subr_pool.c revision 1.128.2.11 1 1.128.2.11 ad /* $NetBSD: subr_pool.c,v 1.128.2.11 2007/10/26 17:03:10 ad Exp $ */
2 1.1 pk
3 1.1 pk /*-
4 1.128.2.2 ad * Copyright (c) 1997, 1999, 2000, 2002, 2007 The NetBSD Foundation, Inc.
5 1.1 pk * All rights reserved.
6 1.1 pk *
7 1.1 pk * This code is derived from software contributed to The NetBSD Foundation
8 1.20 thorpej * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
9 1.128.2.7 ad * Simulation Facility, NASA Ames Research Center, and by Andrew Doran.
10 1.1 pk *
11 1.1 pk * Redistribution and use in source and binary forms, with or without
12 1.1 pk * modification, are permitted provided that the following conditions
13 1.1 pk * are met:
14 1.1 pk * 1. Redistributions of source code must retain the above copyright
15 1.1 pk * notice, this list of conditions and the following disclaimer.
16 1.1 pk * 2. Redistributions in binary form must reproduce the above copyright
17 1.1 pk * notice, this list of conditions and the following disclaimer in the
18 1.1 pk * documentation and/or other materials provided with the distribution.
19 1.1 pk * 3. All advertising materials mentioning features or use of this software
20 1.1 pk * must display the following acknowledgement:
21 1.13 christos * This product includes software developed by the NetBSD
22 1.13 christos * Foundation, Inc. and its contributors.
23 1.1 pk * 4. Neither the name of The NetBSD Foundation nor the names of its
24 1.1 pk * contributors may be used to endorse or promote products derived
25 1.1 pk * from this software without specific prior written permission.
26 1.1 pk *
27 1.1 pk * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 1.1 pk * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 1.1 pk * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 1.1 pk * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 1.1 pk * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 1.1 pk * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 1.1 pk * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 1.1 pk * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 1.1 pk * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 1.1 pk * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 1.1 pk * POSSIBILITY OF SUCH DAMAGE.
38 1.1 pk */
39 1.64 lukem
40 1.64 lukem #include <sys/cdefs.h>
41 1.128.2.11 ad __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.128.2.11 2007/10/26 17:03:10 ad Exp $");
42 1.24 scottr
43 1.25 thorpej #include "opt_pool.h"
44 1.24 scottr #include "opt_poollog.h"
45 1.28 thorpej #include "opt_lockdebug.h"
46 1.1 pk
47 1.1 pk #include <sys/param.h>
48 1.1 pk #include <sys/systm.h>
49 1.1 pk #include <sys/proc.h>
50 1.1 pk #include <sys/errno.h>
51 1.1 pk #include <sys/kernel.h>
52 1.1 pk #include <sys/malloc.h>
53 1.1 pk #include <sys/lock.h>
54 1.1 pk #include <sys/pool.h>
55 1.20 thorpej #include <sys/syslog.h>
56 1.125 ad #include <sys/debug.h>
57 1.128.2.5 ad #include <sys/lockdebug.h>
58 1.128.2.11 ad #include <sys/xcall.h>
59 1.3 pk
60 1.3 pk #include <uvm/uvm.h>
61 1.3 pk
62 1.1 pk /*
63 1.1 pk * Pool resource management utility.
64 1.3 pk *
65 1.88 chs * Memory is allocated in pages which are split into pieces according to
66 1.88 chs * the pool item size. Each page is kept on one of three lists in the
67 1.88 chs * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
68 1.88 chs * for empty, full and partially-full pages respectively. The individual
69 1.88 chs * pool items are on a linked list headed by `ph_itemlist' in each page
70 1.88 chs * header. The memory for building the page list is either taken from
71 1.88 chs * the allocated pages themselves (for small pool items) or taken from
72 1.88 chs * an internal pool of page headers (`phpool').
73 1.1 pk */
74 1.1 pk
75 1.3 pk /* List of all pools */
76 1.102 chs LIST_HEAD(,pool) pool_head = LIST_HEAD_INITIALIZER(pool_head);
77 1.3 pk
78 1.128.2.7 ad /* List of all caches. */
79 1.128.2.7 ad LIST_HEAD(,pool_cache) pool_cache_head =
80 1.128.2.7 ad LIST_HEAD_INITIALIZER(pool_cache_head);
81 1.128.2.7 ad
82 1.3 pk /* Private pool for page header structures */
83 1.97 yamt #define PHPOOL_MAX 8
84 1.97 yamt static struct pool phpool[PHPOOL_MAX];
85 1.97 yamt #define PHPOOL_FREELIST_NELEM(idx) (((idx) == 0) ? 0 : (1 << (idx)))
86 1.3 pk
87 1.62 bjh21 #ifdef POOL_SUBPAGE
88 1.62 bjh21 /* Pool of subpages for use by normal pools. */
89 1.62 bjh21 static struct pool psppool;
90 1.62 bjh21 #endif
91 1.62 bjh21
92 1.117 yamt static SLIST_HEAD(, pool_allocator) pa_deferinitq =
93 1.117 yamt SLIST_HEAD_INITIALIZER(pa_deferinitq);
94 1.117 yamt
95 1.98 yamt static void *pool_page_alloc_meta(struct pool *, int);
96 1.98 yamt static void pool_page_free_meta(struct pool *, void *);
97 1.98 yamt
98 1.98 yamt /* allocator for pool metadata */
99 1.128.2.7 ad struct pool_allocator pool_allocator_meta = {
100 1.117 yamt pool_page_alloc_meta, pool_page_free_meta,
101 1.117 yamt .pa_backingmapptr = &kmem_map,
102 1.98 yamt };
103 1.98 yamt
104 1.3 pk /* # of seconds to retain page after last use */
105 1.3 pk int pool_inactive_time = 10;
106 1.3 pk
107 1.3 pk /* Next candidate for drainage (see pool_drain()) */
108 1.23 thorpej static struct pool *drainpp;
109 1.23 thorpej
110 1.128.2.2 ad /* This lock protects both pool_head and drainpp. */
111 1.128.2.2 ad static kmutex_t pool_head_lock;
112 1.128.2.7 ad static kcondvar_t pool_busy;
113 1.3 pk
114 1.99 yamt typedef uint8_t pool_item_freelist_t;
115 1.99 yamt
116 1.3 pk struct pool_item_header {
117 1.3 pk /* Page headers */
118 1.88 chs LIST_ENTRY(pool_item_header)
119 1.3 pk ph_pagelist; /* pool page list */
120 1.88 chs SPLAY_ENTRY(pool_item_header)
121 1.88 chs ph_node; /* Off-page page headers */
122 1.128 christos void * ph_page; /* this page's address */
123 1.3 pk struct timeval ph_time; /* last referenced */
124 1.97 yamt union {
125 1.97 yamt /* !PR_NOTOUCH */
126 1.97 yamt struct {
127 1.102 chs LIST_HEAD(, pool_item)
128 1.97 yamt phu_itemlist; /* chunk list for this page */
129 1.97 yamt } phu_normal;
130 1.97 yamt /* PR_NOTOUCH */
131 1.97 yamt struct {
132 1.97 yamt uint16_t
133 1.97 yamt phu_off; /* start offset in page */
134 1.99 yamt pool_item_freelist_t
135 1.97 yamt phu_firstfree; /* first free item */
136 1.99 yamt /*
137 1.99 yamt * XXX it might be better to use
138 1.99 yamt * a simple bitmap and ffs(3)
139 1.99 yamt */
140 1.97 yamt } phu_notouch;
141 1.97 yamt } ph_u;
142 1.97 yamt uint16_t ph_nmissing; /* # of chunks in use */
143 1.3 pk };
144 1.97 yamt #define ph_itemlist ph_u.phu_normal.phu_itemlist
145 1.97 yamt #define ph_off ph_u.phu_notouch.phu_off
146 1.97 yamt #define ph_firstfree ph_u.phu_notouch.phu_firstfree
147 1.3 pk
148 1.1 pk struct pool_item {
149 1.3 pk #ifdef DIAGNOSTIC
150 1.82 thorpej u_int pi_magic;
151 1.33 chs #endif
152 1.128.2.11 ad #define PI_MAGIC 0xdeaddeadU
153 1.3 pk /* Other entries use only this list entry */
154 1.102 chs LIST_ENTRY(pool_item) pi_list;
155 1.3 pk };
156 1.3 pk
157 1.53 thorpej #define POOL_NEEDS_CATCHUP(pp) \
158 1.53 thorpej ((pp)->pr_nitems < (pp)->pr_minitems)
159 1.53 thorpej
160 1.43 thorpej /*
161 1.43 thorpej * Pool cache management.
162 1.43 thorpej *
163 1.43 thorpej * Pool caches provide a way for constructed objects to be cached by the
164 1.43 thorpej * pool subsystem. This can lead to performance improvements by avoiding
165 1.43 thorpej * needless object construction/destruction; it is deferred until absolutely
166 1.43 thorpej * necessary.
167 1.43 thorpej *
168 1.128.2.7 ad * Caches are grouped into cache groups. Each cache group references up
169 1.128.2.7 ad * to PCG_NUMOBJECTS constructed objects. When a cache allocates an
170 1.128.2.7 ad * object from the pool, it calls the object's constructor and places it
171 1.128.2.7 ad * into a cache group. When a cache group frees an object back to the
172 1.128.2.7 ad * pool, it first calls the object's destructor. This allows the object
173 1.128.2.7 ad * to persist in constructed form while freed to the cache.
174 1.128.2.7 ad *
175 1.128.2.7 ad * The pool references each cache, so that when a pool is drained by the
176 1.128.2.7 ad * pagedaemon, it can drain each individual cache as well. Each time a
177 1.128.2.7 ad * cache is drained, the most idle cache group is freed to the pool in
178 1.128.2.7 ad * its entirety.
179 1.43 thorpej *
180 1.43 thorpej * Pool caches are layed on top of pools. By layering them, we can avoid
181 1.43 thorpej * the complexity of cache management for pools which would not benefit
182 1.43 thorpej * from it.
183 1.43 thorpej */
184 1.43 thorpej
185 1.43 thorpej static struct pool pcgpool;
186 1.128.2.7 ad static struct pool cache_pool;
187 1.128.2.7 ad static struct pool cache_cpu_pool;
188 1.3 pk
189 1.128.2.7 ad static pool_cache_cpu_t *pool_cache_put_slow(pool_cache_cpu_t *, int *,
190 1.128.2.7 ad void *, paddr_t);
191 1.128.2.7 ad static pool_cache_cpu_t *pool_cache_get_slow(pool_cache_cpu_t *, int *,
192 1.128.2.7 ad void **, paddr_t *, int);
193 1.128.2.7 ad static void pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
194 1.128.2.7 ad static void pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
195 1.128.2.11 ad static void pool_cache_xcall(pool_cache_t);
196 1.3 pk
197 1.42 thorpej static int pool_catchup(struct pool *);
198 1.128 christos static void pool_prime_page(struct pool *, void *,
199 1.55 thorpej struct pool_item_header *);
200 1.88 chs static void pool_update_curpage(struct pool *);
201 1.66 thorpej
202 1.113 yamt static int pool_grow(struct pool *, int);
203 1.117 yamt static void *pool_allocator_alloc(struct pool *, int);
204 1.117 yamt static void pool_allocator_free(struct pool *, void *);
205 1.3 pk
206 1.97 yamt static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
207 1.88 chs void (*)(const char *, ...));
208 1.42 thorpej static void pool_print1(struct pool *, const char *,
209 1.42 thorpej void (*)(const char *, ...));
210 1.3 pk
211 1.88 chs static int pool_chk_page(struct pool *, const char *,
212 1.88 chs struct pool_item_header *);
213 1.88 chs
214 1.3 pk /*
215 1.52 thorpej * Pool log entry. An array of these is allocated in pool_init().
216 1.3 pk */
217 1.3 pk struct pool_log {
218 1.3 pk const char *pl_file;
219 1.3 pk long pl_line;
220 1.3 pk int pl_action;
221 1.25 thorpej #define PRLOG_GET 1
222 1.25 thorpej #define PRLOG_PUT 2
223 1.3 pk void *pl_addr;
224 1.1 pk };
225 1.1 pk
226 1.86 matt #ifdef POOL_DIAGNOSTIC
227 1.3 pk /* Number of entries in pool log buffers */
228 1.17 thorpej #ifndef POOL_LOGSIZE
229 1.17 thorpej #define POOL_LOGSIZE 10
230 1.17 thorpej #endif
231 1.17 thorpej
232 1.17 thorpej int pool_logsize = POOL_LOGSIZE;
233 1.1 pk
234 1.110 perry static inline void
235 1.42 thorpej pr_log(struct pool *pp, void *v, int action, const char *file, long line)
236 1.3 pk {
237 1.3 pk int n = pp->pr_curlogentry;
238 1.3 pk struct pool_log *pl;
239 1.3 pk
240 1.20 thorpej if ((pp->pr_roflags & PR_LOGGING) == 0)
241 1.3 pk return;
242 1.3 pk
243 1.3 pk /*
244 1.3 pk * Fill in the current entry. Wrap around and overwrite
245 1.3 pk * the oldest entry if necessary.
246 1.3 pk */
247 1.3 pk pl = &pp->pr_log[n];
248 1.3 pk pl->pl_file = file;
249 1.3 pk pl->pl_line = line;
250 1.3 pk pl->pl_action = action;
251 1.3 pk pl->pl_addr = v;
252 1.3 pk if (++n >= pp->pr_logsize)
253 1.3 pk n = 0;
254 1.3 pk pp->pr_curlogentry = n;
255 1.3 pk }
256 1.3 pk
257 1.3 pk static void
258 1.42 thorpej pr_printlog(struct pool *pp, struct pool_item *pi,
259 1.42 thorpej void (*pr)(const char *, ...))
260 1.3 pk {
261 1.3 pk int i = pp->pr_logsize;
262 1.3 pk int n = pp->pr_curlogentry;
263 1.3 pk
264 1.20 thorpej if ((pp->pr_roflags & PR_LOGGING) == 0)
265 1.3 pk return;
266 1.3 pk
267 1.3 pk /*
268 1.3 pk * Print all entries in this pool's log.
269 1.3 pk */
270 1.3 pk while (i-- > 0) {
271 1.3 pk struct pool_log *pl = &pp->pr_log[n];
272 1.3 pk if (pl->pl_action != 0) {
273 1.25 thorpej if (pi == NULL || pi == pl->pl_addr) {
274 1.25 thorpej (*pr)("\tlog entry %d:\n", i);
275 1.25 thorpej (*pr)("\t\taction = %s, addr = %p\n",
276 1.25 thorpej pl->pl_action == PRLOG_GET ? "get" : "put",
277 1.25 thorpej pl->pl_addr);
278 1.25 thorpej (*pr)("\t\tfile: %s at line %lu\n",
279 1.25 thorpej pl->pl_file, pl->pl_line);
280 1.25 thorpej }
281 1.3 pk }
282 1.3 pk if (++n >= pp->pr_logsize)
283 1.3 pk n = 0;
284 1.3 pk }
285 1.3 pk }
286 1.25 thorpej
287 1.110 perry static inline void
288 1.42 thorpej pr_enter(struct pool *pp, const char *file, long line)
289 1.25 thorpej {
290 1.25 thorpej
291 1.34 thorpej if (__predict_false(pp->pr_entered_file != NULL)) {
292 1.25 thorpej printf("pool %s: reentrancy at file %s line %ld\n",
293 1.25 thorpej pp->pr_wchan, file, line);
294 1.25 thorpej printf(" previous entry at file %s line %ld\n",
295 1.25 thorpej pp->pr_entered_file, pp->pr_entered_line);
296 1.25 thorpej panic("pr_enter");
297 1.25 thorpej }
298 1.25 thorpej
299 1.25 thorpej pp->pr_entered_file = file;
300 1.25 thorpej pp->pr_entered_line = line;
301 1.25 thorpej }
302 1.25 thorpej
303 1.110 perry static inline void
304 1.42 thorpej pr_leave(struct pool *pp)
305 1.25 thorpej {
306 1.25 thorpej
307 1.34 thorpej if (__predict_false(pp->pr_entered_file == NULL)) {
308 1.25 thorpej printf("pool %s not entered?\n", pp->pr_wchan);
309 1.25 thorpej panic("pr_leave");
310 1.25 thorpej }
311 1.25 thorpej
312 1.25 thorpej pp->pr_entered_file = NULL;
313 1.25 thorpej pp->pr_entered_line = 0;
314 1.25 thorpej }
315 1.25 thorpej
316 1.110 perry static inline void
317 1.42 thorpej pr_enter_check(struct pool *pp, void (*pr)(const char *, ...))
318 1.25 thorpej {
319 1.25 thorpej
320 1.25 thorpej if (pp->pr_entered_file != NULL)
321 1.25 thorpej (*pr)("\n\tcurrently entered from file %s line %ld\n",
322 1.25 thorpej pp->pr_entered_file, pp->pr_entered_line);
323 1.25 thorpej }
324 1.3 pk #else
325 1.25 thorpej #define pr_log(pp, v, action, file, line)
326 1.25 thorpej #define pr_printlog(pp, pi, pr)
327 1.25 thorpej #define pr_enter(pp, file, line)
328 1.25 thorpej #define pr_leave(pp)
329 1.25 thorpej #define pr_enter_check(pp, pr)
330 1.59 thorpej #endif /* POOL_DIAGNOSTIC */
331 1.3 pk
332 1.110 perry static inline int
333 1.97 yamt pr_item_notouch_index(const struct pool *pp, const struct pool_item_header *ph,
334 1.97 yamt const void *v)
335 1.97 yamt {
336 1.97 yamt const char *cp = v;
337 1.97 yamt int idx;
338 1.97 yamt
339 1.97 yamt KASSERT(pp->pr_roflags & PR_NOTOUCH);
340 1.128 christos idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
341 1.97 yamt KASSERT(idx < pp->pr_itemsperpage);
342 1.97 yamt return idx;
343 1.97 yamt }
344 1.97 yamt
345 1.99 yamt #define PR_FREELIST_ALIGN(p) \
346 1.99 yamt roundup((uintptr_t)(p), sizeof(pool_item_freelist_t))
347 1.99 yamt #define PR_FREELIST(ph) ((pool_item_freelist_t *)PR_FREELIST_ALIGN((ph) + 1))
348 1.99 yamt #define PR_INDEX_USED ((pool_item_freelist_t)-1)
349 1.99 yamt #define PR_INDEX_EOL ((pool_item_freelist_t)-2)
350 1.97 yamt
351 1.110 perry static inline void
352 1.97 yamt pr_item_notouch_put(const struct pool *pp, struct pool_item_header *ph,
353 1.97 yamt void *obj)
354 1.97 yamt {
355 1.97 yamt int idx = pr_item_notouch_index(pp, ph, obj);
356 1.99 yamt pool_item_freelist_t *freelist = PR_FREELIST(ph);
357 1.97 yamt
358 1.97 yamt KASSERT(freelist[idx] == PR_INDEX_USED);
359 1.97 yamt freelist[idx] = ph->ph_firstfree;
360 1.97 yamt ph->ph_firstfree = idx;
361 1.97 yamt }
362 1.97 yamt
363 1.110 perry static inline void *
364 1.97 yamt pr_item_notouch_get(const struct pool *pp, struct pool_item_header *ph)
365 1.97 yamt {
366 1.97 yamt int idx = ph->ph_firstfree;
367 1.99 yamt pool_item_freelist_t *freelist = PR_FREELIST(ph);
368 1.97 yamt
369 1.97 yamt KASSERT(freelist[idx] != PR_INDEX_USED);
370 1.97 yamt ph->ph_firstfree = freelist[idx];
371 1.97 yamt freelist[idx] = PR_INDEX_USED;
372 1.97 yamt
373 1.128 christos return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
374 1.97 yamt }
375 1.97 yamt
376 1.110 perry static inline int
377 1.88 chs phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
378 1.88 chs {
379 1.121 yamt
380 1.121 yamt /*
381 1.121 yamt * we consider pool_item_header with smaller ph_page bigger.
