subr_pcu.c revision 1.10 1 1.10 jym /* $NetBSD: subr_pcu.c,v 1.10 2011/09/27 01:02:39 jym Exp $ */
2 1.1 rmind
3 1.1 rmind /*-
4 1.1 rmind * Copyright (c) 2011 The NetBSD Foundation, Inc.
5 1.1 rmind * All rights reserved.
6 1.1 rmind *
7 1.1 rmind * This code is derived from software contributed to The NetBSD Foundation
8 1.1 rmind * by Mindaugas Rasiukevicius.
9 1.1 rmind *
10 1.1 rmind * Redistribution and use in source and binary forms, with or without
11 1.1 rmind * modification, are permitted provided that the following conditions
12 1.1 rmind * are met:
13 1.1 rmind * 1. Redistributions of source code must retain the above copyright
14 1.1 rmind * notice, this list of conditions and the following disclaimer.
15 1.1 rmind * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 rmind * notice, this list of conditions and the following disclaimer in the
17 1.1 rmind * documentation and/or other materials provided with the distribution.
18 1.1 rmind *
19 1.1 rmind * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.1 rmind * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.1 rmind * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.1 rmind * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.1 rmind * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.1 rmind * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.1 rmind * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.1 rmind * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.1 rmind * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.1 rmind * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.1 rmind * POSSIBILITY OF SUCH DAMAGE.
30 1.1 rmind */
31 1.1 rmind
32 1.1 rmind /*
33 1.1 rmind * Per CPU Unit (PCU) - is an interface to manage synchronization of any
34 1.1 rmind * per CPU context (unit) tied with LWP context. Typical use: FPU state.
35 1.1 rmind *
36 1.1 rmind * Concurrency notes:
37 1.1 rmind *
38 1.1 rmind * PCU state may be loaded only by the current LWP, that is, curlwp.
39 1.1 rmind * Therefore, only LWP itself can set a CPU for lwp_t::l_pcu_cpu[id].
40 1.1 rmind *
41 1.1 rmind * Request for a PCU release can be from owner LWP (whether PCU state
42 1.1 rmind * is on current CPU or remote CPU) or any other LWP running on that
43 1.1 rmind * CPU (in such case, owner LWP is on a remote CPU or sleeping).
44 1.1 rmind *
45 1.1 rmind * In any case, PCU state can only be changed from the running CPU.
46 1.1 rmind * If said PCU state is on the remote CPU, a cross-call will be sent
47 1.1 rmind * by the owner LWP. Therefore struct cpu_info::ci_pcu_curlwp[id]
48 1.1 rmind * may only be changed by current CPU, and lwp_t::l_pcu_cpu[id] may
49 1.1 rmind * only be unset by the CPU which has PCU state loaded.
50 1.1 rmind *
51 1.1 rmind * There is a race condition: LWP may have a PCU state on a remote CPU,
52 1.1 rmind * which it requests to be released via cross-call. At the same time,
53 1.1 rmind * other LWP on remote CPU might release existing PCU state and load
54 1.1 rmind * its own one. Cross-call may arrive after this and release different
55 1.1 rmind * PCU state than intended. In such case, such LWP would re-load its
56 1.1 rmind * PCU state again.
