subr_kobj.c revision 1.65 1 /* $NetBSD: subr_kobj.c,v 1.65 2017/11/04 22:17:55 christos Exp $ */
2
3 /*
4 * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software developed for The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1998-2000 Doug Rabson
34 * Copyright (c) 2004 Peter Wemm
35 * All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 *
46 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
47 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
48 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
49 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
50 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
51 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
52 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
53 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
54 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
55 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
56 * SUCH DAMAGE.
57 */
58
59 /*
60 * Kernel loader for ELF objects.
61 *
62 * TODO: adjust kmem_alloc() calls to avoid needless fragmentation.
63 */
64
65 #include <sys/cdefs.h>
66 __KERNEL_RCSID(0, "$NetBSD: subr_kobj.c,v 1.65 2017/11/04 22:17:55 christos Exp $");
67
68 #ifdef _KERNEL_OPT
69 #include "opt_modular.h"
70 #endif
71
72 #include <sys/kobj_impl.h>
73
74 #ifdef MODULAR
75
76 #include <sys/param.h>
77 #include <sys/kernel.h>
78 #include <sys/kmem.h>
79 #include <sys/proc.h>
80 #include <sys/ksyms.h>
81 #include <sys/module.h>
82
83 #include <uvm/uvm_extern.h>
84
85 #define kobj_error(_kobj, ...) \
86 kobj_out(__func__, __LINE__, _kobj, __VA_ARGS__)
87
88 static int kobj_relocate(kobj_t, bool);
89 static int kobj_checksyms(kobj_t, bool);
90 static void kobj_out(const char *, int, kobj_t, const char *, ...)
91 __printflike(4, 5);
92 static void kobj_jettison(kobj_t);
93 static void kobj_free(kobj_t, void *, size_t);
94 static void kobj_close(kobj_t);
95 static int kobj_read_mem(kobj_t, void **, size_t, off_t, bool);
96 static void kobj_close_mem(kobj_t);
97
98 extern struct vm_map *module_map;
99
100 /*
101 * kobj_load_mem:
102 *
103 * Load an object already resident in memory. If size is not -1,
104 * the complete size of the object is known.
105 */
106 int
107 kobj_load_mem(kobj_t *kop, const char *name, void *base, ssize_t size)
108 {
109 kobj_t ko;
110
111 ko = kmem_zalloc(sizeof(*ko), KM_SLEEP);
112 ko->ko_type = KT_MEMORY;
113 kobj_setname(ko, name);
114 ko->ko_source = base;
115 ko->ko_memsize = size;
116 ko->ko_read = kobj_read_mem;
117 ko->ko_close = kobj_close_mem;
118
119 *kop = ko;
120 return kobj_load(ko);
121 }
122
123 /*
124 * kobj_close:
125 *
126 * Close an open ELF object.
127 */
128 static void
129 kobj_close(kobj_t ko)
130 {
131
132 if (ko->ko_source == NULL) {
133 return;
134 }
135
136 ko->ko_close(ko);
137 ko->ko_source = NULL;
138 }
139
140 static void
141 kobj_close_mem(kobj_t ko)
142 {
143
144 return;
145 }
146
147 /*
148 * kobj_load:
149 *
150 * Load an ELF object and prepare to link into the running kernel
151 * image.
152 */
153 int
154 kobj_load(kobj_t ko)
155 {
156 Elf_Ehdr *hdr;
157 Elf_Shdr *shdr;
158 Elf_Sym *es;
159 vaddr_t map_text_base;
160 vaddr_t map_data_base;
161 vaddr_t map_rodata_base;
162 size_t map_text_size;
163 size_t map_data_size;
164 size_t map_rodata_size;
165 int error;
166 int symtabindex;
167 int symstrindex;
168 int nsym;
169 int pb, rl, ra;
170 int alignmask;
171 int i, j;
172 void *addr;
173
174 KASSERT(ko->ko_type != KT_UNSET);
175 KASSERT(ko->ko_source != NULL);
176
177 shdr = NULL;
178 error = 0;
179 hdr = NULL;
180
181 /*
182 * Read the elf header from the file.
183 */
184 error = ko->ko_read(ko, (void **)&hdr, sizeof(*hdr), 0, true);
185 if (error != 0) {
186 kobj_error(ko, "read failed %d", error);
187 goto out;
188 }
189 if (memcmp(hdr->e_ident, ELFMAG, SELFMAG) != 0) {
190 kobj_error(ko, "not an ELF object");
191 error = ENOEXEC;
192 goto out;
193 }
194
195 if (hdr->e_ident[EI_VERSION] != EV_CURRENT ||
196 hdr->e_version != EV_CURRENT) {
197 kobj_error(ko, "unsupported file version %d",
198 hdr->e_ident[EI_VERSION]);
199 error = ENOEXEC;
200 goto out;
201 }
202 if (hdr->e_type != ET_REL) {
203 kobj_error(ko, "unsupported file type %d", hdr->e_type);
204 error = ENOEXEC;
205 goto out;
206 }
207 switch (hdr->e_machine) {
208 #if ELFSIZE == 32
209 ELF32_MACHDEP_ID_CASES
210 #elif ELFSIZE == 64
211 ELF64_MACHDEP_ID_CASES
212 #else
213 #error not defined
214 #endif
215 default:
216 kobj_error(ko, "unsupported machine %d", hdr->e_machine);
217 error = ENOEXEC;
218 goto out;
219 }
220
221 ko->ko_nprogtab = 0;
222 ko->ko_shdr = 0;
223 ko->ko_nrel = 0;
224 ko->ko_nrela = 0;
225
226 /*
227 * Allocate and read in the section header.