382 1.121 yamt * (this unnatural ordering is for the benefit of pr_find_pagehead.)
383 1.121 yamt */
384 1.121 yamt
385 1.88 chs if (a->ph_page < b->ph_page)
386 1.121 yamt return (1);
387 1.121 yamt else if (a->ph_page > b->ph_page)
388 1.88 chs return (-1);
389 1.88 chs else
390 1.88 chs return (0);
391 1.88 chs }
392 1.88 chs
393 1.88 chs SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
394 1.88 chs SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
395 1.88 chs
396 1.3 pk /*
397 1.121 yamt * Return the pool page header based on item address.
398 1.3 pk */
399 1.110 perry static inline struct pool_item_header *
400 1.121 yamt pr_find_pagehead(struct pool *pp, void *v)
401 1.3 pk {
402 1.88 chs struct pool_item_header *ph, tmp;
403 1.3 pk
404 1.121 yamt if ((pp->pr_roflags & PR_NOALIGN) != 0) {
405 1.128 christos tmp.ph_page = (void *)(uintptr_t)v;
406 1.121 yamt ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
407 1.121 yamt if (ph == NULL) {
408 1.121 yamt ph = SPLAY_ROOT(&pp->pr_phtree);
409 1.121 yamt if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
410 1.121 yamt ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
411 1.121 yamt }
412 1.121 yamt KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
413 1.121 yamt }
414 1.121 yamt } else {
415 1.128 christos void *page =
416 1.128 christos (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask);
417 1.121 yamt
418 1.121 yamt if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
419 1.128 christos ph = (struct pool_item_header *)((char *)page + pp->pr_phoffset);
420 1.121 yamt } else {
421 1.121 yamt tmp.ph_page = page;
422 1.121 yamt ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
423 1.121 yamt }
424 1.121 yamt }
425 1.3 pk
426 1.121 yamt KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
427 1.128 christos ((char *)ph->ph_page <= (char *)v &&
428 1.128 christos (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
429 1.88 chs return ph;
430 1.3 pk }
431 1.3 pk
432 1.101 thorpej static void
433 1.101 thorpej pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
434 1.101 thorpej {
435 1.101 thorpej struct pool_item_header *ph;
436 1.101 thorpej
437 1.101 thorpej while ((ph = LIST_FIRST(pq)) != NULL) {
438 1.101 thorpej LIST_REMOVE(ph, ph_pagelist);
439 1.101 thorpej pool_allocator_free(pp, ph->ph_page);
440 1.128.2.2 ad if ((pp->pr_roflags & PR_PHINPAGE) == 0)
441 1.101 thorpej pool_put(pp->pr_phpool, ph);
442 1.101 thorpej }
443 1.101 thorpej }
444 1.101 thorpej
445 1.3 pk /*
446 1.3 pk * Remove a page from the pool.
447 1.3 pk */
448 1.110 perry static inline void
449 1.61 chs pr_rmpage(struct pool *pp, struct pool_item_header *ph,
450 1.61 chs struct pool_pagelist *pq)
451 1.3 pk {
452 1.3 pk
453 1.128.2.2 ad KASSERT(mutex_owned(&pp->pr_lock));
454 1.91 yamt
455 1.3 pk /*
456 1.7 thorpej * If the page was idle, decrement the idle page count.
457 1.3 pk */
458 1.6 thorpej if (ph->ph_nmissing == 0) {
459 1.6 thorpej #ifdef DIAGNOSTIC
460 1.6 thorpej if (pp->pr_nidle == 0)
461 1.6 thorpej panic("pr_rmpage: nidle inconsistent");
462 1.20 thorpej if (pp->pr_nitems < pp->pr_itemsperpage)
463 1.20 thorpej panic("pr_rmpage: nitems inconsistent");
464 1.6 thorpej #endif
465 1.6 thorpej pp->pr_nidle--;
466 1.6 thorpej }
467 1.7 thorpej
468 1.20 thorpej pp->pr_nitems -= pp->pr_itemsperpage;
469 1.20 thorpej
470 1.7 thorpej /*
471 1.101 thorpej * Unlink the page from the pool and queue it for release.
472 1.7 thorpej */
473 1.88 chs LIST_REMOVE(ph, ph_pagelist);
474 1.91 yamt if ((pp->pr_roflags & PR_PHINPAGE) == 0)
475 1.91 yamt SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
476 1.101 thorpej LIST_INSERT_HEAD(pq, ph, ph_pagelist);
477 1.101 thorpej
478 1.7 thorpej pp->pr_npages--;
479 1.7 thorpej pp->pr_npagefree++;
480 1.6 thorpej
481 1.88 chs pool_update_curpage(pp);
482 1.3 pk }
483 1.3 pk
484 1.126 thorpej static bool
485 1.117 yamt pa_starved_p(struct pool_allocator *pa)
486 1.117 yamt {
487 1.117 yamt
488 1.117 yamt if (pa->pa_backingmap != NULL) {
489 1.117 yamt return vm_map_starved_p(pa->pa_backingmap);
490 1.117 yamt }
491 1.127 thorpej return false;
492 1.117 yamt }
493 1.117 yamt
494 1.117 yamt static int
495 1.124 yamt pool_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
496 1.117 yamt {
497 1.117 yamt struct pool *pp = obj;
498 1.117 yamt struct pool_allocator *pa = pp->pr_alloc;
499 1.117 yamt
500 1.117 yamt KASSERT(&pp->pr_reclaimerentry == ce);
501 1.117 yamt pool_reclaim(pp);
502 1.117 yamt if (!pa_starved_p(pa)) {
503 1.117 yamt return CALLBACK_CHAIN_ABORT;
504 1.117 yamt }
505 1.117 yamt return CALLBACK_CHAIN_CONTINUE;
506 1.117 yamt }
507 1.117 yamt
508 1.117 yamt static void
509 1.117 yamt pool_reclaim_register(struct pool *pp)
510 1.117 yamt {
511 1.117 yamt struct vm_map *map = pp->pr_alloc->pa_backingmap;
512 1.117 yamt int s;
513 1.117 yamt
514 1.117 yamt if (map == NULL) {
515 1.117 yamt return;
516 1.117 yamt }
517 1.117 yamt
518 1.117 yamt s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
519 1.117 yamt callback_register(&vm_map_to_kernel(map)->vmk_reclaim_callback,
520 1.117 yamt &pp->pr_reclaimerentry, pp, pool_reclaim_callback);
521 1.117 yamt splx(s);
522 1.117 yamt }
523 1.117 yamt
524 1.117 yamt static void
525 1.117 yamt pool_reclaim_unregister(struct pool *pp)
526 1.117 yamt {
527 1.117 yamt struct vm_map *map = pp->pr_alloc->pa_backingmap;
528 1.117 yamt int s;
529 1.117 yamt
530 1.117 yamt if (map == NULL) {
531 1.117 yamt return;
532 1.117 yamt }
533 1.117 yamt
534 1.117 yamt s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
535 1.117 yamt callback_unregister(&vm_map_to_kernel(map)->vmk_reclaim_callback,
536 1.117 yamt &pp->pr_reclaimerentry);
537 1.117 yamt splx(s);
538 1.117 yamt }
539 1.117 yamt
540 1.117 yamt static void
541 1.117 yamt pa_reclaim_register(struct pool_allocator *pa)
542 1.117 yamt {
543 1.117 yamt struct vm_map *map = *pa->pa_backingmapptr;
544 1.117 yamt struct pool *pp;
545 1.117 yamt
546 1.117 yamt KASSERT(pa->pa_backingmap == NULL);
547 1.117 yamt if (map == NULL) {
548 1.117 yamt SLIST_INSERT_HEAD(&pa_deferinitq, pa, pa_q);
549 1.117 yamt return;
550 1.117 yamt }
551 1.117 yamt pa->pa_backingmap = map;
552 1.117 yamt TAILQ_FOREACH(pp, &pa->pa_list, pr_alloc_list) {
553 1.117 yamt pool_reclaim_register(pp);
554 1.117 yamt }
555 1.117 yamt }
556 1.117 yamt
557 1.3 pk /*
558 1.94 simonb * Initialize all the pools listed in the "pools" link set.
559 1.94 simonb */
560 1.94 simonb void
561 1.117 yamt pool_subsystem_init(void)
562 1.94 simonb {
563 1.117 yamt struct pool_allocator *pa;
564 1.94 simonb __link_set_decl(pools, struct link_pool_init);
565 1.94 simonb struct link_pool_init * const *pi;
566 1.94 simonb
567 1.128.2.2 ad mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
568 1.128.2.7 ad cv_init(&pool_busy, "poolbusy");
569 1.128.2.2 ad
570 1.94 simonb __link_set_foreach(pi, pools)
571 1.94 simonb pool_init((*pi)->pp, (*pi)->size, (*pi)->align,
572 1.94 simonb (*pi)->align_offset, (*pi)->flags, (*pi)->wchan,
573 1.128.2.1 ad (*pi)->palloc, (*pi)->ipl);
574 1.117 yamt
575 1.117 yamt while ((pa = SLIST_FIRST(&pa_deferinitq)) != NULL) {
576 1.117 yamt KASSERT(pa->pa_backingmapptr != NULL);
577 1.117 yamt KASSERT(*pa->pa_backingmapptr != NULL);
578 1.117 yamt SLIST_REMOVE_HEAD(&pa_deferinitq, pa_q);
579 1.117 yamt pa_reclaim_register(pa);
580 1.117 yamt }
581 1.128.2.7 ad
582 1.128.2.7 ad pool_init(&cache_pool, sizeof(struct pool_cache), CACHE_LINE_SIZE,
583 1.128.2.7 ad 0, 0, "pcache", &pool_allocator_nointr, IPL_NONE);
584 1.128.2.7 ad
585 1.128.2.7 ad pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), CACHE_LINE_SIZE,
586 1.128.2.7 ad 0, 0, "pcachecpu", &pool_allocator_nointr, IPL_NONE);
587 1.94 simonb }
588 1.94 simonb
589 1.94 simonb /*
590 1.3 pk * Initialize the given pool resource structure.
591 1.3 pk *
592 1.3 pk * We export this routine to allow other kernel parts to declare
593 1.3 pk * static pools that must be initialized before malloc() is available.
594 1.3 pk */
595 1.3 pk void
596 1.42 thorpej pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
597 1.128.2.1 ad const char *wchan, struct pool_allocator *palloc, int ipl)
598 1.3 pk {
599 1.116 simonb #ifdef DEBUG
600 1.116 simonb struct pool *pp1;
601 1.116 simonb #endif
602 1.92 enami size_t trysize, phsize;
603 1.128.2.2 ad int off, slack;
604 1.3 pk
605 1.99 yamt KASSERT((1UL << (CHAR_BIT * sizeof(pool_item_freelist_t))) - 2 >=
606 1.99 yamt PHPOOL_FREELIST_NELEM(PHPOOL_MAX - 1));
607 1.99 yamt
608 1.116 simonb #ifdef DEBUG
609 1.116 simonb /*
610 1.116 simonb * Check that the pool hasn't already been initialised and
611 1.116 simonb * added to the list of all pools.
612 1.116 simonb */
613 1.116 simonb LIST_FOREACH(pp1, &pool_head, pr_poollist) {
614 1.116 simonb if (pp == pp1)
615 1.116 simonb panic("pool_init: pool %s already initialised",
616 1.116 simonb wchan);
617 1.116 simonb }
618 1.116 simonb #endif
619 1.116 simonb
620 1.25 thorpej #ifdef POOL_DIAGNOSTIC
621 1.25 thorpej /*
622 1.25 thorpej * Always log if POOL_DIAGNOSTIC is defined.
623 1.25 thorpej */
624 1.25 thorpej if (pool_logsize != 0)
625 1.25 thorpej flags |= PR_LOGGING;
626 1.25 thorpej #endif
627 1.25 thorpej
628 1.66 thorpej if (palloc == NULL)
629 1.66 thorpej palloc = &pool_allocator_kmem;
630 1.112 bjh21 #ifdef POOL_SUBPAGE
631 1.112 bjh21 if (size > palloc->pa_pagesz) {
632 1.112 bjh21 if (palloc == &pool_allocator_kmem)
633 1.112 bjh21 palloc = &pool_allocator_kmem_fullpage;
634 1.112 bjh21 else if (palloc == &pool_allocator_nointr)
635 1.112 bjh21 palloc = &pool_allocator_nointr_fullpage;
636 1.112 bjh21 }
637 1.66 thorpej #endif /* POOL_SUBPAGE */
638 1.66 thorpej if ((palloc->pa_flags & PA_INITIALIZED) == 0) {
639 1.112 bjh21 if (palloc->pa_pagesz == 0)
640 1.66 thorpej palloc->pa_pagesz = PAGE_SIZE;
641 1.66 thorpej
642 1.66 thorpej TAILQ_INIT(&palloc->pa_list);
643 1.66 thorpej
644 1.128.2.7 ad mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
645 1.66 thorpej palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
646 1.66 thorpej palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
647 1.117 yamt
648 1.117 yamt if (palloc->pa_backingmapptr != NULL) {
649 1.117 yamt pa_reclaim_register(palloc);
650 1.117 yamt }
651 1.66 thorpej palloc->pa_flags |= PA_INITIALIZED;
652 1.4 thorpej }
653 1.3 pk
654 1.3 pk if (align == 0)
655 1.3 pk align = ALIGN(1);
656 1.14 thorpej
657 1.120 yamt if ((flags & PR_NOTOUCH) == 0 && size < sizeof(struct pool_item))
658 1.14 thorpej size = sizeof(struct pool_item);
659 1.3 pk
660 1.78 thorpej size = roundup(size, align);
661 1.66 thorpej #ifdef DIAGNOSTIC
662 1.66 thorpej if (size > palloc->pa_pagesz)
663 1.121 yamt panic("pool_init: pool item size (%zu) too large", size);
664 1.66 thorpej #endif
665 1.35 pk
666 1.3 pk /*
667 1.3 pk * Initialize the pool structure.
668 1.3 pk */
669 1.88 chs LIST_INIT(&pp->pr_emptypages);
670 1.88 chs LIST_INIT(&pp->pr_fullpages);
671 1.88 chs LIST_INIT(&pp->pr_partpages);
672 1.128.2.7 ad pp->pr_cache = NULL;
673 1.3 pk pp->pr_curpage = NULL;
674 1.3 pk pp->pr_npages = 0;
675 1.3 pk pp->pr_minitems = 0;
676 1.3 pk pp->pr_minpages = 0;
677 1.3 pk pp->pr_maxpages = UINT_MAX;
678 1.20 thorpej pp->pr_roflags = flags;
679 1.20 thorpej pp->pr_flags = 0;
680 1.35 pk pp->pr_size = size;
681 1.3 pk pp->pr_align = align;
682 1.3 pk pp->pr_wchan = wchan;
683 1.66 thorpej pp->pr_alloc = palloc;
684 1.20 thorpej pp->pr_nitems = 0;
685 1.20 thorpej pp->pr_nout = 0;
686 1.20 thorpej pp->pr_hardlimit = UINT_MAX;
687 1.20 thorpej pp->pr_hardlimit_warning = NULL;
688 1.31 thorpej pp->pr_hardlimit_ratecap.tv_sec = 0;
689 1.31 thorpej pp->pr_hardlimit_ratecap.tv_usec = 0;
690 1.31 thorpej pp->pr_hardlimit_warning_last.tv_sec = 0;
691 1.31 thorpej pp->pr_hardlimit_warning_last.tv_usec = 0;
692 1.68 thorpej pp->pr_drain_hook = NULL;
693 1.68 thorpej pp->pr_drain_hook_arg = NULL;
694 1.125 ad pp->pr_freecheck = NULL;
695 1.3 pk
696 1.3 pk /*
697 1.3 pk * Decide whether to put the page header off page to avoid
698 1.92 enami * wasting too large a part of the page or too big item.
699 1.92 enami * Off-page page headers go on a hash table, so we can match
700 1.92 enami * a returned item with its header based on the page address.
701 1.92 enami * We use 1/16 of the page size and about 8 times of the item
702 1.92 enami * size as the threshold (XXX: tune)
703 1.92 enami *
704 1.92 enami * However, we'll put the header into the page if we can put
705 1.92 enami * it without wasting any items.
706 1.92 enami *
707 1.92 enami * Silently enforce `0 <= ioff < align'.
708 1.3 pk */
709 1.92 enami pp->pr_itemoffset = ioff %= align;
710 1.92 enami /* See the comment below about reserved bytes. */
711 1.92 enami trysize = palloc->pa_pagesz - ((align - ioff) % align);
712 1.92 enami phsize = ALIGN(sizeof(struct pool_item_header));
713 1.121 yamt if ((pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) == 0 &&
714 1.97 yamt (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) ||
715 1.97 yamt trysize / pp->pr_size == (trysize - phsize) / pp->pr_size)) {
716 1.3 pk /* Use the end of the page for the page header */
717 1.20 thorpej pp->pr_roflags |= PR_PHINPAGE;
718 1.92 enami pp->pr_phoffset = off = palloc->pa_pagesz - phsize;
719 1.2 pk } else {
720 1.3 pk /* The page header will be taken from our page header pool */
721 1.3 pk pp->pr_phoffset = 0;
722 1.66 thorpej off = palloc->pa_pagesz;
723 1.88 chs SPLAY_INIT(&pp->pr_phtree);
724 1.2 pk }
725 1.1 pk
726 1.3 pk /*
727 1.3 pk * Alignment is to take place at `ioff' within the item. This means
728 1.3 pk * we must reserve up to `align - 1' bytes on the page to allow
729 1.3 pk * appropriate positioning of each item.
