subr_pool.c revision 1.128.2.9 1 1.128.2.9 ad /* $NetBSD: subr_pool.c,v 1.128.2.9 2007/09/10 11:13:17 ad Exp $ */
2 1.1 pk
3 1.1 pk /*-
4 1.128.2.2 ad * Copyright (c) 1997, 1999, 2000, 2002, 2007 The NetBSD Foundation, Inc.
5 1.1 pk * All rights reserved.
6 1.1 pk *
7 1.1 pk * This code is derived from software contributed to The NetBSD Foundation
8 1.20 thorpej * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
9 1.128.2.7 ad * Simulation Facility, NASA Ames Research Center, and by Andrew Doran.
10 1.1 pk *
11 1.1 pk * Redistribution and use in source and binary forms, with or without
12 1.1 pk * modification, are permitted provided that the following conditions
13 1.1 pk * are met:
14 1.1 pk * 1. Redistributions of source code must retain the above copyright
15 1.1 pk * notice, this list of conditions and the following disclaimer.
16 1.1 pk * 2. Redistributions in binary form must reproduce the above copyright
17 1.1 pk * notice, this list of conditions and the following disclaimer in the
18 1.1 pk * documentation and/or other materials provided with the distribution.
19 1.1 pk * 3. All advertising materials mentioning features or use of this software
20 1.1 pk * must display the following acknowledgement:
21 1.13 christos * This product includes software developed by the NetBSD
22 1.13 christos * Foundation, Inc. and its contributors.
23 1.1 pk * 4. Neither the name of The NetBSD Foundation nor the names of its
24 1.1 pk * contributors may be used to endorse or promote products derived
25 1.1 pk * from this software without specific prior written permission.
26 1.1 pk *
27 1.1 pk * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 1.1 pk * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 1.1 pk * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 1.1 pk * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 1.1 pk * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 1.1 pk * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 1.1 pk * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 1.1 pk * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 1.1 pk * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 1.1 pk * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 1.1 pk * POSSIBILITY OF SUCH DAMAGE.
38 1.1 pk */
39 1.64 lukem
40 1.64 lukem #include <sys/cdefs.h>
41 1.128.2.9 ad __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.128.2.9 2007/09/10 11:13:17 ad Exp $");
42 1.24 scottr
43 1.25 thorpej #include "opt_pool.h"
44 1.24 scottr #include "opt_poollog.h"
45 1.28 thorpej #include "opt_lockdebug.h"
46 1.1 pk
47 1.1 pk #include <sys/param.h>
48 1.1 pk #include <sys/systm.h>
49 1.1 pk #include <sys/proc.h>
50 1.1 pk #include <sys/errno.h>
51 1.1 pk #include <sys/kernel.h>
52 1.1 pk #include <sys/malloc.h>
53 1.1 pk #include <sys/lock.h>
54 1.1 pk #include <sys/pool.h>
55 1.20 thorpej #include <sys/syslog.h>
56 1.125 ad #include <sys/debug.h>
57 1.128.2.5 ad #include <sys/lockdebug.h>
58 1.3 pk
59 1.3 pk #include <uvm/uvm.h>
60 1.3 pk
61 1.1 pk /*
62 1.1 pk * Pool resource management utility.
63 1.3 pk *
64 1.88 chs * Memory is allocated in pages which are split into pieces according to
65 1.88 chs * the pool item size. Each page is kept on one of three lists in the
66 1.88 chs * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
67 1.88 chs * for empty, full and partially-full pages respectively. The individual
68 1.88 chs * pool items are on a linked list headed by `ph_itemlist' in each page
69 1.88 chs * header. The memory for building the page list is either taken from
70 1.88 chs * the allocated pages themselves (for small pool items) or taken from
71 1.88 chs * an internal pool of page headers (`phpool').
72 1.1 pk */
73 1.1 pk
74 1.3 pk /* List of all pools */
75 1.102 chs LIST_HEAD(,pool) pool_head = LIST_HEAD_INITIALIZER(pool_head);
76 1.3 pk
77 1.128.2.7 ad /* List of all caches. */
78 1.128.2.7 ad LIST_HEAD(,pool_cache) pool_cache_head =
79 1.128.2.7 ad LIST_HEAD_INITIALIZER(pool_cache_head);
80 1.128.2.7 ad
81 1.3 pk /* Private pool for page header structures */
82 1.97 yamt #define PHPOOL_MAX 8
83 1.97 yamt static struct pool phpool[PHPOOL_MAX];
84 1.97 yamt #define PHPOOL_FREELIST_NELEM(idx) (((idx) == 0) ? 0 : (1 << (idx)))
85 1.3 pk
86 1.62 bjh21 #ifdef POOL_SUBPAGE
87 1.62 bjh21 /* Pool of subpages for use by normal pools. */
88 1.62 bjh21 static struct pool psppool;
89 1.62 bjh21 #endif
90 1.62 bjh21
91 1.117 yamt static SLIST_HEAD(, pool_allocator) pa_deferinitq =
92 1.117 yamt SLIST_HEAD_INITIALIZER(pa_deferinitq);
93 1.117 yamt
94 1.98 yamt static void *pool_page_alloc_meta(struct pool *, int);
95 1.98 yamt static void pool_page_free_meta(struct pool *, void *);
96 1.98 yamt
97 1.98 yamt /* allocator for pool metadata */
98 1.128.2.7 ad struct pool_allocator pool_allocator_meta = {
99 1.117 yamt pool_page_alloc_meta, pool_page_free_meta,
100 1.117 yamt .pa_backingmapptr = &kmem_map,
101 1.98 yamt };
102 1.98 yamt
103 1.3 pk /* # of seconds to retain page after last use */
104 1.3 pk int pool_inactive_time = 10;
105 1.3 pk
106 1.3 pk /* Next candidate for drainage (see pool_drain()) */
107 1.23 thorpej static struct pool *drainpp;
108 1.23 thorpej
109 1.128.2.2 ad /* This lock protects both pool_head and drainpp. */
110 1.128.2.2 ad static kmutex_t pool_head_lock;
111 1.128.2.7 ad static kcondvar_t pool_busy;
112 1.3 pk
113 1.99 yamt typedef uint8_t pool_item_freelist_t;
114 1.99 yamt
115 1.3 pk struct pool_item_header {
116 1.3 pk /* Page headers */
117 1.88 chs LIST_ENTRY(pool_item_header)
118 1.3 pk ph_pagelist; /* pool page list */
119 1.88 chs SPLAY_ENTRY(pool_item_header)
120 1.88 chs ph_node; /* Off-page page headers */
121 1.128 christos void * ph_page; /* this page's address */
122 1.3 pk struct timeval ph_time; /* last referenced */
123 1.97 yamt union {
124 1.97 yamt /* !PR_NOTOUCH */
125 1.97 yamt struct {
126 1.102 chs LIST_HEAD(, pool_item)
127 1.97 yamt phu_itemlist; /* chunk list for this page */
128 1.97 yamt } phu_normal;
129 1.97 yamt /* PR_NOTOUCH */
130 1.97 yamt struct {
131 1.97 yamt uint16_t
132 1.97 yamt phu_off; /* start offset in page */
133 1.99 yamt pool_item_freelist_t
134 1.97 yamt phu_firstfree; /* first free item */
135 1.99 yamt /*
136 1.99 yamt * XXX it might be better to use
137 1.99 yamt * a simple bitmap and ffs(3)
138 1.99 yamt */
139 1.97 yamt } phu_notouch;
140 1.97 yamt } ph_u;
141 1.97 yamt uint16_t ph_nmissing; /* # of chunks in use */
142 1.3 pk };
143 1.97 yamt #define ph_itemlist ph_u.phu_normal.phu_itemlist
144 1.97 yamt #define ph_off ph_u.phu_notouch.phu_off
145 1.97 yamt #define ph_firstfree ph_u.phu_notouch.phu_firstfree
146 1.3 pk
147 1.1 pk struct pool_item {
148 1.3 pk #ifdef DIAGNOSTIC
149 1.82 thorpej u_int pi_magic;
150 1.33 chs #endif
151 1.82 thorpej #define PI_MAGIC 0xdeadbeefU
152 1.3 pk /* Other entries use only this list entry */
153 1.102 chs LIST_ENTRY(pool_item) pi_list;
154 1.3 pk };
155 1.3 pk
156 1.53 thorpej #define POOL_NEEDS_CATCHUP(pp) \
157 1.53 thorpej ((pp)->pr_nitems < (pp)->pr_minitems)
158 1.53 thorpej
159 1.43 thorpej /*
160 1.43 thorpej * Pool cache management.