228 */
229 if (hdr->e_shnum == 0 || hdr->e_shnum > ELF_MAXSHNUM ||
230 hdr->e_shoff == 0 || hdr->e_shentsize != sizeof(Elf_Shdr)) {
231 kobj_error(ko, "bad sizes");
232 error = ENOEXEC;
233 goto out;
234 }
235 ko->ko_shdrsz = hdr->e_shnum * sizeof(Elf_Shdr);
236 error = ko->ko_read(ko, (void **)&shdr, ko->ko_shdrsz, hdr->e_shoff,
237 true);
238 if (error != 0) {
239 kobj_error(ko, "read failed %d", error);
240 goto out;
241 }
242 ko->ko_shdr = shdr;
243
244 /*
245 * Scan the section header for information and table sizing.
246 */
247 nsym = 0;
248 symtabindex = symstrindex = -1;
249 for (i = 0; i < hdr->e_shnum; i++) {
250 switch (shdr[i].sh_type) {
251 case SHT_PROGBITS:
252 case SHT_NOBITS:
253 ko->ko_nprogtab++;
254 break;
255 case SHT_SYMTAB:
256 nsym++;
257 symtabindex = i;
258 symstrindex = shdr[i].sh_link;
259 break;
260 case SHT_REL:
261 if (shdr[shdr[i].sh_info].sh_type != SHT_PROGBITS)
262 continue;
263 ko->ko_nrel++;
264 break;
265 case SHT_RELA:
266 if (shdr[shdr[i].sh_info].sh_type != SHT_PROGBITS)
267 continue;
268 ko->ko_nrela++;
269 break;
270 case SHT_STRTAB:
271 break;
272 }
273 }
274 if (ko->ko_nprogtab == 0) {
275 kobj_error(ko, "file has no contents");
276 error = ENOEXEC;
277 goto out;
278 }
279 if (nsym != 1) {
280 /* Only allow one symbol table for now */
281 kobj_error(ko, "file has no valid symbol table");
282 error = ENOEXEC;
283 goto out;
284 }
285 KASSERT(symtabindex != -1);
286 KASSERT(symstrindex != -1);
287
288 if (symstrindex == SHN_UNDEF || symstrindex >= hdr->e_shnum ||
289 shdr[symstrindex].sh_type != SHT_STRTAB) {
290 kobj_error(ko, "file has invalid symbol strings");
291 error = ENOEXEC;
292 goto out;
293 }
294
295 /*
296 * Allocate space for tracking the load chunks.
297 */
298 if (ko->ko_nprogtab != 0) {
299 ko->ko_progtab = kmem_zalloc(ko->ko_nprogtab *
300 sizeof(*ko->ko_progtab), KM_SLEEP);
301 if (ko->ko_progtab == NULL) {
302 error = ENOMEM;
303 kobj_error(ko, "out of memory");
304 goto out;
305 }
306 }
307 if (ko->ko_nrel != 0) {
308 ko->ko_reltab = kmem_zalloc(ko->ko_nrel *
309 sizeof(*ko->ko_reltab), KM_SLEEP);
310 if (ko->ko_reltab == NULL) {
311 error = ENOMEM;
312 kobj_error(ko, "out of memory");
313 goto out;
314 }
315 }
316 if (ko->ko_nrela != 0) {
317 ko->ko_relatab = kmem_zalloc(ko->ko_nrela *
318 sizeof(*ko->ko_relatab), KM_SLEEP);
319 if (ko->ko_relatab == NULL) {
320 error = ENOMEM;
321 kobj_error(ko, "out of memory");
322 goto out;
323 }
324 }
325
326 /*
327 * Allocate space for and load the symbol table.
328 */
329 ko->ko_symcnt = shdr[symtabindex].sh_size / sizeof(Elf_Sym);
330 if (ko->ko_symcnt == 0) {
331 kobj_error(ko, "no symbol table");
332 error = ENOEXEC;
333 goto out;
334 }
335 error = ko->ko_read(ko, (void **)&ko->ko_symtab,
336 ko->ko_symcnt * sizeof(Elf_Sym),
337 shdr[symtabindex].sh_offset, true);
338 if (error != 0) {
339 kobj_error(ko, "read failed %d", error);
340 goto out;
341 }
342
343 /*
344 * Allocate space for and load the symbol strings.