730 1.3 pk */
731 1.3 pk pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
732 1.43 thorpej KASSERT(pp->pr_itemsperpage != 0);
733 1.97 yamt if ((pp->pr_roflags & PR_NOTOUCH)) {
734 1.97 yamt int idx;
735 1.97 yamt
736 1.97 yamt for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
737 1.97 yamt idx++) {
738 1.97 yamt /* nothing */
739 1.97 yamt }
740 1.97 yamt if (idx >= PHPOOL_MAX) {
741 1.97 yamt /*
742 1.97 yamt * if you see this panic, consider to tweak
743 1.97 yamt * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
744 1.97 yamt */
745 1.97 yamt panic("%s: too large itemsperpage(%d) for PR_NOTOUCH",
746 1.97 yamt pp->pr_wchan, pp->pr_itemsperpage);
747 1.97 yamt }
748 1.97 yamt pp->pr_phpool = &phpool[idx];
749 1.97 yamt } else if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
750 1.97 yamt pp->pr_phpool = &phpool[0];
751 1.97 yamt }
752 1.97 yamt #if defined(DIAGNOSTIC)
753 1.97 yamt else {
754 1.97 yamt pp->pr_phpool = NULL;
755 1.97 yamt }
756 1.97 yamt #endif
757 1.3 pk
758 1.3 pk /*
759 1.3 pk * Use the slack between the chunks and the page header
760 1.3 pk * for "cache coloring".
761 1.3 pk */
762 1.3 pk slack = off - pp->pr_itemsperpage * pp->pr_size;
763 1.3 pk pp->pr_maxcolor = (slack / align) * align;
764 1.3 pk pp->pr_curcolor = 0;
765 1.3 pk
766 1.3 pk pp->pr_nget = 0;
767 1.3 pk pp->pr_nfail = 0;
768 1.3 pk pp->pr_nput = 0;
769 1.3 pk pp->pr_npagealloc = 0;
770 1.3 pk pp->pr_npagefree = 0;
771 1.1 pk pp->pr_hiwat = 0;
772 1.8 thorpej pp->pr_nidle = 0;
773 1.128.2.7 ad pp->pr_refcnt = 0;
774 1.3 pk
775 1.59 thorpej #ifdef POOL_DIAGNOSTIC
776 1.25 thorpej if (flags & PR_LOGGING) {
777 1.25 thorpej if (kmem_map == NULL ||
778 1.25 thorpej (pp->pr_log = malloc(pool_logsize * sizeof(struct pool_log),
779 1.25 thorpej M_TEMP, M_NOWAIT)) == NULL)
780 1.20 thorpej pp->pr_roflags &= ~PR_LOGGING;
781 1.3 pk pp->pr_curlogentry = 0;
782 1.3 pk pp->pr_logsize = pool_logsize;
783 1.3 pk }
784 1.59 thorpej #endif
785 1.25 thorpej
786 1.25 thorpej pp->pr_entered_file = NULL;
787 1.25 thorpej pp->pr_entered_line = 0;
788 1.3 pk
789 1.128.2.7 ad mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
790 1.128.2.2 ad cv_init(&pp->pr_cv, wchan);
791 1.128.2.2 ad pp->pr_ipl = ipl;
792 1.128.2.2 ad
793 1.3 pk /*
794 1.43 thorpej * Initialize private page header pool and cache magazine pool if we
795 1.43 thorpej * haven't done so yet.
796 1.23 thorpej * XXX LOCKING.
797 1.3 pk */
798 1.97 yamt if (phpool[0].pr_size == 0) {
799 1.97 yamt int idx;
800 1.97 yamt for (idx = 0; idx < PHPOOL_MAX; idx++) {
801 1.97 yamt static char phpool_names[PHPOOL_MAX][6+1+6+1];
802 1.97 yamt int nelem;
803 1.97 yamt size_t sz;
804 1.97 yamt
805 1.97 yamt nelem = PHPOOL_FREELIST_NELEM(idx);
806 1.97 yamt snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
807 1.97 yamt "phpool-%d", nelem);
808 1.97 yamt sz = sizeof(struct pool_item_header);
809 1.97 yamt if (nelem) {
810 1.97 yamt sz = PR_FREELIST_ALIGN(sz)
811 1.99 yamt + nelem * sizeof(pool_item_freelist_t);
812 1.97 yamt }
813 1.97 yamt pool_init(&phpool[idx], sz, 0, 0, 0,
814 1.128.2.1 ad phpool_names[idx], &pool_allocator_meta, IPL_VM);
815 1.97 yamt }
816 1.62 bjh21 #ifdef POOL_SUBPAGE
817 1.62 bjh21 pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
818 1.128.2.1 ad PR_RECURSIVE, "psppool", &pool_allocator_meta, IPL_VM);
819 1.62 bjh21 #endif
820 1.128.2.7 ad pool_init(&pcgpool, sizeof(pcg_t), CACHE_LINE_SIZE, 0, 0,
821 1.128.2.7 ad "cachegrp", &pool_allocator_meta, IPL_VM);
822 1.1 pk }
823 1.1 pk
824 1.128.2.2 ad if (__predict_true(!cold)) {
825 1.128.2.2 ad /* Insert into the list of all pools. */
826 1.128.2.2 ad mutex_enter(&pool_head_lock);
827 1.128.2.2 ad LIST_INSERT_HEAD(&pool_head, pp, pr_poollist);
828 1.128.2.2 ad mutex_exit(&pool_head_lock);
829 1.128.2.2 ad
830 1.128.2.2 ad /* Insert this into the list of pools using this allocator. */
831 1.128.2.2 ad mutex_enter(&palloc->pa_lock);
832 1.128.2.2 ad TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
833 1.128.2.2 ad mutex_exit(&palloc->pa_lock);
834 1.128.2.2 ad } else {
835 1.128.2.2 ad LIST_INSERT_HEAD(&pool_head, pp, pr_poollist);
836 1.128.2.2 ad TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
837 1.128.2.2 ad }
838 1.128.2.2 ad
839 1.117 yamt pool_reclaim_register(pp);
840 1.1 pk }
841 1.1 pk
842 1.1 pk /*
843 1.1 pk * De-commision a pool resource.
844 1.1 pk */
845 1.1 pk void
846 1.42 thorpej pool_destroy(struct pool *pp)
847 1.1 pk {
848 1.101 thorpej struct pool_pagelist pq;
849 1.3 pk struct pool_item_header *ph;
850 1.43 thorpej
851 1.101 thorpej /* Remove from global pool list */
852 1.128.2.2 ad mutex_enter(&pool_head_lock);
853 1.128.2.7 ad while (pp->pr_refcnt != 0)
854 1.128.2.7 ad cv_wait(&pool_busy, &pool_head_lock);
855 1.102 chs LIST_REMOVE(pp, pr_poollist);
856 1.101 thorpej if (drainpp == pp)
857 1.101 thorpej drainpp = NULL;
858 1.128.2.2 ad mutex_exit(&pool_head_lock);
859 1.101 thorpej
860 1.101 thorpej /* Remove this pool from its allocator's list of pools. */
861 1.117 yamt pool_reclaim_unregister(pp);
862 1.128.2.2 ad mutex_enter(&pp->pr_alloc->pa_lock);
863 1.66 thorpej TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
864 1.128.2.2 ad mutex_exit(&pp->pr_alloc->pa_lock);
865 1.66 thorpej
866 1.128.2.2 ad mutex_enter(&pp->pr_lock);
867 1.101 thorpej
868 1.128.2.7 ad KASSERT(pp->pr_cache == NULL);
869 1.3 pk
870 1.3 pk #ifdef DIAGNOSTIC
871 1.20 thorpej if (pp->pr_nout != 0) {
872 1.25 thorpej pr_printlog(pp, NULL, printf);
873 1.80 provos panic("pool_destroy: pool busy: still out: %u",
874 1.20 thorpej pp->pr_nout);
875 1.3 pk }
876 1.3 pk #endif
877 1.1 pk
878 1.101 thorpej KASSERT(LIST_EMPTY(&pp->pr_fullpages));
879 1.101 thorpej KASSERT(LIST_EMPTY(&pp->pr_partpages));
880 1.101 thorpej
881 1.3 pk /* Remove all pages */
882 1.101 thorpej LIST_INIT(&pq);
883 1.88 chs while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
884 1.101 thorpej pr_rmpage(pp, ph, &pq);
885 1.101 thorpej
886 1.128.2.2 ad mutex_exit(&pp->pr_lock);
887 1.3 pk
888 1.101 thorpej pr_pagelist_free(pp, &pq);
889 1.3 pk
890 1.59 thorpej #ifdef POOL_DIAGNOSTIC
891 1.20 thorpej if ((pp->pr_roflags & PR_LOGGING) != 0)
892 1.3 pk free(pp->pr_log, M_TEMP);
893 1.59 thorpej #endif
894 1.128.2.2 ad
895 1.128.2.2 ad cv_destroy(&pp->pr_cv);
896 1.128.2.2 ad mutex_destroy(&pp->pr_lock);
897 1.1 pk }
898 1.1 pk
899 1.68 thorpej void
900 1.68 thorpej pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
901 1.68 thorpej {
902 1.68 thorpej
903 1.68 thorpej /* XXX no locking -- must be used just after pool_init() */
904 1.68 thorpej #ifdef DIAGNOSTIC
905 1.68 thorpej if (pp->pr_drain_hook != NULL)
906 1.68 thorpej panic("pool_set_drain_hook(%s): already set", pp->pr_wchan);
907 1.68 thorpej #endif
908 1.68 thorpej pp->pr_drain_hook = fn;
909 1.68 thorpej pp->pr_drain_hook_arg = arg;
910 1.68 thorpej }
911 1.68 thorpej
912 1.88 chs static struct pool_item_header *
913 1.128 christos pool_alloc_item_header(struct pool *pp, void *storage, int flags)
914 1.55 thorpej {
915 1.55 thorpej struct pool_item_header *ph;
916 1.55 thorpej
917 1.55 thorpej if ((pp->pr_roflags & PR_PHINPAGE) != 0)
918 1.128 christos ph = (struct pool_item_header *) ((char *)storage + pp->pr_phoffset);
919 1.128.2.2 ad else
920 1.97 yamt ph = pool_get(pp->pr_phpool, flags);
921 1.55 thorpej
922 1.55 thorpej return (ph);
923 1.55 thorpej }
924 1.1 pk
925 1.1 pk /*
926 1.128.2.11 ad * Grab an item from the pool.
927 1.1 pk */
928 1.3 pk void *
929 1.59 thorpej #ifdef POOL_DIAGNOSTIC
930 1.42 thorpej _pool_get(struct pool *pp, int flags, const char *file, long line)
931 1.56 sommerfe #else
932 1.56 sommerfe pool_get(struct pool *pp, int flags)
933 1.56 sommerfe #endif
934 1.1 pk {
935 1.1 pk struct pool_item *pi;
936 1.3 pk struct pool_item_header *ph;
937 1.55 thorpej void *v;
938 1.1 pk
939 1.2 pk #ifdef DIAGNOSTIC
940 1.95 atatat if (__predict_false(pp->pr_itemsperpage == 0))
941 1.95 atatat panic("pool_get: pool %p: pr_itemsperpage is zero, "
942 1.95 atatat "pool not initialized?", pp);
943 1.84 thorpej if (__predict_false(curlwp == NULL && doing_shutdown == 0 &&
944 1.37 sommerfe (flags & PR_WAITOK) != 0))
945 1.77 matt panic("pool_get: %s: must have NOWAIT", pp->pr_wchan);
946 1.58 thorpej
947 1.102 chs #endif /* DIAGNOSTIC */
948 1.58 thorpej #ifdef LOCKDEBUG
949 1.58 thorpej if (flags & PR_WAITOK)
950 1.119 yamt ASSERT_SLEEPABLE(NULL, "pool_get(PR_WAITOK)");
951 1.56 sommerfe #endif
952 1.1 pk
953 1.128.2.2 ad mutex_enter(&pp->pr_lock);
954 1.25 thorpej pr_enter(pp, file, line);
955 1.20 thorpej
956 1.20 thorpej startover:
957 1.20 thorpej /*
958 1.20 thorpej * Check to see if we've reached the hard limit. If we have,
959 1.20 thorpej * and we can wait, then wait until an item has been returned to
960 1.20 thorpej * the pool.
961 1.20 thorpej */
962 1.20 thorpej #ifdef DIAGNOSTIC
963 1.34 thorpej if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
964 1.25 thorpej pr_leave(pp);
965 1.128.2.2 ad mutex_exit(&pp->pr_lock);
966 1.20 thorpej panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
967 1.20 thorpej }
968 1.20 thorpej #endif
969 1.34 thorpej if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
970 1.68 thorpej if (pp->pr_drain_hook != NULL) {
971 1.68 thorpej /*
972 1.68 thorpej * Since the drain hook is going to free things
973 1.68 thorpej * back to the pool, unlock, call the hook, re-lock,
974 1.68 thorpej * and check the hardlimit condition again.
975 1.68 thorpej */
976 1.68 thorpej pr_leave(pp);
977 1.128.2.2 ad mutex_exit(&pp->pr_lock);
978 1.68 thorpej (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
979 1.128.2.2 ad mutex_enter(&pp->pr_lock);
980 1.68 thorpej pr_enter(pp, file, line);
981 1.68 thorpej if (pp->pr_nout < pp->pr_hardlimit)
982 1.68 thorpej goto startover;
983 1.68 thorpej }
984 1.68 thorpej
985 1.29 sommerfe if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
986 1.20 thorpej /*
987 1.20 thorpej * XXX: A warning isn't logged in this case. Should
988 1.20 thorpej * it be?
989 1.20 thorpej */
990 1.20 thorpej pp->pr_flags |= PR_WANTED;
991 1.25 thorpej pr_leave(pp);
992 1.128.2.2 ad cv_wait(&pp->pr_cv, &pp->pr_lock);
993 1.25 thorpej pr_enter(pp, file, line);
994 1.20 thorpej goto startover;
995 1.20 thorpej }
996 1.31 thorpej
997 1.31 thorpej /*
998 1.31 thorpej * Log a message that the hard limit has been hit.
999 1.31 thorpej */
1000 1.31 thorpej if (pp->pr_hardlimit_warning != NULL &&
1001 1.31 thorpej ratecheck(&pp->pr_hardlimit_warning_last,
1002 1.31 thorpej &pp->pr_hardlimit_ratecap))
1003 1.31 thorpej log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
1004 1.21 thorpej
1005 1.21 thorpej pp->pr_nfail++;
1006 1.21 thorpej
1007 1.25 thorpej pr_leave(pp);
1008 1.128.2.2 ad mutex_exit(&pp->pr_lock);
1009 1.20 thorpej return (NULL);
1010 1.20 thorpej }
1011 1.20 thorpej
1012 1.3 pk /*
1013 1.3 pk * The convention we use is that if `curpage' is not NULL, then
1014 1.3 pk * it points at a non-empty bucket. In particular, `curpage'
1015 1.3 pk * never points at a page header which has PR_PHINPAGE set and
1016 1.3 pk * has no items in its bucket.
1017 1.3 pk */
1018 1.20 thorpej if ((ph = pp->pr_curpage) == NULL) {
1019 1.113 yamt int error;
1020 1.113 yamt
1021 1.20 thorpej #ifdef DIAGNOSTIC
1022 1.20 thorpej if (pp->pr_nitems != 0) {
1023 1.128.2.2 ad mutex_exit(&pp->pr_lock);
1024 1.20 thorpej printf("pool_get: %s: curpage NULL, nitems %u\n",
1025 1.20 thorpej pp->pr_wchan, pp->pr_nitems);
1026 1.80 provos panic("pool_get: nitems inconsistent");
1027 1.20 thorpej }
1028 1.20 thorpej #endif
1029 1.20 thorpej
1030 1.21 thorpej /*
1031 1.21 thorpej * Call the back-end page allocator for more memory.
1032 1.21 thorpej * Release the pool lock, as the back-end page allocator
1033 1.21 thorpej * may block.
1034 1.21 thorpej */
1035 1.25 thorpej pr_leave(pp);
1036 1.113 yamt error = pool_grow(pp, flags);
1037 1.113 yamt pr_enter(pp, file, line);
1038 1.113 yamt if (error != 0) {
1039 1.21 thorpej /*
1040 1.55 thorpej * We were unable to allocate a page or item
1041 1.55 thorpej * header, but we released the lock during
1042 1.55 thorpej * allocation, so perhaps items were freed
1043 1.55 thorpej * back to the pool. Check for this case.
1044 1.21 thorpej */
1045 1.21 thorpej if (pp->pr_curpage != NULL)
1046 1.21 thorpej goto startover;
1047 1.15 pk
1048 1.117 yamt pp->pr_nfail++;
1049 1.25 thorpej pr_leave(pp);
1050 1.128.2.2 ad mutex_exit(&pp->pr_lock);
1051 1.117 yamt return (NULL);
1052 1.1 pk }
1053 1.3 pk
1054 1.20 thorpej /* Start the allocation process over. */
1055 1.20 thorpej goto startover;
1056 1.3 pk }
1057 1.97 yamt if (pp->pr_roflags & PR_NOTOUCH) {
1058 1.97 yamt #ifdef DIAGNOSTIC
1059 1.97 yamt if (__predict_false(ph->ph_nmissing == pp->pr_itemsperpage)) {
1060 1.97 yamt pr_leave(pp);
1061 1.128.2.2 ad mutex_exit(&pp->pr_lock);
1062 1.97 yamt panic("pool_get: %s: page empty", pp->pr_wchan);
1063 1.97 yamt }
1064 1.97 yamt #endif
1065 1.97 yamt v = pr_item_notouch_get(pp, ph);
1066 1.97 yamt #ifdef POOL_DIAGNOSTIC
1067 1.97 yamt pr_log(pp, v, PRLOG_GET, file, line);
1068 1.97 yamt #endif
1069 1.97 yamt } else {
1070 1.102 chs v = pi = LIST_FIRST(&ph->ph_itemlist);
1071 1.97 yamt if (__predict_false(v == NULL)) {
1072 1.97 yamt pr_leave(pp);
1073 1.128.2.2 ad mutex_exit(&pp->pr_lock);
1074 1.97 yamt panic("pool_get: %s: page empty", pp->pr_wchan);
1075 1.97 yamt }
1076 1.20 thorpej #ifdef DIAGNOSTIC
1077 1.97 yamt if (__predict_false(pp->pr_nitems == 0)) {
1078 1.97 yamt pr_leave(pp);
1079 1.128.2.2 ad mutex_exit(&pp->pr_lock);
1080 1.97 yamt printf("pool_get: %s: items on itemlist, nitems %u\n",
1081 1.97 yamt pp->pr_wchan, pp->pr_nitems);
1082 1.97 yamt panic("pool_get: nitems inconsistent");
1083 1.97 yamt }
1084 1.65 enami #endif
1085 1.56 sommerfe
1086 1.65 enami #ifdef POOL_DIAGNOSTIC
1087 1.97 yamt pr_log(pp, v, PRLOG_GET, file, line);
1088 1.65 enami #endif
1089 1.3 pk
1090 1.65 enami #ifdef DIAGNOSTIC
1091 1.97 yamt if (__predict_false(pi->pi_magic != PI_MAGIC)) {
1092 1.97 yamt pr_printlog(pp, pi, printf);
1093 1.97 yamt panic("pool_get(%s): free list modified: "
1094 1.97 yamt "magic=%x; page %p; item addr %p\n",
1095 1.97 yamt pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
1096 1.97 yamt }
1097 1.3 pk #endif
1098 1.3 pk
1099 1.97 yamt /*
1100 1.97 yamt * Remove from item list.