161 1.43 thorpej *
162 1.43 thorpej * Pool caches provide a way for constructed objects to be cached by the
163 1.43 thorpej * pool subsystem. This can lead to performance improvements by avoiding
164 1.43 thorpej * needless object construction/destruction; it is deferred until absolutely
165 1.43 thorpej * necessary.
166 1.43 thorpej *
167 1.128.2.7 ad * Caches are grouped into cache groups. Each cache group references up
168 1.128.2.7 ad * to PCG_NUMOBJECTS constructed objects. When a cache allocates an
169 1.128.2.7 ad * object from the pool, it calls the object's constructor and places it
170 1.128.2.7 ad * into a cache group. When a cache group frees an object back to the
171 1.128.2.7 ad * pool, it first calls the object's destructor. This allows the object
172 1.128.2.7 ad * to persist in constructed form while freed to the cache.
173 1.128.2.7 ad *
174 1.128.2.7 ad * The pool references each cache, so that when a pool is drained by the
175 1.128.2.7 ad * pagedaemon, it can drain each individual cache as well. Each time a
176 1.128.2.7 ad * cache is drained, the most idle cache group is freed to the pool in
177 1.128.2.7 ad * its entirety.
178 1.43 thorpej *
179 1.43 thorpej * Pool caches are layed on top of pools. By layering them, we can avoid
180 1.43 thorpej * the complexity of cache management for pools which would not benefit
181 1.43 thorpej * from it.
182 1.43 thorpej */
183 1.43 thorpej
184 1.43 thorpej static struct pool pcgpool;
185 1.128.2.7 ad static struct pool cache_pool;
186 1.128.2.7 ad static struct pool cache_cpu_pool;
187 1.3 pk
188 1.128.2.7 ad static pool_cache_cpu_t *pool_cache_put_slow(pool_cache_cpu_t *, int *,
189 1.128.2.7 ad void *, paddr_t);
190 1.128.2.7 ad static pool_cache_cpu_t *pool_cache_get_slow(pool_cache_cpu_t *, int *,
191 1.128.2.7 ad void **, paddr_t *, int);
192 1.128.2.7 ad static void pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
193 1.128.2.7 ad static void pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
194 1.3 pk
195 1.42 thorpej static int pool_catchup(struct pool *);
196 1.128 christos static void pool_prime_page(struct pool *, void *,
197 1.55 thorpej struct pool_item_header *);
198 1.88 chs static void pool_update_curpage(struct pool *);
199 1.66 thorpej
200 1.113 yamt static int pool_grow(struct pool *, int);
201 1.117 yamt static void *pool_allocator_alloc(struct pool *, int);
202 1.117 yamt static void pool_allocator_free(struct pool *, void *);
203 1.3 pk
204 1.97 yamt static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
205 1.88 chs void (*)(const char *, ...));
206 1.42 thorpej static void pool_print1(struct pool *, const char *,
207 1.42 thorpej void (*)(const char *, ...));
208 1.3 pk
209 1.88 chs static int pool_chk_page(struct pool *, const char *,
210 1.88 chs struct pool_item_header *);
211 1.88 chs
212 1.3 pk /*
213 1.52 thorpej * Pool log entry. An array of these is allocated in pool_init().
214 1.3 pk */
215 1.3 pk struct pool_log {
216 1.3 pk const char *pl_file;
217 1.3 pk long pl_line;
218 1.3 pk int pl_action;
219 1.25 thorpej #define PRLOG_GET 1
220 1.25 thorpej #define PRLOG_PUT 2
221 1.3 pk void *pl_addr;
222 1.1 pk };
223 1.1 pk
224 1.86 matt #ifdef POOL_DIAGNOSTIC
225 1.3 pk /* Number of entries in pool log buffers */
226 1.17 thorpej #ifndef POOL_LOGSIZE
227 1.17 thorpej #define POOL_LOGSIZE 10
228 1.17 thorpej #endif
229 1.17 thorpej
230 1.17 thorpej int pool_logsize = POOL_LOGSIZE;
231 1.1 pk
232 1.110 perry static inline void
233 1.42 thorpej pr_log(struct pool *pp, void *v, int action, const char *file, long line)
234 1.3 pk {
235 1.3 pk int n = pp->pr_curlogentry;
236 1.3 pk struct pool_log *pl;
237 1.3 pk
238 1.20 thorpej if ((pp->pr_roflags & PR_LOGGING) == 0)
239 1.3 pk return;
240 1.3 pk
241 1.3 pk /*
242 1.3 pk * Fill in the current entry. Wrap around and overwrite
243 1.3 pk * the oldest entry if necessary.
244 1.3 pk */
245 1.3 pk pl = &pp->pr_log[n];
246 1.3 pk pl->pl_file = file;
247 1.3 pk pl->pl_line = line;
248 1.3 pk pl->pl_action = action;
249 1.3 pk pl->pl_addr = v;
250 1.3 pk if (++n >= pp->pr_logsize)
251 1.3 pk n = 0;
252 1.3 pk pp->pr_curlogentry = n;
253 1.3 pk }
254 1.3 pk
255 1.3 pk static void
256 1.42 thorpej pr_printlog(struct pool *pp, struct pool_item *pi,
257 1.42 thorpej void (*pr)(const char *, ...))
258 1.3 pk {
259 1.3 pk int i = pp->pr_logsize;
260 1.3 pk int n = pp->pr_curlogentry;
261 1.3 pk
262 1.20 thorpej if ((pp->pr_roflags & PR_LOGGING) == 0)
263 1.3 pk return;
264 1.3 pk
265 1.3 pk /*
266 1.3 pk * Print all entries in this pool's log.
267 1.3 pk */
268 1.3 pk while (i-- > 0) {
269 1.3 pk struct pool_log *pl = &pp->pr_log[n];
270 1.3 pk if (pl->pl_action != 0) {
271 1.25 thorpej if (pi == NULL || pi == pl->pl_addr) {
272 1.25 thorpej (*pr)("\tlog entry %d:\n", i);
273 1.25 thorpej (*pr)("\t\taction = %s, addr = %p\n",
274 1.25 thorpej pl->pl_action == PRLOG_GET ? "get" : "put",
275 1.25 thorpej pl->pl_addr);
276 1.25 thorpej (*pr)("\t\tfile: %s at line %lu\n",
277 1.25 thorpej pl->pl_file, pl->pl_line);
278 1.25 thorpej }
279 1.3 pk }
280 1.3 pk if (++n >= pp->pr_logsize)
281 1.3 pk n = 0;
282 1.3 pk }
283 1.3 pk }
284 1.25 thorpej
285 1.110 perry static inline void
286 1.42 thorpej pr_enter(struct pool *pp, const char *file, long line)
287 1.25 thorpej {
288 1.25 thorpej
289 1.34 thorpej if (__predict_false(pp->pr_entered_file != NULL)) {
290 1.25 thorpej printf("pool %s: reentrancy at file %s line %ld\n",
291 1.25 thorpej pp->pr_wchan, file, line);
292 1.25 thorpej printf(" previous entry at file %s line %ld\n",
293 1.25 thorpej pp->pr_entered_file, pp->pr_entered_line);
294 1.25 thorpej panic("pr_enter");
295 1.25 thorpej }
296 1.25 thorpej
297 1.25 thorpej pp->pr_entered_file = file;
298 1.25 thorpej pp->pr_entered_line = line;
299 1.25 thorpej }
300 1.25 thorpej
301 1.110 perry static inline void
302 1.42 thorpej pr_leave(struct pool *pp)
303 1.25 thorpej {
304 1.25 thorpej
305 1.34 thorpej if (__predict_false(pp->pr_entered_file == NULL)) {
306 1.25 thorpej printf("pool %s not entered?\n", pp->pr_wchan);
307 1.25 thorpej panic("pr_leave");
308 1.25 thorpej }
309 1.25 thorpej
310 1.25 thorpej pp->pr_entered_file = NULL;
311 1.25 thorpej pp->pr_entered_line = 0;
312 1.25 thorpej }
313 1.25 thorpej
314 1.110 perry static inline void
315 1.42 thorpej pr_enter_check(struct pool *pp, void (*pr)(const char *, ...))
