Home | History | Annotate | Line # | Download | only in kern
subr_percpu.c revision 1.21
      1 /*	$NetBSD: subr_percpu.c,v 1.21 2020/02/01 12:49:02 riastradh Exp $	*/
      2 
      3 /*-
      4  * Copyright (c)2007,2008 YAMAMOTO Takashi,
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     26  * SUCH DAMAGE.
     27  */
     28 
     29 /*
     30  * per-cpu storage.
     31  */
     32 
     33 #include <sys/cdefs.h>
     34 __KERNEL_RCSID(0, "$NetBSD: subr_percpu.c,v 1.21 2020/02/01 12:49:02 riastradh Exp $");
     35 
     36 #include <sys/param.h>
     37 #include <sys/cpu.h>
     38 #include <sys/kmem.h>
     39 #include <sys/kernel.h>
     40 #include <sys/mutex.h>
     41 #include <sys/percpu.h>
     42 #include <sys/rwlock.h>
     43 #include <sys/vmem.h>
     44 #include <sys/xcall.h>
     45 
     46 #define	PERCPU_QUANTUM_SIZE	(ALIGNBYTES + 1)
     47 #define	PERCPU_QCACHE_MAX	0
     48 #define	PERCPU_IMPORT_SIZE	2048
     49 
     50 struct percpu {
     51 	unsigned		pc_offset;
     52 	size_t			pc_size;
     53 	percpu_callback_t	pc_dtor;
     54 	void			*pc_cookie;
     55 };
     56 
     57 static krwlock_t	percpu_swap_lock	__cacheline_aligned;
     58 static kmutex_t		percpu_allocation_lock	__cacheline_aligned;
     59 static vmem_t *		percpu_offset_arena	__cacheline_aligned;
     60 static unsigned int	percpu_nextoff		__cacheline_aligned;
     61 
     62 static percpu_cpu_t *
     63 cpu_percpu(struct cpu_info *ci)
     64 {
     65 
     66 	return &ci->ci_data.cpu_percpu;
     67 }
     68 
     69 static unsigned int
     70 percpu_offset(percpu_t *pc)
     71 {
     72 	const unsigned int off = pc->pc_offset;
     73 
     74 	KASSERT(off < percpu_nextoff);
     75 	return off;
     76 }
     77 
     78 /*
     79  * percpu_cpu_swap: crosscall handler for percpu_cpu_enlarge
     80  */
     81 __noubsan
     82 static void
     83 percpu_cpu_swap(void *p1, void *p2)
     84 {
     85 	struct cpu_info * const ci = p1;
     86 	percpu_cpu_t * const newpcc = p2;
     87 	percpu_cpu_t * const pcc = cpu_percpu(ci);
     88 
     89 	KASSERT(ci == curcpu() || !mp_online);
     90 
     91 	/*
     92 	 * swap *pcc and *newpcc unless anyone has beaten us.
     93 	 */
     94 	rw_enter(&percpu_swap_lock, RW_WRITER);
     95 	if (newpcc->pcc_size > pcc->pcc_size) {
     96 		percpu_cpu_t tmp;
     97 		int s;
     98 
     99 		tmp = *pcc;
    100 
    101 		/*
    102 		 * block interrupts so that we don't lose their modifications.
    103 		 */
    104 
    105 		s = splhigh();
    106 
    107 		/*
    108 		 * copy data to new storage.
    109 		 */
    110 
    111 		memcpy(newpcc->pcc_data, pcc->pcc_data, pcc->pcc_size);
    112 
    113 		/*
    114 		 * this assignment needs to be atomic for percpu_getptr_remote.
