address;
626 }
627 if (size != NULL) {
628 *size = ko->ko_size;
629 }
630 return 0;
631 }
632
633 /*
634 * kobj_affix:
635 *
636 * Set an object's name and perform global relocs. May only be
637 * called after the module and any requisite modules are loaded.
638 */
639 int
640 kobj_affix(kobj_t ko, const char *name)
641 {
642 int error;
643
644 KASSERT(ko->ko_ksyms == false);
645 KASSERT(ko->ko_loaded == false);
646
647 kobj_setname(ko, name);
648
649 /* Cache addresses of undefined symbols. */
650 error = kobj_checksyms(ko, true);
651
652 /* Now do global relocations. */
653 if (error == 0)
654 error = kobj_relocate(ko, false);
655
656 /*
657 * Now that we know the name, register the symbol table.
658 * Do after global relocations because ksyms will pack
659 * the table.
660 */
661 if (error == 0) {
662 ksyms_modload(ko->ko_name, ko->ko_symtab, ko->ko_symcnt *
663 sizeof(Elf_Sym), ko->ko_strtab, ko->ko_strtabsz);
664 ko->ko_ksyms = true;
665 }
666
667 /* Jettison unneeded memory post-link. */
668 kobj_jettison(ko);
669
670 /*
671 * Notify MD code that a module has been loaded.
672 *
673 * Most architectures use this opportunity to flush their caches.
674 */
675 if (error == 0) {
676 error = kobj_machdep(ko, (void *)ko->ko_address, ko->ko_size,
677 true);
678 if (error != 0)
679 kobj_error(ko, "machine dependent init failed %d",
680 error);
681 ko->ko_loaded = true;
682 }
683
684 /* If there was an error, destroy the whole object. */
685 if (error != 0) {
686 kobj_unload(ko);
687 }
688
689 return error;
690 }
691
692 /*
693 * kobj_find_section:
694 *
695 * Given a section name, search the loaded object and return
696 * virtual address if present and loaded.
697 */
698 int
699 kobj_find_section(kobj_t ko, const char *name, void **addr, size_t *size)
700 {
701 int i;
702
703 KASSERT(ko->ko_progtab != NULL);
704
705 for (i = 0; i < ko->ko_nprogtab; i++) {
706 if (strcmp(ko->ko_progtab[i].name, name) == 0) {
707 if (addr != NULL) {
708 *addr = ko->ko_progtab[i].addr;
709 }
710 if (size != NULL) {
711 *size = ko->ko_progtab[i].size;
712 }
713 return 0;
714 }
715 }
716
717 return ENOENT;
718 }
719
720 /*
721 * kobj_jettison:
722 *
723 * Release object data not needed after performing relocations.
724 */
725 static void
726 kobj_jettison(kobj_t ko)
727 {
728 int i;
729
730 if (ko->ko_reltab != NULL) {
731 for (i = 0; i < ko->ko_nrel; i++) {
732 if (ko->ko_reltab[i].rel) {
733 kobj_free(ko, ko->ko_reltab[i].rel,
734 ko->ko_reltab[i].size);
735 }
736 }
737 kobj_free(ko, ko->ko_reltab, ko->ko_nrel *
738 sizeof(*ko->ko_reltab));
739 ko->ko_reltab = NULL;
740 ko->ko_nrel = 0;
741 }
742 if (ko->ko_relatab != NULL) {
743 for (i = 0; i < ko->ko_nrela; i++) {
744 if (ko->ko_relatab[i].rela) {
745 kobj_free(ko, ko->ko_relatab[i].rela,
746 ko->ko_relatab[i].size);
747 }
748 }
749 kobj_free(ko, ko->ko_relatab, ko->ko_nrela *
750 sizeof(*ko->ko_relatab));
751 ko->ko_relatab = NULL;
752 ko->ko_nrela = 0;
753 }
754 if (ko->ko_shdr != NULL) {
755 kobj_free(ko, ko->ko_shdr, ko->ko_shdrsz);
756 ko->ko_shdr = NULL;
757 }
758 }
759
760 /*
761 * kobj_sym_lookup:
762 *
763 * Symbol lookup function to be used when the symbol index
764 * is known (ie during relocation).