316 1.25 thorpej {
317 1.25 thorpej
318 1.25 thorpej if (pp->pr_entered_file != NULL)
319 1.25 thorpej (*pr)("\n\tcurrently entered from file %s line %ld\n",
320 1.25 thorpej pp->pr_entered_file, pp->pr_entered_line);
321 1.25 thorpej }
322 1.3 pk #else
323 1.25 thorpej #define pr_log(pp, v, action, file, line)
324 1.25 thorpej #define pr_printlog(pp, pi, pr)
325 1.25 thorpej #define pr_enter(pp, file, line)
326 1.25 thorpej #define pr_leave(pp)
327 1.25 thorpej #define pr_enter_check(pp, pr)
328 1.59 thorpej #endif /* POOL_DIAGNOSTIC */
329 1.3 pk
330 1.110 perry static inline int
331 1.97 yamt pr_item_notouch_index(const struct pool *pp, const struct pool_item_header *ph,
332 1.97 yamt const void *v)
333 1.97 yamt {
334 1.97 yamt const char *cp = v;
335 1.97 yamt int idx;
336 1.97 yamt
337 1.97 yamt KASSERT(pp->pr_roflags & PR_NOTOUCH);
338 1.128 christos idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
339 1.97 yamt KASSERT(idx < pp->pr_itemsperpage);
340 1.97 yamt return idx;
341 1.97 yamt }
342 1.97 yamt
343 1.99 yamt #define PR_FREELIST_ALIGN(p) \
344 1.99 yamt roundup((uintptr_t)(p), sizeof(pool_item_freelist_t))
345 1.99 yamt #define PR_FREELIST(ph) ((pool_item_freelist_t *)PR_FREELIST_ALIGN((ph) + 1))
346 1.99 yamt #define PR_INDEX_USED ((pool_item_freelist_t)-1)
347 1.99 yamt #define PR_INDEX_EOL ((pool_item_freelist_t)-2)
348 1.97 yamt
349 1.110 perry static inline void
350 1.97 yamt pr_item_notouch_put(const struct pool *pp, struct pool_item_header *ph,
351 1.97 yamt void *obj)
352 1.97 yamt {
353 1.97 yamt int idx = pr_item_notouch_index(pp, ph, obj);
354 1.99 yamt pool_item_freelist_t *freelist = PR_FREELIST(ph);
355 1.97 yamt
356 1.97 yamt KASSERT(freelist[idx] == PR_INDEX_USED);
357 1.97 yamt freelist[idx] = ph->ph_firstfree;
358 1.97 yamt ph->ph_firstfree = idx;
359 1.97 yamt }
360 1.97 yamt
361 1.110 perry static inline void *
362 1.97 yamt pr_item_notouch_get(const struct pool *pp, struct pool_item_header *ph)
363 1.97 yamt {
364 1.97 yamt int idx = ph->ph_firstfree;
365 1.99 yamt pool_item_freelist_t *freelist = PR_FREELIST(ph);
366 1.97 yamt
367 1.97 yamt KASSERT(freelist[idx] != PR_INDEX_USED);
368 1.97 yamt ph->ph_firstfree = freelist[idx];
369 1.97 yamt freelist[idx] = PR_INDEX_USED;
370 1.97 yamt
371 1.128 christos return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
372 1.97 yamt }
373 1.97 yamt
374 1.110 perry static inline int
375 1.88 chs phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
376 1.88 chs {
377 1.121 yamt
378 1.121 yamt /*
379 1.121 yamt * we consider pool_item_header with smaller ph_page bigger.
380 1.121 yamt * (this unnatural ordering is for the benefit of pr_find_pagehead.)
381 1.121 yamt */
382 1.121 yamt
383 1.88 chs if (a->ph_page < b->ph_page)
384 1.121 yamt return (1);
385 1.121 yamt else if (a->ph_page > b->ph_page)
386 1.88 chs return (-1);
387 1.88 chs else
388 1.88 chs return (0);
389 1.88 chs }
390 1.88 chs
391 1.88 chs SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
392 1.88 chs SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
393 1.88 chs
394 1.3 pk /*
395 1.121 yamt * Return the pool page header based on item address.
396 1.3 pk */
397 1.110 perry static inline struct pool_item_header *
398 1.121 yamt pr_find_pagehead(struct pool *pp, void *v)
399 1.3 pk {
400 1.88 chs struct pool_item_header *ph, tmp;
401 1.3 pk
402 1.121 yamt if ((pp->pr_roflags & PR_NOALIGN) != 0) {
403 1.128 christos tmp.ph_page = (void *)(uintptr_t)v;
404 1.121 yamt ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
405 1.121 yamt if (ph == NULL) {
406 1.121 yamt ph = SPLAY_ROOT(&pp->pr_phtree);
407 1.121 yamt if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
408 1.121 yamt ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
409 1.121 yamt }
410 1.121 yamt KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
411 1.121 yamt }
412 1.121 yamt } else {
413 1.128 christos void *page =
414 1.128 christos (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask);
415 1.121 yamt
416 1.121 yamt if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
417 1.128 christos ph = (struct pool_item_header *)((char *)page + pp->pr_phoffset);
418 1.121 yamt } else {
419 1.121 yamt tmp.ph_page = page;
420 1.121 yamt ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
421 1.121 yamt }
422 1.121 yamt }
423 1.3 pk
424 1.121 yamt KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
425 1.128 christos ((char *)ph->ph_page <= (char *)v &&
426 1.128 christos (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
427 1.88 chs return ph;
428 1.3 pk }
429 1.3 pk
430 1.101 thorpej static void
431 1.101 thorpej pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
432 1.101 thorpej {
433 1.101 thorpej struct pool_item_header *ph;
434 1.101 thorpej
435 1.101 thorpej while ((ph = LIST_FIRST(pq)) != NULL) {
436 1.101 thorpej LIST_REMOVE(ph, ph_pagelist);
437 1.101 thorpej pool_allocator_free(pp, ph->ph_page);
438 1.128.2.2 ad if ((pp->pr_roflags & PR_PHINPAGE) == 0)
439 1.101 thorpej pool_put(pp->pr_phpool, ph);
440 1.101 thorpej }
441 1.101 thorpej }
442 1.101 thorpej
443 1.3 pk /*
444 1.3 pk * Remove a page from the pool.
445 1.3 pk */
446 1.110 perry static inline void
447 1.61 chs pr_rmpage(struct pool *pp, struct pool_item_header *ph,
448 1.61 chs struct pool_pagelist *pq)
449 1.3 pk {
450 1.3 pk
451 1.128.2.2 ad KASSERT(mutex_owned(&pp->pr_lock));
452 1.91 yamt
453 1.3 pk /*
454 1.7 thorpej * If the page was idle, decrement the idle page count.
455 1.3 pk */
456 1.6 thorpej if (ph->ph_nmissing == 0) {
457 1.6 thorpej #ifdef DIAGNOSTIC
458 1.6 thorpej if (pp->pr_nidle == 0)
459 1.6 thorpej panic("pr_rmpage: nidle inconsistent");
460 1.20 thorpej if (pp->pr_nitems < pp->pr_itemsperpage)
461 1.20 thorpej panic("pr_rmpage: nitems inconsistent");
462 1.6 thorpej #endif
463 1.6 thorpej pp->pr_nidle--;
464 1.6 thorpej }
465 1.7 thorpej
466 1.20 thorpej pp->pr_nitems -= pp->pr_itemsperpage;
467 1.20 thorpej
468 1.7 thorpej /*
469 1.101 thorpej * Unlink the page from the pool and queue it for release.