345 */
346 ko->ko_strtabsz = shdr[symstrindex].sh_size;
347 if (ko->ko_strtabsz == 0) {
348 kobj_error(ko, "no symbol strings");
349 error = ENOEXEC;
350 goto out;
351 }
352 error = ko->ko_read(ko, (void *)&ko->ko_strtab, ko->ko_strtabsz,
353 shdr[symstrindex].sh_offset, true);
354 if (error != 0) {
355 kobj_error(ko, "read failed %d", error);
356 goto out;
357 }
358
359 /*
360 * Adjust module symbol namespace, if necessary (e.g. with rump)
361 */
362 error = kobj_renamespace(ko->ko_symtab, ko->ko_symcnt,
363 &ko->ko_strtab, &ko->ko_strtabsz);
364 if (error != 0) {
365 kobj_error(ko, "renamespace failed %d", error);
366 goto out;
367 }
368
369 /*
370 * Do we have a string table for the section names?
371 */
372 if (hdr->e_shstrndx != SHN_UNDEF) {
373 if (hdr->e_shstrndx >= hdr->e_shnum) {
374 kobj_error(ko, "bad shstrndx");
375 error = ENOEXEC;
376 goto out;
377 }
378 if (shdr[hdr->e_shstrndx].sh_size != 0 &&
379 shdr[hdr->e_shstrndx].sh_type == SHT_STRTAB) {
380 ko->ko_shstrtabsz = shdr[hdr->e_shstrndx].sh_size;
381 error = ko->ko_read(ko, (void **)&ko->ko_shstrtab,
382 shdr[hdr->e_shstrndx].sh_size,
383 shdr[hdr->e_shstrndx].sh_offset, true);
384 if (error != 0) {
385 kobj_error(ko, "read failed %d", error);
386 goto out;
387 }
388 }
389 }
390
391 /*
392 * Size up code/data(progbits) and bss(nobits).
393 */
394 alignmask = 0;
395 map_text_size = 0;
396 map_data_size = 0;
397 map_rodata_size = 0;
398 for (i = 0; i < hdr->e_shnum; i++) {
399 if (shdr[i].sh_type != SHT_PROGBITS &&
400 shdr[i].sh_type != SHT_NOBITS)
401 continue;
402 alignmask = shdr[i].sh_addralign - 1;
403 if ((shdr[i].sh_flags & SHF_EXECINSTR)) {
404 map_text_size += alignmask;
405 map_text_size &= ~alignmask;
406 map_text_size += shdr[i].sh_size;
407 } else if (!(shdr[i].sh_flags & SHF_WRITE)) {
408 map_rodata_size += alignmask;
409 map_rodata_size &= ~alignmask;
410 map_rodata_size += shdr[i].sh_size;
411 } else {
412 map_data_size += alignmask;
413 map_data_size &= ~alignmask;
414 map_data_size += shdr[i].sh_size;
415 }
416 }
417
418 if (map_text_size == 0) {
419 kobj_error(ko, "no text");
420 error = ENOEXEC;
421 goto out;
422 }
423
424 if (map_data_size != 0) {
425 map_data_base = uvm_km_alloc(module_map, round_page(map_data_size),
426 0, UVM_KMF_WIRED);
427 if (map_data_base == 0) {
428 kobj_error(ko, "out of memory");
429 error = ENOMEM;
430 goto out;
431 }
432 ko->ko_data_address = map_data_base;
433 ko->ko_data_size = map_data_size;
434 } else {
435 map_data_base = 0;
436 ko->ko_data_address = 0;
437 ko->ko_data_size = 0;
438 }
439
440 if (map_rodata_size != 0) {
441 map_rodata_base = uvm_km_alloc(module_map, round_page(map_rodata_size),
442 0, UVM_KMF_WIRED);
443 if (map_rodata_base == 0) {
444 kobj_error(ko, "out of memory");
445 error = ENOMEM;
446 goto out;
447 }
448 ko->ko_rodata_address = map_rodata_base;
449 ko->ko_rodata_size = map_rodata_size;
450 } else {
451 map_rodata_base = 0;
452 ko->ko_rodata_address = 0;
453 ko->ko_rodata_size = 0;
454 }
455
456 map_text_base = uvm_km_alloc(module_map, round_page(map_text_size),
457 0, UVM_KMF_WIRED | UVM_KMF_EXEC);
458 if (map_text_base == 0) {
459 kobj_error(ko, "out of memory");
460 error = ENOMEM;
461 goto out;
462 }
463 ko->ko_text_address = map_text_base;
464 ko->ko_text_size = map_text_size;
465
466 /*
467 * Now load code/data(progbits), zero bss(nobits), allocate space
468 * for and load relocs
469 */
470 pb = 0;
471 rl = 0;
472 ra = 0;
473 alignmask = 0;
474 for (i = 0; i < hdr->e_shnum; i++) {
475 switch (shdr[i].sh_type) {
476 case SHT_PROGBITS:
477 case SHT_NOBITS:
478 alignmask = shdr[i].sh_addralign - 1;
479 if ((shdr[i].sh_flags & SHF_EXECINSTR)) {
480 map_text_base += alignmask;
481 map_text_base &= ~alignmask;
482 addr = (void *)map_text_base;
483 map_text_base += shdr[i].sh_size;
484 } else if (!(shdr[i].sh_flags & SHF_WRITE)) {
