Home | History | Annotate | Line # | Download | only in kern
subr_percpu.c revision 1.24
      1 /*	$NetBSD: subr_percpu.c,v 1.24 2020/02/07 11:55:22 thorpej Exp $	*/
      2 
      3 /*-
      4  * Copyright (c)2007,2008 YAMAMOTO Takashi,
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     26  * SUCH DAMAGE.
     27  */
     28 
     29 /*
     30  * per-cpu storage.
     31  */
     32 
     33 #include <sys/cdefs.h>
     34 __KERNEL_RCSID(0, "$NetBSD: subr_percpu.c,v 1.24 2020/02/07 11:55:22 thorpej Exp $");
     35 
     36 #include <sys/param.h>
     37 #include <sys/cpu.h>
     38 #include <sys/kernel.h>
     39 #include <sys/kmem.h>
     40 #include <sys/mutex.h>
     41 #include <sys/percpu.h>
     42 #include <sys/rwlock.h>
     43 #include <sys/vmem.h>
     44 #include <sys/xcall.h>
     45 
     46 #define	PERCPU_QUANTUM_SIZE	(ALIGNBYTES + 1)
     47 #define	PERCPU_QCACHE_MAX	0
     48 #define	PERCPU_IMPORT_SIZE	2048
     49 
     50 struct percpu {
     51 	unsigned		pc_offset;
     52 	size_t			pc_size;
     53 	percpu_callback_t	pc_dtor;
     54 	void			*pc_cookie;
     55 };
     56 
     57 static krwlock_t	percpu_swap_lock	__cacheline_aligned;
     58 static vmem_t *		percpu_offset_arena	__read_mostly;
     59 static struct {
     60 	kmutex_t	lock;
     61 	unsigned int	nextoff;
     62 } percpu_allocation __cacheline_aligned;
     63 
     64 static percpu_cpu_t *
     65 cpu_percpu(struct cpu_info *ci)
     66 {
     67 
     68 	return &ci->ci_data.cpu_percpu;
     69 }
     70 
     71 static unsigned int
     72 percpu_offset(percpu_t *pc)
     73 {
     74 	const unsigned int off = pc->pc_offset;
     75 
     76 	KASSERT(off < percpu_allocation.nextoff);
     77 	return off;
     78 }
     79 
     80 /*
     81  * percpu_cpu_swap: crosscall handler for percpu_cpu_enlarge
     82  */
     83 __noubsan
     84 static void
     85 percpu_cpu_swap(void *p1, void *p2)
     86 {
     87 	struct cpu_info * const ci = p1;
     88 	percpu_cpu_t * const newpcc = p2;
     89 	percpu_cpu_t * const pcc = cpu_percpu(ci);
     90 
     91 	KASSERT(ci == curcpu() || !mp_online);
     92 
     93 	/*
     94 	 * swap *pcc and *newpcc unless anyone has beaten us.
     95 	 */
     96 	rw_enter(&percpu_swap_lock, RW_WRITER);
     97 	if (newpcc->pcc_size > pcc->pcc_size) {
     98 		percpu_cpu_t tmp;
     99 		int s;
    100 
    101 		tmp = *pcc;
    102 
    103 		/*
    104 		 * block interrupts so that we don't lose their modifications.
    105 		 */
    106 
    107 		s = splhigh();
    108 
    109 		/*
    110 		 * copy data to new storage.
    111 		 */
    112 
    113 		memcpy(newpcc->pcc_data, pcc->pcc_data, pcc->pcc_size);
    114 
    115 		/*
    116 		 * this assignment needs to be atomic for percpu_getptr_remote.