470 1.7 thorpej */
471 1.88 chs LIST_REMOVE(ph, ph_pagelist);
472 1.91 yamt if ((pp->pr_roflags & PR_PHINPAGE) == 0)
473 1.91 yamt SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
474 1.101 thorpej LIST_INSERT_HEAD(pq, ph, ph_pagelist);
475 1.101 thorpej
476 1.7 thorpej pp->pr_npages--;
477 1.7 thorpej pp->pr_npagefree++;
478 1.6 thorpej
479 1.88 chs pool_update_curpage(pp);
480 1.3 pk }
481 1.3 pk
482 1.126 thorpej static bool
483 1.117 yamt pa_starved_p(struct pool_allocator *pa)
484 1.117 yamt {
485 1.117 yamt
486 1.117 yamt if (pa->pa_backingmap != NULL) {
487 1.117 yamt return vm_map_starved_p(pa->pa_backingmap);
488 1.117 yamt }
489 1.127 thorpej return false;
490 1.117 yamt }
491 1.117 yamt
492 1.117 yamt static int
493 1.124 yamt pool_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
494 1.117 yamt {
495 1.117 yamt struct pool *pp = obj;
496 1.117 yamt struct pool_allocator *pa = pp->pr_alloc;
497 1.117 yamt
498 1.117 yamt KASSERT(&pp->pr_reclaimerentry == ce);
499 1.117 yamt pool_reclaim(pp);
500 1.117 yamt if (!pa_starved_p(pa)) {
501 1.117 yamt return CALLBACK_CHAIN_ABORT;
502 1.117 yamt }
503 1.117 yamt return CALLBACK_CHAIN_CONTINUE;
504 1.117 yamt }
505 1.117 yamt
506 1.117 yamt static void
507 1.117 yamt pool_reclaim_register(struct pool *pp)
508 1.117 yamt {
509 1.117 yamt struct vm_map *map = pp->pr_alloc->pa_backingmap;
510 1.117 yamt int s;
511 1.117 yamt
512 1.117 yamt if (map == NULL) {
513 1.117 yamt return;
514 1.117 yamt }
515 1.117 yamt
516 1.117 yamt s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
517 1.117 yamt callback_register(&vm_map_to_kernel(map)->vmk_reclaim_callback,
518 1.117 yamt &pp->pr_reclaimerentry, pp, pool_reclaim_callback);
519 1.117 yamt splx(s);
520 1.117 yamt }
521 1.117 yamt
522 1.117 yamt static void
523 1.117 yamt pool_reclaim_unregister(struct pool *pp)
524 1.117 yamt {
525 1.117 yamt struct vm_map *map = pp->pr_alloc->pa_backingmap;
526 1.117 yamt int s;
527 1.117 yamt
528 1.117 yamt if (map == NULL) {
529 1.117 yamt return;
530 1.117 yamt }
531 1.117 yamt
532 1.117 yamt s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
533 1.117 yamt callback_unregister(&vm_map_to_kernel(map)->vmk_reclaim_callback,
534 1.117 yamt &pp->pr_reclaimerentry);
535 1.117 yamt splx(s);
536 1.117 yamt }
537 1.117 yamt
538 1.117 yamt static void
539 1.117 yamt pa_reclaim_register(struct pool_allocator *pa)
540 1.117 yamt {
541 1.117 yamt struct vm_map *map = *pa->pa_backingmapptr;
542 1.117 yamt struct pool *pp;
543 1.117 yamt
544 1.117 yamt KASSERT(pa->pa_backingmap == NULL);
545 1.117 yamt if (map == NULL) {
546 1.117 yamt SLIST_INSERT_HEAD(&pa_deferinitq, pa, pa_q);
547 1.117 yamt return;
548 1.117 yamt }
549 1.117 yamt pa->pa_backingmap = map;
550 1.117 yamt TAILQ_FOREACH(pp, &pa->pa_list, pr_alloc_list) {
551 1.117 yamt pool_reclaim_register(pp);
552 1.117 yamt }
553 1.117 yamt }
554 1.117 yamt
555 1.3 pk /*
556 1.94 simonb * Initialize all the pools listed in the "pools" link set.
557 1.94 simonb */
558 1.94 simonb void
559 1.117 yamt pool_subsystem_init(void)
560 1.94 simonb {
561 1.117 yamt struct pool_allocator *pa;
562 1.94 simonb __link_set_decl(pools, struct link_pool_init);
563 1.94 simonb struct link_pool_init * const *pi;
564 1.94 simonb
565 1.128.2.2 ad mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
566 1.128.2.7 ad cv_init(&pool_busy, "poolbusy");
567 1.128.2.2 ad
568 1.94 simonb __link_set_foreach(pi, pools)
569 1.94 simonb pool_init((*pi)->pp, (*pi)->size, (*pi)->align,
570 1.94 simonb (*pi)->align_offset, (*pi)->flags, (*pi)->wchan,
571 1.128.2.1 ad (*pi)->palloc, (*pi)->ipl);
572 1.117 yamt
573 1.117 yamt while ((pa = SLIST_FIRST(&pa_deferinitq)) != NULL) {
574 1.117 yamt KASSERT(pa->pa_backingmapptr != NULL);
575 1.117 yamt KASSERT(*pa->pa_backingmapptr != NULL);
576 1.117 yamt SLIST_REMOVE_HEAD(&pa_deferinitq, pa_q);
577 1.117 yamt pa_reclaim_register(pa);
578 1.117 yamt }
579 1.128.2.7 ad
580 1.128.2.7 ad pool_init(&cache_pool, sizeof(struct pool_cache), CACHE_LINE_SIZE,
581 1.128.2.7 ad 0, 0, "pcache", &pool_allocator_nointr, IPL_NONE);
582 1.128.2.7 ad
583 1.128.2.7 ad pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), CACHE_LINE_SIZE,
584 1.128.2.7 ad 0, 0, "pcachecpu", &pool_allocator_nointr, IPL_NONE);
585 1.94 simonb }
586 1.94 simonb
587 1.94 simonb /*
588 1.3 pk * Initialize the given pool resource structure.
589 1.3 pk *
590 1.3 pk * We export this routine to allow other kernel parts to declare
591 1.3 pk * static pools that must be initialized before malloc() is available.
592 1.3 pk */
593 1.3 pk void
594 1.42 thorpej pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
595 1.128.2.1 ad const char *wchan, struct pool_allocator *palloc, int ipl)
596 1.3 pk {
597 1.116 simonb #ifdef DEBUG
598 1.116 simonb struct pool *pp1;
599 1.116 simonb #endif
600 1.92 enami size_t trysize, phsize;
601 1.128.2.2 ad int off, slack;
602 1.3 pk
603 1.99 yamt KASSERT((1UL << (CHAR_BIT * sizeof(pool_item_freelist_t))) - 2 >=
604 1.99 yamt PHPOOL_FREELIST_NELEM(PHPOOL_MAX - 1));
605 1.99 yamt
606 1.116 simonb #ifdef DEBUG
607 1.116 simonb /*
608 1.116 simonb * Check that the pool hasn't already been initialised and
609 1.116 simonb * added to the list of all pools.
610 1.116 simonb */
611 1.116 simonb LIST_FOREACH(pp1, &pool_head, pr_poollist) {
612 1.116 simonb if (pp == pp1)
613 1.116 simonb panic("pool_init: pool %s already initialised",
614 1.116 simonb wchan);
615 1.116 simonb }
616 1.116 simonb #endif
617 1.116 simonb
618 1.25 thorpej #ifdef POOL_DIAGNOSTIC
619 1.25 thorpej /*
620 1.25 thorpej * Always log if POOL_DIAGNOSTIC is defined.
621 1.25 thorpej */
622 1.25 thorpej if (pool_logsize != 0)
623 1.25 thorpej flags |= PR_LOGGING;
624 1.25 thorpej #endif
625 1.25 thorpej
626 1.66 thorpej if (palloc == NULL)
627 1.66 thorpej palloc = &pool_allocator_kmem;
628 1.112 bjh21 #ifdef POOL_SUBPAGE
629 1.112 bjh21 if (size > palloc->pa_pagesz) {
630 1.112 bjh21 if (palloc == &pool_allocator_kmem)
631 1.112 bjh21 palloc = &pool_allocator_kmem_fullpage;
632 1.112 bjh21 else if (palloc == &pool_allocator_nointr)
633 1.112 bjh21 palloc = &pool_allocator_nointr_fullpage;
634 1.112 bjh21 }
635 1.66 thorpej #endif /* POOL_SUBPAGE */
636 1.66 thorpej if ((palloc->pa_flags & PA_INITIALIZED) == 0) {
637 1.112 bjh21 if (palloc->pa_pagesz == 0)
638 1.66 thorpej palloc->pa_pagesz = PAGE_SIZE;
639 1.66 thorpej
640 1.66 thorpej TAILQ_INIT(&palloc->pa_list);
641 1.66 thorpej
642 1.128.2.7 ad mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
643 1.66 thorpej palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
644 1.66 thorpej palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
645 1.117 yamt
646 1.117 yamt if (palloc->pa_backingmapptr != NULL) {
647 1.117 yamt pa_reclaim_register(palloc);
648 1.117 yamt }
649 1.66 thorpej palloc->pa_flags |= PA_INITIALIZED;
650 1.4 thorpej }
651 1.3 pk
652 1.3 pk if (align == 0)
653 1.3 pk align = ALIGN(1);
654 1.14 thorpej
655 1.120 yamt if ((flags & PR_NOTOUCH) == 0 && size < sizeof(struct pool_item))
656 1.14 thorpej size = sizeof(struct pool_item);
657 1.3 pk
658 1.78 thorpej size = roundup(size, align);
659 1.66 thorpej #ifdef DIAGNOSTIC
660 1.66 thorpej if (size > palloc->pa_pagesz)
661 1.121 yamt panic("pool_init: pool item size (%zu) too large", size);
662 1.66 thorpej #endif
663 1.35 pk
664 1.3 pk /*
665 1.3 pk * Initialize the pool structure.