485 map_rodata_base += alignmask;
486 map_rodata_base &= ~alignmask;
487 addr = (void *)map_rodata_base;
488 map_rodata_base += shdr[i].sh_size;
489 } else {
490 map_data_base += alignmask;
491 map_data_base &= ~alignmask;
492 addr = (void *)map_data_base;
493 map_data_base += shdr[i].sh_size;
494 }
495
496 ko->ko_progtab[pb].addr = addr;
497 if (shdr[i].sh_type == SHT_PROGBITS) {
498 ko->ko_progtab[pb].name = "<<PROGBITS>>";
499 error = ko->ko_read(ko, &addr,
500 shdr[i].sh_size, shdr[i].sh_offset, false);
501 if (error != 0) {
502 kobj_error(ko, "read failed %d", error);
503 goto out;
504 }
505 } else { /* SHT_NOBITS */
506 ko->ko_progtab[pb].name = "<<NOBITS>>";
507 memset(addr, 0, shdr[i].sh_size);
508 }
509
510 ko->ko_progtab[pb].size = shdr[i].sh_size;
511 ko->ko_progtab[pb].sec = i;
512 if (ko->ko_shstrtab != NULL && shdr[i].sh_name != 0) {
513 ko->ko_progtab[pb].name =
514 ko->ko_shstrtab + shdr[i].sh_name;
515 }
516
517 /* Update all symbol values with the offset. */
518 for (j = 0; j < ko->ko_symcnt; j++) {
519 es = &ko->ko_symtab[j];
520 if (es->st_shndx != i) {
521 continue;
522 }
523 es->st_value += (Elf_Addr)addr;
524 }
525 pb++;
526 break;
527 case SHT_REL:
528 if (shdr[shdr[i].sh_info].sh_type != SHT_PROGBITS)
529 break;
530 ko->ko_reltab[rl].size = shdr[i].sh_size;
531 ko->ko_reltab[rl].size -=
532 shdr[i].sh_size % sizeof(Elf_Rel);
533 if (ko->ko_reltab[rl].size != 0) {
534 ko->ko_reltab[rl].nrel =
535 shdr[i].sh_size / sizeof(Elf_Rel);
536 ko->ko_reltab[rl].sec = shdr[i].sh_info;
537 error = ko->ko_read(ko,
538 (void **)&ko->ko_reltab[rl].rel,
539 ko->ko_reltab[rl].size,
540 shdr[i].sh_offset, true);
541 if (error != 0) {
542 kobj_error(ko, "read failed %d",
543 error);
544 goto out;
545 }
546 }
547 rl++;
548 break;
549 case SHT_RELA:
550 if (shdr[shdr[i].sh_info].sh_type != SHT_PROGBITS)
551 break;
552 ko->ko_relatab[ra].size = shdr[i].sh_size;
553 ko->ko_relatab[ra].size -=
554 shdr[i].sh_size % sizeof(Elf_Rela);
555 if (ko->ko_relatab[ra].size != 0) {
556 ko->ko_relatab[ra].nrela =
557 shdr[i].sh_size / sizeof(Elf_Rela);
558 ko->ko_relatab[ra].sec = shdr[i].sh_info;
559 error = ko->ko_read(ko,
560 (void **)&ko->ko_relatab[ra].rela,
561 shdr[i].sh_size,
562 shdr[i].sh_offset, true);
563 if (error != 0) {
564 kobj_error(ko, "read failed %d", error);
565 goto out;
566 }
567 }
568 ra++;
569 break;
570 default:
571 break;
572 }
573 }
574 if (pb != ko->ko_nprogtab) {
575 panic("%s:%d: %s: lost progbits", __func__, __LINE__,
576 ko->ko_name);
577 }
578 if (rl != ko->ko_nrel) {
579 panic("%s:%d: %s: lost rel", __func__, __LINE__,
580 ko->ko_name);
581 }
582 if (ra != ko->ko_nrela) {
583 panic("%s:%d: %s: lost rela", __func__, __LINE__,
584 ko->ko_name);
585 }
586 if (map_text_base != ko->ko_text_address + map_text_size) {
587 panic("%s:%d: %s: map_text_base 0x%lx != address %lx "
588 "+ map_text_size %ld (0x%lx)\n",
589 __func__, __LINE__, ko->ko_name, (long)map_text_base,
590 (long)ko->ko_text_address, (long)map_text_size,
591 (long)ko->ko_text_address + map_text_size);
592 }
593 if (map_data_base != ko->ko_data_address + map_data_size) {
594 panic("%s:%d: %s: map_data_base 0x%lx != address %lx "
595 "+ map_data_size %ld (0x%lx)\n",
596 __func__, __LINE__, ko->ko_name, (long)map_data_base,
597 (long)ko->ko_data_address, (long)map_data_size,
598 (long)ko->ko_data_address + map_data_size);
599 }
600 if (map_rodata_base != ko->ko_rodata_address + map_rodata_size) {
601 panic("%s:%d: %s: map_rodata_base 0x%lx != address %lx "
602 "+ map_rodata_size %ld (0x%lx)\n",
603 __func__, __LINE__, ko->ko_name, (long)map_rodata_base,
604 (long)ko->ko_rodata_address, (long)map_rodata_size,
605 (long)ko->ko_rodata_address + map_rodata_size);
606 }
607
608 /*
609 * Perform local relocations only. Relocations relating to global
610 * symbols will be done by kobj_affix().
