1 1.25 riastrad /* $NetBSD: subr_percpu.c,v 1.25 2020/05/11 21:37:31 riastradh Exp $ */ 2 1.1 yamt 3 1.1 yamt /*- 4 1.1 yamt * Copyright (c)2007,2008 YAMAMOTO Takashi, 5 1.1 yamt * All rights reserved. 6 1.1 yamt * 7 1.1 yamt * Redistribution and use in source and binary forms, with or without 8 1.1 yamt * modification, are permitted provided that the following conditions 9 1.1 yamt * are met: 10 1.1 yamt * 1. Redistributions of source code must retain the above copyright 11 1.1 yamt * notice, this list of conditions and the following disclaimer. 12 1.1 yamt * 2. Redistributions in binary form must reproduce the above copyright 13 1.1 yamt * notice, this list of conditions and the following disclaimer in the 14 1.1 yamt * documentation and/or other materials provided with the distribution. 15 1.1 yamt * 16 1.1 yamt * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 1.1 yamt * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 1.1 yamt * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 1.1 yamt * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 1.1 yamt * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 1.1 yamt * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 1.1 yamt * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 1.1 yamt * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 1.1 yamt * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 1.1 yamt * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 1.1 yamt * SUCH DAMAGE. 27 1.1 yamt */ 28 1.1 yamt 29 1.1 yamt /* 30 1.1 yamt * per-cpu storage. 31 1.1 yamt */ 32 1.1 yamt 33 1.1 yamt #include <sys/cdefs.h> 34 1.25 riastrad __KERNEL_RCSID(0, "$NetBSD: subr_percpu.c,v 1.25 2020/05/11 21:37:31 riastradh Exp $"); 35 1.1 yamt 36 1.1 yamt #include <sys/param.h> 37 1.1 yamt #include <sys/cpu.h> 38 1.23 riastrad #include <sys/kernel.h> 39 1.1 yamt #include <sys/kmem.h> 40 1.1 yamt #include <sys/mutex.h> 41 1.1 yamt #include <sys/percpu.h> 42 1.1 yamt #include <sys/rwlock.h> 43 1.1 yamt #include <sys/vmem.h> 44 1.1 yamt #include <sys/xcall.h> 45 1.1 yamt 46 1.1 yamt #define PERCPU_QUANTUM_SIZE (ALIGNBYTES + 1) 47 1.1 yamt #define PERCPU_QCACHE_MAX 0 48 1.1 yamt #define PERCPU_IMPORT_SIZE 2048 49 1.1 yamt 50 1.21 riastrad struct percpu { 51 1.21 riastrad unsigned pc_offset; 52 1.21 riastrad size_t pc_size; 53 1.25 riastrad percpu_callback_t pc_ctor; 54 1.21 riastrad percpu_callback_t pc_dtor; 55 1.21 riastrad void *pc_cookie; 56 1.25 riastrad LIST_ENTRY(percpu) pc_list; 57 1.21 riastrad }; 58 1.8 yamt 59 1.13 rmind static krwlock_t percpu_swap_lock __cacheline_aligned; 60 1.22 riastrad static vmem_t * percpu_offset_arena __read_mostly; 61 1.22 riastrad static struct { 62 1.22 riastrad kmutex_t lock; 63 1.22 riastrad unsigned int nextoff; 64 1.25 riastrad LIST_HEAD(, percpu) ctor_list; 65 1.25 riastrad struct lwp *busy; 66 1.25 riastrad kcondvar_t cv; 67 1.22 riastrad } percpu_allocation __cacheline_aligned; 68 1.9 ad 69 1.1 yamt static percpu_cpu_t * 70 1.1 yamt cpu_percpu(struct