57 1.1 rmind */
58 1.1 rmind
59 1.1 rmind #include <sys/cdefs.h>
60 1.10 jym __KERNEL_RCSID(0, "$NetBSD: subr_pcu.c,v 1.10 2011/09/27 01:02:39 jym Exp $");
61 1.1 rmind
62 1.1 rmind #include <sys/param.h>
63 1.1 rmind #include <sys/cpu.h>
64 1.1 rmind #include <sys/lwp.h>
65 1.1 rmind #include <sys/pcu.h>
66 1.1 rmind #include <sys/xcall.h>
67 1.1 rmind
68 1.3 matt #if PCU_UNIT_COUNT > 0
69 1.3 matt
70 1.7 matt static void pcu_lwp_op(const pcu_ops_t *, lwp_t *, int);
71 1.7 matt
72 1.1 rmind #define PCU_SAVE 0x01 /* Save PCU state to the LWP. */
73 1.1 rmind #define PCU_RELEASE 0x02 /* Release PCU state on the CPU. */
74 1.1 rmind
75 1.4 rmind /* XXX */
76 1.4 rmind extern const pcu_ops_t * const pcu_ops_md_defs[];
77 1.4 rmind
78 1.1 rmind void
79 1.4 rmind pcu_switchpoint(lwp_t *l)
80 1.1 rmind {
81 1.4 rmind const uint32_t pcu_inuse = l->l_pcu_used;
82 1.4 rmind u_int id;
83 1.4 rmind /* int s; */
84 1.1 rmind
85 1.4 rmind KASSERT(l == curlwp);
86 1.4 rmind
87 1.4 rmind if (__predict_true(pcu_inuse == 0)) {
88 1.4 rmind /* PCUs are not in use. */
89 1.4 rmind return;
90 1.4 rmind }
91 1.4 rmind /* s = splsoftclock(); */
92 1.4 rmind for (id = 0; id < PCU_UNIT_COUNT; id++) {
93 1.4 rmind if ((pcu_inuse & (1 << id)) == 0) {
94 1.4 rmind continue;
95 1.4 rmind }
96 1.5 matt struct cpu_info * const pcu_ci = l->l_pcu_cpu[id];
97 1.4 rmind if (pcu_ci == NULL || pcu_ci == l->l_cpu) {
98 1.4 rmind continue;
99 1.4 rmind }
100 1.4 rmind const pcu_ops_t * const pcu = pcu_ops_md_defs[id];
101 1.4 rmind pcu->pcu_state_release(l);
102 1.4 rmind }
103 1.4 rmind /* splx(s); */
104 1.1 rmind }
105 1.1 rmind
106 1.7 matt void
107 1.7 matt pcu_discard_all(lwp_t *l)
108 1.7 matt {
109 1.7 matt const uint32_t pcu_inuse = l->l_pcu_used;
110 1.7 matt
111 1.8 matt KASSERT(l == curlwp || ((l->l_flag & LW_SYSTEM) && pcu_inuse == 0));
112 1.7 matt
113 1.7 matt if (__predict_true(pcu_inuse == 0)) {
114 1.7 matt /* PCUs are not in use. */
115 1.7 matt return;
116 1.7 matt }
117 1.7 matt const int s = splsoftclock();
118 1.7 matt for (u_int id = 0; id < PCU_UNIT_COUNT; id++) {
119 1.7 matt if ((pcu_inuse & (1 << id)) == 0) {
120 1.7 matt continue;
121 1.7 matt }
122 1.7 matt if (__predict_true(l->l_pcu_cpu[id] == NULL)) {
123 1.7 matt continue;
124 1.7 matt }
125 1.7 matt const pcu_ops_t * const pcu = pcu_ops_md_defs[id];
126 1.7 matt /*
127 1.7 matt * We aren't releasing since this LWP isn't giving up PCU,
128 1.7 matt * just saving it.
129 1.7 matt */
130 1.7 matt pcu_lwp_op(pcu, l, PCU_RELEASE);
131 1.7 matt }
132 1.7 matt l->l_pcu_used = 0;
133 1.7 matt splx(s);
134 1.7 matt }
135 1.7 matt
136 1.7 matt void
137 1.7 matt pcu_save_all(lwp_t *l)
138 1.7 matt {
139 1.7 matt const uint32_t pcu_inuse = l->l_pcu_used;
140 1.9 matt const int flags = PCU_SAVE | (l->l_flag & LW_WCORE ? PCU_RELEASE : 0);
141 1.7 matt
142 1.9 matt /*
143 1.9 matt * Normally we save for the current LWP, but sometimes we get called
144 1.9 matt * with a different LWP (forking a system LWP or doing a coredump of
145 1.9 matt * a process with multiple threads) and we need to deal with that.