611 */
612 error = kobj_checksyms(ko, false);
613 if (error == 0) {
614 error = kobj_relocate(ko, true);
615 }
616 out:
617 if (hdr != NULL) {
618 kobj_free(ko, hdr, sizeof(*hdr));
619 }
620 kobj_close(ko);
621 if (error != 0) {
622 kobj_unload(ko);
623 }
624
625 return error;
626 }
627
628 static void
629 kobj_unload_notify(kobj_t ko, vaddr_t addr, size_t size, const char *note)
630 {
631 if (addr == 0)
632 return;
633
634 int error = kobj_machdep(ko, (void *)addr, size, false);
635 if (error)
636 kobj_error(ko, "machine dependent deinit failed (%s) %d",
637 note, error);
638 }
639
640 #define KOBJ_SEGMENT_NOTIFY(ko, what) \
641 kobj_unload_notify(ko, (ko)->ko_ ## what ## _address, \
642 (ko)->ko_ ## what ## _size, # what);
643
644 #define KOBJ_SEGMENT_FREE(ko, what) \
645 do \
646 if ((ko)->ko_ ## what ## _address != 0) \
647 uvm_km_free(module_map, (ko)->ko_ ## what ## _address, \
648 round_page((ko)->ko_ ## what ## _size), UVM_KMF_WIRED); \
649 while (/*CONSTCOND*/ 0)
650
651 /*
652 * kobj_unload:
653 *
654 * Unload an object previously loaded by kobj_load().
655 */
656 void
657 kobj_unload(kobj_t ko)
658 {
659 kobj_close(ko);
660 kobj_jettison(ko);
661
662
663 /*
664 * Notify MD code that a module has been unloaded.
665 */
666 if (ko->ko_loaded) {
667 KOBJ_SEGMENT_NOTIFY(ko, text);
668 KOBJ_SEGMENT_NOTIFY(ko, data);
669 KOBJ_SEGMENT_NOTIFY(ko, rodata);
670 }
671
672 KOBJ_SEGMENT_FREE(ko, text);
673 KOBJ_SEGMENT_FREE(ko, data);
674 KOBJ_SEGMENT_FREE(ko, rodata);
675
676 if (ko->ko_ksyms == true) {
677 ksyms_modunload(ko->ko_name);
678 }
679 if (ko->ko_symtab != NULL) {
680 kobj_free(ko, ko->ko_symtab, ko->ko_symcnt * sizeof(Elf_Sym));
681 }
682 if (ko->ko_strtab != NULL) {
683 kobj_free(ko, ko->ko_strtab, ko->ko_strtabsz);
684 }
685 if (ko->ko_progtab != NULL) {
686 kobj_free(ko, ko->ko_progtab, ko->ko_nprogtab *
687 sizeof(*ko->ko_progtab));
688 ko->ko_progtab = NULL;
689 }
690 if (ko->ko_shstrtab) {
691 kobj_free(ko, ko->ko_shstrtab, ko->ko_shstrtabsz);
692 ko->ko_shstrtab = NULL;
693 }
694
695 kmem_free(ko, sizeof(*ko));
696 }
697
698 /*
699 * kobj_stat:
700 *
701 * Return size and load address of an object.
702 */
703 int
704 kobj_stat(kobj_t ko, vaddr_t *address, size_t *size)
705 {
706
707 if (address != NULL) {
708 *address = ko->ko_text_address;
709 }
710 if (size != NULL) {
711 *size = ko->ko_text_size;
712 }
713 return 0;
714 }
715
716 /*
717 * kobj_affix:
718 *
719 * Set an object's name and perform global relocs. May only be
720 * called after the module and any requisite modules are loaded.
721 */
722 int
723 kobj_affix(kobj_t ko, const char *name)
724 {
725 int error;
726
727 KASSERT(ko->ko_ksyms == false);
728 KASSERT(ko->ko_loaded == false);
729
730 kobj_setname(ko, name);
731
732 /* Cache addresses of undefined symbols. */
733 error = kobj_checksyms(ko, true);
734
735 /* Now do global relocations. */
736 if (error == 0)
737 error = kobj_relocate(ko, false);
738
739 /*
740 * Now that we know the name, register the symbol table.
741 * Do after global relocations because ksyms will pack
742 * the table.
743 */
744 if (error == 0) {
745 ksyms_modload(ko->ko_name, ko->ko_symtab, ko->ko_symcnt *
746 sizeof(Elf_Sym), ko->ko_strtab, ko->ko_strtabsz);
747 ko->ko_ksyms = true;
748 }
749
750 /* Jettison unneeded memory post-link. */
751 kobj_jettison(ko);
752
753 /*
754 * Notify MD code that a module has been loaded.
755 *
756 * Most architectures use this opportunity to flush their caches.
