Home | History | Annotate | Line # | Download | only in kern
subr_percpu.c revision 1.2
      1 /*	$NetBSD: subr_percpu.c,v 1.2 2008/01/17 09:01:57 yamt Exp $	*/
      2 
      3 /*-
      4  * Copyright (c)2007,2008 YAMAMOTO Takashi,
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     26  * SUCH DAMAGE.
     27  */
     28 
     29 /*
     30  * per-cpu storage.
     31  */
     32 
     33 #include <sys/cdefs.h>
     34 __KERNEL_RCSID(0, "$NetBSD: subr_percpu.c,v 1.2 2008/01/17 09:01:57 yamt Exp $");
     35 
     36 #include <sys/param.h>
     37 #include <sys/cpu.h>
     38 #include <sys/kmem.h>
     39 #include <sys/kernel.h>
     40 #include <sys/mutex.h>
     41 #include <sys/percpu.h>
     42 #include <sys/rwlock.h>
     43 #include <sys/vmem.h>
     44 #include <sys/xcall.h>
     45 
     46 #include <uvm/uvm_extern.h>
     47 
     48 static krwlock_t percpu_swap_lock;
     49 static kmutex_t percpu_allocation_lock;
     50 static vmem_t *percpu_offset_arena;
     51 static unsigned int percpu_nextoff;
     52 
     53 #define	PERCPU_QUANTUM_SIZE	(ALIGNBYTES + 1)
     54 #define	PERCPU_QCACHE_MAX	0
     55 #define	PERCPU_IMPORT_SIZE	2048
     56 
     57 static percpu_cpu_t *
     58 cpu_percpu(struct cpu_info *ci)
     59 {
     60 
     61 	return &ci->ci_data.cpu_percpu;
     62 }
     63 
     64 static unsigned int
     65 percpu_offset(percpu_t *pc)
     66 {
     67 
     68 	return (uintptr_t)pc;
     69 }
     70 
     71 /*
     72  * percpu_cpu_swap: crosscall handler for percpu_cpu_enlarge
     73  */
     74 
     75 static void
     76 percpu_cpu_swap(void *p1, void *p2)
     77 {
     78 	struct cpu_info * const ci = p1;
     79 	percpu_cpu_t * const newpcc = p2;
     80 	percpu_cpu_t * const pcc = cpu_percpu(ci);
     81 
     82 	/*
     83 	 * swap *pcc and *newpcc unless anyone has beaten us.
     84 	 */
     85 
     86 	rw_enter(&percpu_swap_lock, RW_WRITER);
     87 	if (newpcc->pcc_size > pcc->pcc_size) {
     88 		percpu_cpu_t tmp;
     89 		int s;
     90 
     91 		tmp = *pcc;
     92 
     93 		/*
     94 		 * block interrupts so that we don't lose their modifications.
     95 		 */
     96 
     97 		s = splhigh();
     98 
     99 		/*
    100 		 * copy data to new storage.
    101 		 */
    102 
    103 		memcpy(newpcc->pcc_data, pcc->pcc_data, pcc->pcc_size);
    104 
    105 		/*
    106 		 * this assignment needs to be atomic for percpu_getptr_remote.