666 1.3 pk */
667 1.88 chs LIST_INIT(&pp->pr_emptypages);
668 1.88 chs LIST_INIT(&pp->pr_fullpages);
669 1.88 chs LIST_INIT(&pp->pr_partpages);
670 1.128.2.7 ad pp->pr_cache = NULL;
671 1.3 pk pp->pr_curpage = NULL;
672 1.3 pk pp->pr_npages = 0;
673 1.3 pk pp->pr_minitems = 0;
674 1.3 pk pp->pr_minpages = 0;
675 1.3 pk pp->pr_maxpages = UINT_MAX;
676 1.20 thorpej pp->pr_roflags = flags;
677 1.20 thorpej pp->pr_flags = 0;
678 1.35 pk pp->pr_size = size;
679 1.3 pk pp->pr_align = align;
680 1.3 pk pp->pr_wchan = wchan;
681 1.66 thorpej pp->pr_alloc = palloc;
682 1.20 thorpej pp->pr_nitems = 0;
683 1.20 thorpej pp->pr_nout = 0;
684 1.20 thorpej pp->pr_hardlimit = UINT_MAX;
685 1.20 thorpej pp->pr_hardlimit_warning = NULL;
686 1.31 thorpej pp->pr_hardlimit_ratecap.tv_sec = 0;
687 1.31 thorpej pp->pr_hardlimit_ratecap.tv_usec = 0;
688 1.31 thorpej pp->pr_hardlimit_warning_last.tv_sec = 0;
689 1.31 thorpej pp->pr_hardlimit_warning_last.tv_usec = 0;
690 1.68 thorpej pp->pr_drain_hook = NULL;
691 1.68 thorpej pp->pr_drain_hook_arg = NULL;
692 1.125 ad pp->pr_freecheck = NULL;
693 1.3 pk
694 1.3 pk /*
695 1.3 pk * Decide whether to put the page header off page to avoid
696 1.92 enami * wasting too large a part of the page or too big item.
697 1.92 enami * Off-page page headers go on a hash table, so we can match
698 1.92 enami * a returned item with its header based on the page address.
699 1.92 enami * We use 1/16 of the page size and about 8 times of the item
700 1.92 enami * size as the threshold (XXX: tune)
701 1.92 enami *
702 1.92 enami * However, we'll put the header into the page if we can put
703 1.92 enami * it without wasting any items.
704 1.92 enami *
705 1.92 enami * Silently enforce `0 <= ioff < align'.
706 1.3 pk */
707 1.92 enami pp->pr_itemoffset = ioff %= align;
708 1.92 enami /* See the comment below about reserved bytes. */
709 1.92 enami trysize = palloc->pa_pagesz - ((align - ioff) % align);
710 1.92 enami phsize = ALIGN(sizeof(struct pool_item_header));
711 1.121 yamt if ((pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) == 0 &&
712 1.97 yamt (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) ||
713 1.97 yamt trysize / pp->pr_size == (trysize - phsize) / pp->pr_size)) {
714 1.3 pk /* Use the end of the page for the page header */
715 1.20 thorpej pp->pr_roflags |= PR_PHINPAGE;
716 1.92 enami pp->pr_phoffset = off = palloc->pa_pagesz - phsize;
717 1.2 pk } else {
718 1.3 pk /* The page header will be taken from our page header pool */
719 1.3 pk pp->pr_phoffset = 0;
720 1.66 thorpej off = palloc->pa_pagesz;
721 1.88 chs SPLAY_INIT(&pp->pr_phtree);
722 1.2 pk }
723 1.1 pk
724 1.3 pk /*
725 1.3 pk * Alignment is to take place at `ioff' within the item. This means
726 1.3 pk * we must reserve up to `align - 1' bytes on the page to allow
727 1.3 pk * appropriate positioning of each item.
728 1.3 pk */
729 1.3 pk pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
730 1.43 thorpej KASSERT(pp->pr_itemsperpage != 0);
731 1.97 yamt if ((pp->pr_roflags & PR_NOTOUCH)) {
732 1.97 yamt int idx;
733 1.97 yamt
734 1.97 yamt for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
735 1.97 yamt idx++) {
736 1.97 yamt /* nothing */
737 1.97 yamt }
738 1.97 yamt if (idx >= PHPOOL_MAX) {
739 1.97 yamt /*
740 1.97 yamt * if you see this panic, consider to tweak
741 1.97 yamt * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
742 1.97 yamt */
743 1.97 yamt panic("%s: too large itemsperpage(%d) for PR_NOTOUCH",
744 1.97 yamt pp->pr_wchan, pp->pr_itemsperpage);
745 1.97 yamt }
746 1.97 yamt pp->pr_phpool = &phpool[idx];
747 1.97 yamt } else if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
748 1.97 yamt pp->pr_phpool = &phpool[0];
749 1.97 yamt }
750 1.97 yamt #if defined(DIAGNOSTIC)
751 1.97 yamt else {
752 1.97 yamt pp->pr_phpool = NULL;
753 1.97 yamt }
754 1.97 yamt #endif
755 1.3 pk
756 1.3 pk /*
757 1.3 pk * Use the slack between the chunks and the page header
758 1.3 pk * for "cache coloring".
759 1.3 pk */
760 1.3 pk slack = off - pp->pr_itemsperpage * pp->pr_size;
761 1.3 pk pp->pr_maxcolor = (slack / align) * align;
762 1.3 pk pp->pr_curcolor = 0;
763 1.3 pk
764 1.3 pk pp->pr_nget = 0;
765 1.3 pk pp->pr_nfail = 0;
766 1.3 pk pp->pr_nput = 0;
767 1.3 pk pp->pr_npagealloc = 0;
768 1.3 pk pp->pr_npagefree = 0;
769 1.1 pk pp->pr_hiwat = 0;
770 1.8 thorpej pp->pr_nidle = 0;
771 1.128.2.7 ad pp->pr_refcnt = 0;
772 1.3 pk
773 1.59 thorpej #ifdef POOL_DIAGNOSTIC
774 1.25 thorpej if (flags & PR_LOGGING) {
775 1.25 thorpej if (kmem_map == NULL ||
776 1.25 thorpej (pp->pr_log = malloc(pool_logsize * sizeof(struct pool_log),
777 1.25 thorpej M_TEMP, M_NOWAIT)) == NULL)
778 1.20 thorpej pp->pr_roflags &= ~PR_LOGGING;
779 1.3 pk pp->pr_curlogentry = 0;
780 1.3 pk pp->pr_logsize = pool_logsize;
781 1.3 pk }
782 1.59 thorpej #endif
783 1.25 thorpej
784 1.25 thorpej pp->pr_entered_file = NULL;
785 1.25 thorpej pp->pr_entered_line = 0;
786 1.3 pk
787 1.128.2.7 ad mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
788 1.128.2.2 ad cv_init(&pp->pr_cv, wchan);
789 1.128.2.2 ad pp->pr_ipl = ipl;
790 1.128.2.2 ad
791 1.3 pk /*
792 1.43 thorpej * Initialize private page header pool and cache magazine pool if we
793 1.43 thorpej * haven't done so yet.
794 1.23 thorpej * XXX LOCKING.
795 1.3 pk */
796 1.97 yamt if (phpool[0].pr_size == 0) {
797 1.97 yamt int idx;
798 1.97 yamt for (idx = 0; idx < PHPOOL_MAX; idx++) {
799 1.97 yamt static char phpool_names[PHPOOL_MAX][6+1+6+1];
800 1.97 yamt int nelem;
801 1.97 yamt size_t sz;
802 1.97 yamt
803 1.97 yamt nelem = PHPOOL_FREELIST_NELEM(idx);
804 1.97 yamt snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
805 1.97 yamt "phpool-%d", nelem);
806 1.97 yamt sz = sizeof(struct pool_item_header);
807 1.97 yamt if (nelem) {
808 1.97 yamt sz = PR_FREELIST_ALIGN(sz)
809 1.99 yamt + nelem * sizeof(pool_item_freelist_t);
810 1.97 yamt }
811 1.97 yamt pool_init(&phpool[idx], sz, 0, 0, 0,
812 1.128.2.1 ad phpool_names[idx], &pool_allocator_meta, IPL_VM);
813 1.97 yamt }
814 1.62 bjh21 #ifdef POOL_SUBPAGE
815 1.62 bjh21 pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
816 1.128.2.1 ad PR_RECURSIVE, "psppool", &pool_allocator_meta, IPL_VM);
817 1.62 bjh21 #endif
818 1.128.2.7 ad pool_init(&pcgpool, sizeof(pcg_t), CACHE_LINE_SIZE, 0, 0,
819 1.128.2.7 ad "cachegrp", &pool_allocator_meta, IPL_VM);
820 1.1 pk }
821 1.1 pk
822 1.128.2.2 ad if (__predict_true(!cold)) {
823 1.128.2.2 ad /* Insert into the list of all pools. */
824 1.128.2.2 ad mutex_enter(&pool_head_lock);
825 1.128.2.2 ad LIST_INSERT_HEAD(&pool_head, pp, pr_poollist);
826 1.128.2.2 ad mutex_exit(&pool_head_lock);
827 1.128.2.2 ad
828 1.128.2.2 ad /* Insert this into the list of pools using this allocator. */
829 1.128.2.2 ad mutex_enter(&palloc->pa_lock);
830 1.128.2.2 ad TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
831 1.128.2.2 ad mutex_exit(&palloc->pa_lock);
832 1.128.2.2 ad } else {
833 1.128.2.2 ad LIST_INSERT_HEAD(&pool_head, pp, pr_poollist);
834 1.128.2.2 ad TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
835 1.128.2.2 ad }
836 1.128.2.2 ad
837 1.117 yamt pool_reclaim_register(pp);
838 1.1 pk }
839 1.1 pk
840 1.1 pk /*
841 1.1 pk * De-commision a pool resource.
