Home | History | Annotate | Line # | Download | only in kern
subr_percpu.c revision 1.8
      1 /*	$NetBSD: subr_percpu.c,v 1.8 2008/05/03 05:31:56 yamt Exp $	*/
      2 
      3 /*-
      4  * Copyright (c)2007,2008 YAMAMOTO Takashi,
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     26  * SUCH DAMAGE.
     27  */
     28 
     29 /*
     30  * per-cpu storage.
     31  */
     32 
     33 #include <sys/cdefs.h>
     34 __KERNEL_RCSID(0, "$NetBSD: subr_percpu.c,v 1.8 2008/05/03 05:31:56 yamt Exp $");
     35 
     36 #include <sys/param.h>
     37 #include <sys/cpu.h>
     38 #include <sys/kmem.h>
     39 #include <sys/kernel.h>
     40 #include <sys/mutex.h>
     41 #include <sys/percpu.h>
     42 #include <sys/rwlock.h>
     43 #include <sys/vmem.h>
     44 #include <sys/xcall.h>
     45 
     46 #include <uvm/uvm_extern.h>
     47 
     48 static krwlock_t percpu_swap_lock;
     49 static kmutex_t percpu_allocation_lock;
     50 static vmem_t *percpu_offset_arena;
     51 static unsigned int percpu_nextoff;
     52 
     53 #define	PERCPU_QUANTUM_SIZE	(ALIGNBYTES + 1)
     54 #define	PERCPU_QCACHE_MAX	0
     55 #define	PERCPU_IMPORT_SIZE	2048
     56 
     57 #if defined(DIAGNOSTIC)
     58 #define	MAGIC	0x50435055	/* "PCPU" */
     59 #define	percpu_encrypt(pc)	((pc) ^ MAGIC)
     60 #define	percpu_decrypt(pc)	((pc) ^ MAGIC)
     61 #else /* defined(DIAGNOSTIC) */
     62 #define	percpu_encrypt(pc)	(pc)
     63 #define	percpu_decrypt(pc)	(pc)
     64 #endif /* defined(DIAGNOSTIC) */
     65 
     66 static percpu_cpu_t *
     67 cpu_percpu(struct cpu_info *ci)
     68 {
     69 
     70 	return &ci->ci_data.cpu_percpu;
     71 }
     72 
     73 static unsigned int
     74 percpu_offset(percpu_t *pc)
     75 {
     76 	const unsigned int off = percpu_decrypt((uintptr_t)pc);
     77 
     78 	KASSERT(off < percpu_nextoff);
     79 	return off;
     80 }
     81 
     82 /*
     83  * percpu_cpu_swap: crosscall handler for percpu_cpu_enlarge
     84  */
     85 
     86 static void
     87 percpu_cpu_swap(void *p1, void *p2)
     88 {
     89 	struct cpu_info * const ci = p1;
     90 	percpu_cpu_t * const newpcc = p2;
     91 	percpu_cpu_t * const pcc = cpu_percpu(ci);
     92 
     93 	/*
     94 	 * swap *pcc and *newpcc unless anyone has beaten us.
     95 	 */
     96 
     97 	rw_enter(&percpu_swap_lock, RW_WRITER);
     98 	if (newpcc->pcc_size > pcc->pcc_size) {
     99 		percpu_cpu_t tmp;
    100 		int s;
    101 
    102 		tmp = *pcc;
    103 
    104 		/*
    105 		 * block interrupts so that we don't lose their modifications.
    106 		 */
    107 
    108 		s = splhigh();
    109 
    110 		/*
    111 		 * copy data to new storage.
    112 		 */
    113 
    114 		memcpy(newpcc->pcc_data, pcc->pcc_data, pcc->pcc_size);
    115 
    116 		/*
    117 		 * this assignment needs to be atomic for percpu_getptr_remote.