1101 1.97 yamt */
1102 1.102 chs LIST_REMOVE(pi, pi_list);
1103 1.97 yamt }
1104 1.20 thorpej pp->pr_nitems--;
1105 1.20 thorpej pp->pr_nout++;
1106 1.6 thorpej if (ph->ph_nmissing == 0) {
1107 1.6 thorpej #ifdef DIAGNOSTIC
1108 1.34 thorpej if (__predict_false(pp->pr_nidle == 0))
1109 1.6 thorpej panic("pool_get: nidle inconsistent");
1110 1.6 thorpej #endif
1111 1.6 thorpej pp->pr_nidle--;
1112 1.88 chs
1113 1.88 chs /*
1114 1.88 chs * This page was previously empty. Move it to the list of
1115 1.88 chs * partially-full pages. This page is already curpage.
1116 1.88 chs */
1117 1.88 chs LIST_REMOVE(ph, ph_pagelist);
1118 1.88 chs LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1119 1.6 thorpej }
1120 1.3 pk ph->ph_nmissing++;
1121 1.97 yamt if (ph->ph_nmissing == pp->pr_itemsperpage) {
1122 1.21 thorpej #ifdef DIAGNOSTIC
1123 1.97 yamt if (__predict_false((pp->pr_roflags & PR_NOTOUCH) == 0 &&
1124 1.102 chs !LIST_EMPTY(&ph->ph_itemlist))) {
1125 1.25 thorpej pr_leave(pp);
1126 1.128.2.2 ad mutex_exit(&pp->pr_lock);
1127 1.21 thorpej panic("pool_get: %s: nmissing inconsistent",
1128 1.21 thorpej pp->pr_wchan);
1129 1.21 thorpej }
1130 1.21 thorpej #endif
1131 1.3 pk /*
1132 1.88 chs * This page is now full. Move it to the full list
1133 1.88 chs * and select a new current page.
1134 1.3 pk */
1135 1.88 chs LIST_REMOVE(ph, ph_pagelist);
1136 1.88 chs LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
1137 1.88 chs pool_update_curpage(pp);
1138 1.1 pk }
1139 1.3 pk
1140 1.3 pk pp->pr_nget++;
1141 1.111 christos pr_leave(pp);
1142 1.20 thorpej
1143 1.20 thorpej /*
1144 1.20 thorpej * If we have a low water mark and we are now below that low
1145 1.20 thorpej * water mark, add more items to the pool.
1146 1.20 thorpej */
1147 1.53 thorpej if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1148 1.20 thorpej /*
1149 1.20 thorpej * XXX: Should we log a warning? Should we set up a timeout
1150 1.20 thorpej * to try again in a second or so? The latter could break
1151 1.20 thorpej * a caller's assumptions about interrupt protection, etc.
1152 1.20 thorpej */
1153 1.20 thorpej }
1154 1.20 thorpej
1155 1.128.2.2 ad mutex_exit(&pp->pr_lock);
1156 1.125 ad KASSERT((((vaddr_t)v + pp->pr_itemoffset) & (pp->pr_align - 1)) == 0);
1157 1.125 ad FREECHECK_OUT(&pp->pr_freecheck, v);
1158 1.1 pk return (v);
1159 1.1 pk }
1160 1.1 pk
1161 1.1 pk /*
1162 1.43 thorpej * Internal version of pool_put(). Pool is already locked/entered.
1163 1.1 pk */
1164 1.43 thorpej static void
1165 1.101 thorpej pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
1166 1.1 pk {
1167 1.1 pk struct pool_item *pi = v;
1168 1.3 pk struct pool_item_header *ph;
1169 1.3 pk
1170 1.128.2.2 ad KASSERT(mutex_owned(&pp->pr_lock));
1171 1.125 ad FREECHECK_IN(&pp->pr_freecheck, v);
1172 1.128.2.5 ad LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
1173 1.61 chs
1174 1.30 thorpej #ifdef DIAGNOSTIC
1175 1.34 thorpej if (__predict_false(pp->pr_nout == 0)) {
1176 1.30 thorpej printf("pool %s: putting with none out\n",
1177 1.30 thorpej pp->pr_wchan);
1178 1.30 thorpej panic("pool_put");
1179 1.30 thorpej }
1180 1.30 thorpej #endif
1181 1.3 pk
1182 1.121 yamt if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
1183 1.25 thorpej pr_printlog(pp, NULL, printf);
1184 1.3 pk panic("pool_put: %s: page header missing", pp->pr_wchan);
1185 1.3 pk }
1186 1.28 thorpej
1187 1.3 pk /*
1188 1.3 pk * Return to item list.
1189 1.3 pk */
1190 1.97 yamt if (pp->pr_roflags & PR_NOTOUCH) {
1191 1.97 yamt pr_item_notouch_put(pp, ph, v);
1192 1.97 yamt } else {
1193 1.2 pk #ifdef DIAGNOSTIC
1194 1.97 yamt pi->pi_magic = PI_MAGIC;
1195 1.3 pk #endif
1196 1.32 chs #ifdef DEBUG
1197 1.97 yamt {
1198 1.97 yamt int i, *ip = v;
1199 1.32 chs
1200 1.97 yamt for (i = 0; i < pp->pr_size / sizeof(int); i++) {
1201 1.97 yamt *ip++ = PI_MAGIC;
1202 1.97 yamt }
1203 1.32 chs }
1204 1.32 chs #endif
1205 1.32 chs
1206 1.102 chs LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1207 1.97 yamt }
1208 1.79 thorpej KDASSERT(ph->ph_nmissing != 0);
1209 1.3 pk ph->ph_nmissing--;
1210 1.3 pk pp->pr_nput++;
1211 1.20 thorpej pp->pr_nitems++;
1212 1.20 thorpej pp->pr_nout--;
1213 1.3 pk
1214 1.3 pk /* Cancel "pool empty" condition if it exists */
1215 1.3 pk if (pp->pr_curpage == NULL)
1216 1.3 pk pp->pr_curpage = ph;
1217 1.3 pk
1218 1.3 pk if (pp->pr_flags & PR_WANTED) {
1219 1.3 pk pp->pr_flags &= ~PR_WANTED;
1220 1.15 pk if (ph->ph_nmissing == 0)
1221 1.15 pk pp->pr_nidle++;
1222 1.128.2.4 ad cv_broadcast(&pp->pr_cv);
1223 1.3 pk return;
1224 1.3 pk }
1225 1.3 pk
1226 1.3 pk /*
1227 1.88 chs * If this page is now empty, do one of two things:
1228 1.21 thorpej *
1229 1.88 chs * (1) If we have more pages than the page high water mark,
1230 1.96 thorpej * free the page back to the system. ONLY CONSIDER
1231 1.90 thorpej * FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
1232 1.90 thorpej * CLAIM.
1233 1.21 thorpej *
1234 1.88 chs * (2) Otherwise, move the page to the empty page list.
1235 1.88 chs *
1236 1.88 chs * Either way, select a new current page (so we use a partially-full
1237 1.88 chs * page if one is available).
1238 1.3 pk */
1239 1.3 pk if (ph->ph_nmissing == 0) {
1240 1.6 thorpej pp->pr_nidle++;
1241 1.90 thorpej if (pp->pr_npages > pp->pr_minpages &&
1242 1.90 thorpej (pp->pr_npages > pp->pr_maxpages ||
1243 1.117 yamt pa_starved_p(pp->pr_alloc))) {
1244 1.101 thorpej pr_rmpage(pp, ph, pq);
1245 1.3 pk } else {
1246 1.88 chs LIST_REMOVE(ph, ph_pagelist);
1247 1.88 chs LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1248 1.3 pk
1249 1.21 thorpej /*
1250 1.21 thorpej * Update the timestamp on the page. A page must
1251 1.21 thorpej * be idle for some period of time before it can
1252 1.21 thorpej * be reclaimed by the pagedaemon. This minimizes
1253 1.21 thorpej * ping-pong'ing for memory.
1254 1.21 thorpej */
1255 1.118 kardel getmicrotime(&ph->ph_time);
1256 1.1 pk }
1257 1.88 chs pool_update_curpage(pp);
1258 1.1 pk }
1259 1.88 chs
1260 1.21 thorpej /*
1261 1.88 chs * If the page was previously completely full, move it to the
1262 1.88 chs * partially-full list and make it the current page. The next
1263 1.88 chs * allocation will get the item from this page, instead of
1264 1.88 chs * further fragmenting the pool.
1265 1.21 thorpej */
1266 1.21 thorpej else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
1267 1.88 chs LIST_REMOVE(ph, ph_pagelist);
1268 1.88 chs LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1269 1.21 thorpej pp->pr_curpage = ph;
1270 1.21 thorpej }
1271 1.43 thorpej }
1272 1.43 thorpej
1273 1.43 thorpej /*
1274 1.128.2.11 ad * Return resource to the pool.
1275 1.43 thorpej */
1276 1.59 thorpej #ifdef POOL_DIAGNOSTIC
1277 1.43 thorpej void
1278 1.43 thorpej _pool_put(struct pool *pp, void *v, const char *file, long line)
1279 1.43 thorpej {
1280 1.101 thorpej struct pool_pagelist pq;
1281 1.101 thorpej
1282 1.101 thorpej LIST_INIT(&pq);
1283 1.43 thorpej
1284 1.128.2.2 ad mutex_enter(&pp->pr_lock);
1285 1.43 thorpej pr_enter(pp, file, line);
1286 1.43 thorpej
1287 1.56 sommerfe pr_log(pp, v, PRLOG_PUT, file, line);
1288 1.56 sommerfe
1289 1.101 thorpej pool_do_put(pp, v, &pq);
1290 1.21 thorpej
1291 1.25 thorpej pr_leave(pp);
1292 1.128.2.2 ad mutex_exit(&pp->pr_lock);
1293 1.101 thorpej
1294 1.102 chs pr_pagelist_free(pp, &pq);
1295 1.1 pk }
1296 1.57 sommerfe #undef pool_put
1297 1.59 thorpej #endif /* POOL_DIAGNOSTIC */
1298 1.1 pk
1299 1.56 sommerfe void
1300 1.56 sommerfe pool_put(struct pool *pp, void *v)
1301 1.56 sommerfe {
1302 1.101 thorpej struct pool_pagelist pq;
1303 1.101 thorpej
1304 1.101 thorpej LIST_INIT(&pq);
1305 1.56 sommerfe
1306 1.128.2.2 ad mutex_enter(&pp->pr_lock);
1307 1.101 thorpej pool_do_put(pp, v, &pq);
1308 1.128.2.2 ad mutex_exit(&pp->pr_lock);
1309 1.56 sommerfe
1310 1.102 chs pr_pagelist_free(pp, &pq);
1311 1.56 sommerfe }
1312 1.57 sommerfe
1313 1.59 thorpej #ifdef POOL_DIAGNOSTIC
1314 1.57 sommerfe #define pool_put(h, v) _pool_put((h), (v), __FILE__, __LINE__)
1315 1.56 sommerfe #endif
1316 1.74 thorpej
1317 1.74 thorpej /*
1318 1.113 yamt * pool_grow: grow a pool by a page.
1319 1.113 yamt *
1320 1.113 yamt * => called with pool locked.
1321 1.113 yamt * => unlock and relock the pool.
1322 1.113 yamt * => return with pool locked.
1323 1.113 yamt */
1324 1.113 yamt
1325 1.113 yamt static int
1326 1.113 yamt pool_grow(struct pool *pp, int flags)
1327 1.113 yamt {
1328 1.113 yamt struct pool_item_header *ph = NULL;
1329 1.113 yamt char *cp;
1330 1.113 yamt
1331 1.128.2.2 ad mutex_exit(&pp->pr_lock);
1332 1.113 yamt cp = pool_allocator_alloc(pp, flags);
1333 1.113 yamt if (__predict_true(cp != NULL)) {
1334 1.113 yamt ph = pool_alloc_item_header(pp, cp, flags);
1335 1.113 yamt }
1336 1.113 yamt if (__predict_false(cp == NULL || ph == NULL)) {
1337 1.113 yamt if (cp != NULL) {
1338 1.113 yamt pool_allocator_free(pp, cp);
1339 1.113 yamt }
1340 1.128.2.2 ad mutex_enter(&pp->pr_lock);
1341 1.113 yamt return ENOMEM;
1342 1.113 yamt }
1343 1.113 yamt
1344 1.128.2.2 ad mutex_enter(&pp->pr_lock);
1345 1.113 yamt pool_prime_page(pp, cp, ph);
1346 1.113 yamt pp->pr_npagealloc++;
1347 1.113 yamt return 0;
1348 1.113 yamt }
1349 1.113 yamt
1350 1.113 yamt /*
1351 1.74 thorpej * Add N items to the pool.
1352 1.74 thorpej */
1353 1.74 thorpej int
1354 1.74 thorpej pool_prime(struct pool *pp, int n)
1355 1.74 thorpej {
1356 1.75 simonb int newpages;
1357 1.113 yamt int error = 0;
1358 1.74 thorpej
1359 1.128.2.2 ad mutex_enter(&pp->pr_lock);
1360 1.74 thorpej
1361 1.74 thorpej newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1362 1.74 thorpej
1363 1.74 thorpej while (newpages-- > 0) {
1364 1.113 yamt error = pool_grow(pp, PR_NOWAIT);
1365 1.113 yamt if (error) {
1366 1.74 thorpej break;
1367 1.74 thorpej }
1368 1.74 thorpej pp->pr_minpages++;
1369 1.74 thorpej }
1370 1.74 thorpej
1371 1.74 thorpej if (pp->pr_minpages >= pp->pr_maxpages)
1372 1.74 thorpej pp->pr_maxpages = pp->pr_minpages + 1; /* XXX */
1373 1.74 thorpej
1374 1.128.2.2 ad mutex_exit(&pp->pr_lock);
1375 1.113 yamt return error;
1376 1.74 thorpej }
1377 1.55 thorpej
1378 1.55 thorpej /*
1379 1.3 pk * Add a page worth of items to the pool.
1380 1.21 thorpej *
1381 1.21 thorpej * Note, we must be called with the pool descriptor LOCKED.
1382 1.3 pk */
1383 1.55 thorpej static void
1384 1.128 christos pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
1385 1.3 pk {
1386 1.3 pk struct pool_item *pi;
1387 1.128 christos void *cp = storage;
1388 1.125 ad const unsigned int align = pp->pr_align;
1389 1.125 ad const unsigned int ioff = pp->pr_itemoffset;
1390 1.55 thorpej int n;
1391 1.36 pk
1392 1.128.2.2 ad KASSERT(mutex_owned(&pp->pr_lock));
1393 1.91 yamt
1394 1.66 thorpej #ifdef DIAGNOSTIC
1395 1.121 yamt if ((pp->pr_roflags & PR_NOALIGN) == 0 &&
1396 1.121 yamt ((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) != 0)
1397 1.36 pk panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
1398 1.66 thorpej #endif
1399 1.3 pk
1400 1.3 pk /*
1401 1.3 pk * Insert page header.
1402 1.3 pk */
1403 1.88 chs LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1404 1.102 chs LIST_INIT(&ph->ph_itemlist);
1405 1.3 pk ph->ph_page = storage;
1406 1.3 pk ph->ph_nmissing = 0;
1407 1.118 kardel getmicrotime(&ph->ph_time);
1408 1.88 chs if ((pp->pr_roflags & PR_PHINPAGE) == 0)
1409 1.88 chs SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
1410 1.3 pk
1411 1.6 thorpej pp->pr_nidle++;
1412 1.6 thorpej
1413 1.3 pk /*
1414 1.3 pk * Color this page.
1415 1.3 pk */
1416 1.128 christos cp = (char *)cp + pp->pr_curcolor;
1417 1.3 pk if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
1418 1.3 pk pp->pr_curcolor = 0;
1419 1.3 pk
1420 1.3 pk /*
1421 1.3 pk * Adjust storage to apply aligment to `pr_itemoffset' in each item.
1422 1.3 pk */
1423 1.3 pk if (ioff != 0)
1424 1.128 christos cp = (char *)cp + align - ioff;
1425 1.3 pk
1426 1.125 ad KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
1427 1.125 ad
1428 1.3 pk /*
1429 1.3 pk * Insert remaining chunks on the bucket list.
1430 1.3 pk */
1431 1.3 pk n = pp->pr_itemsperpage;
1432 1.20 thorpej pp->pr_nitems += n;
1433 1.3 pk
1434 1.97 yamt if (pp->pr_roflags & PR_NOTOUCH) {
1435 1.99 yamt pool_item_freelist_t *freelist = PR_FREELIST(ph);
1436 1.97 yamt int i;
1437 1.97 yamt
1438 1.128 christos ph->ph_off = (char *)cp - (char *)storage;
1439 1.97 yamt ph->ph_firstfree = 0;
1440 1.97 yamt for (i = 0; i < n - 1; i++)
1441 1.97 yamt freelist[i] = i + 1;
1442 1.97 yamt freelist[n - 1] = PR_INDEX_EOL;
1443 1.97 yamt } else {
1444 1.97 yamt while (n--) {
1445 1.97 yamt pi = (struct pool_item *)cp;
1446 1.78 thorpej
1447 1.97 yamt KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0);
1448 1.3 pk
1449 1.97 yamt /* Insert on page list */
1450 1.102 chs LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1451 1.3 pk #ifdef DIAGNOSTIC
1452 1.97 yamt pi->pi_magic = PI_MAGIC;
1453 1.3 pk #endif
1454 1.128 christos cp = (char *)cp + pp->pr_size;
1455 1.125 ad
1456 1.125 ad KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
1457 1.97 yamt }
1458 1.3 pk }
1459 1.3 pk
1460 1.3 pk /*
1461 1.3 pk * If the pool was depleted, point at the new page.