    107 		 */
    108 
    109 		pcc->pcc_data = newpcc->pcc_data;
    110 
    111 		splx(s);
    112 
    113 		pcc->pcc_size = newpcc->pcc_size;
    114 		*newpcc = tmp;
    115 	}
    116 	rw_exit(&percpu_swap_lock);
    117 }
    118 
    119 /*
    120  * percpu_cpu_enlarge: ensure that percpu_cpu_t of each cpus have enough space
    121  */
    122 
    123 static void
    124 percpu_cpu_enlarge(size_t size)
    125 {
    126 	CPU_INFO_ITERATOR cii;
    127 	struct cpu_info *ci;
    128 
    129 	for (CPU_INFO_FOREACH(cii, ci)) {
    130 		percpu_cpu_t pcc;
    131 
    132 		pcc.pcc_data = kmem_alloc(size, KM_SLEEP); /* XXX cacheline */
    133 		pcc.pcc_size = size;
    134 		if (!mp_online) {
    135 			percpu_cpu_swap(ci, &pcc);
    136 		} else {
    137 			uint64_t where;
    138 
    139 			uvm_lwp_hold(curlwp); /* don't swap out pcc */
    140 			where = xc_unicast(0, percpu_cpu_swap, ci, &pcc, ci);
    141 			xc_wait(where);
    142 			uvm_lwp_rele(curlwp);
    143 		}
    144 		KASSERT(pcc.pcc_size < size);
    145 		if (pcc.pcc_data != NULL) {
    146 			kmem_free(pcc.pcc_data, pcc.pcc_size);
    147 		}
    148 	}
    149 }
    150 
    151 /*
    152  * percpu_backend_alloc: vmem import callback for percpu_offset_arena
    153  */
    154 
    155 static vmem_addr_t
    156 percpu_backend_alloc(vmem_t *dummy, vmem_size_t size, vmem_size_t *resultsize,
    157     vm_flag_t vmflags)
    158 {
    159 	unsigned int offset;
    160 	unsigned int nextoff;
    161 
    162 	ASSERT_SLEEPABLE(NULL, __func__);
    163 	KASSERT(dummy == NULL);
    164 
    165 	if ((vmflags & VM_NOSLEEP) != 0)
    166 		return VMEM_ADDR_NULL;
    167 
    168 	size = roundup(size, PERCPU_IMPORT_SIZE);
    169 	mutex_enter(&percpu_allocation_lock);
    170 	offset = percpu_nextoff;
    171 	percpu_nextoff = nextoff = percpu_nextoff + size;
    172 	mutex_exit(&percpu_allocation_lock);
    173 
    174 	percpu_cpu_enlarge(nextoff);
    175 
    176 	*resultsize = size;
    177 	return (vmem_addr_t)offset;
    178 }
    179 
    180 static void
    181 percpu_zero_cb(void *vp, void *vp2, struct cpu_info *ci)
    182 {
    183 	size_t sz = (uintptr_t)vp2;
    184 
    185 	memset(vp, 0, sz);
    186 }
    187 
    188 /*
    189  * percpu_zero: initialize percpu storage with zero.
    190  */
    191 
    192 static void
    193 percpu_zero(percpu_t *pc, size_t sz)
    194 {
    195 
    196 	percpu_foreach(pc, percpu_zero_cb, (void *)(uintptr_t)sz);
    197 }
    198 
    199 /*
    200  * percpu_init: subsystem initialization
    201  */
    202 
    203 void
    204 percpu_init(void)
    205 {
    206 
    207 	ASSERT_SLEEPABLE(NULL, __func__);
    208 	rw_init(&percpu_swap_lock);
    209 	mutex_init(&percpu_allocation_lock, MUTEX_DEFAULT, IPL_NONE);
    210 
    211 	percpu_offset_arena = vmem_create("percpu", 0, 0, PERCPU_QUANTUM_SIZE,
    212 	    percpu_backend_alloc, NULL, NULL, PERCPU_QCACHE_MAX, VM_SLEEP,
    213 	    IPL_NONE);
    214 }
    215 
    216 /*
    217  * percpu_init_cpu: cpu initialization
    218  *
    219  * => should be called before the cpu appears on the list for CPU_INFO_FOREACH.
    220  */
    221 
    222 void
    223 percpu_init_cpu(struct cpu_info *ci)
    224 {
    225 	percpu_cpu_t * const pcc = cpu_percpu(ci);
    226 	size_t size = percpu_nextoff; /* XXX racy */
    227 
    228 	ASSERT_SLEEPABLE(NULL, __func__);
    229 	pcc->pcc_size = size;
    230 	if (size) {
    231 		pcc->pcc_data = kmem_zalloc(pcc->pcc_size, KM_SLEEP);
    232 	}
    233 }
    234 
    235 /*
    236  * percpu_alloc: allocate percpu storage
    237  *
    238  * => called in thread context.
