subr_percpu.c revision 1.11 1 /* $NetBSD: subr_percpu.c,v 1.11 2011/04/14 05:53:53 matt Exp $ */
2
3 /*-
4 * Copyright (c)2007,2008 YAMAMOTO Takashi,
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 /*
30 * per-cpu storage.
31 */
32
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: subr_percpu.c,v 1.11 2011/04/14 05:53:53 matt Exp $");
35
36 #include <sys/param.h>
37 #include <sys/cpu.h>
38 #include <sys/kmem.h>
39 #include <sys/kernel.h>
40 #include <sys/mutex.h>
41 #include <sys/percpu.h>
42 #include <sys/rwlock.h>
43 #include <sys/vmem.h>
44 #include <sys/xcall.h>
45
46 #include <uvm/uvm_extern.h>
47
48 #define PERCPU_QUANTUM_SIZE (ALIGNBYTES + 1)
49 #define PERCPU_QCACHE_MAX 0
50 #define PERCPU_IMPORT_SIZE 2048
51
52 #if defined(DIAGNOSTIC)
53 #define MAGIC 0x50435055 /* "PCPU" */
54 #define percpu_encrypt(pc) ((pc) ^ MAGIC)
55 #define percpu_decrypt(pc) ((pc) ^ MAGIC)
56 #else /* defined(DIAGNOSTIC) */
57 #define percpu_encrypt(pc) (pc)
58 #define percpu_decrypt(pc) (pc)
59 #endif /* defined(DIAGNOSTIC) */
60
61 static krwlock_t percpu_swap_lock;
62 static kmutex_t percpu_allocation_lock;
63 static vmem_t *percpu_offset_arena;
64 static unsigned int percpu_nextoff = PERCPU_QUANTUM_SIZE;
65
66 static percpu_cpu_t *
67 cpu_percpu(struct cpu_info *ci)
68 {
69
70 return &ci->ci_data.cpu_percpu;
71 }
72
73 static unsigned int
74 percpu_offset(percpu_t *pc)
75 {
76 const unsigned int off = percpu_decrypt((uintptr_t)pc);
77
78 KASSERT(off < percpu_nextoff);
79 return off;
80 }
81
82 /*
83 * percpu_cpu_swap: crosscall handler for percpu_cpu_enlarge
84 */
85
86 static void
87 percpu_cpu_swap(void *p1, void *p2)
88 {
89 struct cpu_info * const ci = p1;
90 percpu_cpu_t * const newpcc = p2;
91 percpu_cpu_t * const pcc = cpu_percpu(ci);
92
93 KASSERT(ci == curcpu());
94
95 /*
96 * swap *pcc and *newpcc unless anyone has beaten us.
97 */
98 rw_enter(&percpu_swap_lock, RW_WRITER);
99 if (newpcc->pcc_size > pcc->pcc_size) {
100 percpu_cpu_t tmp;
101 int s;
102
103 tmp = *pcc;
104
105 /*
106 * block interrupts so that we don't lose their modifications.
107 */
108
109 s = splhigh();
110
111 /*
112 * copy data to new storage.
113 */
114
115 memcpy(newpcc->pcc_data, pcc->pcc_data, pcc->pcc_size);
116
117 /*
118 * this assignment needs to be atomic for percpu_getptr_remote.
119 */
120
121 pcc->pcc_data = newpcc->pcc_data;
122
123 splx(s);
124
125 pcc->pcc_size = newpcc->pcc_size;
126 *newpcc = tmp;
127 }
128 rw_exit(&percpu_swap_lock);
129 }
130
131 /*
132 * percpu_cpu_enlarge: ensure that percpu_cpu_t of each cpus have enough space
133 */
134
135 static void
136 percpu_cpu_enlarge(size_t size)
137 {
138 CPU_INFO_ITERATOR cii;
139 struct cpu_info *ci;
140
141 for (CPU_INFO_FOREACH(cii, ci)) {
142 percpu_cpu_t pcc;
143
144 pcc.pcc_data = kmem_alloc(size, KM_SLEEP); /* XXX cacheline */
145 pcc.pcc_size = size;
146 if (!mp_online) {
147 percpu_cpu_swap(ci, &pcc);
148 } else {
149 uint64_t where;
150
151 where = xc_unicast(0, percpu_cpu_swap, ci, &pcc, ci);
152 xc_wait(where);
153 }
154 KASSERT(pcc.pcc_size < size);
155 if (pcc.pcc_data != NULL) {
156 kmem_free(pcc.pcc_data, pcc.pcc_size);
157 }
158 }
159 }
160
161 /*
162 * percpu_backend_alloc: vmem import callback for percpu_offset_arena
163 */
164
165 static vmem_addr_t
166 percpu_backend_alloc(vmem_t *dummy, vmem_size_t size, vmem_size_t *resultsize,
167 vm_flag_t vmflags)
168 {
169 unsigned int offset;
170 unsigned int nextoff;
171
172 ASSERT_SLEEPABLE();
173 KASSERT(dummy == NULL);
174
175 if ((vmflags & VM_NOSLEEP) != 0)
176 return VMEM_ADDR_NULL;
177
178 size = roundup(size, PERCPU_IMPORT_SIZE);
179 mutex_enter(&percpu_allocation_lock);
180 offset = percpu_nextoff;
181 percpu_nextoff = nextoff = percpu_nextoff + size;
182 mutex_exit(&percpu_allocation_lock);
183
184 percpu_cpu_enlarge(nextoff);
185
186 *resultsize = size;
187 return (vmem_addr_t)offset;
188 }
189
190 static void
191 percpu_zero_cb(void *vp, void *vp2, struct cpu_info *ci)
192 {
193 size_t sz = (uintptr_t)vp2;
194
195 memset(vp, 0, sz);
196 }
197
198 /*
199 * percpu_zero: initialize percpu storage with zero.