146 1.9 matt */
147 1.9 matt KASSERT(l == curlwp
148 1.9 matt || (((l->l_flag & LW_SYSTEM)
149 1.9 matt || (curlwp->l_proc == l->l_proc && l->l_stat == LSSUSPENDED))
150 1.9 matt && pcu_inuse == 0));
151 1.7 matt
152 1.7 matt if (__predict_true(pcu_inuse == 0)) {
153 1.7 matt /* PCUs are not in use. */
154 1.7 matt return;
155 1.7 matt }
156 1.7 matt const int s = splsoftclock();
157 1.7 matt for (u_int id = 0; id < PCU_UNIT_COUNT; id++) {
158 1.7 matt if ((pcu_inuse & (1 << id)) == 0) {
159 1.7 matt continue;
160 1.7 matt }
161 1.7 matt if (__predict_true(l->l_pcu_cpu[id] == NULL)) {
162 1.7 matt continue;
163 1.7 matt }
164 1.7 matt const pcu_ops_t * const pcu = pcu_ops_md_defs[id];
165 1.7 matt /*
166 1.7 matt * We aren't releasing since this LWP isn't giving up PCU,
167 1.7 matt * just saving it.
168 1.7 matt */
169 1.9 matt pcu_lwp_op(pcu, l, flags);
170 1.7 matt }
171 1.7 matt splx(s);
172 1.7 matt }
173 1.7 matt
174 1.1 rmind /*
175 1.4 rmind * pcu_do_op: save/release PCU state on the current CPU.
176 1.1 rmind *
177 1.1 rmind * => Must be called at IPL_SOFTCLOCK or from the soft-interrupt.
178 1.1 rmind */
179 1.4 rmind static inline void
180 1.4 rmind pcu_do_op(const pcu_ops_t *pcu, lwp_t * const l, const int flags)
181 1.4 rmind {
182 1.4 rmind struct cpu_info * const ci = curcpu();
183 1.4 rmind const u_int id = pcu->pcu_id;
184 1.4 rmind
185 1.7 matt KASSERT(l->l_pcu_cpu[id] == ci);
186 1.4 rmind
187 1.4 rmind if (flags & PCU_SAVE) {
188 1.4 rmind pcu->pcu_state_save(l);
189 1.4 rmind }
190 1.4 rmind if (flags & PCU_RELEASE) {
191 1.4 rmind pcu->pcu_state_release(l);
192 1.4 rmind ci->ci_pcu_curlwp[id] = NULL;
193 1.4 rmind l->l_pcu_cpu[id] = NULL;
194 1.4 rmind }
195 1.4 rmind }
196 1.4 rmind
197 1.4 rmind /*
198 1.6 matt * pcu_cpu_op: helper routine to call pcu_do_op() via xcall(9) or
199 1.6 matt * by pcu_load.
200 1.4 rmind */
201 1.1 rmind static void
202 1.1 rmind pcu_cpu_op(const pcu_ops_t *pcu, const int flags)
203 1.1 rmind {
204 1.1 rmind const u_int id = pcu->pcu_id;
205 1.4 rmind lwp_t * const l = curcpu()->ci_pcu_curlwp[id];
206 1.4 rmind
207 1.6 matt //KASSERT(cpu_softintr_p());
208 1.1 rmind
209 1.1 rmind /* If no state - nothing to do. */
210 1.1 rmind if (l == NULL) {
211 1.1 rmind return;
212 1.1 rmind }
213 1.4 rmind pcu_do_op(pcu, l, flags);
214 1.1 rmind }
215 1.1 rmind
216 1.1 rmind /*
217 1.1 rmind * pcu_lwp_op: perform PCU state save, release or both operations on LWP.