    239  * => considered as an expensive and rare operation.
    240  * => allocated storage is initialized with zeros.
    241  */
    242 
    243 percpu_t *
    244 percpu_alloc(size_t size)
    245 {
    246 	unsigned int offset;
    247 	percpu_t *pc;
    248 
    249 	ASSERT_SLEEPABLE(NULL, __func__);
    250 	offset = vmem_alloc(percpu_offset_arena, size, VM_SLEEP | VM_BESTFIT);
    251 	pc = (percpu_t *)(uintptr_t)offset;
    252 	percpu_zero(pc, size);
    253 	return pc;
    254 }
    255 
    256 /*
    257  * percpu_alloc: free percpu storage
    258  *
    259  * => called in thread context.
    260  * => considered as an expensive and rare operation.
    261  */
    262 
    263 void
    264 percpu_free(percpu_t *pc, size_t size)
    265 {
    266 
    267 	ASSERT_SLEEPABLE(NULL, __func__);
    268 	vmem_free(percpu_offset_arena, (vmem_addr_t)percpu_offset(pc), size);
    269 }
    270 
    271 /*
    272  * percpu_getptr:
    273  *
    274  * => called with preemption disabled
    275  * => safe to be used in either thread or interrupt context
    276  */
    277 
    278 void *
    279 percpu_getptr(percpu_t *pc)
    280 {
    281 
    282 	return percpu_getptr_remote(pc, curcpu());
    283 }
    284 
    285 /*
    286  * percpu_traverse_enter, percpu_traverse_exit, percpu_getptr_remote:
    287  * helpers to access remote cpu's percpu data.
    288  *
    289  * => called in thread context.
    290  * => percpu_traverse_enter can block low-priority xcalls.
    291  * => typical usage would be:
    292  *
    293  *	sum = 0;
    294  *	percpu_traverse_enter();
    295  *	for (CPU_INFO_FOREACH(cii, ci)) {
    296  *		unsigned int *p = percpu_getptr_remote(pc, ci);
    297  *		sum += *p;
    298  *	}
    299  *	percpu_traverse_exit();
    300  */
    301 
    302 void
    303 percpu_traverse_enter(void)
    304 {
    305 
    306 	ASSERT_SLEEPABLE(NULL, __func__);
    307 	rw_enter(&percpu_swap_lock, RW_READER);
    308 }
    309 
    310 void
    311 percpu_traverse_exit(void)
    312 {
    313 
    314 	rw_exit(&percpu_swap_lock);
    315 }
    316 
    317 void *
    318 percpu_getptr_remote(percpu_t *pc, struct cpu_info *ci)
    319 {
    320 
    321 	return &((char *)cpu_percpu(ci)->pcc_data)[percpu_offset(pc)];
    322 }
    323 
    324 /*
    325  * percpu_foreach: call the specified callback function for each cpus.
    326  *
    327  * => called in thread context.
    328  * => caller should not rely on the cpu iteration order.
    329  * => the callback function should be minimum because it is executed with
    330  *    holding a global lock, which can block low-priority xcalls.
    331  *    eg. it's illegal for a callback function to sleep for memory allocation.
    332  */
    333 void
    334 percpu_foreach(percpu_t *pc, percpu_callback_t cb, void *arg)
    335 {
    336 	CPU_INFO_ITERATOR cii;
    337 	struct cpu_info *ci;
    338 
    339 	percpu_traverse_enter();
    340 	for (CPU_INFO_FOREACH(cii, ci)) {
    341 		(*cb)(percpu_getptr_remote(pc, ci), arg, ci);
    342 	}
    343 	percpu_traverse_exit();
    344 }
    345