1462 1.3 pk */
1463 1.3 pk if (pp->pr_curpage == NULL)
1464 1.3 pk pp->pr_curpage = ph;
1465 1.3 pk
1466 1.3 pk if (++pp->pr_npages > pp->pr_hiwat)
1467 1.3 pk pp->pr_hiwat = pp->pr_npages;
1468 1.3 pk }
1469 1.3 pk
1470 1.20 thorpej /*
1471 1.52 thorpej * Used by pool_get() when nitems drops below the low water mark. This
1472 1.88 chs * is used to catch up pr_nitems with the low water mark.
1473 1.20 thorpej *
1474 1.21 thorpej * Note 1, we never wait for memory here, we let the caller decide what to do.
1475 1.20 thorpej *
1476 1.73 thorpej * Note 2, we must be called with the pool already locked, and we return
1477 1.20 thorpej * with it locked.
1478 1.20 thorpej */
1479 1.20 thorpej static int
1480 1.42 thorpej pool_catchup(struct pool *pp)
1481 1.20 thorpej {
1482 1.20 thorpej int error = 0;
1483 1.20 thorpej
1484 1.54 thorpej while (POOL_NEEDS_CATCHUP(pp)) {
1485 1.113 yamt error = pool_grow(pp, PR_NOWAIT);
1486 1.113 yamt if (error) {
1487 1.20 thorpej break;
1488 1.20 thorpej }
1489 1.20 thorpej }
1490 1.113 yamt return error;
1491 1.20 thorpej }
1492 1.20 thorpej
1493 1.88 chs static void
1494 1.88 chs pool_update_curpage(struct pool *pp)
1495 1.88 chs {
1496 1.88 chs
1497 1.88 chs pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
1498 1.88 chs if (pp->pr_curpage == NULL) {
1499 1.88 chs pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
1500 1.88 chs }
1501 1.88 chs }
1502 1.88 chs
1503 1.3 pk void
1504 1.42 thorpej pool_setlowat(struct pool *pp, int n)
1505 1.3 pk {
1506 1.15 pk
1507 1.128.2.2 ad mutex_enter(&pp->pr_lock);
1508 1.21 thorpej
1509 1.3 pk pp->pr_minitems = n;
1510 1.15 pk pp->pr_minpages = (n == 0)
1511 1.15 pk ? 0
1512 1.18 thorpej : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1513 1.20 thorpej
1514 1.20 thorpej /* Make sure we're caught up with the newly-set low water mark. */
1515 1.75 simonb if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1516 1.20 thorpej /*
1517 1.20 thorpej * XXX: Should we log a warning? Should we set up a timeout
1518 1.20 thorpej * to try again in a second or so? The latter could break
1519 1.20 thorpej * a caller's assumptions about interrupt protection, etc.
1520 1.20 thorpej */
1521 1.20 thorpej }
1522 1.21 thorpej
1523 1.128.2.2 ad mutex_exit(&pp->pr_lock);
1524 1.3 pk }
1525 1.3 pk
1526 1.3 pk void
1527 1.42 thorpej pool_sethiwat(struct pool *pp, int n)
1528 1.3 pk {
1529 1.15 pk
1530 1.128.2.2 ad mutex_enter(&pp->pr_lock);
1531 1.21 thorpej
1532 1.15 pk pp->pr_maxpages = (n == 0)
1533 1.15 pk ? 0
1534 1.18 thorpej : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1535 1.21 thorpej
1536 1.128.2.2 ad mutex_exit(&pp->pr_lock);
1537 1.3 pk }
1538 1.3 pk
1539 1.20 thorpej void
1540 1.42 thorpej pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
1541 1.20 thorpej {
1542 1.20 thorpej
1543 1.128.2.2 ad mutex_enter(&pp->pr_lock);
1544 1.20 thorpej
1545 1.20 thorpej pp->pr_hardlimit = n;
1546 1.20 thorpej pp->pr_hardlimit_warning = warnmess;
1547 1.31 thorpej pp->pr_hardlimit_ratecap.tv_sec = ratecap;
1548 1.31 thorpej pp->pr_hardlimit_warning_last.tv_sec = 0;
1549 1.31 thorpej pp->pr_hardlimit_warning_last.tv_usec = 0;
1550 1.20 thorpej
1551 1.20 thorpej /*
1552 1.21 thorpej * In-line version of pool_sethiwat(), because we don't want to
1553 1.21 thorpej * release the lock.
1554 1.20 thorpej */
1555 1.20 thorpej pp->pr_maxpages = (n == 0)
1556 1.20 thorpej ? 0
1557 1.20 thorpej : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1558 1.21 thorpej
1559 1.128.2.2 ad mutex_exit(&pp->pr_lock);
1560 1.20 thorpej }
1561 1.3 pk
1562 1.3 pk /*
1563 1.3 pk * Release all complete pages that have not been used recently.
1564 1.3 pk */
1565 1.66 thorpej int
1566 1.59 thorpej #ifdef POOL_DIAGNOSTIC
1567 1.42 thorpej _pool_reclaim(struct pool *pp, const char *file, long line)
1568 1.56 sommerfe #else
1569 1.56 sommerfe pool_reclaim(struct pool *pp)
1570 1.56 sommerfe #endif
1571 1.3 pk {
1572 1.3 pk struct pool_item_header *ph, *phnext;
1573 1.61 chs struct pool_pagelist pq;
1574 1.102 chs struct timeval curtime, diff;
1575 1.3 pk
1576 1.68 thorpej if (pp->pr_drain_hook != NULL) {
1577 1.68 thorpej /*
1578 1.68 thorpej * The drain hook must be called with the pool unlocked.
1579 1.68 thorpej */
1580 1.68 thorpej (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
1581 1.68 thorpej }
1582 1.68 thorpej
1583 1.128.2.9 ad /* Reclaim items from the pool's cache (if any). */
1584 1.128.2.9 ad if (pp->pr_cache != NULL)
1585 1.128.2.9 ad pool_cache_invalidate(pp->pr_cache);
1586 1.128.2.9 ad
1587 1.128.2.2 ad if (mutex_tryenter(&pp->pr_lock) == 0)
1588 1.66 thorpej return (0);
1589 1.25 thorpej pr_enter(pp, file, line);
1590 1.68 thorpej
1591 1.88 chs LIST_INIT(&pq);
1592 1.3 pk
1593 1.118 kardel getmicrotime(&curtime);
1594 1.21 thorpej
1595 1.88 chs for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
1596 1.88 chs phnext = LIST_NEXT(ph, ph_pagelist);
1597 1.3 pk
1598 1.3 pk /* Check our minimum page claim */
1599 1.3 pk if (pp->pr_npages <= pp->pr_minpages)
1600 1.3 pk break;
1601 1.3 pk
1602 1.88 chs KASSERT(ph->ph_nmissing == 0);
1603 1.88 chs timersub(&curtime, &ph->ph_time, &diff);
1604 1.117 yamt if (diff.tv_sec < pool_inactive_time
1605 1.117 yamt && !pa_starved_p(pp->pr_alloc))
1606 1.88 chs continue;
1607 1.21 thorpej
1608 1.88 chs /*
1609 1.88 chs * If freeing this page would put us below
1610 1.88 chs * the low water mark, stop now.
1611 1.88 chs */
1612 1.88 chs if ((pp->pr_nitems - pp->pr_itemsperpage) <
1613 1.88 chs pp->pr_minitems)
1614 1.88 chs break;
1615 1.21 thorpej
1616 1.88 chs pr_rmpage(pp, ph, &pq);
1617 1.3 pk }
1618 1.3 pk
1619 1.25 thorpej pr_leave(pp);
1620 1.128.2.2 ad mutex_exit(&pp->pr_lock);
1621 1.128.2.7 ad if (LIST_EMPTY(&pq))
1622 1.102 chs return 0;
1623 1.66 thorpej
1624 1.101 thorpej pr_pagelist_free(pp, &pq);
1625 1.128.2.7 ad
1626 1.66 thorpej return (1);
1627 1.3 pk }
1628 1.3 pk
1629 1.3 pk /*
1630 1.128.2.11 ad * Drain pools, one at a time. This is a two stage process;
1631 1.128.2.11 ad * drain_start kicks off a cross call to drain CPU-level caches
1632 1.128.2.11 ad * if the pool has an associated pool_cache. drain_end waits
1633 1.128.2.11 ad * for those cross calls to finish, and then drains the cache
1634 1.128.2.11 ad * (if any) and pool.
1635 1.21 thorpej *
1636 1.128.2.11 ad * Note, must never be called from interrupt context.
1637 1.3 pk */
1638 1.3 pk void
1639 1.128.2.11 ad pool_drain_start(struct pool **ppp, uint64_t *wp)
1640 1.3 pk {
1641 1.3 pk struct pool *pp;
1642 1.3 pk
1643 1.61 chs pp = NULL;
1644 1.128.2.7 ad
1645 1.128.2.7 ad /* Find next pool to drain, and add a reference. */
1646 1.128.2.2 ad mutex_enter(&pool_head_lock);
1647 1.128.2.11 ad do {
1648 1.128.2.11 ad if (drainpp == NULL) {
1649 1.128.2.11 ad drainpp = LIST_FIRST(&pool_head);
1650 1.128.2.11 ad }
1651 1.128.2.11 ad if (drainpp != NULL) {
1652 1.128.2.11 ad pp = drainpp;
1653 1.128.2.11 ad drainpp = LIST_NEXT(pp, pr_poollist);
1654 1.128.2.11 ad }
1655 1.128.2.11 ad /* Skip completely idle pools. */
1656 1.128.2.11 ad } while (pp == NULL || pp->pr_npages == 0);
1657 1.128.2.11 ad pp->pr_refcnt++;
1658 1.128.2.2 ad mutex_exit(&pool_head_lock);
1659 1.128.2.7 ad
1660 1.128.2.11 ad /* If there is a pool_cache, drain CPU level caches. */
1661 1.128.2.7 ad if (pp != NULL) {
1662 1.128.2.11 ad *ppp = pp;
1663 1.128.2.11 ad if (pp->pr_cache != NULL) {
1664 1.128.2.11 ad *wp = xc_broadcast(0, (xcfunc_t)pool_cache_xcall,
1665 1.128.2.11 ad pp->pr_cache, NULL);
1666 1.128.2.11 ad }
1667 1.128.2.7 ad }
1668 1.3 pk }
1669 1.3 pk
1670 1.128.2.11 ad void
1671 1.128.2.11 ad pool_drain_end(struct pool *pp, uint64_t where)
1672 1.128.2.11 ad {
1673 1.128.2.11 ad
1674 1.128.2.11 ad if (pp == NULL)
1675 1.128.2.11 ad return;
1676 1.128.2.11 ad
1677 1.128.2.11 ad KASSERT(pp->pr_refcnt > 0);
1678 1.128.2.11 ad
1679 1.128.2.11 ad /* Wait for remote draining to complete. */
1680 1.128.2.11 ad if (pp->pr_cache != NULL)
1681 1.128.2.11 ad xc_wait(where);
1682 1.128.2.11 ad
1683 1.128.2.11 ad /* Drain the cache (if any) and pool.. */
1684 1.128.2.11 ad pool_reclaim(pp);
1685 1.128.2.11 ad
1686 1.128.2.11 ad /* Finally, unlock the pool. */
1687 1.128.2.11 ad mutex_enter(&pool_head_lock);
1688 1.128.2.11 ad pp->pr_refcnt--;
1689 1.128.2.11 ad cv_broadcast(&pool_busy);
1690 1.128.2.11 ad mutex_exit(&pool_head_lock);
1691 1.128.2.11 ad }
1692 1.128.2.11 ad
1693 1.3 pk /*
1694 1.3 pk * Diagnostic helpers.
1695 1.3 pk */
1696 1.3 pk void
1697 1.42 thorpej pool_print(struct pool *pp, const char *modif)
1698 1.21 thorpej {
1699 1.21 thorpej
1700 1.25 thorpej pool_print1(pp, modif, printf);
1701 1.21 thorpej }
1702 1.21 thorpej
1703 1.25 thorpej void
1704 1.108 yamt pool_printall(const char *modif, void (*pr)(const char *, ...))
1705 1.108 yamt {
1706 1.108 yamt struct pool *pp;
1707 1.108 yamt
1708 1.108 yamt LIST_FOREACH(pp, &pool_head, pr_poollist) {
1709 1.108 yamt pool_printit(pp, modif, pr);
1710 1.108 yamt }
1711 1.108 yamt }
1712 1.108 yamt
1713 1.108 yamt void
1714 1.42 thorpej pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1715 1.25 thorpej {
1716 1.25 thorpej
1717 1.25 thorpej if (pp == NULL) {
1718 1.25 thorpej (*pr)("Must specify a pool to print.\n");
1719 1.25 thorpej return;
1720 1.25 thorpej }
1721 1.25 thorpej
1722 1.25 thorpej pool_print1(pp, modif, pr);
1723 1.25 thorpej }
1724 1.25 thorpej
1725 1.21 thorpej static void
1726 1.124 yamt pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
1727 1.97 yamt void (*pr)(const char *, ...))