218 1.1 rmind */
219 1.1 rmind static void
220 1.1 rmind pcu_lwp_op(const pcu_ops_t *pcu, lwp_t *l, int flags)
221 1.1 rmind {
222 1.1 rmind const u_int id = pcu->pcu_id;
223 1.1 rmind struct cpu_info *ci;
224 1.1 rmind uint64_t where;
225 1.1 rmind int s;
226 1.1 rmind
227 1.1 rmind /*
228 1.1 rmind * Caller should have re-checked if there is any state to manage.
229 1.1 rmind * Block the interrupts and inspect again, since cross-call sent
230 1.1 rmind * by remote CPU could have changed the state.
231 1.1 rmind */
232 1.1 rmind s = splsoftclock();
233 1.1 rmind ci = l->l_pcu_cpu[id];
234 1.1 rmind if (ci == curcpu()) {
235 1.1 rmind /*
236 1.1 rmind * State is on the current CPU - just perform the operations.
237 1.1 rmind */
238 1.6 matt KASSERTMSG(ci->ci_pcu_curlwp[id] == l,
239 1.10 jym "%s: cpu%u: pcu_curlwp[%u] (%p) != l (%p)",
240 1.10 jym __func__, cpu_index(ci), id, ci->ci_pcu_curlwp[id], l);
241 1.4 rmind pcu_do_op(pcu, l, flags);
242 1.1 rmind splx(s);
243 1.1 rmind return;
244 1.1 rmind }
245 1.1 rmind splx(s);
246 1.1 rmind
247 1.1 rmind if (__predict_false(ci == NULL)) {
248 1.1 rmind /* Cross-call has won the race - no state to manage. */
249 1.1 rmind return;
250 1.1 rmind }
251 1.1 rmind
252 1.1 rmind /*
253 1.1 rmind * State is on the remote CPU - perform the operations there.
254 1.1 rmind * Note: there is a race condition; see description in the top.
255 1.1 rmind */
256 1.1 rmind where = xc_unicast(XC_HIGHPRI, (xcfunc_t)pcu_cpu_op,
257 1.1 rmind __UNCONST(pcu), (void *)(uintptr_t)flags, ci);
258 1.1 rmind xc_wait(where);
259 1.1 rmind
260 1.1 rmind KASSERT((flags & PCU_RELEASE) == 0 || l->l_pcu_cpu[id] == NULL);
261 1.1 rmind }
262 1.1 rmind
263 1.1 rmind /*
264 1.1 rmind * pcu_load: load/initialize the PCU state of current LWP on current CPU.
265 1.1 rmind */
266 1.1 rmind void
267 1.1 rmind pcu_load(const pcu_ops_t *pcu)
268 1.1 rmind {
269 1.1 rmind const u_int id = pcu->pcu_id;
270 1.1 rmind struct cpu_info *ci, *curci;
271 1.5 matt lwp_t * const l = curlwp;
272 1.1 rmind uint64_t where;
273 1.1 rmind int s;
274 1.1 rmind
275 1.1 rmind KASSERT(!cpu_intr_p() && !cpu_softintr_p());
276 1.1 rmind
277 1.1 rmind s = splsoftclock();
278 1.1 rmind curci = curcpu();
279 1.1 rmind ci = l->l_pcu_cpu[id];
280 1.1 rmind
281 1.1 rmind /* Does this CPU already have our PCU state loaded? */
282 1.1 rmind if (ci == curci) {
283 1.1 rmind KASSERT(curci->ci_pcu_curlwp[id] == l);
284 1.1 rmind splx(s);
285 1.1 rmind return;
286 1.1 rmind }
287 1.1 rmind
288 1.1 rmind /* If PCU state of this LWP is on the remote CPU - save it there. */
289 1.1 rmind if (ci) {
290 1.1 rmind splx(s);
291 1.1 rmind /* Note: there is a race; see description in the top. */
292 1.1 rmind where = xc_unicast(XC_HIGHPRI, (xcfunc_t)pcu_cpu_op,
293 1.1 rmind __UNCONST(pcu), (void *)(PCU_SAVE | PCU_RELEASE), ci);
294 1.1 rmind xc_wait(where);
295 1.1 rmind
296 1.1 rmind /* Enter IPL_SOFTCLOCK and re-fetch the current CPU. */
297 1.1 rmind s = splsoftclock();
298 1.1 rmind curci = curcpu();
299 1.1 rmind }
300 1.1 rmind KASSERT(l->l_pcu_cpu[id] == NULL);
301 1.1 rmind
302 1.1 rmind /* Save the PCU state on the current CPU, if there is any. */
303 1.6 matt pcu_cpu_op(pcu, PCU_SAVE | PCU_RELEASE);
304 1.1 rmind KASSERT(curci->ci_pcu_curlwp[id] == NULL);
305 1.1 rmind
306 1.1 rmind /*
307 1.1 rmind * Finally, load the state for this LWP on this CPU. Indicate to
308 1.1 rmind * load function whether PCU was used before. Note the usage.