    117 		 */
    118 
    119 		pcc->pcc_data = newpcc->pcc_data;
    120 
    121 		splx(s);
    122 
    123 		pcc->pcc_size = newpcc->pcc_size;
    124 		*newpcc = tmp;
    125 	}
    126 	rw_exit(&percpu_swap_lock);
    127 }
    128 
    129 /*
    130  * percpu_cpu_enlarge: ensure that percpu_cpu_t of each cpus have enough space
    131  */
    132 
    133 static void
    134 percpu_cpu_enlarge(size_t size)
    135 {
    136 	CPU_INFO_ITERATOR cii;
    137 	struct cpu_info *ci;
    138 
    139 	for (CPU_INFO_FOREACH(cii, ci)) {
    140 		percpu_cpu_t pcc;
    141 
    142 		pcc.pcc_data = kmem_alloc(size, KM_SLEEP); /* XXX cacheline */
    143 		pcc.pcc_size = size;
    144 		if (!mp_online) {
    145 			percpu_cpu_swap(ci, &pcc);
    146 		} else {
    147 			uint64_t where;
    148 
    149 			where = xc_unicast(0, percpu_cpu_swap, ci, &pcc, ci);
    150 			xc_wait(where);
    151 		}
    152 		KASSERT(pcc.pcc_size <= size);
    153 		if (pcc.pcc_data != NULL) {
    154 			kmem_free(pcc.pcc_data, pcc.pcc_size);
    155 		}
    156 	}
    157 }
    158 
    159 /*
    160  * percpu_backend_alloc: vmem import callback for percpu_offset_arena
    161  */
    162 
    163 static int
    164 percpu_backend_alloc(vmem_t *dummy, vmem_size_t size, vmem_size_t *resultsize,
    165     vm_flag_t vmflags, vmem_addr_t *addrp)
    166 {
    167 	unsigned int offset;
    168 	unsigned int nextoff;
    169 
    170 	ASSERT_SLEEPABLE();
    171 	KASSERT(dummy == NULL);
    172 
    173 	if ((vmflags & VM_NOSLEEP) != 0)
    174 		return ENOMEM;
    175 
    176 	size = roundup(size, PERCPU_IMPORT_SIZE);
    177 	mutex_enter(&percpu_allocation.lock);
    178 	offset = percpu_allocation.nextoff;
    179 	percpu_allocation.nextoff = nextoff = percpu_allocation.nextoff + size;
    180 	mutex_exit(&percpu_allocation.lock);
    181 
    182 	percpu_cpu_enlarge(nextoff);
    183 
    184 	*resultsize = size;
    185 	*addrp = (vmem_addr_t)offset;
    186 	return 0;
    187 }
    188 
    189 static void
    190 percpu_zero_cb(void *vp, void *vp2, struct cpu_info *ci)
    191 {
    192 	size_t sz = (uintptr_t)vp2;
    193 
    194 	memset(vp, 0, sz);
    195 }
    196 
    197 /*
    198  * percpu_zero: initialize percpu storage with zero.
    199  */
    200 
    201 static void
    202 percpu_zero(percpu_t *pc, size_t sz)
    203 {
    204 
    205 	percpu_foreach(pc, percpu_zero_cb, (void *)(uintptr_t)sz);
    206 }
    207 
    208 /*
    209  * percpu_init: subsystem initialization
    210  */
    211 
    212 void
    213 percpu_init(void)
    214 {
    215 
    216 	ASSERT_SLEEPABLE();
    217 	rw_init(&percpu_swap_lock);
    218 	mutex_init(&percpu_allocation.lock, MUTEX_DEFAULT, IPL_NONE);
    219 	percpu_allocation.nextoff = PERCPU_QUANTUM_SIZE;
    220 
    221 	percpu_offset_arena = vmem_xcreate("percpu", 0, 0, PERCPU_QUANTUM_SIZE,
    222 	    percpu_backend_alloc, NULL, NULL, PERCPU_QCACHE_MAX, VM_SLEEP,
    223 	    IPL_NONE);
    224 }
    225 
    226 /*
    227  * percpu_init_cpu: cpu initialization
    228  *
    229  * => should be called before the cpu appears on the list for CPU_INFO_FOREACH.
    230  */
    231 
    232 void
    233 percpu_init_cpu(struct cpu_info *ci)
    234 {
    235 	percpu_cpu_t * const pcc = cpu_percpu(ci);
    236 	size_t size = percpu_allocation.nextoff; /* XXX racy */
    237 
    238 	ASSERT_SLEEPABLE();
    239 	pcc->pcc_size = size;
    240 	if (size) {
    241 		pcc->pcc_data = kmem_zalloc(pcc->pcc_size, KM_SLEEP);
    242 	}
    243 }
    244 
    245 /*
    246  * percpu_alloc: allocate percpu storage
    247  *
    248  * => called in thread context.