1728 1.88 chs {
1729 1.88 chs struct pool_item_header *ph;
1730 1.88 chs #ifdef DIAGNOSTIC
1731 1.88 chs struct pool_item *pi;
1732 1.88 chs #endif
1733 1.88 chs
1734 1.88 chs LIST_FOREACH(ph, pl, ph_pagelist) {
1735 1.88 chs (*pr)("\t\tpage %p, nmissing %d, time %lu,%lu\n",
1736 1.88 chs ph->ph_page, ph->ph_nmissing,
1737 1.88 chs (u_long)ph->ph_time.tv_sec,
1738 1.88 chs (u_long)ph->ph_time.tv_usec);
1739 1.88 chs #ifdef DIAGNOSTIC
1740 1.97 yamt if (!(pp->pr_roflags & PR_NOTOUCH)) {
1741 1.102 chs LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
1742 1.97 yamt if (pi->pi_magic != PI_MAGIC) {
1743 1.97 yamt (*pr)("\t\t\titem %p, magic 0x%x\n",
1744 1.97 yamt pi, pi->pi_magic);
1745 1.97 yamt }
1746 1.88 chs }
1747 1.88 chs }
1748 1.88 chs #endif
1749 1.88 chs }
1750 1.88 chs }
1751 1.88 chs
1752 1.88 chs static void
1753 1.42 thorpej pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1754 1.3 pk {
1755 1.25 thorpej struct pool_item_header *ph;
1756 1.128.2.7 ad pool_cache_t pc;
1757 1.128.2.7 ad pcg_t *pcg;
1758 1.128.2.7 ad pool_cache_cpu_t *cc;
1759 1.128.2.7 ad uint64_t cpuhit, cpumiss;
1760 1.44 thorpej int i, print_log = 0, print_pagelist = 0, print_cache = 0;
1761 1.25 thorpej char c;
1762 1.25 thorpej
1763 1.25 thorpej while ((c = *modif++) != '\0') {
1764 1.25 thorpej if (c == 'l')
1765 1.25 thorpej print_log = 1;
1766 1.25 thorpej if (c == 'p')
1767 1.25 thorpej print_pagelist = 1;
1768 1.44 thorpej if (c == 'c')
1769 1.44 thorpej print_cache = 1;
1770 1.25 thorpej }
1771 1.25 thorpej
1772 1.128.2.7 ad if ((pc = pp->pr_cache) != NULL) {
1773 1.128.2.7 ad (*pr)("POOL CACHE");
1774 1.128.2.7 ad } else {
1775 1.128.2.7 ad (*pr)("POOL");
1776 1.128.2.7 ad }
1777 1.128.2.7 ad
1778 1.128.2.7 ad (*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
1779 1.25 thorpej pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
1780 1.25 thorpej pp->pr_roflags);
1781 1.66 thorpej (*pr)("\talloc %p\n", pp->pr_alloc);
1782 1.25 thorpej (*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
1783 1.25 thorpej pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
1784 1.25 thorpej (*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
1785 1.25 thorpej pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
1786 1.25 thorpej
1787 1.128.2.7 ad (*pr)("\tnget %lu, nfail %lu, nput %lu\n",
1788 1.25 thorpej pp->pr_nget, pp->pr_nfail, pp->pr_nput);
1789 1.25 thorpej (*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
1790 1.25 thorpej pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
1791 1.25 thorpej
1792 1.25 thorpej if (print_pagelist == 0)
1793 1.25 thorpej goto skip_pagelist;
1794 1.25 thorpej
1795 1.88 chs if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
1796 1.88 chs (*pr)("\n\tempty page list:\n");
1797 1.97 yamt pool_print_pagelist(pp, &pp->pr_emptypages, pr);
1798 1.88 chs if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
1799 1.88 chs (*pr)("\n\tfull page list:\n");
1800 1.97 yamt pool_print_pagelist(pp, &pp->pr_fullpages, pr);
1801 1.88 chs if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
1802 1.88 chs (*pr)("\n\tpartial-page list:\n");
1803 1.97 yamt pool_print_pagelist(pp, &pp->pr_partpages, pr);
1804 1.88 chs
1805 1.25 thorpej if (pp->pr_curpage == NULL)
1806 1.25 thorpej (*pr)("\tno current page\n");
1807 1.25 thorpej else
1808 1.25 thorpej (*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
1809 1.25 thorpej
1810 1.25 thorpej skip_pagelist:
1811 1.25 thorpej if (print_log == 0)
1812 1.25 thorpej goto skip_log;
1813 1.25 thorpej
1814 1.25 thorpej (*pr)("\n");
1815 1.25 thorpej if ((pp->pr_roflags & PR_LOGGING) == 0)
1816 1.25 thorpej (*pr)("\tno log\n");
1817 1.122 christos else {
1818 1.25 thorpej pr_printlog(pp, NULL, pr);
1819 1.122 christos }
1820 1.3 pk
1821 1.25 thorpej skip_log:
1822 1.44 thorpej
1823 1.102 chs #define PR_GROUPLIST(pcg) \
1824 1.102 chs (*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail); \
1825 1.102 chs for (i = 0; i < PCG_NOBJECTS; i++) { \
1826 1.102 chs if (pcg->pcg_objects[i].pcgo_pa != \
1827 1.102 chs POOL_PADDR_INVALID) { \
1828 1.102 chs (*pr)("\t\t\t%p, 0x%llx\n", \
1829 1.102 chs pcg->pcg_objects[i].pcgo_va, \
1830 1.102 chs (unsigned long long) \
1831 1.102 chs pcg->pcg_objects[i].pcgo_pa); \
1832 1.102 chs } else { \
1833 1.102 chs (*pr)("\t\t\t%p\n", \
1834 1.102 chs pcg->pcg_objects[i].pcgo_va); \
1835 1.102 chs } \
1836 1.102 chs }
1837 1.102 chs
1838 1.128.2.7 ad if (pc != NULL) {
1839 1.128.2.7 ad cpuhit = 0;
1840 1.128.2.7 ad cpumiss = 0;
1841 1.128.2.7 ad for (i = 0; i < MAXCPUS; i++) {
1842 1.128.2.7 ad if ((cc = pc->pc_cpus[i]) == NULL)
1843 1.128.2.7 ad continue;
1844 1.128.2.7 ad cpuhit += cc->cc_hits;
1845 1.128.2.7 ad cpumiss += cc->cc_misses;
1846 1.128.2.7 ad }
1847 1.128.2.7 ad (*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
1848 1.128.2.7 ad (*pr)("\tcache layer hits %llu misses %llu\n",
1849 1.128.2.7 ad pc->pc_hits, pc->pc_misses);
1850 1.128.2.7 ad (*pr)("\tcache layer entry uncontended %llu contended %llu\n",
1851 1.128.2.7 ad pc->pc_hits + pc->pc_misses - pc->pc_contended,
1852 1.128.2.7 ad pc->pc_contended);
1853 1.128.2.7 ad (*pr)("\tcache layer empty groups %u full groups %u\n",
1854 1.128.2.7 ad pc->pc_nempty, pc->pc_nfull);
1855 1.128.2.7 ad if (print_cache) {
1856 1.128.2.7 ad (*pr)("\tfull cache groups:\n");
1857 1.128.2.7 ad for (pcg = pc->pc_fullgroups; pcg != NULL;
1858 1.128.2.7 ad pcg = pcg->pcg_next) {
1859 1.128.2.7 ad PR_GROUPLIST(pcg);
1860 1.128.2.7 ad }
1861 1.128.2.7 ad (*pr)("\tempty cache groups:\n");
1862 1.128.2.7 ad for (pcg = pc->pc_emptygroups; pcg != NULL;
1863 1.128.2.7 ad pcg = pcg->pcg_next) {
1864 1.128.2.7 ad PR_GROUPLIST(pcg);
1865 1.128.2.7 ad }
1866 1.103 chs }
1867 1.44 thorpej }
1868 1.102 chs #undef PR_GROUPLIST
1869 1.44 thorpej
1870 1.88 chs pr_enter_check(pp, pr);
1871 1.88 chs }
1872 1.88 chs
1873 1.88 chs static int
1874 1.88 chs pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
1875 1.88 chs {
1876 1.88 chs struct pool_item *pi;
1877 1.128 christos void *page;
1878 1.88 chs int n;
1879 1.88 chs
1880 1.121 yamt if ((pp->pr_roflags & PR_NOALIGN) == 0) {
1881 1.128 christos page = (void *)((uintptr_t)ph & pp->pr_alloc->pa_pagemask);
1882 1.121 yamt if (page != ph->ph_page &&
1883 1.121 yamt (pp->pr_roflags & PR_PHINPAGE) != 0) {
1884 1.121 yamt if (label != NULL)
1885 1.121 yamt printf("%s: ", label);
1886 1.121 yamt printf("pool(%p:%s): page inconsistency: page %p;"
1887 1.121 yamt " at page head addr %p (p %p)\n", pp,
1888 1.121 yamt pp->pr_wchan, ph->ph_page,
1889 1.121 yamt ph, page);
1890 1.121 yamt return 1;
1891 1.121 yamt }
1892 1.88 chs }
1893 1.3 pk
1894 1.97 yamt if ((pp->pr_roflags & PR_NOTOUCH) != 0)
1895 1.97 yamt return 0;
1896 1.97 yamt
1897 1.102 chs for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
1898 1.88 chs pi != NULL;
1899 1.102 chs pi = LIST_NEXT(pi,pi_list), n++) {
1900 1.88 chs
1901 1.88 chs #ifdef DIAGNOSTIC
1902 1.88 chs if (pi->pi_magic != PI_MAGIC) {
1903 1.88 chs if (label != NULL)
1904 1.88 chs printf("%s: ", label);
1905 1.88 chs printf("pool(%s): free list modified: magic=%x;"
1906 1.121 yamt " page %p; item ordinal %d; addr %p\n",
1907 1.88 chs pp->pr_wchan, pi->pi_magic, ph->ph_page,
1908 1.121 yamt n, pi);
1909 1.88 chs panic("pool");
1910 1.88 chs }
1911 1.88 chs #endif
1912 1.121 yamt if ((pp->pr_roflags & PR_NOALIGN) != 0) {
1913 1.121 yamt continue;
1914 1.121 yamt }
1915 1.128 christos page = (void *)((uintptr_t)pi & pp->pr_alloc->pa_pagemask);
1916 1.88 chs if (page == ph->ph_page)
1917 1.88 chs continue;
1918 1.88 chs
1919 1.88 chs if (label != NULL)
1920 1.88 chs printf("%s: ", label);
1921 1.88 chs printf("pool(%p:%s): page inconsistency: page %p;"
1922 1.88 chs " item ordinal %d; addr %p (p %p)\n", pp,
1923 1.88 chs pp->pr_wchan, ph->ph_page,
1924 1.88 chs n, pi, page);
1925 1.88 chs return 1;
1926 1.88 chs }
1927 1.88 chs return 0;
1928 1.3 pk }
1929 1.3 pk
1930 1.88 chs
1931 1.3 pk int
1932 1.42 thorpej pool_chk(struct pool *pp, const char *label)
1933 1.3 pk {
1934 1.3 pk struct pool_item_header *ph;
1935 1.3 pk int r = 0;
1936 1.3 pk
1937 1.128.2.2 ad mutex_enter(&pp->pr_lock);
1938 1.88 chs LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
1939 1.88 chs r = pool_chk_page(pp, label, ph);
1940 1.88 chs if (r) {
1941 1.88 chs goto out;
1942 1.88 chs }
1943 1.88 chs }
1944 1.88 chs LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
1945 1.88 chs r = pool_chk_page(pp, label, ph);
1946 1.88 chs if (r) {
1947 1.3 pk goto out;
1948 1.3 pk }
1949 1.88 chs }
1950 1.88 chs LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
1951 1.88 chs r = pool_chk_page(pp, label, ph);
1952 1.88 chs if (r) {
1953 1.3 pk goto out;
1954 1.3 pk }
1955 1.3 pk }
1956 1.88 chs
1957 1.3 pk out:
1958 1.128.2.2 ad mutex_exit(&pp->pr_lock);
1959 1.3 pk return (r);
1960 1.43 thorpej }
1961 1.43 thorpej
1962 1.43 thorpej /*
1963 1.43 thorpej * pool_cache_init:
1964 1.43 thorpej *
1965 1.43 thorpej * Initialize a pool cache.
1966 1.128.2.7 ad */
1967 1.128.2.7 ad pool_cache_t
1968 1.128.2.7 ad pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
1969 1.128.2.7 ad const char *wchan, struct pool_allocator *palloc, int ipl,
1970 1.128.2.7 ad int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
1971 1.128.2.7 ad {
1972 1.128.2.7 ad pool_cache_t pc;
1973 1.128.2.7 ad
1974 1.128.2.7 ad pc = pool_get(&cache_pool, PR_WAITOK);
1975 1.128.2.7 ad if (pc == NULL)
1976 1.128.2.7 ad return NULL;
1977 1.128.2.7 ad
1978 1.128.2.7 ad pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
1979 1.128.2.7 ad palloc, ipl, ctor, dtor, arg);
1980 1.128.2.7 ad
1981 1.128.2.7 ad return pc;
1982 1.128.2.7 ad }
1983 1.128.2.7 ad
1984 1.128.2.7 ad /*
1985 1.128.2.7 ad * pool_cache_bootstrap:
1986 1.43 thorpej *
1987 1.128.2.7 ad * Kernel-private version of pool_cache_init(). The caller
1988 1.128.2.7 ad * provides initial storage.
1989 1.43 thorpej */
1990 1.43 thorpej void
1991 1.128.2.7 ad pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
1992 1.128.2.7 ad u_int align_offset, u_int flags, const char *wchan,
1993 1.128.2.7 ad struct pool_allocator *palloc, int ipl,
1994 1.128.2.7 ad int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
1995 1.43 thorpej void *arg)
1996 1.43 thorpej {
1997 1.128.2.7 ad CPU_INFO_ITERATOR cii;
1998 1.128.2.7 ad struct cpu_info *ci;
1999 1.128.2.7 ad struct pool *pp;
2000 1.43 thorpej
2001 1.128.2.7 ad pp = &pc->pc_pool;
2002 1.128.2.7 ad if (palloc == NULL && ipl == IPL_NONE)
2003 1.128.2.7 ad palloc = &pool_allocator_nointr;
2004 1.128.2.7 ad pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl);
2005 1.43 thorpej
2006 1.128.2.7 ad mutex_init(&pc->pc_lock, MUTEX_DEFAULT, pp->pr_ipl);
2007 1.43 thorpej
2008 1.128.2.10 ad if (ctor == NULL) {
2009 1.128.2.10 ad ctor = (int (*)(void *, void *, int))nullop;
2010 1.128.2.10 ad }
2011 1.128.2.10 ad if (dtor == NULL) {
2012 1.128.2.10 ad dtor = (void (*)(void *, void *))nullop;
2013 1.128.2.10 ad }
2014 1.128.2.10 ad
2015 1.128.2.7 ad pc->pc_emptygroups = NULL;
2016 1.128.2.7 ad pc->pc_fullgroups = NULL;
2017 1.128.2.11 ad pc->pc_partgroups = NULL;
2018 1.43 thorpej pc->pc_ctor = ctor;
2019 1.43 thorpej pc->pc_dtor = dtor;
2020 1.43 thorpej pc->pc_arg = arg;
2021 1.128.2.7 ad pc->pc_hits = 0;
2022 1.48 thorpej pc->pc_misses = 0;
2023 1.128.2.7 ad pc->pc_nempty = 0;
2024 1.128.2.11 ad pc->pc_npart = 0;
2025 1.128.2.7 ad pc->pc_nfull = 0;
2026 1.128.2.7 ad pc->pc_contended = 0;
2027 1.128.2.7 ad pc->pc_refcnt = 0;
2028 1.128.2.7 ad
2029 1.128.2.7 ad /* Allocate per-CPU caches. */
2030 1.128.2.7 ad memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
2031 1.128.2.7 ad pc->pc_ncpu = 0;
2032 1.128.2.7 ad for (CPU_INFO_FOREACH(cii, ci)) {
2033 1.128.2.7 ad pool_cache_cpu_init1(ci, pc);
2034 1.128.2.7 ad }
2035 1.128.2.7 ad
2036 1.128.2.2 ad if (__predict_true(!cold)) {
2037 1.128.2.2 ad mutex_enter(&pp->pr_lock);
2038 1.128.2.7 ad pp->pr_cache = pc;
2039 1.128.2.2 ad mutex_exit(&pp->pr_lock);
2040 1.128.2.7 ad mutex_enter(&pool_head_lock);
2041 1.128.2.7 ad LIST_INSERT_HEAD(&pool_cache_head, pc, pc_cachelist);
2042 1.128.2.7 ad mutex_exit(&pool_head_lock);
2043 1.128.2.7 ad } else {
2044 1.128.2.7 ad pp->pr_cache = pc;
2045 1.128.2.7 ad LIST_INSERT_HEAD(&pool_cache_head, pc, pc_cachelist);
2046 1.128.2.7 ad }
2047 1.43 thorpej }
2048 1.43 thorpej
2049 1.43 thorpej /*
2050 1.43 thorpej * pool_cache_destroy:
2051 1.43 thorpej *
2052 1.43 thorpej * Destroy a pool cache.
2053 1.43 thorpej */
2054 1.43 thorpej void
2055 1.128.2.7 ad pool_cache_destroy(pool_cache_t pc)
2056 1.43 thorpej {
2057 1.128.2.7 ad struct pool *pp = &pc->pc_pool;
2058 1.128.2.7 ad pool_cache_cpu_t *cc;
2059 1.128.2.7 ad pcg_t *pcg;
2060 1.128.2.7 ad int i;
2061 1.128.2.7 ad
2062 1.128.2.7 ad /* Remove it from the global list. */
2063 1.128.2.7 ad mutex_enter(&pool_head_lock);
2064 1.128.2.7 ad while (pc->pc_refcnt != 0)
2065 1.128.2.7 ad cv_wait(&pool_busy, &pool_head_lock);
2066 1.128.2.7 ad LIST_REMOVE(pc, pc_cachelist);
2067 1.128.2.7 ad mutex_exit(&pool_head_lock);
2068 1.43 thorpej
2069 1.43 thorpej /* First, invalidate the entire cache. */
2070 1.43 thorpej pool_cache_invalidate(pc);
2071 1.43 thorpej
2072 1.128.2.7 ad /* Disassociate it from the pool. */
2073 1.128.2.2 ad mutex_enter(&pp->pr_lock);
2074 1.128.2.7 ad pp->pr_cache = NULL;
2075 1.128.2.2 ad mutex_exit(&pp->pr_lock);
2076 1.128.2.2 ad
2077 1.128.2.7 ad /* Destroy per-CPU data */
2078 1.128.2.7 ad for (i = 0; i < MAXCPUS; i++) {
2079 1.128.2.7 ad if ((cc = pc->pc_cpus[i]) == NULL)
2080 1.128.2.7 ad continue;
2081 1.128.2.7 ad if ((pcg = cc->cc_current) != NULL) {
2082 1.128.2.7 ad pcg->pcg_next = NULL;
2083 1.128.2.7 ad pool_cache_invalidate_groups(pc, pcg);
2084 1.128.2.7 ad }
2085 1.128.2.7 ad if ((pcg = cc->cc_previous) != NULL) {
2086 1.128.2.7 ad pcg->pcg_next = NULL;
2087 1.128.2.7 ad pool_cache_invalidate_groups(pc, pcg);
2088 1.128.2.7 ad }
2089 1.128.2.7 ad if (cc != &pc->pc_cpu0)
2090 1.128.2.7 ad pool_put(&cache_cpu_pool, cc);
2091 1.128.2.7 ad }
2092 1.128.2.7 ad
2093 1.128.2.7 ad /* Finally, destroy it. */
2094 1.128.2.2 ad mutex_destroy(&pc->pc_lock);
2095 1.128.2.7 ad pool_destroy(pp);
2096 1.128.2.7 ad pool_put(&cache_pool, pc);
2097 1.128.2.7 ad }
2098 1.128.2.7 ad
2099 1.128.2.7 ad /*
2100 1.128.2.7 ad * pool_cache_cpu_init1:
2101 1.128.2.7 ad *
2102 1.128.2.7 ad * Called for each pool_cache whenever a new CPU is attached.
2103 1.128.2.7 ad */
2104 1.128.2.7 ad static void
2105 1.128.2.7 ad pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
2106 1.128.2.7 ad {
2107 1.128.2.7 ad pool_cache_cpu_t *cc;
2108 1.128.2.7 ad
2109 1.128.2.7 ad KASSERT(((uintptr_t)pc->pc_cpus & (CACHE_LINE_SIZE - 1)) == 0);
2110 1.128.2.7 ad
2111 1.128.2.7 ad if ((cc = pc->pc_cpus[ci->ci_index]) != NULL) {
2112 1.128.2.7 ad KASSERT(cc->cc_cpu = ci);
2113 1.128.2.7 ad return;
2114 1.128.2.7 ad }
2115 1.128.2.7 ad
2116 1.128.2.7 ad /*
2117 1.128.2.7 ad * The first CPU is 'free'. This needs to be the case for
2118 1.128.2.7 ad * bootstrap - we may not be able to allocate yet.
2119 1.128.2.7 ad */
2120 1.128.2.7 ad if (pc->pc_ncpu == 0) {
2121 1.128.2.7 ad cc = &pc->pc_cpu0;
2122 1.128.2.7 ad pc->pc_ncpu = 1;
2123 1.128.2.7 ad } else {
2124 1.128.2.7 ad mutex_enter(&pc->pc_lock);
2125 1.128.2.7 ad pc->pc_ncpu++;
2126 1.128.2.7 ad mutex_exit(&pc->pc_lock);
2127 1.128.2.7 ad cc = pool_get(&cache_cpu_pool, PR_WAITOK);
2128 1.128.2.7 ad }
2129 1.128.2.7 ad
2130 1.128.2.7 ad cc->cc_ipl = pc->pc_pool.pr_ipl;
2131 1.128.2.7 ad cc->cc_iplcookie = makeiplcookie(cc->cc_ipl);
2132 1.128.2.7 ad cc->cc_cache = pc;
2133 1.128.2.7 ad cc->cc_cpu = ci;
2134 1.128.2.7 ad cc->cc_hits = 0;
2135 1.128.2.7 ad cc->cc_misses = 0;
2136 1.128.2.7 ad cc->cc_current = NULL;
2137 1.128.2.7 ad cc->cc_previous = NULL;
2138 1.128.2.7 ad
2139 1.128.2.7 ad pc->pc_cpus[ci->ci_index] = cc;
2140 1.128.2.7 ad }
2141 1.128.2.7 ad
2142 1.128.2.7 ad /*
2143 1.128.2.7 ad * pool_cache_cpu_init:
2144 1.128.2.7 ad *
2145 1.128.2.7 ad * Called whenever a new CPU is attached.
2146 1.128.2.7 ad */
2147 1.128.2.7 ad void
2148 1.128.2.7 ad pool_cache_cpu_init(struct cpu_info *ci)
2149 1.128.2.7 ad {
2150 1.128.2.7 ad pool_cache_t pc;
2151 1.128.2.7 ad
2152 1.128.2.7 ad mutex_enter(&pool_head_lock);
2153 1.128.2.7 ad LIST_FOREACH(pc, &pool_cache_head, pc_cachelist) {
2154 1.128.2.7 ad pc->pc_refcnt++;
2155 1.128.2.7 ad mutex_exit(&pool_head_lock);
2156 1.128.2.7 ad
2157 1.128.2.7 ad pool_cache_cpu_init1(ci, pc);
2158 1.128.2.7 ad
2159 1.128.2.7 ad mutex_enter(&pool_head_lock);
2160 1.128.2.7 ad pc->pc_refcnt--;
2161 1.128.2.7 ad cv_broadcast(&pool_busy);
2162 1.128.2.7 ad }
2163 1.128.2.7 ad mutex_exit(&pool_head_lock);
2164 1.128.2.7 ad }
2165 1.128.2.7 ad
2166 1.128.2.7 ad /*
2167 1.128.2.7 ad * pool_cache_reclaim:
2168 1.128.2.7 ad *
2169 1.128.2.7 ad * Reclaim memory from a pool cache.