cpu_info *ci) 71 1.1 yamt { 72 1.1 yamt 73 1.1 yamt return &ci->ci_data.cpu_percpu; 74 1.1 yamt } 75 1.1 yamt 76 1.1 yamt static unsigned int 77 1.1 yamt percpu_offset(percpu_t *pc) 78 1.1 yamt { 79 1.21 riastrad const unsigned int off = pc->pc_offset; 80 1.1 yamt 81 1.22 riastrad KASSERT(off < percpu_allocation.nextoff); 82 1.8 yamt return off; 83 1.1 yamt } 84 1.1 yamt 85 1.1 yamt /* 86 1.1 yamt * percpu_cpu_swap: crosscall handler for percpu_cpu_enlarge 87 1.1 yamt */ 88 1.19 kamil __noubsan 89 1.1 yamt static void 90 1.1 yamt percpu_cpu_swap(void *p1, void *p2) 91 1.1 yamt { 92 1.1 yamt struct cpu_info * const ci = p1; 93 1.1 yamt percpu_cpu_t * const newpcc = p2; 94 1.1 yamt percpu_cpu_t * const pcc = cpu_percpu(ci); 95 1.1 yamt 96 1.12 martin KASSERT(ci == curcpu() || !mp_online); 97 1.11 matt 98 1.1 yamt /* 99 1.1 yamt * swap *pcc and *newpcc unless anyone has beaten us. 100 1.1 yamt */ 101 1.1 yamt rw_enter(&percpu_swap_lock, RW_WRITER); 102 1.1 yamt if (newpcc->pcc_size > pcc->pcc_size) { 103 1.1 yamt percpu_cpu_t tmp; 104 1.1 yamt int s; 105 1.1 yamt 106 1.1 yamt tmp = *pcc; 107 1.1 yamt 108 1.1 yamt /* 109 1.1 yamt * block interrupts so that we don't lose their modifications. 110 1.1 yamt */ 111 1.1 yamt 112 1.1 yamt s = splhigh(); 113 1.1 yamt 114 1.1 yamt /* 115 1.1 yamt * copy data to new storage. 116 1.1 yamt */ 117 1.1 yamt 118 1.1 yamt memcpy(newpcc->pcc_data, pcc->pcc_data, pcc->pcc_size); 119 1.1 yamt 120 1.1 yamt /* 121 1.1 yamt * this assignment needs to be atomic for percpu_getptr_remote. 122 1.1 yamt */ 123 1.1 yamt 124 1.1 yamt pcc->pcc_data = newpcc->pcc_data; 125 1.1 yamt 126 1.1 yamt splx(s); 127 1.1 yamt 128 1.1 yamt pcc->pcc_size = newpcc->pcc_size; 129 1.1 yamt *newpcc = tmp; 130 1.1 yamt } 131 1.1 yamt rw_exit(&percpu_swap_lock); 132 1.1 yamt } 133 1.1 yamt 134 1.1 yamt /* 135 1.1 yamt * percpu_cpu_enlarge: ensure that percpu_cpu_t of each cpus have enough space 136 1.1 yamt */ 137 1.1 yamt 138 1.1 yamt static void 139 1.1 yamt percpu_cpu_enlarge(size_t size) 140 1.1 yamt { 141 1.1 yamt CPU_INFO_ITERATOR cii; 142 1.1 yamt struct cpu_info *ci; 143 1.1 yamt 144 1.1 yamt for (CPU_INFO_FOREACH(cii, ci)) { 145 1.1 yamt percpu_cpu_t pcc; 146 1.1 yamt 147 1.1 yamt pcc.pcc_data = kmem_alloc(size, KM_SLEEP); /* XXX cacheline */ 148 1.1 yamt pcc.pcc_size = size; 149 1.1 yamt if (!mp_online) { 150 1.1 yamt percpu_cpu_swap(ci, &pcc); 151 1.1 yamt } else { 152 1.1 yamt uint64_t where; 153 1.1 yamt 154 1.1 yamt where = xc_unicast(0, percpu_cpu_swap, ci, &pcc, ci); 155 1.1 yamt xc_wait(where); 156 1.1 yamt } 157 1.20 riastrad KASSERT(pcc.pcc_size <= size); 158 1.1 yamt if (pcc.pcc_data != NULL) { 159 1.1 yamt kmem_free(pcc.pcc_data, pcc.pcc_size); 160 1.1 yamt } 161 1.1 yamt } 162 1.1 yamt } 163 1.1 yamt 164 1.1 yamt /* 165 1.1 yamt * percpu_backend_alloc: vmem import callback for percpu_offset_arena 166 1.1 yamt */ 167 1.1 yamt 168 1.15 dyoung static int 169 1.16 para percpu_backend_alloc(vmem_t *dummy, vmem_size_t size, vmem_size_t *resultsize, 170 1.15 dyoung vm_flag_t vmflags, vmem_addr_t *addrp) 171 1.1 yamt { 172 1.1 yamt unsigned int offset; 173 1.1 yamt unsigned int nextoff; 174 1.1 yamt 175 1.3 yamt ASSERT_SLEEPABLE(); 176 1.1 yamt KASSERT(dummy == NULL); 177 1.1 yamt 178 1.1 yamt if ((vmflags & VM_NOSLEEP) != 0) 179 1.15 dyoung return ENOMEM; 180 1.1 yamt 181 1.1 yamt size = roundup(size, PERCPU_IMPORT_SIZE); 182 1.22 riastrad mutex_enter(&percpu_allocation.lock); 183 1.22 riastrad offset = percpu_allocation.nextoff; 184 1.22 riastrad percpu_allocation.nextoff = nextoff = percpu_allocation.nextoff + size; 185 1.22 riastrad mutex_exit(&percpu_allocation.lock); 186 1.1 yamt 187 1.1 yamt percpu_cpu_enlarge(nextoff); 188 1.1 yamt 189 1.1 yamt *resultsize = size; 190 1.15 dyoung *addrp = (vmem_addr_t)offset; 191 1.15 dyoung return 0; 192 1.1 yamt } 193 1.1 yamt 194 1.2 yamt static void 195 1.2 yamt percpu_zero_cb(void *vp, void *vp2, struct cpu_info *ci) 196 1.2 yamt { 197 1.2 yamt size_t sz = (uintptr_t)vp2; 198 1.2 yamt 199 1.2 yamt memset(vp, 0, sz); 200 1.2 yamt } 201 1.2 yamt 202 1.2 yamt /* 203 1.2 yamt * percpu_zero: initialize percpu storage with zero. 204 1.2 yamt */ 205 1.2 yamt 206 1.2 yamt static void 207 1.2 yamt percpu_zero(percpu_t *pc, size_t sz) 208 1.2 yamt { 209 1.2 yamt 210 1.2 yamt percpu_foreach(pc, percpu_zero_cb, (void *)(uintptr_t)sz); 211 1.2 yamt } 212 1.2 yamt 213 1.1 yamt /* 214 1.1 yamt * percpu_init: subsystem initialization 215 1.1 yamt */ 216 1.1 yamt 217 1.1 yamt void 218 1.1 yamt percpu_init(void) 219 1.1 yamt { 220 1.1 yamt 221 1.3 yamt ASSERT_SLEEPABLE(); 222 1.1 yamt rw_init(&percpu_swap_lock); 223 1.22 riastrad mutex_init(&percpu_allocation.lock, MUTEX_DEFAULT, IPL_NONE); 224 1.22 riastrad percpu_allocation.nextoff = PERCPU_QUANTUM_SIZE; 225 1.25 riastrad LIST_INIT(&percpu_allocation.ctor_list); 226 1.25 riastrad percpu_allocation.busy = NULL; 227 1.25 riastrad cv_init(&percpu_allocation.cv, "percpu"); 228 1.1 yamt 229 1.16 para percpu_offset_arena = vmem_xcreate("percpu", 0, 0, PERCPU_QUANTUM_SIZE, 230 1.1 yamt percpu_backend_alloc, NULL, NULL, PERCPU_QCACHE_MAX, VM_SLEEP, 231 1.1 yamt IPL_NONE); 232 1.1 yamt } 233 1.1 yamt 234 1.1 yamt /* 235 1.1 yamt * percpu_init_cpu: cpu initialization 236 1.1 yamt * 237 1.1 yamt * => should be called before the cpu appears on the list for CPU_INFO_FOREACH. 238 1.25 riastrad * => may be called for static CPUs afterward (typically just primary CPU) 239 1.1 yamt */ 240 1.1 yamt 241 1.1 yamt void 242 1.1 yamt percpu_init_cpu(struct cpu_info *ci) 243 1.1 yamt { 244 1.1 yamt percpu_cpu_t * const pcc = cpu_percpu(ci); 245 1.25 riastrad struct percpu *pc; 246 1.22 riastrad size_t size = percpu_allocation.nextoff; /* XXX racy */ 247 1.1 yamt 248 1.3 yamt ASSERT_SLEEPABLE(); 249 1.25 riastrad 250 1.25 riastrad /* 251 1.25 riastrad * For the primary CPU, prior percpu_create may have already 252 1.25 riastrad * triggered allocation, so there's nothing more for us to do 253 1.25 riastrad * here. 254 1.25 riastrad */ 255 