200 */
201
202 static void
203 percpu_zero(percpu_t *pc, size_t sz)
204 {
205
206 percpu_foreach(pc, percpu_zero_cb, (void *)(uintptr_t)sz);
207 }
208
209 /*
210 * percpu_init: subsystem initialization
211 */
212
213 void
214 percpu_init(void)
215 {
216
217 ASSERT_SLEEPABLE();
218 rw_init(&percpu_swap_lock);
219 mutex_init(&percpu_allocation_lock, MUTEX_DEFAULT, IPL_NONE);
220
221 percpu_offset_arena = vmem_create("percpu", 0, 0, PERCPU_QUANTUM_SIZE,
222 percpu_backend_alloc, NULL, NULL, PERCPU_QCACHE_MAX, VM_SLEEP,
223 IPL_NONE);
224 }
225
226 /*
227 * percpu_init_cpu: cpu initialization
228 *
229 * => should be called before the cpu appears on the list for CPU_INFO_FOREACH.
230 */
231
232 void
233 percpu_init_cpu(struct cpu_info *ci)
234 {
235 percpu_cpu_t * const pcc = cpu_percpu(ci);
236 size_t size = percpu_nextoff; /* XXX racy */
237
238 ASSERT_SLEEPABLE();
239 pcc->pcc_size = size;
240 if (size) {
241 pcc->pcc_data = kmem_zalloc(pcc->pcc_size, KM_SLEEP);
242 }
243 }
244
245 /*
246 * percpu_alloc: allocate percpu storage
247 *
248 * => called in thread context.
249 * => considered as an expensive and rare operation.
250 * => allocated storage is initialized with zeros.
251 */
252
253 percpu_t *
254 percpu_alloc(size_t size)
255 {
256 unsigned int offset;
257 percpu_t *pc;
258
259 ASSERT_SLEEPABLE();
260 offset = vmem_alloc(percpu_offset_arena, size, VM_SLEEP | VM_BESTFIT);
261 pc = (percpu_t *)percpu_encrypt((uintptr_t)offset);
262 percpu_zero(pc, size);
263 return pc;
264 }
265
266 /*
267 * percpu_free: free percpu storage
268 *
269 * => called in thread context.
270 * => considered as an expensive and rare operation.
271 */
272
273 void
274 percpu_free(percpu_t *pc, size_t size)
275 {
276
277 ASSERT_SLEEPABLE();
278 vmem_free(percpu_offset_arena, (vmem_addr_t)percpu_offset(pc), size);
279 }
280
281 /*
282 * percpu_getref:
283 *
284 * => safe to be used in either thread or interrupt context
285 * => disables preemption; must be bracketed with a percpu_putref()
286 */
287
288 void *
289 percpu_getref(percpu_t *pc)
290 {
291
292 KPREEMPT_DISABLE(curlwp);
293 return percpu_getptr_remote(pc, curcpu());
294 }
295
296 /*
297 * percpu_putref:
298 *
299 * => drops the preemption-disabled count after caller is done with per-cpu
300 * data
301 */
302
303 void
304 percpu_putref(percpu_t *pc)
305 {
306
307 KPREEMPT_ENABLE(curlwp);
308 }
309
310 /*
311 * percpu_traverse_enter, percpu_traverse_exit, percpu_getptr_remote:
312 * helpers to access remote cpu's percpu data.
313 *
314 * => called in thread context.
315 * => percpu_traverse_enter can block low-priority xcalls.
316 * => typical usage would be:
317 *
318 * sum = 0;
319 * percpu_traverse_enter();
320 * for (CPU_INFO_FOREACH(cii, ci)) {
321 * unsigned int *p = percpu_getptr_remote(pc, ci);
322 * sum += *p;
323 * }
324 * percpu_traverse_exit();
325 */
326
327 void
328 percpu_traverse_enter(void)
329 {
330
331 ASSERT_SLEEPABLE();
332 rw_enter(&percpu_swap_lock, RW_READER);
333 }
334
335 void
336 percpu_traverse_exit(void)
337 {
338
339 rw_exit(&percpu_swap_lock);
340 }
341
342 void *
343 percpu_getptr_remote(percpu_t *pc, struct cpu_info *ci)
344 {
345
346 return &((char *)cpu_percpu(ci)->pcc_data)[percpu_offset(pc)];
347 }
348
349 /*
350 * percpu_foreach: call the specified callback function for each cpus.
351 *
352 * => called in thread context.
353 * => caller should not rely on the cpu iteration order.
354 * => the callback function should be minimum because it is executed with
355 * holding a global lock, which can block low-priority xcalls.
356 * eg. it's illegal for a callback function to sleep for memory allocation.
357 */
358 void
359 percpu_foreach(percpu_t *pc, percpu_callback_t cb, void *arg)
360 {
361 CPU_INFO_ITERATOR cii;
362 struct cpu_info *ci;
363
364 percpu_traverse_enter();
365 for (CPU_INFO_FOREACH(cii, ci)) {
366 (*cb)(percpu_getptr_remote(pc, ci), arg, ci);
367 }
368 percpu_traverse_exit();
369 }
370