    118 		 */
    119 
    120 		pcc->pcc_data = newpcc->pcc_data;
    121 
    122 		splx(s);
    123 
    124 		pcc->pcc_size = newpcc->pcc_size;
    125 		*newpcc = tmp;
    126 	}
    127 	rw_exit(&percpu_swap_lock);
    128 }
    129 
    130 /*
    131  * percpu_cpu_enlarge: ensure that percpu_cpu_t of each cpus have enough space
    132  */
    133 
    134 static void
    135 percpu_cpu_enlarge(size_t size)
    136 {
    137 	CPU_INFO_ITERATOR cii;
    138 	struct cpu_info *ci;
    139 
    140 	for (CPU_INFO_FOREACH(cii, ci)) {
    141 		percpu_cpu_t pcc;
    142 
    143 		pcc.pcc_data = kmem_alloc(size, KM_SLEEP); /* XXX cacheline */
    144 		pcc.pcc_size = size;
    145 		if (!mp_online) {
    146 			percpu_cpu_swap(ci, &pcc);
    147 		} else {
    148 			uint64_t where;
    149 
    150 			uvm_lwp_hold(curlwp); /* don't swap out pcc */
    151 			where = xc_unicast(0, percpu_cpu_swap, ci, &pcc, ci);
    152 			xc_wait(where);
    153 			uvm_lwp_rele(curlwp);
    154 		}
    155 		KASSERT(pcc.pcc_size < size);
    156 		if (pcc.pcc_data != NULL) {
    157 			kmem_free(pcc.pcc_data, pcc.pcc_size);
    158 		}
    159 	}
    160 }
    161 
    162 /*
    163  * percpu_backend_alloc: vmem import callback for percpu_offset_arena
    164  */
    165 
    166 static vmem_addr_t
    167 percpu_backend_alloc(vmem_t *dummy, vmem_size_t size, vmem_size_t *resultsize,
    168     vm_flag_t vmflags)
    169 {
    170 	unsigned int offset;
    171 	unsigned int nextoff;
    172 
    173 	ASSERT_SLEEPABLE();
    174 	KASSERT(dummy == NULL);
    175 
    176 	if ((vmflags & VM_NOSLEEP) != 0)
    177 		return VMEM_ADDR_NULL;
    178 
    179 	size = roundup(size, PERCPU_IMPORT_SIZE);
    180 	mutex_enter(&percpu_allocation_lock);
    181 	offset = percpu_nextoff;
    182 	percpu_nextoff = nextoff = percpu_nextoff + size;
    183 	mutex_exit(&percpu_allocation_lock);
    184 
    185 	percpu_cpu_enlarge(nextoff);
    186 
    187 	*resultsize = size;
    188 	return (vmem_addr_t)offset;
    189 }
    190 
    191 static void
    192 percpu_zero_cb(void *vp, void *vp2, struct cpu_info *ci)
    193 {
    194 	size_t sz = (uintptr_t)vp2;
    195 
    196 	memset(vp, 0, sz);
    197 }
    198 
    199 /*
    200  * percpu_zero: initialize percpu storage with zero.
    201  */
    202 
    203 static void
    204 percpu_zero(percpu_t *pc, size_t sz)
    205 {
    206 
    207 	percpu_foreach(pc, percpu_zero_cb, (void *)(uintptr_t)sz);
    208 }
    209 
    210 /*
    211  * percpu_init: subsystem initialization
    212  */
    213 
    214 void
    215 percpu_init(void)
    216 {
    217 
    218 	ASSERT_SLEEPABLE();
    219 	rw_init(&percpu_swap_lock);
    220 	mutex_init(&percpu_allocation_lock, MUTEX_DEFAULT, IPL_NONE);
    221 
    222 	percpu_offset_arena = vmem_create("percpu", 0, 0, PERCPU_QUANTUM_SIZE,
    223 	    percpu_backend_alloc, NULL, NULL, PERCPU_QCACHE_MAX, VM_SLEEP,
    224 	    IPL_NONE);
    225 }
    226 
    227 /*
    228  * percpu_init_cpu: cpu initialization
    229  *
    230  * => should be called before the cpu appears on the list for CPU_INFO_FOREACH.
    231  */
    232 
    233 void
    234 percpu_init_cpu(struct cpu_info *ci)
    235 {
    236 	percpu_cpu_t * const pcc = cpu_percpu(ci);
    237 	size_t size = percpu_nextoff; /* XXX racy */
    238 
    239 	ASSERT_SLEEPABLE();
    240 	pcc->pcc_size = size;
    241 	if (size) {
    242 		pcc->pcc_data = kmem_zalloc(pcc->pcc_size, KM_SLEEP);
    243 	}
    244 }
    245 
    246 /*
    247  * percpu_alloc: allocate percpu storage
    248  *
    249  * => called in thread context.