1.25 riastrad if (pcc->pcc_size) 256 1.25 riastrad return; 257 1.25 riastrad KASSERT(pcc->pcc_data == NULL); 258 1.25 riastrad 259 1.25 riastrad /* 260 1.25 riastrad * Otherwise, allocate storage and, while the constructor list 261 1.25 riastrad * is locked, run constructors for all percpus on this CPU. 262 1.25 riastrad */ 263 1.1 yamt pcc->pcc_size = size; 264 1.1 yamt if (size) { 265 1.1 yamt pcc->pcc_data = kmem_zalloc(pcc->pcc_size, KM_SLEEP); 266 1.25 riastrad mutex_enter(&percpu_allocation.lock); 267 1.25 riastrad while (percpu_allocation.busy) 268 1.25 riastrad cv_wait(&percpu_allocation.cv, 269 1.25 riastrad &percpu_allocation.lock); 270 1.25 riastrad percpu_allocation.busy = curlwp; 271 1.25 riastrad LIST_FOREACH(pc, &percpu_allocation.ctor_list, pc_list) { 272 1.25 riastrad KASSERT(pc->pc_ctor); 273 1.25 riastrad mutex_exit(&percpu_allocation.lock); 274 1.25 riastrad (*pc->pc_ctor)((char *)pcc->pcc_data + pc->pc_offset, 275 1.25 riastrad pc->pc_cookie, ci); 276 1.25 riastrad mutex_enter(&percpu_allocation.lock); 277 1.25 riastrad } 278 1.25 riastrad KASSERT(percpu_allocation.busy == curlwp); 279 1.25 riastrad percpu_allocation.busy = NULL; 280 1.25 riastrad cv_broadcast(&percpu_allocation.cv); 281 1.25 riastrad mutex_exit(&percpu_allocation.lock); 282 1.1 yamt } 283 1.1 yamt } 284 1.1 yamt 285 1.1 yamt /* 286 1.1 yamt * percpu_alloc: allocate percpu storage 287 1.1 yamt * 288 1.1 yamt * => called in thread context. 289 1.1 yamt * => considered as an expensive and rare operation. 290 1.2 yamt * => allocated storage is initialized with zeros. 291 1.1 yamt */ 292 1.1 yamt 293 1.1 yamt percpu_t * 294 1.1 yamt percpu_alloc(size_t size) 295 1.1 yamt { 296 1.21 riastrad 297 1.21 riastrad return percpu_create(size, NULL, NULL, NULL); 298 1.21 riastrad } 299 1.21 riastrad 300 1.21 riastrad /* 301 1.21 riastrad * percpu_create: allocate percpu storage and associate ctor/dtor with it 302 1.21 riastrad * 303 1.21 riastrad * => called in thread context. 304 1.21 riastrad * => considered as an expensive and rare operation. 305 1.21 riastrad * => allocated storage is initialized by ctor, or zeros if ctor is null 306 1.21 riastrad * => percpu_free will call dtor first, if dtor is nonnull 307 1.21 riastrad * => ctor or dtor may sleep, even on allocation 308 1.21 riastrad */ 309 1.21 riastrad 310 1.21 riastrad percpu_t * 311 1.21 riastrad percpu_create(size_t size, percpu_callback_t ctor, percpu_callback_t dtor, 312 1.21 riastrad void *cookie) 313 1.21 riastrad { 314 1.15 dyoung vmem_addr_t offset; 315 1.1 yamt percpu_t *pc; 316 1.1 yamt 317 1.3 yamt ASSERT_SLEEPABLE(); 318 1.18 chs (void)vmem_alloc(percpu_offset_arena, size, VM_SLEEP | VM_BESTFIT, 319 1.18 chs &offset); 320 1.21 riastrad 321 1.21 riastrad pc = kmem_alloc(sizeof(*pc), KM_SLEEP); 322 1.21 riastrad pc->pc_offset = offset; 323 1.21 riastrad pc->pc_size = size; 324 1.25 riastrad pc->pc_ctor = ctor; 325 1.21 riastrad pc->pc_dtor = dtor; 326 1.21 riastrad pc->pc_cookie = cookie; 327 1.21 riastrad 328 1.21 riastrad if (ctor) { 329 1.21 riastrad CPU_INFO_ITERATOR cii; 330 1.21 riastrad struct cpu_info *ci; 331 1.21 riastrad void *buf; 332 1.21 riastrad 333 1.25 riastrad /* 334 1.25 riastrad * Wait until nobody is using the list of percpus with 335 1.25 riastrad * constructors. 