    249  * => considered as an expensive and rare operation.
    250  * => allocated storage is initialized with zeros.
    251  */
    252 
    253 percpu_t *
    254 percpu_alloc(size_t size)
    255 {
    256 
    257 	return percpu_create(size, NULL, NULL, NULL);
    258 }
    259 
    260 /*
    261  * percpu_create: allocate percpu storage and associate ctor/dtor with it
    262  *
    263  * => called in thread context.
    264  * => considered as an expensive and rare operation.
    265  * => allocated storage is initialized by ctor, or zeros if ctor is null
    266  * => percpu_free will call dtor first, if dtor is nonnull
    267  * => ctor or dtor may sleep, even on allocation
    268  */
    269 
    270 percpu_t *
    271 percpu_create(size_t size, percpu_callback_t ctor, percpu_callback_t dtor,
    272     void *cookie)
    273 {
    274 	vmem_addr_t offset;
    275 	percpu_t *pc;
    276 
    277 	ASSERT_SLEEPABLE();
    278 	(void)vmem_alloc(percpu_offset_arena, size, VM_SLEEP | VM_BESTFIT,
    279 	    &offset);
    280 
    281 	pc = kmem_alloc(sizeof(*pc), KM_SLEEP);
    282 	pc->pc_offset = offset;
    283 	pc->pc_size = size;
    284 	pc->pc_dtor = dtor;
    285 	pc->pc_cookie = cookie;
    286 
    287 	if (ctor) {
    288 		CPU_INFO_ITERATOR cii;
    289 		struct cpu_info *ci;
    290 		void *buf;
    291 
    292 		buf = kmem_alloc(size, KM_SLEEP);
    293 		for (CPU_INFO_FOREACH(cii, ci)) {
    294 			memset(buf, 0, size);
    295 			(*ctor)(buf, cookie, ci);
    296 			percpu_traverse_enter();
    297 			memcpy(percpu_getptr_remote(pc, ci), buf, size);
    298 			percpu_traverse_exit();
    299 		}
    300 		explicit_memset(buf, 0, size);
    301 		kmem_free(buf, size);
    302 	} else {
    303 		percpu_zero(pc, size);
    304 	}
    305 
    306 	return pc;
    307 }
    308 
    309 /*
    310  * percpu_free: free percpu storage
    311  *
    312  * => called in thread context.
    313  * => considered as an expensive and rare operation.
    314  */
    315 
    316 void
    317 percpu_free(percpu_t *pc, size_t size)
    318 {
    319 
    320 	ASSERT_SLEEPABLE();
    321 	KASSERT(size == pc->pc_size);
    322 
    323 	if (pc->pc_dtor) {
    324 		CPU_INFO_ITERATOR cii;
    325 		struct cpu_info *ci;
    326 		void *buf;
    327 
    328 		buf = kmem_alloc(size, KM_SLEEP);
    329 		for (CPU_INFO_FOREACH(cii, ci)) {
    330 			percpu_traverse_enter();
    331 			memcpy(buf, percpu_getptr_remote(pc, ci), size);
    332 			explicit_memset(percpu_getptr_remote(pc, ci), 0, size);
    333 			percpu_traverse_exit();
    334 			(*pc->pc_dtor)(buf, pc->pc_cookie, ci);
    335 		}
    336 		explicit_memset(buf, 0, size);
    337 		kmem_free(buf, size);
    338 	}
    339 
    340 	vmem_free(percpu_offset_arena, (vmem_addr_t)percpu_offset(pc), size);
    341 	kmem_free(pc, sizeof(*pc));
    342 }
    343 
    344 /*
    345  * percpu_getref:
    346  *
    347  * => safe to be used in either thread or interrupt context
    348  * => disables preemption; must be bracketed with a percpu_putref()
    349  */
    350 
    351 void *
    352 percpu_getref(percpu_t *pc)
    353 {
    354 
    355 	kpreempt_disable();
    356 	return percpu_getptr_remote(pc, curcpu());
    357 }
    358 
    359 /*
    360  * percpu_putref:
    361  *
    362  * => drops the preemption-disabled count after caller is done with per-cpu
    363  *    data
    364  */
    365 
    366 void
    367 percpu_putref(percpu_t *pc)
    368 {
    369 
    370 	kpreempt_enable();
    371 }
    372 
    373 /*
    374  * percpu_traverse_enter, percpu_traverse_exit, percpu_getptr_remote:
    375  * helpers to access remote cpu's percpu data.