2170 1.128.2.7 ad */
2171 1.128.2.7 ad bool
2172 1.128.2.7 ad pool_cache_reclaim(pool_cache_t pc)
2173 1.128.2.7 ad {
2174 1.128.2.7 ad
2175 1.128.2.7 ad return pool_reclaim(&pc->pc_pool);
2176 1.43 thorpej }
2177 1.43 thorpej
2178 1.128.2.7 ad /*
2179 1.128.2.7 ad * pool_cache_destruct_object:
2180 1.128.2.7 ad *
2181 1.128.2.7 ad * Force destruction of an object and its release back into
2182 1.128.2.7 ad * the pool.
2183 1.128.2.7 ad */
2184 1.128.2.7 ad void
2185 1.128.2.7 ad pool_cache_destruct_object(pool_cache_t pc, void *object)
2186 1.128.2.7 ad {
2187 1.128.2.7 ad
2188 1.128.2.10 ad (*pc->pc_dtor)(pc->pc_arg, object);
2189 1.128.2.7 ad pool_put(&pc->pc_pool, object);
2190 1.128.2.7 ad }
2191 1.128.2.7 ad
2192 1.128.2.7 ad /*
2193 1.128.2.7 ad * pool_cache_invalidate_groups:
2194 1.128.2.7 ad *
2195 1.128.2.7 ad * Invalidate a chain of groups and destruct all objects.
2196 1.128.2.7 ad */
2197 1.102 chs static void
2198 1.128.2.7 ad pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
2199 1.102 chs {
2200 1.128.2.7 ad void *object;
2201 1.128.2.7 ad pcg_t *next;
2202 1.128.2.7 ad int i;
2203 1.128.2.7 ad
2204 1.128.2.7 ad for (; pcg != NULL; pcg = next) {
2205 1.128.2.7 ad next = pcg->pcg_next;
2206 1.128.2.7 ad
2207 1.128.2.7 ad for (i = 0; i < pcg->pcg_avail; i++) {
2208 1.128.2.7 ad object = pcg->pcg_objects[i].pcgo_va;
2209 1.128.2.8 ad pool_cache_destruct_object(pc, object);
2210 1.128.2.7 ad }
2211 1.102 chs
2212 1.102 chs pool_put(&pcgpool, pcg);
2213 1.102 chs }
2214 1.102 chs }
2215 1.102 chs
2216 1.43 thorpej /*
2217 1.128.2.7 ad * pool_cache_invalidate:
2218 1.43 thorpej *
2219 1.128.2.7 ad * Invalidate a pool cache (destruct and release all of the
2220 1.128.2.7 ad * cached objects). Does not reclaim objects from the pool.
2221 1.43 thorpej */
2222 1.128.2.7 ad void
2223 1.128.2.7 ad pool_cache_invalidate(pool_cache_t pc)
2224 1.43 thorpej {
2225 1.128.2.11 ad pcg_t *full, *empty, *part;
2226 1.43 thorpej
2227 1.128.2.2 ad mutex_enter(&pc->pc_lock);
2228 1.128.2.7 ad full = pc->pc_fullgroups;
2229 1.128.2.7 ad empty = pc->pc_emptygroups;
2230 1.128.2.11 ad part = pc->pc_partgroups;
2231 1.128.2.7 ad pc->pc_fullgroups = NULL;
2232 1.128.2.7 ad pc->pc_emptygroups = NULL;
2233 1.128.2.11 ad pc->pc_partgroups = NULL;
2234 1.128.2.7 ad pc->pc_nfull = 0;
2235 1.128.2.7 ad pc->pc_nempty = 0;
2236 1.128.2.11 ad pc->pc_npart = 0;
2237 1.128.2.7 ad mutex_exit(&pc->pc_lock);
2238 1.43 thorpej
2239 1.128.2.7 ad pool_cache_invalidate_groups(pc, full);
2240 1.128.2.7 ad pool_cache_invalidate_groups(pc, empty);
2241 1.128.2.11 ad pool_cache_invalidate_groups(pc, part);
2242 1.128.2.7 ad }
2243 1.43 thorpej
2244 1.128.2.7 ad void
2245 1.128.2.7 ad pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
2246 1.128.2.7 ad {
2247 1.125 ad
2248 1.128.2.7 ad pool_set_drain_hook(&pc->pc_pool, fn, arg);
2249 1.128.2.7 ad }
2250 1.43 thorpej
2251 1.128.2.7 ad void
2252 1.128.2.7 ad pool_cache_setlowat(pool_cache_t pc, int n)
2253 1.128.2.7 ad {
2254 1.43 thorpej
2255 1.128.2.7 ad pool_setlowat(&pc->pc_pool, n);
2256 1.128.2.7 ad }
2257 1.43 thorpej
2258 1.128.2.7 ad void
2259 1.128.2.7 ad pool_cache_sethiwat(pool_cache_t pc, int n)
2260 1.128.2.7 ad {
2261 1.128.2.7 ad
2262 1.128.2.7 ad pool_sethiwat(&pc->pc_pool, n);
2263 1.43 thorpej }
2264 1.43 thorpej
2265 1.43 thorpej void
2266 1.128.2.7 ad pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
2267 1.43 thorpej {
2268 1.43 thorpej
2269 1.128.2.7 ad pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
2270 1.128.2.7 ad }
2271 1.128.2.7 ad
2272 1.128.2.7 ad static inline pool_cache_cpu_t *
2273 1.128.2.7 ad pool_cache_cpu_enter(pool_cache_t pc, int *s)
2274 1.128.2.7 ad {
2275 1.128.2.7 ad pool_cache_cpu_t *cc;
2276 1.128.2.7 ad struct cpu_info *ci;
2277 1.125 ad
2278 1.128.2.7 ad /*
2279 1.128.2.7 ad * Prevent other users of the cache from accessing our
2280 1.128.2.7 ad * CPU-local data. To avoid touching shared state, we
2281 1.128.2.7 ad * pull the neccessary information from CPU local data.
2282 1.128.2.7 ad */
2283 1.128.2.7 ad ci = curcpu();
2284 1.128.2.8 ad KASSERT(ci->ci_data.cpu_index < MAXCPUS);
2285 1.128.2.7 ad cc = pc->pc_cpus[ci->ci_data.cpu_index];
2286 1.128.2.8 ad KASSERT(cc->cc_cache == pc);
2287 1.128.2.7 ad if (cc->cc_ipl == IPL_NONE) {
2288 1.128.2.7 ad crit_enter();
2289 1.128.2.7 ad } else {
2290 1.128.2.7 ad *s = splraiseipl(cc->cc_iplcookie);
2291 1.109 christos }
2292 1.109 christos
2293 1.128.2.7 ad /* Moved to another CPU before disabling preemption? */
2294 1.128.2.7 ad if (__predict_false(ci != curcpu())) {
2295 1.128.2.7 ad ci = curcpu();
2296 1.128.2.7 ad cc = pc->pc_cpus[ci->ci_data.cpu_index];
2297 1.128.2.7 ad }
2298 1.43 thorpej
2299 1.128.2.7 ad #ifdef DIAGNOSTIC
2300 1.128.2.7 ad KASSERT(cc->cc_cpu == ci);
2301 1.128.2.7 ad KASSERT(((uintptr_t)cc & (CACHE_LINE_SIZE - 1)) == 0);
2302 1.128.2.7 ad #endif
2303 1.128.2.7 ad
2304 1.128.2.7 ad return cc;
2305 1.128.2.7 ad }
2306 1.128.2.7 ad
2307 1.128.2.7 ad static inline void
2308 1.128.2.7 ad pool_cache_cpu_exit(pool_cache_cpu_t *cc, int *s)
2309 1.128.2.7 ad {
2310 1.128.2.7 ad
2311 1.128.2.7 ad /* No longer need exclusive access to the per-CPU data. */
2312 1.128.2.7 ad if (cc->cc_ipl == IPL_NONE) {
2313 1.128.2.7 ad crit_exit();
2314 1.128.2.7 ad } else {
2315 1.128.2.7 ad splx(*s);
2316 1.128.2.7 ad }
2317 1.128.2.7 ad }
2318 1.128.2.7 ad
2319 1.128.2.7 ad #if __GNUC_PREREQ__(3, 0)
2320 1.128.2.7 ad __attribute ((noinline))
2321 1.128.2.7 ad #endif
2322 1.128.2.7 ad pool_cache_cpu_t *
2323 1.128.2.7 ad pool_cache_get_slow(pool_cache_cpu_t *cc, int *s, void **objectp,
2324 1.128.2.7 ad paddr_t *pap, int flags)
2325 1.128.2.7 ad {
2326 1.128.2.7 ad pcg_t *pcg, *cur;
2327 1.128.2.7 ad uint64_t ncsw;
2328 1.128.2.7 ad pool_cache_t pc;
2329 1.128.2.7 ad void *object;
2330 1.128.2.7 ad
2331 1.128.2.7 ad pc = cc->cc_cache;
2332 1.128.2.7 ad cc->cc_misses++;
2333 1.128.2.7 ad
2334 1.128.2.7 ad /*
2335 1.128.2.7 ad * Nothing was available locally. Try and grab a group
2336 1.128.2.7 ad * from the cache.
2337 1.128.2.7 ad */
2338 1.128.2.7 ad if (!mutex_tryenter(&pc->pc_lock)) {
2339 1.128.2.7 ad ncsw = curlwp->l_ncsw;
2340 1.128.2.7 ad mutex_enter(&pc->pc_lock);
2341 1.128.2.7 ad pc->pc_contended++;
2342 1.128.2.7 ad
2343 1.128.2.7 ad /*
2344 1.128.2.7 ad * If we context switched while locking, then
2345 1.128.2.7 ad * our view of the per-CPU data is invalid:
2346 1.128.2.7 ad * retry.
2347 1.128.2.7 ad */
2348 1.128.2.7 ad if (curlwp->l_ncsw != ncsw) {
2349 1.128.2.7 ad mutex_exit(&pc->pc_lock);
2350 1.128.2.7 ad pool_cache_cpu_exit(cc, s);
2351 1.128.2.7 ad return pool_cache_cpu_enter(pc, s);
2352 1.43 thorpej }
2353 1.102 chs }
2354 1.43 thorpej
2355 1.128.2.7 ad if ((pcg = pc->pc_fullgroups) != NULL) {
2356 1.43 thorpej /*
2357 1.128.2.7 ad * If there's a full group, release our empty
2358 1.128.2.7 ad * group back to the cache. Install the full
2359 1.128.2.7 ad * group as cc_current and return.
2360 1.43 thorpej */
2361 1.128.2.7 ad if ((cur = cc->cc_current) != NULL) {
2362 1.128.2.7 ad KASSERT(cur->pcg_avail == 0);
2363 1.128.2.7 ad cur->pcg_next = pc->pc_emptygroups;
2364 1.128.2.7 ad pc->pc_emptygroups = cur;
2365 1.128.2.7 ad pc->pc_nempty++;
2366 1.128.2.7 ad }
2367 1.128.2.7 ad KASSERT(pcg->pcg_avail == PCG_NOBJECTS);
2368 1.128.2.7 ad cc->cc_current = pcg;
2369 1.128.2.7 ad pc->pc_fullgroups = pcg->pcg_next;
2370 1.128.2.7 ad pc->pc_hits++;
2371 1.128.2.7 ad pc->pc_nfull--;
2372 1.128.2.2 ad mutex_exit(&pc->pc_lock);
2373 1.128.2.7 ad return cc;
2374 1.128.2.7 ad }
2375 1.102 chs
2376 1.128.2.7 ad /*
2377 1.128.2.7 ad * Nothing available locally or in cache. Take the slow
2378 1.128.2.7 ad * path: fetch a new object from the pool and construct
2379 1.128.2.7 ad * it.
2380 1.128.2.7 ad */
2381 1.128.2.7 ad pc->pc_misses++;
2382 1.128.2.7 ad mutex_exit(&pc->pc_lock);
2383 1.128.2.7 ad pool_cache_cpu_exit(cc, s);
2384 1.128.2.7 ad
2385 1.128.2.7 ad object = pool_get(&pc->pc_pool, flags);
2386 1.128.2.7 ad *objectp = object;
2387 1.128.2.7 ad if (object == NULL)
2388 1.128.2.7 ad return NULL;
2389 1.128.2.7 ad
2390 1.128.2.10 ad if ((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0) {
2391 1.128.2.10 ad pool_put(&pc->pc_pool, object);
2392 1.128.2.10 ad *objectp = NULL;
2393 1.128.2.10 ad return NULL;
2394 1.43 thorpej }
2395 1.43 thorpej
2396 1.128.2.7 ad KASSERT((((vaddr_t)object + pc->pc_pool.pr_itemoffset) &
2397 1.128.2.7 ad (pc->pc_pool.pr_align - 1)) == 0);
2398 1.43 thorpej
2399 1.128.2.7 ad if (pap != NULL) {
2400 1.128.2.7 ad #ifdef POOL_VTOPHYS
2401 1.128.2.7 ad *pap = POOL_VTOPHYS(object);
2402 1.128.2.7 ad #else
2403 1.128.2.7 ad *pap = POOL_PADDR_INVALID;
2404 1.128.2.7 ad #endif
2405 1.102 chs }
2406 1.51 thorpej
2407 1.128.2.7 ad FREECHECK_OUT(&pc->pc_freecheck, object);
2408 1.128.2.7 ad return NULL;
2409 1.43 thorpej }
2410 1.43 thorpej
2411 1.128.2.6 ad /*
2412 1.128.2.7 ad * pool_cache_get{,_paddr}:
2413 1.128.2.6 ad *
2414 1.128.2.7 ad * Get an object from a pool cache (optionally returning
2415 1.128.2.7 ad * the physical address of the object).
2416 1.128.2.6 ad */
2417 1.128.2.7 ad void *
2418 1.128.2.7 ad pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
2419 1.102 chs {
2420 1.128.2.7 ad pool_cache_cpu_t *cc;
2421 1.128.2.7 ad pcg_t *pcg;
2422 1.102 chs void *object;
2423 1.128.2.7 ad int s;
2424 1.102 chs
2425 1.128.2.7 ad #ifdef LOCKDEBUG
2426 1.128.2.7 ad if (flags & PR_WAITOK)
2427 1.128.2.7 ad ASSERT_SLEEPABLE(NULL, "pool_cache_get(PR_WAITOK)");
2428 1.128.2.7 ad #endif
2429 1.128.2.6 ad
2430 1.128.2.7 ad cc = pool_cache_cpu_enter(pc, &s);
2431 1.128.2.7 ad do {
2432 1.128.2.7 ad /* Try and allocate an object from the current group. */
2433 1.128.2.7 ad pcg = cc->cc_current;
2434 1.128.2.7 ad if (pcg != NULL && pcg->pcg_avail > 0) {
2435 1.128.2.8 ad object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;
2436 1.128.2.8 ad if (pap != NULL)
2437 1.128.2.8 ad *pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa;
2438 1.128.2.8 ad pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL;
2439 1.128.2.8 ad KASSERT(pcg->pcg_avail <= PCG_NOBJECTS);
2440 1.128.2.8 ad KASSERT(object != NULL);
2441 1.128.2.7 ad cc->cc_hits++;
2442 1.128.2.7 ad pool_cache_cpu_exit(cc, &s);
2443 1.128.2.7 ad FREECHECK_OUT(&pc->pc_freecheck, object);
2444 1.128.2.7 ad return object;
2445 1.128.2.7 ad }
2446 1.128.2.6 ad
2447 1.128.2.7 ad /*
2448 1.128.2.7 ad * That failed. If the previous group isn't empty, swap
2449 1.128.2.7 ad * it with the current group and allocate from there.
2450 1.128.2.7 ad */
2451 1.128.2.7 ad pcg = cc->cc_previous;
2452 1.128.2.7 ad if (pcg != NULL && pcg->pcg_avail > 0) {
2453 1.128.2.7 ad cc->cc_previous = cc->cc_current;
2454 1.128.2.7 ad cc->cc_current = pcg;
2455 1.128.2.7 ad continue;
2456 1.102 chs }
2457 1.128.2.6 ad
2458 1.128.2.7 ad /*
2459 1.128.2.7 ad * Can't allocate from either group: try the slow path.
2460 1.128.2.7 ad * If get_slow() allocated an object for us, or if
2461 1.128.2.7 ad * no more objects are available, it will return NULL.
2462 1.128.2.7 ad * Otherwise, we need to retry.
2463 1.128.2.7 ad */
2464 1.128.2.7 ad cc = pool_cache_get_slow(cc, &s, &object, pap, flags);
2465 1.128.2.7 ad } while (cc != NULL);
2466 1.128.2.7 ad
2467 1.128.2.7 ad return object;
2468 1.105 christos }
2469 1.105 christos
2470 1.128.2.7 ad #if __GNUC_PREREQ__(3, 0)
2471 1.128.2.7 ad __attribute ((noinline))
2472 1.128.2.7 ad #endif
2473 1.128.2.7 ad pool_cache_cpu_t *
2474 1.128.2.7 ad pool_cache_put_slow(pool_cache_cpu_t *cc, int *s, void *object, paddr_t pa)
2475 1.105 christos {
2476 1.128.2.7 ad pcg_t *pcg, *cur;
2477 1.128.2.7 ad uint64_t ncsw;
2478 1.128.2.7 ad pool_cache_t pc;
2479 1.105 christos
2480 1.128.2.7 ad pc = cc->cc_cache;
2481 1.128.2.7 ad cc->cc_misses++;
2482 1.105 christos
2483 1.128.2.7 ad /*
2484 1.128.2.7 ad * No free slots locally. Try to grab an empty, unused
2485 1.128.2.7 ad * group from the cache.
2486 1.128.2.7 ad */
2487 1.128.2.7 ad if (!mutex_tryenter(&pc->pc_lock)) {
2488 1.128.2.7 ad ncsw = curlwp->l_ncsw;
2489 1.128.2.7 ad mutex_enter(&pc->pc_lock);
2490 1.128.2.7 ad pc->pc_contended++;
2491 1.102 chs
2492 1.128.2.7 ad /*
2493 1.128.2.7 ad * If we context switched while locking, then
2494 1.128.2.7 ad * our view of the per-CPU data is invalid:
2495 1.128.2.7 ad * retry.