336 1.25 riastrad */ 337 1.25 riastrad mutex_enter(&percpu_allocation.lock); 338 1.25 riastrad while (percpu_allocation.busy) 339 1.25 riastrad cv_wait(&percpu_allocation.cv, 340 1.25 riastrad &percpu_allocation.lock); 341 1.25 riastrad percpu_allocation.busy = curlwp; 342 1.25 riastrad mutex_exit(&percpu_allocation.lock); 343 1.25 riastrad 344 1.25 riastrad /* 345 1.25 riastrad * Run the constructor for all CPUs. We use a 346 1.25 riastrad * temporary buffer wo that we need not hold the 347 1.25 riastrad * percpu_swap_lock while running the constructor. 348 1.25 riastrad */ 349 1.21 riastrad buf = kmem_alloc(size, KM_SLEEP); 350 1.21 riastrad for (CPU_INFO_FOREACH(cii, ci)) { 351 1.21 riastrad memset(buf, 0, size); 352 1.21 riastrad (*ctor)(buf, cookie, ci); 353 1.21 riastrad percpu_traverse_enter(); 354 1.21 riastrad memcpy(percpu_getptr_remote(pc, ci), buf, size); 355 1.21 riastrad percpu_traverse_exit(); 356 1.21 riastrad } 357 1.21 riastrad explicit_memset(buf, 0, size); 358 1.21 riastrad kmem_free(buf, size); 359 1.25 riastrad 360 1.25 riastrad /* 361 1.25 riastrad * Insert the percpu into the list of percpus with 362 1.25 riastrad * constructors. We are now done using the list, so it 363 1.25 riastrad * is safe for concurrent percpu_create or concurrent 364 1.25 riastrad * percpu_init_cpu to run. 365 1.25 riastrad */ 366 1.25 riastrad mutex_enter(&percpu_allocation.lock); 367 1.25 riastrad KASSERT(percpu_allocation.busy == curlwp); 368 1.25 riastrad percpu_allocation.busy = NULL; 369 1.25 riastrad cv_broadcast(&percpu_allocation.cv); 370 1.25 riastrad LIST_INSERT_HEAD(&percpu_allocation.ctor_list, pc, pc_list); 371 1.25 riastrad mutex_exit(&percpu_allocation.lock); 372 1.21 riastrad } else { 373 1.21 riastrad percpu_zero(pc, size); 374 1.21 riastrad } 375 1.21 riastrad 376 1.1 yamt return pc; 377 1.1 yamt } 378 1.1 yamt 379 1.1 yamt /* 380 1.5 yamt * percpu_free: free percpu storage 381 1.1 yamt * 382 1.1 yamt * => called in thread context. 383 1.1 yamt * => considered as an expensive and rare operation. 384 1.1 yamt */ 385 1.1 yamt 386 1.1 yamt void 387 1.1 yamt percpu_free(percpu_t *pc, size_t size) 388 1.1 yamt { 389 1.1 yamt 390 1.3 yamt ASSERT_SLEEPABLE(); 391 1.21 riastrad KASSERT(size == pc->pc_size); 392 1.21 riastrad 393 1.25 riastrad /* 394 1.25 riastrad * If there's a constructor, take the percpu off the list of 395 1.25 riastrad * percpus with constructors, but first wait until nobody is 396 1.25 riastrad * using the list. 397 1.25 riastrad */ 398 1.25 riastrad if (pc->pc_ctor) { 399 1.25 riastrad mutex_enter(&percpu_allocation.lock); 400 1.25 riastrad while (percpu_allocation.busy) 401 1.25 riastrad cv_wait(&percpu_allocation.cv, 402 1.25 riastrad &percpu_allocation.lock); 403 1.25 riastrad LIST_REMOVE(pc, pc_list); 404 1.25 riastrad mutex_exit(&percpu_allocation.lock); 405 1.25 riastrad } 406 1.25 riastrad 407 1.25 riastrad /* If there's a destructor, run it now for all CPUs. */ 408 1.21 riastrad if (pc->pc_dtor) { 409 1.21 riastrad CPU_INFO_ITERATOR cii; 410 1.21 riastrad struct cpu_info *ci; 411 1.21 riastrad void *buf; 412 1.21 riastrad 413 1.21 riastrad buf = kmem_alloc(size, KM_SLEEP); 414 1.21 riastrad for (CPU_INFO_FOREACH(cii, ci)) { 415 1.21 riastrad percpu_traverse_enter(); 416 1.21 riastrad memcpy(buf, percpu_getptr_remote(pc, ci), size); 417 1.21 riastrad explicit_memset(percpu_getptr_remote(pc, ci), 0, size); 418 1.21 riastrad percpu_traverse_exit(); 419 1.21 riastrad (*pc->pc_dtor)(buf, pc->pc_cookie, ci); 420 1.21 riastrad } 421 1.21 riastrad explicit_memset(buf, 0, size); 422 1.21 riastrad kmem_free(buf, size); 423 1.21 riastrad } 424 1.21 riastrad 425 1.1 yamt vmem_free(percpu_offset_arena, (vmem_addr_t)percpu_offset(pc), size); 426 1.21 riastrad kmem_free(pc, sizeof(*pc)); 427 1.1 yamt } 428 1.1 yamt 429 1.1 yamt /* 430 1.4 thorpej * percpu_getref: 431 1.1 yamt * 432 1.1 yamt * => safe to be used in either thread or interrupt context 433 1.4 thorpej * => disables preemption; must be bracketed with a percpu_putref() 434 1.1 yamt */ 435 1.1 yamt 436 1.1 yamt void * 437 1.4 thorpej percpu_getref(percpu_t *pc) 438 1.1 yamt { 439 1.1 yamt 440 1.17 uebayasi kpreempt_disable(); 441 1.1 yamt return percpu_getptr_remote(pc, curcpu()); 442 1.1 yamt } 443 1.1 yamt 444 1.1 yamt /* 445 1.4 thorpej * percpu_putref: 446 1.4 thorpej * 447 1.4 thorpej * => drops the preemption-disabled count after caller is done with per-cpu 448 1.4 thorpej * data 449 1.4 thorpej */ 450 1.4 thorpej 451 1.4 thorpej void 452 1.4 thorpej percpu_putref(percpu_t *pc) 453 1.4 thorpej { 454 1.4 thorpej 455 1.17 uebayasi kpreempt_enable(); 456 1.4 thorpej } 457 1.4 thorpej 458 1.4 thorpej /* 459 1.1 yamt * percpu_traverse_enter, percpu_traverse_exit, percpu_getptr_remote: 460 1.1 yamt * helpers to access remote cpu's percpu data. 461 1.1 yamt * 462 1.1 yamt * => called in thread context. 463 1.2 yamt * => percpu_traverse_enter can block low-priority xcalls. 464 1.1 yamt * => typical usage would be: 465 1.1 yamt * 466 1.1 yamt * sum = 0; 467 1.1 yamt * percpu_traverse_enter(); 468 1.1 yamt * for (CPU_INFO_FOREACH(cii, ci)) { 469 1.1 yamt * unsigned int *p = percpu_getptr_remote(pc, ci); 470 1.1 yamt * sum += *p; 471 1.1 yamt * } 472 1.1 yamt * percpu_traverse_exit(); 473 1.1 yamt */ 474 1.1 yamt 475 1.1 yamt void 476 1.1 yamt percpu_traverse_enter(void) 477 1.1 yamt { 478 1.1 yamt 479 1.3 yamt ASSERT_SLEEPABLE(); 480 1.1 yamt rw_enter(&percpu_swap_lock, RW_READER); 481 1.1 yamt } 482 1.1 yamt 483 1.1 yamt void 484 1.1 yamt percpu_traverse_exit(void) 485 1.1 yamt { 486 1.1 yamt 487 1.1 yamt rw_exit(&percpu_swap_lock); 488 1.1 yamt } 489 1.1 yamt 490 1.1 yamt void * 491 1.1 yamt percpu_getptr_remote(percpu_t *pc, struct cpu_info *ci) 492 1.1 yamt { 493 1.1 yamt 494 1.1 yamt return &((char *)cpu_percpu(ci)->pcc_data)[percpu_offset(pc)]; 495 1.1 yamt } 496 1.1 yamt 497 1.1 yamt /* 498 1.1 yamt * percpu_foreach: call the specified callback function for each cpus. 499 1.1 yamt * 500 1.24 thorpej * => must be called from thread context. 