    376  *
    377  * => called in thread context.
    378  * => percpu_traverse_enter can block low-priority xcalls.
    379  * => typical usage would be:
    380  *
    381  *	sum = 0;
    382  *	percpu_traverse_enter();
    383  *	for (CPU_INFO_FOREACH(cii, ci)) {
    384  *		unsigned int *p = percpu_getptr_remote(pc, ci);
    385  *		sum += *p;
    386  *	}
    387  *	percpu_traverse_exit();
    388  */
    389 
    390 void
    391 percpu_traverse_enter(void)
    392 {
    393 
    394 	ASSERT_SLEEPABLE();
    395 	rw_enter(&percpu_swap_lock, RW_READER);
    396 }
    397 
    398 void
    399 percpu_traverse_exit(void)
    400 {
    401 
    402 	rw_exit(&percpu_swap_lock);
    403 }
    404 
    405 void *
    406 percpu_getptr_remote(percpu_t *pc, struct cpu_info *ci)
    407 {
    408 
    409 	return &((char *)cpu_percpu(ci)->pcc_data)[percpu_offset(pc)];
    410 }
    411 
    412 /*
    413  * percpu_foreach: call the specified callback function for each cpus.
    414  *
    415  * => must be called from thread context.
    416  * => callback executes on **current** CPU (or, really, arbitrary CPU,
    417  *    in case of preemption)
    418  * => caller should not rely on the cpu iteration order.
    419  * => the callback function should be minimum because it is executed with
    420  *    holding a global lock, which can block low-priority xcalls.
    421  *    eg. it's illegal for a callback function to sleep for memory allocation.
    422  */
    423 void
    424 percpu_foreach(percpu_t *pc, percpu_callback_t cb, void *arg)
    425 {
    426 	CPU_INFO_ITERATOR cii;
    427 	struct cpu_info *ci;
    428 
    429 	percpu_traverse_enter();
    430 	for (CPU_INFO_FOREACH(cii, ci)) {
    431 		(*cb)(percpu_getptr_remote(pc, ci), arg, ci);
    432 	}
    433 	percpu_traverse_exit();
    434 }
    435 
    436 struct percpu_xcall_ctx {
    437 	percpu_callback_t  ctx_cb;
    438 	void		  *ctx_arg;
    439 };
    440 
    441 static void
    442 percpu_xcfunc(void * const v1, void * const v2)
    443 {
    444 	percpu_t * const pc = v1;
    445 	struct percpu_xcall_ctx * const ctx = v2;
    446 
    447 	(*ctx->ctx_cb)(percpu_getref(pc), ctx->ctx_arg, curcpu());
    448 	percpu_putref(pc);
    449 }
    450 
    451 /*
    452  * percpu_foreach_xcall: call the specified callback function for each
    453  * cpu.  This version uses an xcall to run the callback on each cpu.
    454  *
    455  * => must be called from thread context.
    456  * => callback executes on **remote** CPU in soft-interrupt context
    457  *    (at the specified soft interrupt priority).
    458  * => caller should not rely on the cpu iteration order.
    459  * => the callback function should be minimum because it may be
    460  *    executed in soft-interrupt context.  eg. it's illegal for
    461  *    a callback function to sleep for memory allocation.
    462  */
    463 void
    464 percpu_foreach_xcall(percpu_t *pc, u_int xcflags, percpu_callback_t cb,
    465 		     void *arg)
    466 {
    467 	struct percpu_xcall_ctx ctx = {
    468 		.ctx_cb = cb,
    469 		.ctx_arg = arg,
    470 	};
    471 	CPU_INFO_ITERATOR cii;
    472 	struct cpu_info *ci;
    473 
    474 	for (CPU_INFO_FOREACH(cii, ci)) {
    475 		xc_wait(xc_unicast(xcflags, percpu_xcfunc, pc, &ctx, ci));
    476 	}
    477 }
    478