2496 1.128.2.7 ad */
2497 1.128.2.7 ad if (curlwp->l_ncsw != ncsw) {
2498 1.128.2.7 ad mutex_exit(&pc->pc_lock);
2499 1.128.2.7 ad pool_cache_cpu_exit(cc, s);
2500 1.128.2.7 ad return pool_cache_cpu_enter(pc, s);
2501 1.128.2.7 ad }
2502 1.128.2.7 ad }
2503 1.101 thorpej
2504 1.128.2.7 ad if ((pcg = pc->pc_emptygroups) != NULL) {
2505 1.128.2.7 ad /*
2506 1.128.2.7 ad * If there's a empty group, release our full
2507 1.128.2.7 ad * group back to the cache. Install the empty
2508 1.128.2.7 ad * group as cc_current and return.
2509 1.128.2.7 ad */
2510 1.128.2.7 ad if ((cur = cc->cc_current) != NULL) {
2511 1.128.2.7 ad KASSERT(cur->pcg_avail == PCG_NOBJECTS);
2512 1.128.2.7 ad cur->pcg_next = pc->pc_fullgroups;
2513 1.128.2.7 ad pc->pc_fullgroups = cur;
2514 1.128.2.7 ad pc->pc_nfull++;
2515 1.128.2.7 ad }
2516 1.128.2.7 ad KASSERT(pcg->pcg_avail == 0);
2517 1.128.2.7 ad cc->cc_current = pcg;
2518 1.128.2.7 ad pc->pc_emptygroups = pcg->pcg_next;
2519 1.128.2.7 ad pc->pc_hits++;
2520 1.128.2.7 ad pc->pc_nempty--;
2521 1.128.2.7 ad mutex_exit(&pc->pc_lock);
2522 1.128.2.7 ad return cc;
2523 1.128.2.7 ad }
2524 1.101 thorpej
2525 1.128.2.7 ad /*
2526 1.128.2.7 ad * Nothing available locally or in cache. Take the
2527 1.128.2.7 ad * slow path and try to allocate a new group that we
2528 1.128.2.7 ad * can release to.
2529 1.128.2.7 ad */
2530 1.128.2.7 ad pc->pc_misses++;
2531 1.128.2.7 ad mutex_exit(&pc->pc_lock);
2532 1.128.2.7 ad pool_cache_cpu_exit(cc, s);
2533 1.43 thorpej
2534 1.128.2.7 ad /*
2535 1.128.2.7 ad * If we can't allocate a new group, just throw the
2536 1.128.2.7 ad * object away.
2537 1.128.2.7 ad */
2538 1.128.2.7 ad pcg = pool_get(&pcgpool, PR_NOWAIT);
2539 1.128.2.7 ad if (pcg == NULL) {
2540 1.128.2.7 ad pool_cache_destruct_object(pc, object);
2541 1.128.2.7 ad return NULL;
2542 1.128.2.7 ad }
2543 1.128.2.7 ad #ifdef DIAGNOSTIC
2544 1.128.2.7 ad memset(pcg, 0, sizeof(*pcg));
2545 1.128.2.7 ad #else
2546 1.128.2.7 ad pcg->pcg_avail = 0;
2547 1.128.2.7 ad #endif
2548 1.43 thorpej
2549 1.128.2.7 ad /*
2550 1.128.2.7 ad * Add the empty group to the cache and try again.
2551 1.128.2.7 ad */
2552 1.128.2.7 ad mutex_enter(&pc->pc_lock);
2553 1.128.2.7 ad pcg->pcg_next = pc->pc_emptygroups;
2554 1.128.2.7 ad pc->pc_emptygroups = pcg;
2555 1.128.2.7 ad pc->pc_nempty++;
2556 1.128.2.2 ad mutex_exit(&pc->pc_lock);
2557 1.43 thorpej
2558 1.128.2.7 ad return pool_cache_cpu_enter(pc, s);
2559 1.128.2.7 ad }
2560 1.43 thorpej
2561 1.43 thorpej /*
2562 1.128.2.7 ad * pool_cache_put{,_paddr}:
2563 1.43 thorpej *
2564 1.128.2.7 ad * Put an object back to the pool cache (optionally caching the
2565 1.128.2.7 ad * physical address of the object).
2566 1.43 thorpej */
2567 1.128.2.7 ad void
2568 1.128.2.7 ad pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
2569 1.43 thorpej {
2570 1.128.2.7 ad pool_cache_cpu_t *cc;
2571 1.128.2.7 ad pcg_t *pcg;
2572 1.128.2.7 ad int s;
2573 1.101 thorpej
2574 1.128.2.7 ad FREECHECK_IN(&pc->pc_freecheck, object);
2575 1.101 thorpej
2576 1.128.2.7 ad cc = pool_cache_cpu_enter(pc, &s);
2577 1.128.2.7 ad do {
2578 1.128.2.7 ad /* If the current group isn't full, release it there. */
2579 1.128.2.7 ad pcg = cc->cc_current;
2580 1.128.2.7 ad if (pcg != NULL && pcg->pcg_avail < PCG_NOBJECTS) {
2581 1.128.2.8 ad KASSERT(pcg->pcg_objects[pcg->pcg_avail].pcgo_va
2582 1.128.2.8 ad == NULL);
2583 1.128.2.8 ad pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object;
2584 1.128.2.8 ad pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa;
2585 1.128.2.8 ad pcg->pcg_avail++;
2586 1.128.2.7 ad cc->cc_hits++;
2587 1.128.2.7 ad pool_cache_cpu_exit(cc, &s);
2588 1.128.2.7 ad return;
2589 1.128.2.7 ad }
2590 1.43 thorpej
2591 1.128.2.7 ad /*
2592 1.128.2.7 ad * That failed. If the previous group is empty, swap
2593 1.128.2.7 ad * it with the current group and try again.
2594 1.128.2.7 ad */
2595 1.128.2.7 ad pcg = cc->cc_previous;
2596 1.128.2.7 ad if (pcg != NULL && pcg->pcg_avail == 0) {
2597 1.128.2.7 ad cc->cc_previous = cc->cc_current;
2598 1.128.2.7 ad cc->cc_current = pcg;
2599 1.128.2.7 ad continue;
2600 1.128.2.7 ad }
2601 1.128.2.7 ad
2602 1.128.2.7 ad /*
2603 1.128.2.7 ad * Can't free to either group: try the slow path.
2604 1.128.2.7 ad * If put_slow() releases the object for us, it
2605 1.128.2.7 ad * will return NULL. Otherwise we need to retry.
2606 1.128.2.7 ad */
2607 1.128.2.7 ad cc = pool_cache_put_slow(cc, &s, object, pa);
2608 1.128.2.7 ad } while (cc != NULL);
2609 1.3 pk }
2610 1.66 thorpej
2611 1.66 thorpej /*
2612 1.128.2.11 ad * pool_cache_xcall:
2613 1.128.2.11 ad *
2614 1.128.2.11 ad * Transfer objects from the per-CPU cache to the global cache.
2615 1.128.2.11 ad * Run within a cross-call thread.
2616 1.128.2.11 ad */
2617 1.128.2.11 ad static void
2618 1.128.2.11 ad pool_cache_xcall(pool_cache_t pc)
2619 1.128.2.11 ad {
2620 1.128.2.11 ad pool_cache_cpu_t *cc;
2621 1.128.2.11 ad pcg_t *prev, *cur, **list;
2622 1.128.2.11 ad int s = 0; /* XXXgcc */
2623 1.128.2.11 ad
2624 1.128.2.11 ad cc = pool_cache_cpu_enter(pc, &s);
2625 1.128.2.11 ad cur = cc->cc_current;
2626 1.128.2.11 ad cc->cc_current = NULL;
2627 1.128.2.11 ad prev = cc->cc_previous;
2628 1.128.2.11 ad cc->cc_previous = NULL;
2629 1.128.2.11 ad pool_cache_cpu_exit(cc, &s);
2630 1.128.2.11 ad
2631 1.128.2.11 ad mutex_enter(&pc->pc_lock);
2632 1.128.2.11 ad if (cur != NULL) {
2633 1.128.2.11 ad if (cur->pcg_avail == PCG_NOBJECTS) {
2634 1.128.2.11 ad list = &pc->pc_fullgroups;
2635 1.128.2.11 ad pc->pc_nfull++;
2636 1.128.2.11 ad } else if (cur->pcg_avail == 0) {
2637 1.128.2.11 ad list = &pc->pc_emptygroups;
2638 1.128.2.11 ad pc->pc_nempty++;
2639 1.128.2.11 ad } else {
2640 1.128.2.11 ad list = &pc->pc_partgroups;
2641 1.128.2.11 ad pc->pc_npart++;
2642 1.128.2.11 ad }
2643 1.128.2.11 ad cur->pcg_next = *list;
2644 1.128.2.11 ad *list = cur;
2645 1.128.2.11 ad }
2646 1.128.2.11 ad if (prev != NULL) {
2647 1.128.2.11 ad if (prev->pcg_avail == PCG_NOBJECTS) {
2648 1.128.2.11 ad list = &pc->pc_fullgroups;
2649 1.128.2.11 ad pc->pc_nfull++;
2650 1.128.2.11 ad } else if (prev->pcg_avail == 0) {
2651 1.128.2.11 ad list = &pc->pc_emptygroups;
2652 1.128.2.11 ad pc->pc_nempty++;
2653 1.128.2.11 ad } else {
2654 1.128.2.11 ad list = &pc->pc_partgroups;
2655 1.128.2.11 ad pc->pc_npart++;
2656 1.128.2.11 ad }
2657 1.128.2.11 ad prev->pcg_next = *list;
2658 1.128.2.11 ad *list = prev;
2659 1.128.2.11 ad }
2660 1.128.2.11 ad mutex_exit(&pc->pc_lock);
2661 1.128.2.11 ad }
2662 1.128.2.11 ad
2663 1.128.2.11 ad /*
2664 1.66 thorpej * Pool backend allocators.
2665 1.66 thorpej *
2666 1.66 thorpej * Each pool has a backend allocator that handles allocation, deallocation,
2667 1.66 thorpej * and any additional draining that might be needed.
2668 1.66 thorpej *
2669 1.66 thorpej * We provide two standard allocators:
2670 1.66 thorpej *
2671 1.66 thorpej * pool_allocator_kmem - the default when no allocator is specified
2672 1.66 thorpej *
2673 1.66 thorpej * pool_allocator_nointr - used for pools that will not be accessed
2674 1.66 thorpej * in interrupt context.
2675 1.66 thorpej */
2676 1.66 thorpej void *pool_page_alloc(struct pool *, int);
2677 1.66 thorpej void pool_page_free(struct pool *, void *);
2678 1.66 thorpej
2679 1.112 bjh21 #ifdef POOL_SUBPAGE
2680 1.112 bjh21 struct pool_allocator pool_allocator_kmem_fullpage = {
2681 1.112 bjh21 pool_page_alloc, pool_page_free, 0,
2682 1.117 yamt .pa_backingmapptr = &kmem_map,
2683 1.112 bjh21 };
2684 1.112 bjh21 #else
2685 1.66 thorpej struct pool_allocator pool_allocator_kmem = {
2686 1.66 thorpej pool_page_alloc, pool_page_free, 0,
2687 1.117 yamt .pa_backingmapptr = &kmem_map,
2688 1.66 thorpej };
2689 1.112 bjh21 #endif
2690 1.66 thorpej
2691 1.66 thorpej void *pool_page_alloc_nointr(struct pool *, int);
2692 1.66 thorpej void pool_page_free_nointr(struct pool *, void *);
2693 1.66 thorpej
2694 1.112 bjh21 #ifdef POOL_SUBPAGE
2695 1.112 bjh21 struct pool_allocator pool_allocator_nointr_fullpage = {
2696 1.112 bjh21 pool_page_alloc_nointr, pool_page_free_nointr, 0,
2697 1.117 yamt .pa_backingmapptr = &kernel_map,
2698 1.112 bjh21 };
2699 1.112 bjh21 #else
2700 1.66 thorpej struct pool_allocator pool_allocator_nointr = {
2701 1.66 thorpej pool_page_alloc_nointr, pool_page_free_nointr, 0,
2702 1.117 yamt .pa_backingmapptr = &kernel_map,
2703 1.66 thorpej };
2704 1.112 bjh21 #endif
2705 1.66 thorpej
2706 1.66 thorpej #ifdef POOL_SUBPAGE
2707 1.66 thorpej void *pool_subpage_alloc(struct pool *, int);
2708 1.66 thorpej void pool_subpage_free(struct pool *, void *);
2709 1.66 thorpej
2710 1.112 bjh21 struct pool_allocator pool_allocator_kmem = {
2711 1.112 bjh21 pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
2712 1.117 yamt .pa_backingmapptr = &kmem_map,
2713 1.112 bjh21 };
2714 1.112 bjh21
2715 1.112 bjh21 void *pool_subpage_alloc_nointr(struct pool *, int);
2716 1.112 bjh21 void pool_subpage_free_nointr(struct pool *, void *);
2717 1.112 bjh21
2718 1.112 bjh21 struct pool_allocator pool_allocator_nointr = {
2719 1.112 bjh21 pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
2720 1.117 yamt .pa_backingmapptr = &kmem_map,
2721 1.66 thorpej };
2722 1.66 thorpej #endif /* POOL_SUBPAGE */
2723 1.66 thorpej
2724 1.117 yamt static void *
2725 1.117 yamt pool_allocator_alloc(struct pool *pp, int flags)
2726 1.66 thorpej {
2727 1.117 yamt struct pool_allocator *pa = pp->pr_alloc;
2728 1.66 thorpej void *res;
2729 1.66 thorpej
2730 1.117 yamt res = (*pa->pa_alloc)(pp, flags);
2731 1.117 yamt if (res == NULL && (flags & PR_WAITOK) == 0) {
2732 1.66 thorpej /*
2733 1.117 yamt * We only run the drain hook here if PR_NOWAIT.
2734 1.117 yamt * In other cases, the hook will be run in
2735 1.117 yamt * pool_reclaim().
2736 1.66 thorpej */
2737 1.117 yamt if (pp->pr_drain_hook != NULL) {
2738 1.117 yamt (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
2739 1.117 yamt res = (*pa->pa_alloc)(pp, flags);
2740 1.66 thorpej }
2741 1.117 yamt }
2742 1.117 yamt return res;
2743 1.66 thorpej }
2744 1.66 thorpej
2745 1.117 yamt static void
2746 1.66 thorpej pool_allocator_free(struct pool *pp, void *v)
2747 1.66 thorpej {
2748 1.66 thorpej struct pool_allocator *pa = pp->pr_alloc;
2749 1.66 thorpej
2750 1.66 thorpej (*pa->pa_free)(pp, v);
2751 1.66 thorpej }
2752 1.66 thorpej
2753 1.66 thorpej void *
2754 1.124 yamt pool_page_alloc(struct pool *pp, int flags)
2755 1.66 thorpej {
2756 1.127 thorpej bool waitok = (flags & PR_WAITOK) ? true : false;
2757 1.66 thorpej
2758 1.100 yamt return ((void *) uvm_km_alloc_poolpage_cache(kmem_map, waitok));
2759 1.66 thorpej }
2760 1.66 thorpej
2761 1.66 thorpej void
2762 1.124 yamt pool_page_free(struct pool *pp, void *v)
2763 1.66 thorpej {
2764 1.66 thorpej
2765 1.98 yamt uvm_km_free_poolpage_cache(kmem_map, (vaddr_t) v);
2766 1.98 yamt }
2767 1.98 yamt
2768 1.98 yamt static void *
2769 1.124 yamt pool_page_alloc_meta(struct pool *pp, int flags)
2770 1.98 yamt {
2771 1.127 thorpej bool waitok = (flags & PR_WAITOK) ? true : false;
2772 1.98 yamt
2773 1.100 yamt return ((void *) uvm_km_alloc_poolpage(kmem_map, waitok));
2774 1.98 yamt }
2775 1.98 yamt
2776 1.98 yamt static void
2777 1.124 yamt pool_page_free_meta(struct pool *pp, void *v)
2778 1.98 yamt {
2779 1.98 yamt
2780 1.100 yamt uvm_km_free_poolpage(kmem_map, (vaddr_t) v);
2781 1.66 thorpej }
2782 1.66 thorpej
2783 1.66 thorpej #ifdef POOL_SUBPAGE
2784 1.66 thorpej /* Sub-page allocator, for machines with large hardware pages. */
2785 1.66 thorpej void *
2786 1.66 thorpej pool_subpage_alloc(struct pool *pp, int flags)
2787 1.66 thorpej {
2788 1.128.2.2 ad return pool_get(&psppool, flags);
2789 1.66 thorpej }
2790 1.66 thorpej
2791 1.66 thorpej void
2792 1.66 thorpej pool_subpage_free(struct pool *pp, void *v)
2793 1.66 thorpej {
2794 1.66 thorpej pool_put(&psppool, v);
2795 1.66 thorpej }
2796 1.66 thorpej
2797 1.66 thorpej /* We don't provide a real nointr allocator. Maybe later. */
2798 1.66 thorpej void *
2799 1.112 bjh21 pool_subpage_alloc_nointr(struct pool *pp, int flags)
2800 1.66 thorpej {
2801 1.66 thorpej
2802 1.66 thorpej return (pool_subpage_alloc(pp, flags));
2803 1.66 thorpej }
2804 1.66 thorpej
2805 1.66 thorpej void
2806 1.112 bjh21 pool_subpage_free_nointr(struct pool *pp, void *v)
2807 1.66 thorpej {
2808 1.66 thorpej
2809 1.66 thorpej pool_subpage_free(pp, v);
2810 1.66 thorpej }
2811 1.112 bjh21 #endif /* POOL_SUBPAGE */
2812 1.66 thorpej void *
2813 1.124 yamt pool_page_alloc_nointr(struct pool *pp, int flags)
2814 1.66 thorpej {
2815 1.127 thorpej bool waitok = (flags & PR_WAITOK) ? true : false;
2816 1.66 thorpej
2817 1.100 yamt return ((void *) uvm_km_alloc_poolpage_cache(kernel_map, waitok));
2818 1.66 thorpej }
2819 1.66 thorpej
2820 1.66 thorpej void
2821 1.124 yamt pool_page_free_nointr(struct pool *pp, void *v)
2822 1.66 thorpej {
2823 1.66 thorpej
2824 1.98 yamt uvm_km_free_poolpage_cache(kernel_map, (vaddr_t) v);
2825 1.66 thorpej }
2826