842 1.1 pk */
843 1.1 pk void
844 1.42 thorpej pool_destroy(struct pool *pp)
845 1.1 pk {
846 1.101 thorpej struct pool_pagelist pq;
847 1.3 pk struct pool_item_header *ph;
848 1.43 thorpej
849 1.101 thorpej /* Remove from global pool list */
850 1.128.2.2 ad mutex_enter(&pool_head_lock);
851 1.128.2.7 ad while (pp->pr_refcnt != 0)
852 1.128.2.7 ad cv_wait(&pool_busy, &pool_head_lock);
853 1.102 chs LIST_REMOVE(pp, pr_poollist);
854 1.101 thorpej if (drainpp == pp)
855 1.101 thorpej drainpp = NULL;
856 1.128.2.2 ad mutex_exit(&pool_head_lock);
857 1.101 thorpej
858 1.101 thorpej /* Remove this pool from its allocator's list of pools. */
859 1.117 yamt pool_reclaim_unregister(pp);
860 1.128.2.2 ad mutex_enter(&pp->pr_alloc->pa_lock);
861 1.66 thorpej TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
862 1.128.2.2 ad mutex_exit(&pp->pr_alloc->pa_lock);
863 1.66 thorpej
864 1.128.2.2 ad mutex_enter(&pp->pr_lock);
865 1.101 thorpej
866 1.128.2.7 ad KASSERT(pp->pr_cache == NULL);
867 1.3 pk
868 1.3 pk #ifdef DIAGNOSTIC
869 1.20 thorpej if (pp->pr_nout != 0) {
870 1.25 thorpej pr_printlog(pp, NULL, printf);
871 1.80 provos panic("pool_destroy: pool busy: still out: %u",
872 1.20 thorpej pp->pr_nout);
873 1.3 pk }
874 1.3 pk #endif
875 1.1 pk
876 1.101 thorpej KASSERT(LIST_EMPTY(&pp->pr_fullpages));
877 1.101 thorpej KASSERT(LIST_EMPTY(&pp->pr_partpages));
878 1.101 thorpej
879 1.3 pk /* Remove all pages */
880 1.101 thorpej LIST_INIT(&pq);
881 1.88 chs while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
882 1.101 thorpej pr_rmpage(pp, ph, &pq);
883 1.101 thorpej
884 1.128.2.2 ad mutex_exit(&pp->pr_lock);
885 1.3 pk
886 1.101 thorpej pr_pagelist_free(pp, &pq);
887 1.3 pk
888 1.59 thorpej #ifdef POOL_DIAGNOSTIC
889 1.20 thorpej if ((pp->pr_roflags & PR_LOGGING) != 0)
890 1.3 pk free(pp->pr_log, M_TEMP);
891 1.59 thorpej #endif
892 1.128.2.2 ad
893 1.128.2.2 ad cv_destroy(&pp->pr_cv);
894 1.128.2.2 ad mutex_destroy(&pp->pr_lock);
895 1.1 pk }
896 1.1 pk
897 1.68 thorpej void
898 1.68 thorpej pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
899 1.68 thorpej {
900 1.68 thorpej
901 1.68 thorpej /* XXX no locking -- must be used just after pool_init() */
902 1.68 thorpej #ifdef DIAGNOSTIC
903 1.68 thorpej if (pp->pr_drain_hook != NULL)
904 1.68 thorpej panic("pool_set_drain_hook(%s): already set", pp->pr_wchan);
905 1.68 thorpej #endif
906 1.68 thorpej pp->pr_drain_hook = fn;
907 1.68 thorpej pp->pr_drain_hook_arg = arg;
908 1.68 thorpej }
909 1.68 thorpej
910 1.88 chs static struct pool_item_header *
911 1.128 christos pool_alloc_item_header(struct pool *pp, void *storage, int flags)
912 1.55 thorpej {
913 1.55 thorpej struct pool_item_header *ph;
914 1.55 thorpej
915 1.55 thorpej if ((pp->pr_roflags & PR_PHINPAGE) != 0)
916 1.128 christos ph = (struct pool_item_header *) ((char *)storage + pp->pr_phoffset);
917 1.128.2.2 ad else
918 1.97 yamt ph = pool_get(pp->pr_phpool, flags);
919 1.55 thorpej
920 1.55 thorpej return (ph);
921 1.55 thorpej }
922 1.1 pk
923 1.1 pk /*
924 1.3 pk * Grab an item from the pool; must be called at appropriate spl level
925 1.1 pk */
926 1.3 pk void *
927 1.59 thorpej #ifdef POOL_DIAGNOSTIC
928 1.42 thorpej _pool_get(struct pool *pp, int flags, const char *file, long line)
929 1.56 sommerfe #else
930 1.56 sommerfe pool_get(struct pool *pp, int flags)
931 1.56 sommerfe #endif
932 1.1 pk {
933 1.1 pk struct pool_item *pi;
934 1.3 pk struct pool_item_header *ph;
935 1.55 thorpej void *v;
936 1.1 pk
937 1.2 pk #ifdef DIAGNOSTIC
938 1.95 atatat if (__predict_false(pp->pr_itemsperpage == 0))
939 1.95 atatat panic("pool_get: pool %p: pr_itemsperpage is zero, "
940 1.95 atatat "pool not initialized?", pp);
941 1.84 thorpej if (__predict_false(curlwp == NULL && doing_shutdown == 0 &&
942 1.37 sommerfe (flags & PR_WAITOK) != 0))
943 1.77 matt panic("pool_get: %s: must have NOWAIT", pp->pr_wchan);
944 1.58 thorpej
945 1.102 chs #endif /* DIAGNOSTIC */
946 1.58 thorpej #ifdef LOCKDEBUG
947 1.58 thorpej if (flags & PR_WAITOK)
948 1.119 yamt ASSERT_SLEEPABLE(NULL, "pool_get(PR_WAITOK)");
949 1.56 sommerfe #endif
950 1.1 pk
951 1.128.2.2 ad mutex_enter(&pp->pr_lock);
952 1.25 thorpej pr_enter(pp, file, line);
953 1.20 thorpej
954 1.20 thorpej startover:
955 1.20 thorpej /*
956 1.20 thorpej * Check to see if we've reached the hard limit. If we have,
957 1.20 thorpej * and we can wait, then wait until an item has been returned to
958 1.20 thorpej * the pool.
959 1.20 thorpej */
960 1.20 thorpej #ifdef DIAGNOSTIC
961 1.34 thorpej if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
962 1.25 thorpej pr_leave(pp);
963 1.128.2.2 ad mutex_exit(&pp->pr_lock);
964 1.20 thorpej panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
965 1.20 thorpej }
966 1.20 thorpej #endif
967 1.34 thorpej if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
968 1.68 thorpej if (pp->pr_drain_hook != NULL) {
969 1.68 thorpej /*
970 1.68 thorpej * Since the drain hook is going to free things
971 1.68 thorpej * back to the pool, unlock, call the hook, re-lock,
972 1.68 thorpej * and check the hardlimit condition again.
973 1.68 thorpej */
974 1.68 thorpej pr_leave(pp);
975 1.128.2.2 ad mutex_exit(&pp->pr_lock);
976 1.68 thorpej (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
977 1.128.2.2 ad mutex_enter(&pp->pr_lock);
978 1.68 thorpej pr_enter(pp, file, line);
979 1.68 thorpej if (pp->pr_nout < pp->pr_hardlimit)
980 1.68 thorpej goto startover;
981 1.68 thorpej }
982 1.68 thorpej
983 1.29 sommerfe if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
984 1.20 thorpej /*
985 1.20 thorpej * XXX: A warning isn't logged in this case. Should
986 1.20 thorpej * it be?