757 */
758 if (error == 0 && ko->ko_text_address != 0) {
759 error = kobj_machdep(ko, (void *)ko->ko_text_address,
760 ko->ko_text_size, true);
761 if (error != 0)
762 kobj_error(ko, "machine dependent init failed (text)"
763 " %d", error);
764 }
765
766 if (error == 0 && ko->ko_data_address != 0) {
767 error = kobj_machdep(ko, (void *)ko->ko_data_address,
768 ko->ko_data_size, true);
769 if (error != 0)
770 kobj_error(ko, "machine dependent init failed (data)"
771 " %d", error);
772 }
773
774 if (error == 0 && ko->ko_rodata_address != 0) {
775 error = kobj_machdep(ko, (void *)ko->ko_rodata_address,
776 ko->ko_rodata_size, true);
777 if (error != 0)
778 kobj_error(ko, "machine dependent init failed (rodata)"
779 " %d", error);
780 }
781
782 if (error == 0) {
783 ko->ko_loaded = true;
784
785 /* Change the memory protections, when needed. */
786 if (ko->ko_text_address != 0) {
787 uvm_km_protect(module_map, ko->ko_text_address,
788 ko->ko_text_size, VM_PROT_READ|VM_PROT_EXECUTE);
789 }
790 if (ko->ko_rodata_address != 0) {
791 uvm_km_protect(module_map, ko->ko_rodata_address,
792 ko->ko_rodata_size, VM_PROT_READ);
793 }
794 } else {
795 /* If there was an error, destroy the whole object. */
796 kobj_unload(ko);
797 }
798
799 return error;
800 }
801
802 /*
803 * kobj_find_section:
804 *
805 * Given a section name, search the loaded object and return
806 * virtual address if present and loaded.
807 */
808 int
809 kobj_find_section(kobj_t ko, const char *name, void **addr, size_t *size)
810 {
811 int i;
812
813 KASSERT(ko->ko_progtab != NULL);
814
815 for (i = 0; i < ko->ko_nprogtab; i++) {
816 if (strcmp(ko->ko_progtab[i].name, name) == 0) {
817 if (addr != NULL) {
818 *addr = ko->ko_progtab[i].addr;
819 }
820 if (size != NULL) {
821 *size = ko->ko_progtab[i].size;
822 }
823 return 0;
824 }
825 }
826
827 return ENOENT;
828 }
829
830 /*
831 * kobj_jettison:
832 *
833 * Release object data not needed after performing relocations.
834 */
835 static void
836 kobj_jettison(kobj_t ko)
837 {
838 int i;
839
840 if (ko->ko_reltab != NULL) {
841 for (i = 0; i < ko->ko_nrel; i++) {
842 if (ko->ko_reltab[i].rel) {
843 kobj_free(ko, ko->ko_reltab[i].rel,
844 ko->ko_reltab[i].size);
845 }
846 }
847 kobj_free(ko, ko->ko_reltab, ko->ko_nrel *
848 sizeof(*ko->ko_reltab));
849 ko->ko_reltab = NULL;
850 ko->ko_nrel = 0;
851 }
852 if (ko->ko_relatab != NULL) {
853 for (i = 0; i < ko->ko_nrela; i++) {
854 if (ko->ko_relatab[i].rela) {
855 kobj_free(ko, ko->ko_relatab[i].rela,
856 ko->ko_relatab[i].size);
857 }
858 }
859 kobj_free(ko, ko->ko_relatab, ko->ko_nrela *
860 sizeof(*ko->ko_relatab));
861 ko->ko_relatab = NULL;
862 ko->ko_nrela = 0;
863 }
864 if (ko->ko_shdr != NULL) {
865 kobj_free(ko, ko->ko_shdr, ko->ko_shdrsz);
866 ko->ko_shdr = NULL;
867 }
868 }
869
870 /*
871 * kobj_sym_lookup:
872 *
873 * Symbol lookup function to be used when the symbol index
874 * is known (ie during relocation).
875 */
876 int
877 kobj_sym_lookup(kobj_t ko, uintptr_t symidx, Elf_Addr *val)
878 {
879 const Elf_Sym *sym;
880 const char *symbol;
881
882 sym = ko->ko_symtab + symidx;
883
884 if (symidx == SHN_ABS) {
885 *val = (uintptr_t)sym->st_value;
886 return 0;
887 } else if (symidx >= ko->ko_symcnt) {
888 /*
889 * Don't even try to lookup the symbol if the index is
890 * bogus.