765 */
766 uintptr_t
767 kobj_sym_lookup(kobj_t ko, uintptr_t symidx)
768 {
769 const Elf_Sym *sym;
770 const char *symbol;
771
772 /* Don't even try to lookup the symbol if the index is bogus. */
773 if (symidx >= ko->ko_symcnt)
774 return 0;
775
776 sym = ko->ko_symtab + symidx;
777
778 /* Quick answer if there is a definition included. */
779 if (sym->st_shndx != SHN_UNDEF) {
780 return (uintptr_t)sym->st_value;
781 }
782
783 /* If we get here, then it is undefined and needs a lookup. */
784 switch (ELF_ST_BIND(sym->st_info)) {
785 case STB_LOCAL:
786 /* Local, but undefined? huh? */
787 kobj_error(ko, "local symbol undefined");
788 return 0;
789
790 case STB_GLOBAL:
791 /* Relative to Data or Function name */
792 symbol = ko->ko_strtab + sym->st_name;
793
794 /* Force a lookup failure if the symbol name is bogus. */
795 if (*symbol == 0) {
796 kobj_error(ko, "bad symbol name");
797 return 0;
798 }
799
800 return (uintptr_t)sym->st_value;
801
802 case STB_WEAK:
803 kobj_error(ko, "weak symbols not supported");
804 return 0;
805
806 default:
807 return 0;
808 }
809 }
810
811 /*
812 * kobj_findbase:
813 *
814 * Return base address of the given section.
815 */
816 static uintptr_t
817 kobj_findbase(kobj_t ko, int sec)
818 {
819 int i;
820
821 for (i = 0; i < ko->ko_nprogtab; i++) {
822 if (sec == ko->ko_progtab[i].sec) {
823 return (uintptr_t)ko->ko_progtab[i].addr;
824 }
825 }
826 return 0;
827 }
828
829 /*
830 * kobj_checksyms:
831 *
832 * Scan symbol table for duplicates or resolve references to
833 * exernal symbols.
834 */
835 static int
836 kobj_checksyms(kobj_t ko, bool undefined)
837 {
838 unsigned long rval;
839 Elf_Sym *sym, *ms;
840 const char *name;
841 int error;
842
843 error = 0;
844
845 for (ms = (sym = ko->ko_symtab) + ko->ko_symcnt; sym < ms; sym++) {
846 /* Check validity of the symbol. */
847 if (ELF_ST_BIND(sym->st_info) != STB_GLOBAL ||
848 sym->st_name == 0)
849 continue;
850 if (undefined != (sym->st_shndx == SHN_UNDEF)) {
851 continue;
852 }
853
854 /*
855 * Look it up. Don't need to lock, as it is known that
856 * the symbol tables aren't going to change (we hold
857 * module_lock).
858 */
859 name = ko->ko_strtab + sym->st_name;
860 if (ksyms_getval_unlocked(NULL, name, &rval,
861 KSYMS_EXTERN) != 0) {
862 if (undefined) {
863 kobj_error(ko, "symbol `%s' not found",
864 name);
865 error = ENOEXEC;
866 }
867 continue;
868 }
869
870 /* Save values of undefined globals. */
871 if (undefined) {
872 sym->st_value = (Elf_Addr)rval;
873 continue;
874 }
875
876 /* Check (and complain) about differing values. */
877 if (sym->st_value == rval) {
878 continue;
879 }
880 if (strcmp(name, "_bss_start") == 0 ||
881 strcmp(name, "__bss_start") == 0 ||
882 strcmp(name, "_bss_end__") == 0 ||
883 strcmp(name, "__bss_end__") == 0 ||
884 strcmp(name, "_edata") == 0 ||
885 strcmp(name, "_end") == 0 ||
886 strcmp(name, "__end") == 0 ||
887 strcmp(name, "__end__") == 0 ||
888 strncmp(name, "__start_link_set_", 17) == 0 ||
889 strncmp(name, "__stop_link_set_", 16) == 0) {
890 continue;
891 }
892 kobj_error(ko, "global symbol `%s' redefined",
893 name);
894 error = ENOEXEC;
895 }
896
897 return error;
898 }
899
900 /*
901 * kobj_relocate:
902 *
903 * Resolve relocations for the loaded object.
904 */
905 static int
906 kobj_relocate(kobj_t ko, bool local)
907 {
908 const Elf_Rel *rellim;
909 const Elf_Rel *rel;
910 const Elf_Rela *relalim;
911 const Elf_Rela *rela;
912 const Elf_Sym *sym;
913 uintptr_t base;
914 int i, error;
915 uintptr_t symidx;
916
917 /*
918 * Perform relocations without addend if there are any.
919 */
920 for (i = 0; i < ko->ko_nrel; i++) {
921 rel = ko->ko_reltab[i].rel;
922 if (rel == NULL) {
923 continue;
924 }
925 rellim = rel + ko->ko_reltab[i].nrel;
926 base = kobj_findbase(ko, ko->ko_reltab[i].sec);
927 if (base == 0) {
928 panic("%s:%d: %s: lost base for e_reltab[%d] sec %d",
929 __func__, __LINE__, ko->ko_name, i,
930 ko->ko_reltab[i].sec);
931 }
932 for (; rel < rellim; rel++) {
933 symidx = ELF_R_SYM(rel->r_info);
934 if (symidx >= ko->ko_symcnt) {
935 continue;
936 }
937 sym = ko->ko_symtab + symidx;
938 if (local != (ELF_ST_BIND(sym->st_info) == STB_LOCAL)) {
939 continue;
940 }
941 error = kobj_reloc(ko, base, rel, false, local);
942 if (error != 0) {
943 return ENOENT;
944 }
945 }
946 }
947
948 /*
949 * Perform relocations with addend if there are any.