987 1.20 thorpej */
988 1.20 thorpej pp->pr_flags |= PR_WANTED;
989 1.25 thorpej pr_leave(pp);
990 1.128.2.2 ad cv_wait(&pp->pr_cv, &pp->pr_lock);
991 1.25 thorpej pr_enter(pp, file, line);
992 1.20 thorpej goto startover;
993 1.20 thorpej }
994 1.31 thorpej
995 1.31 thorpej /*
996 1.31 thorpej * Log a message that the hard limit has been hit.
997 1.31 thorpej */
998 1.31 thorpej if (pp->pr_hardlimit_warning != NULL &&
999 1.31 thorpej ratecheck(&pp->pr_hardlimit_warning_last,
1000 1.31 thorpej &pp->pr_hardlimit_ratecap))
1001 1.31 thorpej log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
1002 1.21 thorpej
1003 1.21 thorpej pp->pr_nfail++;
1004 1.21 thorpej
1005 1.25 thorpej pr_leave(pp);
1006 1.128.2.2 ad mutex_exit(&pp->pr_lock);
1007 1.20 thorpej return (NULL);
1008 1.20 thorpej }
1009 1.20 thorpej
1010 1.3 pk /*
1011 1.3 pk * The convention we use is that if `curpage' is not NULL, then
1012 1.3 pk * it points at a non-empty bucket. In particular, `curpage'
1013 1.3 pk * never points at a page header which has PR_PHINPAGE set and
1014 1.3 pk * has no items in its bucket.
1015 1.3 pk */
1016 1.20 thorpej if ((ph = pp->pr_curpage) == NULL) {
1017 1.113 yamt int error;
1018 1.113 yamt
1019 1.20 thorpej #ifdef DIAGNOSTIC
1020 1.20 thorpej if (pp->pr_nitems != 0) {
1021 1.128.2.2 ad mutex_exit(&pp->pr_lock);
1022 1.20 thorpej printf("pool_get: %s: curpage NULL, nitems %u\n",
1023 1.20 thorpej pp->pr_wchan, pp->pr_nitems);
1024 1.80 provos panic("pool_get: nitems inconsistent");
1025 1.20 thorpej }
1026 1.20 thorpej #endif
1027 1.20 thorpej
1028 1.21 thorpej /*
1029 1.21 thorpej * Call the back-end page allocator for more memory.
1030 1.21 thorpej * Release the pool lock, as the back-end page allocator
1031 1.21 thorpej * may block.
1032 1.21 thorpej */
1033 1.25 thorpej pr_leave(pp);
1034 1.113 yamt error = pool_grow(pp, flags);
1035 1.113 yamt pr_enter(pp, file, line);
1036 1.113 yamt if (error != 0) {
1037 1.21 thorpej /*
1038 1.55 thorpej * We were unable to allocate a page or item
1039 1.55 thorpej * header, but we released the lock during
1040 1.55 thorpej * allocation, so perhaps items were freed
1041 1.55 thorpej * back to the pool. Check for this case.
1042 1.21 thorpej */
1043 1.21 thorpej if (pp->pr_curpage != NULL)
1044 1.21 thorpej goto startover;
1045 1.15 pk
1046 1.117 yamt pp->pr_nfail++;
1047 1.25 thorpej pr_leave(pp);
1048 1.128.2.2 ad mutex_exit(&pp->pr_lock);
1049 1.117 yamt return (NULL);
1050 1.1 pk }
1051 1.3 pk
1052 1.20 thorpej /* Start the allocation process over. */
1053 1.20 thorpej goto startover;
1054 1.3 pk }
1055 1.97 yamt if (pp->pr_roflags & PR_NOTOUCH) {
1056 1.97 yamt #ifdef DIAGNOSTIC
1057 1.97 yamt if (__predict_false(ph->ph_nmissing == pp->pr_itemsperpage)) {
1058 1.97 yamt pr_leave(pp);
1059 1.128.2.2 ad mutex_exit(&pp->pr_lock);
1060 1.97 yamt panic("pool_get: %s: page empty", pp->pr_wchan);
1061 1.97 yamt }
1062 1.97 yamt #endif
1063 1.97 yamt v = pr_item_notouch_get(pp, ph);
1064 1.97 yamt #ifdef POOL_DIAGNOSTIC
1065 1.97 yamt pr_log(pp, v, PRLOG_GET, file, line);
1066 1.97 yamt #endif
1067 1.97 yamt } else {
1068 1.102 chs v = pi = LIST_FIRST(&ph->ph_itemlist);
1069 1.97 yamt if (__predict_false(v == NULL)) {
1070 1.97 yamt pr_leave(pp);
1071 1.128.2.2 ad mutex_exit(&pp->pr_lock);
1072 1.97 yamt panic("pool_get: %s: page empty", pp->pr_wchan);
1073 1.97 yamt }
1074 1.20 thorpej #ifdef DIAGNOSTIC
1075 1.97 yamt if (__predict_false(pp->pr_nitems == 0)) {
1076 1.97 yamt pr_leave(pp);
1077 1.128.2.2 ad mutex_exit(&pp->pr_lock);
1078 1.97 yamt printf("pool_get: %s: items on itemlist, nitems %u\n",
1079 1.97 yamt pp->pr_wchan, pp->pr_nitems);
1080 1.97 yamt panic("pool_get: nitems inconsistent");
1081 1.97 yamt }
1082 1.65 enami #endif
1083 1.56 sommerfe
1084 1.65 enami #ifdef POOL_DIAGNOSTIC
1085 1.97 yamt pr_log(pp, v, PRLOG_GET, file, line);
1086 1.65 enami #endif
1087 1.3 pk
1088 1.65 enami #ifdef DIAGNOSTIC
1089 1.97 yamt if (__predict_false(pi->pi_magic != PI_MAGIC)) {
1090 1.97 yamt pr_printlog(pp, pi, printf);
1091 1.97 yamt panic("pool_get(%s): free list modified: "
1092 1.97 yamt "magic=%x; page %p; item addr %p\n",
1093 1.97 yamt pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
1094 1.97 yamt }
1095 1.3 pk #endif
1096 1.3 pk
1097 1.97 yamt /*
1098 1.97 yamt * Remove from item list.
1099 1.97 yamt */
1100 1.102 chs LIST_REMOVE(pi, pi_list);
1101 1.97 yamt }
1102 1.20 thorpej pp->pr_nitems--;
1103 1.20 thorpej pp->pr_nout++;
1104 1.6 thorpej if (ph->ph_nmissing == 0) {
1105 1.6 thorpej #ifdef DIAGNOSTIC
1106 1.34 thorpej if (__predict_false(pp->pr_nidle == 0))
1107 1.6 thorpej panic("pool_get: nidle inconsistent");
1108 1.6 thorpej #endif
1109 1.6 thorpej pp->pr_nidle--;
1110 1.88 chs
1111 1.88 chs /*
1112 1.88 chs * This page was previously empty. Move it to the list of
1113 1.88 chs * partially-full pages. This page is already curpage.
1114 1.88 chs */
1115 1.88 chs LIST_REMOVE(ph, ph_pagelist);
1116 1.88 chs LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1117 1.6 thorpej }
1118 1.3 pk ph->ph_nmissing++;
1119 1.97 yamt if (ph->ph_nmissing == pp->pr_itemsperpage) {
1120 1.21 thorpej #ifdef DIAGNOSTIC
1121 1.97 yamt if (__predict_false((pp->pr_roflags & PR_NOTOUCH) == 0 &&
1122 1.102 chs !LIST_EMPTY(&ph->ph_itemlist))) {
1123 1.25 thorpej pr_leave(pp);
1124 1.128.2.2 ad mutex_exit(&pp->pr_lock);
1125 1.21 thorpej panic("pool_get: %s: nmissing inconsistent",
1126 1.21 thorpej pp->pr_wchan);
1127 1.21 thorpej }
1128 1.21 thorpej #endif
1129 1.3 pk /*
1130 1.88 chs * This page is now full. Move it to the full list
1131 1.88 chs * and select a new current page.
1132 1.3 pk */
1133 1.88 chs LIST_REMOVE(ph, ph_pagelist);
1134 1.88 chs LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
1135 1.88 chs pool_update_curpage(pp);
1136 1.1 pk }
1137 1.3 pk
1138 1.3 pk pp->pr_nget++;
1139 1.111 christos pr_leave(pp);
1140 1.20 thorpej
1141 1.20 thorpej /*
1142 1.20 thorpej * If we have a low water mark and we are now below that low
1143 1.20 thorpej * water mark, add more items to the pool.