    115 		 */
    116 
    117 		pcc->pcc_data = newpcc->pcc_data;
    118 
    119 		splx(s);
    120 
    121 		pcc->pcc_size = newpcc->pcc_size;
    122 		*newpcc = tmp;
    123 	}
    124 	rw_exit(&percpu_swap_lock);
    125 }
    126 
    127 /*
    128  * percpu_cpu_enlarge: ensure that percpu_cpu_t of each cpus have enough space
    129  */
    130 
    131 static void
    132 percpu_cpu_enlarge(size_t size)
    133 {
    134 	CPU_INFO_ITERATOR cii;
    135 	struct cpu_info *ci;
    136 
    137 	for (CPU_INFO_FOREACH(cii, ci)) {
    138 		percpu_cpu_t pcc;
    139 
    140 		pcc.pcc_data = kmem_alloc(size, KM_SLEEP); /* XXX cacheline */
    141 		pcc.pcc_size = size;
    142 		if (!mp_online) {
    143 			percpu_cpu_swap(ci, &pcc);
    144 		} else {
    145 			uint64_t where;
    146 
    147 			where = xc_unicast(0, percpu_cpu_swap, ci, &pcc, ci);
    148 			xc_wait(where);
    149 		}
    150 		KASSERT(pcc.pcc_size <= size);
    151 		if (pcc.pcc_data != NULL) {
    152 			kmem_free(pcc.pcc_data, pcc.pcc_size);
    153 		}
    154 	}
    155 }
    156 
    157 /*
    158  * percpu_backend_alloc: vmem import callback for percpu_offset_arena
    159  */
    160 
    161 static int
    162 percpu_backend_alloc(vmem_t *dummy, vmem_size_t size, vmem_size_t *resultsize,
    163     vm_flag_t vmflags, vmem_addr_t *addrp)
    164 {
    165 	unsigned int offset;
    166 	unsigned int nextoff;
    167 
    168 	ASSERT_SLEEPABLE();
    169 	KASSERT(dummy == NULL);
    170 
    171 	if ((vmflags & VM_NOSLEEP) != 0)
    172 		return ENOMEM;
    173 
    174 	size = roundup(size, PERCPU_IMPORT_SIZE);
    175 	mutex_enter(&percpu_allocation_lock);
    176 	offset = percpu_nextoff;
    177 	percpu_nextoff = nextoff = percpu_nextoff + size;
    178 	mutex_exit(&percpu_allocation_lock);
    179 
    180 	percpu_cpu_enlarge(nextoff);
    181 
    182 	*resultsize = size;
    183 	*addrp = (vmem_addr_t)offset;
    184 	return 0;
    185 }
    186 
    187 static void
    188 percpu_zero_cb(void *vp, void *vp2, struct cpu_info *ci)
    189 {
    190 	size_t sz = (uintptr_t)vp2;
    191 
    192 	memset(vp, 0, sz);
    193 }
    194 
    195 /*
    196  * percpu_zero: initialize percpu storage with zero.
    197  */
    198 
    199 static void
    200 percpu_zero(percpu_t *pc, size_t sz)
    201 {
    202 
    203 	percpu_foreach(pc, percpu_zero_cb, (void *)(uintptr_t)sz);
    204 }
    205 
    206 /*
    207  * percpu_init: subsystem initialization
    208  */
    209 
    210 void
    211 percpu_init(void)
    212 {
    213 
    214 	ASSERT_SLEEPABLE();
    215 	rw_init(&percpu_swap_lock);
    216 	mutex_init(&percpu_allocation_lock, MUTEX_DEFAULT, IPL_NONE);
    217 	percpu_nextoff = PERCPU_QUANTUM_SIZE;
    218 
    219 	percpu_offset_arena = vmem_xcreate("percpu", 0, 0, PERCPU_QUANTUM_SIZE,
    220 	    percpu_backend_alloc, NULL, NULL, PERCPU_QCACHE_MAX, VM_SLEEP,
    221 	    IPL_NONE);
    222 }
    223 
    224 /*
    225  * percpu_init_cpu: cpu initialization
    226  *
    227  * => should be called before the cpu appears on the list for CPU_INFO_FOREACH.
    228  */
    229 
    230 void
    231 percpu_init_cpu(struct cpu_info *ci)
    232 {
    233 	percpu_cpu_t * const pcc = cpu_percpu(ci);
    234 	size_t size = percpu_nextoff; /* XXX racy */
    235 
    236 	ASSERT_SLEEPABLE();
    237 	pcc->pcc_size = size;
    238 	if (size) {
    239 		pcc->pcc_data = kmem_zalloc(pcc->pcc_size, KM_SLEEP);
    240 	}
    241 }
    242 
    243 /*
    244  * percpu_alloc: allocate percpu storage
    245  *
    246  * => called in thread context.
    247  * => considered as an expensive and rare operation.
    248  * => allocated storage is initialized with zeros.
    249  */
    250 
    251 percpu_t *
    252 percpu_alloc(size_t size)
    253 {
    254 
    255 	return percpu_create(size, NULL, NULL, NULL);
    256 }
    257 
    258 /*
    259  * percpu_create: allocate percpu storage and associate ctor/dtor with it
    260  *
    261  * => called in thread context.
    262  * => considered as an expensive and rare operation.
    263  * => allocated storage is initialized by ctor, or zeros if ctor is null
    264  * => percpu_free will call dtor first, if dtor is nonnull
    265  * => ctor or dtor may sleep, even on allocation
    266  */
    267 
    268 percpu_t *
    269 percpu_create(size_t size, percpu_callback_t ctor, percpu_callback_t dtor,
    270     void *cookie)
    271 {
    272 	vmem_addr_t offset;
    273 	percpu_t *pc;
    274 
    275 	ASSERT_SLEEPABLE();
    276 	(void)vmem_alloc(percpu_offset_arena, size, VM_SLEEP | VM_BESTFIT,
    277 	    &offset);
    278 
    279 	pc = kmem_alloc(sizeof(*pc), KM_SLEEP);
    280 	pc->pc_offset = offset;
    281 	pc->pc_size = size;
    282 	pc->pc_dtor = dtor;
    283 	pc->pc_cookie = cookie;
    284 
    285 	if (ctor) {
    286 		CPU_INFO_ITERATOR cii;
    287 		struct cpu_info *ci;
    288 		void *buf;
    289 
    290 		buf = kmem_alloc(size, KM_SLEEP);
    291 		for (CPU_INFO_FOREACH(cii, ci)) {
    292 			memset(buf, 0, size);
    293 			(*ctor)(buf, cookie, ci);
    294 			percpu_traverse_enter();
    295 			memcpy(percpu_getptr_remote(pc, ci), buf, size);
    296 			percpu_traverse_exit();
    297 		}
    298 		explicit_memset(buf, 0, size);
    299 		kmem_free(buf, size);
    300 	} else {
    301 		percpu_zero(pc, size);
    302 	}
    303 
    304 	return pc;
    305 }
    306 
    307 /*
    308  * percpu_free: free percpu storage
    309  *
    310  * => called in thread context.