950 */
951 for (i = 0; i < ko->ko_nrela; i++) {
952 rela = ko->ko_relatab[i].rela;
953 if (rela == NULL) {
954 continue;
955 }
956 relalim = rela + ko->ko_relatab[i].nrela;
957 base = kobj_findbase(ko, ko->ko_relatab[i].sec);
958 if (base == 0) {
959 panic("%s:%d: %s: lost base for e_relatab[%d] sec %d",
960 __func__, __LINE__, ko->ko_name, i,
961 ko->ko_relatab[i].sec);
962 }
963 for (; rela < relalim; rela++) {
964 symidx = ELF_R_SYM(rela->r_info);
965 if (symidx >= ko->ko_symcnt) {
966 continue;
967 }
968 sym = ko->ko_symtab + symidx;
969 if (local != (ELF_ST_BIND(sym->st_info) == STB_LOCAL)) {
970 continue;
971 }
972 error = kobj_reloc(ko, base, rela, true, local);
973 if (error != 0) {
974 return ENOENT;
975 }
976 }
977 }
978
979 return 0;
980 }
981
982 /*
983 * kobj_out:
984 *
985 * Utility function: log an error.
986 */
987 static void
988 kobj_out(const char *fname, int lnum, kobj_t ko, const char *fmt, ...)
989 {
990 va_list ap;
991
992 printf("%s, %d: [%s]: linker error: ", fname, lnum, ko->ko_name);
993 va_start(ap, fmt);
994 vprintf(fmt, ap);
995 va_end(ap);
996 printf("\n");
997 }
998
999 static int
1000 kobj_read_mem(kobj_t ko, void **basep, size_t size, off_t off,
1001 bool allocate)
1002 {
1003 void *base = *basep;
1004 int error;
1005
1006 KASSERT(ko->ko_source != NULL);
1007
1008 if (ko->ko_memsize != -1 && off + size > ko->ko_memsize) {
1009 kobj_error(ko, "preloaded object short");
1010 error = EINVAL;
1011 base = NULL;
1012 } else if (allocate) {
1013 base = kmem_alloc(size, KM_SLEEP);
1014 error = 0;
1015 } else {
1016 error = 0;
1017 }
1018
1019 if (error == 0) {
1020 /* Copy the section */
1021 memcpy(base, (uint8_t *)ko->ko_source + off, size);
1022 }
1023
1024 if (allocate && error != 0) {
1025 kmem_free(base, size);
1026 base = NULL;
1027 }
1028
1029 if (allocate)
1030 *basep = base;
1031
1032 return error;
1033 }
1034
1035 /*
1036 * kobj_free:
1037 *
1038 * Utility function: free memory if it was allocated from the heap.
1039 */
1040 static void
1041 kobj_free(kobj_t ko, void *base, size_t size)
1042 {
1043
1044 kmem_free(base, size);
1045 }
1046
1047 extern char module_base[];
1048
1049 void
1050 kobj_setname(kobj_t ko, const char *name)
1051 {
1052 const char *d = name, *dots = "";
1053 size_t len, dlen;
1054
1055 for (char *s = module_base; *d == *s; d++, s++)
1056 continue;
1057
1058 if (d == name)
1059 name = "";
1060 else
1061 name = "%M";
1062 dlen = strlen(d);
1063 len = dlen + strlen(name);
1064 if (len >= sizeof(ko->ko_name)) {
1065 len = (len - sizeof(ko->ko_name)) + 5; /* dots + NUL */
1066 if (dlen >= len) {
1067 d += len;
1068 dots = "/...";
1069 }
1070 }
1071 snprintf(ko->ko_name, sizeof(ko->ko_name), "%s%s%s", name, dots, d);
1072 }
1073
1074 #else /* MODULAR */
1075
1076 int
1077 kobj_load_mem(kobj_t *kop, const char *name, void *base, ssize_t size)
1078 {
1079
1080 return ENOSYS;
1081 }
1082
1083 void
1084 kobj_unload(kobj_t ko)
1085 {
1086
1087 panic("not modular");
1088 }
1089
1090 int
1091 kobj_stat(kobj_t ko, vaddr_t *base, size_t *size)
1092 {
1093
1094 return ENOSYS;
1095 }
1096
1097 int
1098 kobj_affix(kobj_t ko, const char *name)
1099 {
1100
1101 panic("not modular");
1102 }
1103
1104 int
1105 kobj_find_section(kobj_t ko, const char *name, void **addr, size_t *size)
1106 {
1107
1108 panic("not modular");
1109 }
1110
1111 void
1112 kobj_setname(kobj_t ko, const char *name)
1113 {
1114
1115 panic("not modular");
1116 }
1117
1118 #endif /* MODULAR */
1119