891 */
892 return EINVAL;
893 }
894
895 /* Quick answer if there is a definition included. */
896 if (sym->st_shndx != SHN_UNDEF) {
897 *val = (uintptr_t)sym->st_value;
898 return 0;
899 }
900
901 /* If we get here, then it is undefined and needs a lookup. */
902 switch (ELF_ST_BIND(sym->st_info)) {
903 case STB_LOCAL:
904 /* Local, but undefined? huh? */
905 kobj_error(ko, "local symbol undefined");
906 return EINVAL;
907
908 case STB_GLOBAL:
909 /* Relative to Data or Function name */
910 symbol = ko->ko_strtab + sym->st_name;
911
912 /* Force a lookup failure if the symbol name is bogus. */
913 if (*symbol == 0) {
914 kobj_error(ko, "bad symbol name");
915 return EINVAL;
916 }
917 if (sym->st_value == 0) {
918 kobj_error(ko, "bad value");
919 return EINVAL;
920 }
921
922 *val = (uintptr_t)sym->st_value;
923 return 0;
924
925 case STB_WEAK:
926 kobj_error(ko, "weak symbols not supported");
927 return EINVAL;
928
929 default:
930 return EINVAL;
931 }
932 }
933
934 /*
935 * kobj_findbase:
936 *
937 * Return base address of the given section.
938 */
939 static uintptr_t
940 kobj_findbase(kobj_t ko, int sec)
941 {
942 int i;
943
944 for (i = 0; i < ko->ko_nprogtab; i++) {
945 if (sec == ko->ko_progtab[i].sec) {
946 return (uintptr_t)ko->ko_progtab[i].addr;
947 }
948 }
949 return 0;
950 }
951
952 /*
953 * kobj_checksyms:
954 *
955 * Scan symbol table for duplicates or resolve references to
956 * exernal symbols.
957 */
958 static int
959 kobj_checksyms(kobj_t ko, bool undefined)
960 {
961 unsigned long rval;
962 Elf_Sym *sym, *ksym, *ms;
963 const char *name;
964 int error;
965
966 error = 0;
967
968 for (ms = (sym = ko->ko_symtab) + ko->ko_symcnt; sym < ms; sym++) {
969 /* Check validity of the symbol. */
970 if (ELF_ST_BIND(sym->st_info) != STB_GLOBAL ||
971 sym->st_name == 0)
972 continue;
973 if (undefined != (sym->st_shndx == SHN_UNDEF)) {
974 continue;
975 }
976
977 /*
978 * Look it up. Don't need to lock, as it is known that
979 * the symbol tables aren't going to change (we hold
980 * module_lock).
981 */
982 name = ko->ko_strtab + sym->st_name;
983 if (ksyms_getval_unlocked(NULL, name, &ksym, &rval,
984 KSYMS_EXTERN) != 0) {
985 if (undefined) {
986 kobj_error(ko, "symbol `%s' not found",
987 name);
988 error = ENOEXEC;
989 }
990 continue;
991 }
992
993 /* Save values of undefined globals. */
994 if (undefined) {
995 if (ksym->st_shndx == SHN_ABS) {
996 sym->st_shndx = SHN_ABS;
997 }
998 sym->st_value = (Elf_Addr)rval;
999 continue;
1000 }
1001
1002 /* Check (and complain) about differing values. */
1003 if (sym->st_value == rval) {
1004 continue;
1005 }
1006 if (strcmp(name, "_bss_start") == 0 ||
1007 strcmp(name, "__bss_start") == 0 ||
1008 strcmp(name, "_bss_end__") == 0 ||
1009 strcmp(name, "__bss_end__") == 0 ||
1010 strcmp(name, "_edata") == 0 ||
1011 strcmp(name, "_end") == 0 ||
1012 strcmp(name, "__end") == 0 ||
1013 strcmp(name, "__end__") == 0 ||
1014 strncmp(name, "__start_link_set_", 17) == 0 ||
1015 strncmp(name, "__stop_link_set_", 16) == 0) {
1016 continue;
1017 }
1018 kobj_error(ko, "global symbol `%s' redefined",
1019 name);
1020 error = ENOEXEC;
1021 }
1022
1023 return error;
1024 }
1025
1026 /*
1027 * kobj_relocate:
1028 *
1029 * Resolve relocations for the loaded object.
1030 */
1031 static int
1032 kobj_relocate(kobj_t ko, bool local)
1033 {
1034 const Elf_Rel *rellim;
1035 const Elf_Rel *rel;
1036 const Elf_Rela *relalim;
1037 const Elf_Rela *rela;
1038 const Elf_Sym *sym;
1039 uintptr_t base;
1040 int i, error;
1041 uintptr_t symidx;
1042
1043 /*
1044 * Perform relocations without addend if there are any.
1045 */
1046 for (i = 0; i < ko->ko_nrel; i++) {
1047 rel = ko->ko_reltab[i].rel;
1048 if (rel == NULL) {
1049 continue;
1050 }
1051 rellim = rel + ko->ko_reltab[i].nrel;
1052 base = kobj_findbase(ko, ko->ko_reltab[i].sec);
1053 if (base == 0) {
1054 panic("%s:%d: %s: lost base for e_reltab[%d] sec %d",
1055 __func__, __LINE__, ko->ko_name, i,
1056 ko->ko_reltab[i].sec);
1057 }
1058 for (; rel < rellim; rel++) {
1059 symidx = ELF_R_SYM(rel->r_info);
1060 if (symidx >= ko->ko_symcnt) {
1061 continue;
1062 }
1063 sym = ko->ko_symtab + symidx;
1064 if (local != (ELF_ST_BIND(sym->st_info) == STB_LOCAL)) {
1065 continue;
1066 }
1067 error = kobj_reloc(ko, base, rel, false, local);
1068 if (error != 0) {
1069 return ENOENT;
1070 }
1071 }
1072 }
1073
1074 /*
1075 * Perform relocations with addend if there are any.