309 1.1 rmind */
310 1.1 rmind pcu->pcu_state_load(l, ((1 << id) & l->l_pcu_used) != 0);
311 1.1 rmind curci->ci_pcu_curlwp[id] = l;
312 1.1 rmind l->l_pcu_cpu[id] = curci;
313 1.1 rmind l->l_pcu_used |= (1 << id);
314 1.1 rmind splx(s);
315 1.1 rmind }
316 1.1 rmind
317 1.1 rmind /*
318 1.1 rmind * pcu_discard: discard the PCU state of current LWP.
319 1.1 rmind */
320 1.1 rmind void
321 1.1 rmind pcu_discard(const pcu_ops_t *pcu)
322 1.1 rmind {
323 1.1 rmind const u_int id = pcu->pcu_id;
324 1.5 matt lwp_t * const l = curlwp;
325 1.1 rmind
326 1.1 rmind KASSERT(!cpu_intr_p() && !cpu_softintr_p());
327 1.1 rmind
328 1.1 rmind if (__predict_true(l->l_pcu_cpu[id] == NULL)) {
329 1.1 rmind return;
330 1.1 rmind }
331 1.1 rmind pcu_lwp_op(pcu, l, PCU_RELEASE);
332 1.1 rmind l->l_pcu_used &= ~(1 << id);
333 1.1 rmind }
334 1.1 rmind
335 1.1 rmind /*
336 1.1 rmind * pcu_save_lwp: save PCU state to the given LWP.
337 1.1 rmind */
338 1.1 rmind void
339 1.4 rmind pcu_save(const pcu_ops_t *pcu)
340 1.1 rmind {
341 1.1 rmind const u_int id = pcu->pcu_id;
342 1.4 rmind lwp_t * const l = curlwp;
343 1.1 rmind
344 1.1 rmind KASSERT(!cpu_intr_p() && !cpu_softintr_p());
345 1.1 rmind
346 1.1 rmind if (__predict_true(l->l_pcu_cpu[id] == NULL)) {
347 1.1 rmind return;
348 1.1 rmind }
349 1.1 rmind pcu_lwp_op(pcu, l, PCU_SAVE | PCU_RELEASE);
350 1.1 rmind }
351 1.1 rmind
352 1.1 rmind /*
353 1.1 rmind * pcu_used: return true if PCU was used (pcu_load() case) by the LWP.
354 1.1 rmind */
355 1.1 rmind bool
356 1.4 rmind pcu_used_p(const pcu_ops_t *pcu)
357 1.1 rmind {
358 1.1 rmind const u_int id = pcu->pcu_id;
359 1.4 rmind lwp_t * const l = curlwp;
360 1.1 rmind
361 1.1 rmind return l->l_pcu_used & (1 << id);
362 1.1 rmind }
363 1.3 matt
364 1.3 matt #endif /* PCU_UNIT_COUNT > 0 */
365