    250  * => considered as an expensive and rare operation.
    251  * => allocated storage is initialized with zeros.
    252  */
    253 
    254 percpu_t *
    255 percpu_alloc(size_t size)
    256 {
    257 	unsigned int offset;
    258 	percpu_t *pc;
    259 
    260 	ASSERT_SLEEPABLE();
    261 	offset = vmem_alloc(percpu_offset_arena, size, VM_SLEEP | VM_BESTFIT);
    262 	pc = (percpu_t *)percpu_encrypt((uintptr_t)offset);
    263 	percpu_zero(pc, size);
    264 	return pc;
    265 }
    266 
    267 /*
    268  * percpu_free: free percpu storage
    269  *
    270  * => called in thread context.
    271  * => considered as an expensive and rare operation.
    272  */
    273 
    274 void
    275 percpu_free(percpu_t *pc, size_t size)
    276 {
    277 
    278 	ASSERT_SLEEPABLE();
    279 	vmem_free(percpu_offset_arena, (vmem_addr_t)percpu_offset(pc), size);
    280 }
    281 
    282 /*
    283  * percpu_getref:
    284  *
    285  * => safe to be used in either thread or interrupt context
    286  * => disables preemption; must be bracketed with a percpu_putref()
    287  */
    288 
    289 void *
    290 percpu_getref(percpu_t *pc)
    291 {
    292 
    293 	KPREEMPT_DISABLE(curlwp);
    294 	return percpu_getptr_remote(pc, curcpu());
    295 }
    296 
    297 /*
    298  * percpu_putref:
    299  *
    300  * => drops the preemption-disabled count after caller is done with per-cpu
    301  *    data
    302  */
    303 
    304 void
    305 percpu_putref(percpu_t *pc)
    306 {
    307 
    308 	KPREEMPT_ENABLE(curlwp);
    309 }
    310 
    311 /*
    312  * percpu_traverse_enter, percpu_traverse_exit, percpu_getptr_remote:
    313  * helpers to access remote cpu's percpu data.
    314  *
    315  * => called in thread context.
    316  * => percpu_traverse_enter can block low-priority xcalls.
    317  * => typical usage would be:
    318  *
    319  *	sum = 0;
    320  *	percpu_traverse_enter();
    321  *	for (CPU_INFO_FOREACH(cii, ci)) {
    322  *		unsigned int *p = percpu_getptr_remote(pc, ci);
    323  *		sum += *p;
    324  *	}
    325  *	percpu_traverse_exit();
    326  */
    327 
    328 void
    329 percpu_traverse_enter(void)
    330 {
    331 
    332 	ASSERT_SLEEPABLE();
    333 	rw_enter(&percpu_swap_lock, RW_READER);
    334 }
    335 
    336 void
    337 percpu_traverse_exit(void)
    338 {
    339 
    340 	rw_exit(&percpu_swap_lock);
    341 }
    342 
    343 void *
    344 percpu_getptr_remote(percpu_t *pc, struct cpu_info *ci)
    345 {
    346 
    347 	return &((char *)cpu_percpu(ci)->pcc_data)[percpu_offset(pc)];
    348 }
    349 
    350 /*
    351  * percpu_foreach: call the specified callback function for each cpus.
    352  *
    353  * => called in thread context.
    354  * => caller should not rely on the cpu iteration order.
    355  * => the callback function should be minimum because it is executed with
    356  *    holding a global lock, which can block low-priority xcalls.
    357  *    eg. it's illegal for a callback function to sleep for memory allocation.
    358  */
    359 void
    360 percpu_foreach(percpu_t *pc, percpu_callback_t cb, void *arg)
    361 {
    362 	CPU_INFO_ITERATOR cii;
    363 	struct cpu_info *ci;
    364 
    365 	percpu_traverse_enter();
    366 	for (CPU_INFO_FOREACH(cii, ci)) {
    367 		(*cb)(percpu_getptr_remote(pc, ci), arg, ci);
    368 	}
    369 	percpu_traverse_exit();
    370 }
    371