1076 */
1077 for (i = 0; i < ko->ko_nrela; i++) {
1078 rela = ko->ko_relatab[i].rela;
1079 if (rela == NULL) {
1080 continue;
1081 }
1082 relalim = rela + ko->ko_relatab[i].nrela;
1083 base = kobj_findbase(ko, ko->ko_relatab[i].sec);
1084 if (base == 0) {
1085 panic("%s:%d: %s: lost base for e_relatab[%d] sec %d",
1086 __func__, __LINE__, ko->ko_name, i,
1087 ko->ko_relatab[i].sec);
1088 }
1089 for (; rela < relalim; rela++) {
1090 symidx = ELF_R_SYM(rela->r_info);
1091 if (symidx >= ko->ko_symcnt) {
1092 continue;
1093 }
1094 sym = ko->ko_symtab + symidx;
1095 if (local != (ELF_ST_BIND(sym->st_info) == STB_LOCAL)) {
1096 continue;
1097 }
1098 error = kobj_reloc(ko, base, rela, true, local);
1099 if (error != 0) {
1100 return ENOENT;
1101 }
1102 }
1103 }
1104
1105 return 0;
1106 }
1107
1108 /*
1109 * kobj_out:
1110 *
1111 * Utility function: log an error.
1112 */
1113 static void
1114 kobj_out(const char *fname, int lnum, kobj_t ko, const char *fmt, ...)
1115 {
1116 va_list ap;
1117
1118 printf("%s, %d: [%s]: linker error: ", fname, lnum, ko->ko_name);
1119 va_start(ap, fmt);
1120 vprintf(fmt, ap);
1121 va_end(ap);
1122 printf("\n");
1123 }
1124
1125 static int
1126 kobj_read_mem(kobj_t ko, void **basep, size_t size, off_t off,
1127 bool allocate)
1128 {
1129 void *base = *basep;
1130 int error;
1131
1132 KASSERT(ko->ko_source != NULL);
1133
1134 if (ko->ko_memsize != -1 && off + size > ko->ko_memsize) {
1135 kobj_error(ko, "preloaded object short");
1136 error = EINVAL;
1137 base = NULL;
1138 } else if (allocate) {
1139 base = kmem_alloc(size, KM_SLEEP);
1140 error = 0;
1141 } else {
1142 error = 0;
1143 }
1144
1145 if (error == 0) {
1146 /* Copy the section */
1147 memcpy(base, (uint8_t *)ko->ko_source + off, size);
1148 }
1149
1150 if (allocate && error != 0) {
1151 kmem_free(base, size);
1152 base = NULL;
1153 }
1154
1155 if (allocate)
1156 *basep = base;
1157
1158 return error;
1159 }
1160
1161 /*
1162 * kobj_free:
1163 *
1164 * Utility function: free memory if it was allocated from the heap.
1165 */
1166 static void
1167 kobj_free(kobj_t ko, void *base, size_t size)
1168 {
1169
1170 kmem_free(base, size);
1171 }
1172
1173 extern char module_base[];
1174
1175 void
1176 kobj_setname(kobj_t ko, const char *name)
1177 {
1178 const char *d = name, *dots = "";
1179 size_t len, dlen;
1180
1181 for (char *s = module_base; *d == *s; d++, s++)
1182 continue;
1183
1184 if (d == name)
1185 name = "";
1186 else
1187 name = "%M";
1188 dlen = strlen(d);
1189 len = dlen + strlen(name);
1190 if (len >= sizeof(ko->ko_name)) {
1191 len = (len - sizeof(ko->ko_name)) + 5; /* dots + NUL */
1192 if (dlen >= len) {
1193 d += len;
1194 dots = "/...";
1195 }
1196 }
1197 snprintf(ko->ko_name, sizeof(ko->ko_name), "%s%s%s", name, dots, d);
1198 }
1199
1200 #else /* MODULAR */
1201
1202 int
1203 kobj_load_mem(kobj_t *kop, const char *name, void *base, ssize_t size)
1204 {
1205
1206 return ENOSYS;
1207 }
1208
1209 void
1210 kobj_unload(kobj_t ko)
1211 {
1212
1213 panic("not modular");
1214 }
1215
1216 int
1217 kobj_stat(kobj_t ko, vaddr_t *base, size_t *size)
1218 {
1219
1220 return ENOSYS;
1221 }
1222
1223 int
1224 kobj_affix(kobj_t ko, const char *name)
1225 {
1226
1227 panic("not modular");
1228 }
1229
1230 int
1231 kobj_find_section(kobj_t ko, const char *name, void **addr, size_t *size)
1232 {
1233
1234 panic("not modular");
1235 }
1236
1237 void
1238 kobj_setname(kobj_t ko, const char *name)
1239 {
1240
1241 panic("not modular");
1242 }
1243
1244 #endif /* MODULAR */
1245