    311  * => considered as an expensive and rare operation.
    312  */
    313 
    314 void
    315 percpu_free(percpu_t *pc, size_t size)
    316 {
    317 
    318 	ASSERT_SLEEPABLE();
    319 	KASSERT(size == pc->pc_size);
    320 
    321 	if (pc->pc_dtor) {
    322 		CPU_INFO_ITERATOR cii;
    323 		struct cpu_info *ci;
    324 		void *buf;
    325 
    326 		buf = kmem_alloc(size, KM_SLEEP);
    327 		for (CPU_INFO_FOREACH(cii, ci)) {
    328 			percpu_traverse_enter();
    329 			memcpy(buf, percpu_getptr_remote(pc, ci), size);
    330 			explicit_memset(percpu_getptr_remote(pc, ci), 0, size);
    331 			percpu_traverse_exit();
    332 			(*pc->pc_dtor)(buf, pc->pc_cookie, ci);
    333 		}
    334 		explicit_memset(buf, 0, size);
    335 		kmem_free(buf, size);
    336 	}
    337 
    338 	vmem_free(percpu_offset_arena, (vmem_addr_t)percpu_offset(pc), size);
    339 	kmem_free(pc, sizeof(*pc));
    340 }
    341 
    342 /*
    343  * percpu_getref:
    344  *
    345  * => safe to be used in either thread or interrupt context
    346  * => disables preemption; must be bracketed with a percpu_putref()
    347  */
    348 
    349 void *
    350 percpu_getref(percpu_t *pc)
    351 {
    352 
    353 	kpreempt_disable();
    354 	return percpu_getptr_remote(pc, curcpu());
    355 }
    356 
    357 /*
    358  * percpu_putref:
    359  *
    360  * => drops the preemption-disabled count after caller is done with per-cpu
    361  *    data
    362  */
    363 
    364 void
    365 percpu_putref(percpu_t *pc)
    366 {
    367 
    368 	kpreempt_enable();
    369 }
    370 
    371 /*
    372  * percpu_traverse_enter, percpu_traverse_exit, percpu_getptr_remote:
    373  * helpers to access remote cpu's percpu data.
    374  *
    375  * => called in thread context.
    376  * => percpu_traverse_enter can block low-priority xcalls.
    377  * => typical usage would be:
    378  *
    379  *	sum = 0;
    380  *	percpu_traverse_enter();
    381  *	for (CPU_INFO_FOREACH(cii, ci)) {
    382  *		unsigned int *p = percpu_getptr_remote(pc, ci);
    383  *		sum += *p;
    384  *	}
    385  *	percpu_traverse_exit();
    386  */
    387 
    388 void
    389 percpu_traverse_enter(void)
    390 {
    391 
    392 	ASSERT_SLEEPABLE();
    393 	rw_enter(&percpu_swap_lock, RW_READER);
    394 }
    395 
    396 void
    397 percpu_traverse_exit(void)
    398 {
    399 
    400 	rw_exit(&percpu_swap_lock);
    401 }
    402 
    403 void *
    404 percpu_getptr_remote(percpu_t *pc, struct cpu_info *ci)
    405 {
    406 
    407 	return &((char *)cpu_percpu(ci)->pcc_data)[percpu_offset(pc)];
    408 }
    409 
    410 /*
    411  * percpu_foreach: call the specified callback function for each cpus.
    412  *
    413  * => called in thread context.
    414  * => caller should not rely on the cpu iteration order.
    415  * => the callback function should be minimum because it is executed with
    416  *    holding a global lock, which can block low-priority xcalls.
    417  *    eg. it's illegal for a callback function to sleep for memory allocation.
    418  */
    419 void
    420 percpu_foreach(percpu_t *pc, percpu_callback_t cb, void *arg)
    421 {
    422 	CPU_INFO_ITERATOR cii;
    423 	struct cpu_info *ci;
    424 
    425 	percpu_traverse_enter();
    426 	for (CPU_INFO_FOREACH(cii, ci)) {
    427 		(*cb)(percpu_getptr_remote(pc, ci), arg, ci);
    428 	}
    429 	percpu_traverse_exit();
    430 }
    431