501 1.24 thorpej * => callback executes on **current** CPU (or, really, arbitrary CPU, 502 1.24 thorpej * in case of preemption) 503 1.1 yamt * => caller should not rely on the cpu iteration order. 504 1.2 yamt * => the callback function should be minimum because it is executed with 505 1.2 yamt * holding a global lock, which can block low-priority xcalls. 506 1.2 yamt * eg. it's illegal for a callback function to sleep for memory allocation. 507 1.1 yamt */ 508 1.1 yamt void 509 1.1 yamt percpu_foreach(percpu_t *pc, percpu_callback_t cb, void *arg) 510 1.1 yamt { 511 1.1 yamt CPU_INFO_ITERATOR cii; 512 1.1 yamt struct cpu_info *ci; 513 1.1 yamt 514 1.1 yamt percpu_traverse_enter(); 515 1.1 yamt for (CPU_INFO_FOREACH(cii, ci)) { 516 1.2 yamt (*cb)(percpu_getptr_remote(pc, ci), arg, ci); 517 1.1 yamt } 518 1.1 yamt percpu_traverse_exit(); 519 1.1 yamt } 520 1.24 thorpej 521 1.24 thorpej struct percpu_xcall_ctx { 522 1.24 thorpej percpu_callback_t ctx_cb; 523 1.24 thorpej void *ctx_arg; 524 1.24 thorpej }; 525 1.24 thorpej 526 1.24 thorpej static void 527 1.24 thorpej percpu_xcfunc(void * const v1, void * const v2) 528 1.24 thorpej { 529 1.24 thorpej percpu_t * const pc = v1; 530 1.24 thorpej struct percpu_xcall_ctx * const ctx = v2; 531 1.24 thorpej 532 1.24 thorpej (*ctx->ctx_cb)(percpu_getref(pc), ctx->ctx_arg, curcpu()); 533 1.24 thorpej percpu_putref(pc); 534 1.24 thorpej } 535 1.24 thorpej 536 1.24 thorpej /* 537 1.24 thorpej * percpu_foreach_xcall: call the specified callback function for each 538 1.24 thorpej * cpu. This version uses an xcall to run the callback on each cpu. 539 1.24 thorpej * 540 1.24 thorpej * => must be called from thread context. 541 1.24 thorpej * => callback executes on **remote** CPU in soft-interrupt context 542 1.24 thorpej * (at the specified soft interrupt priority). 543 1.24 thorpej * => caller should not rely on the cpu iteration order. 544 1.24 thorpej * => the callback function should be minimum because it may be 545 1.24 thorpej * executed in soft-interrupt context. eg. it's illegal for 546 1.24 thorpej * a callback function to sleep for memory allocation. 547 1.24 thorpej */ 548 1.24 thorpej void 549 1.24 thorpej percpu_foreach_xcall(percpu_t *pc, u_int xcflags, percpu_callback_t cb, 550 1.24 thorpej void *arg) 551 1.24 thorpej { 552 1.24 thorpej struct percpu_xcall_ctx ctx = { 553 1.24 thorpej .ctx_cb = cb, 554 1.24 thorpej .ctx_arg = arg, 555 1.24 thorpej }; 556 1.24 thorpej CPU_INFO_ITERATOR cii; 557 1.24 thorpej struct cpu_info *ci; 558 1.24 thorpej 559 1.24 thorpej for (CPU_INFO_FOREACH(cii, ci)) { 560 1.24 thorpej xc_wait(xc_unicast(xcflags, percpu_xcfunc, pc, &ctx, ci)); 561 1.24 thorpej } 562 1.24 thorpej } 563