1144 1.20 thorpej */
1145 1.53 thorpej if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1146 1.20 thorpej /*
1147 1.20 thorpej * XXX: Should we log a warning? Should we set up a timeout
1148 1.20 thorpej * to try again in a second or so? The latter could break
1149 1.20 thorpej * a caller's assumptions about interrupt protection, etc.
1150 1.20 thorpej */
1151 1.20 thorpej }
1152 1.20 thorpej
1153 1.128.2.2 ad mutex_exit(&pp->pr_lock);
1154 1.125 ad KASSERT((((vaddr_t)v + pp->pr_itemoffset) & (pp->pr_align - 1)) == 0);
1155 1.125 ad FREECHECK_OUT(&pp->pr_freecheck, v);
1156 1.1 pk return (v);
1157 1.1 pk }
1158 1.1 pk
1159 1.1 pk /*
1160 1.43 thorpej * Internal version of pool_put(). Pool is already locked/entered.
1161 1.1 pk */
1162 1.43 thorpej static void
1163 1.101 thorpej pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
1164 1.1 pk {
1165 1.1 pk struct pool_item *pi = v;
1166 1.3 pk struct pool_item_header *ph;
1167 1.3 pk
1168 1.128.2.2 ad KASSERT(mutex_owned(&pp->pr_lock));
1169 1.125 ad FREECHECK_IN(&pp->pr_freecheck, v);
1170 1.128.2.5 ad LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
1171 1.61 chs
1172 1.30 thorpej #ifdef DIAGNOSTIC
1173 1.34 thorpej if (__predict_false(pp->pr_nout == 0)) {
1174 1.30 thorpej printf("pool %s: putting with none out\n",
1175 1.30 thorpej pp->pr_wchan);
1176 1.30 thorpej panic("pool_put");
1177 1.30 thorpej }
1178 1.30 thorpej #endif
1179 1.3 pk
1180 1.121 yamt if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
1181 1.25 thorpej pr_printlog(pp, NULL, printf);
1182 1.3 pk panic("pool_put: %s: page header missing", pp->pr_wchan);
1183 1.3 pk }
1184 1.28 thorpej
1185 1.3 pk /*
1186 1.3 pk * Return to item list.
1187 1.3 pk */
1188 1.97 yamt if (pp->pr_roflags & PR_NOTOUCH) {
1189 1.97 yamt pr_item_notouch_put(pp, ph, v);
1190 1.97 yamt } else {
1191 1.2 pk #ifdef DIAGNOSTIC
1192 1.97 yamt pi->pi_magic = PI_MAGIC;
1193 1.3 pk #endif
1194 1.32 chs #ifdef DEBUG
1195 1.97 yamt {
1196 1.97 yamt int i, *ip = v;
1197 1.32 chs
1198 1.97 yamt for (i = 0; i < pp->pr_size / sizeof(int); i++) {
1199 1.97 yamt *ip++ = PI_MAGIC;
1200 1.97 yamt }
1201 1.32 chs }
1202 1.32 chs #endif
1203 1.32 chs
1204 1.102 chs LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1205 1.97 yamt }
1206 1.79 thorpej KDASSERT(ph->ph_nmissing != 0);
1207 1.3 pk ph->ph_nmissing--;
1208 1.3 pk pp->pr_nput++;
1209 1.20 thorpej pp->pr_nitems++;
1210 1.20 thorpej pp->pr_nout--;
1211 1.3 pk
1212 1.3 pk /* Cancel "pool empty" condition if it exists */
1213 1.3 pk if (pp->pr_curpage == NULL)
1214 1.3 pk pp->pr_curpage = ph;
1215 1.3 pk
1216 1.3 pk if (pp->pr_flags & PR_WANTED) {
1217 1.3 pk pp->pr_flags &= ~PR_WANTED;
1218 1.15 pk if (ph->ph_nmissing == 0)
1219 1.15 pk pp->pr_nidle++;
1220 1.128.2.4 ad cv_broadcast(&pp->pr_cv);
1221 1.3 pk return;
1222 1.3 pk }
1223 1.3 pk
1224 1.3 pk /*
1225 1.88 chs * If this page is now empty, do one of two things:
1226 1.21 thorpej *
1227 1.88 chs * (1) If we have more pages than the page high water mark,
1228 1.96 thorpej * free the page back to the system. ONLY CONSIDER
1229 1.90 thorpej * FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
1230 1.90 thorpej * CLAIM.
1231 1.21 thorpej *
1232 1.88 chs * (2) Otherwise, move the page to the empty page list.
1233 1.88 chs *
1234 1.88 chs * Either way, select a new current page (so we use a partially-full
1235 1.88 chs * page if one is available).
1236 1.3 pk */
1237 1.3 pk if (ph->ph_nmissing == 0) {
1238 1.6 thorpej pp->pr_nidle++;
1239 1.90 thorpej if (pp->pr_npages > pp->pr_minpages &&
1240 1.90 thorpej (pp->pr_npages > pp->pr_maxpages ||
1241 1.117 yamt pa_starved_p(pp->pr_alloc))) {
1242 1.101 thorpej pr_rmpage(pp, ph, pq);
1243 1.3 pk } else {
1244 1.88 chs LIST_REMOVE(ph, ph_pagelist);
1245 1.88 chs LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1246 1.3 pk
1247 1.21 thorpej /*
1248 1.21 thorpej * Update the timestamp on the page. A page must
1249 1.21 thorpej * be idle for some period of time before it can
1250 1.21 thorpej * be reclaimed by the pagedaemon. This minimizes
1251 1.21 thorpej * ping-pong'ing for memory.
1252 1.21 thorpej */
1253 1.118 kardel getmicrotime(&ph->ph_time);
1254 1.1 pk }
1255 1.88 chs pool_update_curpage(pp);
1256 1.1 pk }
1257 1.88 chs
1258 1.21 thorpej /*
1259 1.88 chs * If the page was previously completely full, move it to the
1260 1.88 chs * partially-full list and make it the current page. The next
1261 1.88 chs * allocation will get the item from this page, instead of
1262 1.88 chs * further fragmenting the pool.
1263 1.21 thorpej */
1264 1.21 thorpej else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
1265 1.88 chs LIST_REMOVE(ph, ph_pagelist);
1266 1.88 chs LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1267 1.21 thorpej pp->pr_curpage = ph;
1268 1.21 thorpej }
1269 1.43 thorpej }
1270 1.43 thorpej
1271 1.43 thorpej /*
1272 1.43 thorpej * Return resource to the pool; must be called at appropriate spl level
1273 1.43 thorpej */
1274 1.59 thorpej #ifdef POOL_DIAGNOSTIC
1275 1.43 thorpej void
1276 1.43 thorpej _pool_put(struct pool *pp, void *v, const char *file, long line)
1277 1.43 thorpej {
1278 1.101 thorpej struct pool_pagelist pq;
1279 1.101 thorpej
1280 1.101 thorpej LIST_INIT(&pq);
1281 1.43 thorpej
1282 1.128.2.2 ad mutex_enter(&pp->pr_lock);
1283 1.43 thorpej pr_enter(pp, file, line);
1284 1.43 thorpej
1285 1.56 sommerfe pr_log(pp, v, PRLOG_PUT, file, line);
1286 1.56 sommerfe
1287 1.101 thorpej pool_do_put(pp, v, &pq);
1288 1.21 thorpej
1289 1.25 thorpej pr_leave(pp);
1290 1.128.2.2 ad mutex_exit(&pp->pr_lock);
1291 1.101 thorpej
1292 1.102 chs pr_pagelist_free(pp, &pq);
1293 1.1 pk }
1294 1.57 sommerfe #undef pool_put
1295 1.59 thorpej #endif /* POOL_DIAGNOSTIC */
1296 1.1 pk
1297 1.56 sommerfe void
1298 1.56 sommerfe pool_put(struct pool *pp, void *v)
1299 1.56 sommerfe {
1300 1.101 thorpej struct pool_pagelist pq;
1301 1.101 thorpej
1302 1.101 thorpej LIST_INIT(&pq);
1303 1.56 sommerfe
1304 1.128.2.2 ad mutex_enter(&pp->pr_lock);
1305 1.101 thorpej pool_do_put(pp, v, &pq);
1306 1.128.2.2 ad mutex_exit(&pp->pr_lock);
1307 1.56 sommerfe
1308 1.102 chs pr_pagelist_free(pp, &pq);
1309 1.56 sommerfe }
1310 1.57 sommerfe
1311 1.59 thorpej #ifdef POOL_DIAGNOSTIC
1312 1.57 sommerfe #define pool_put(h, v) _pool_put((h), (v), __FILE__, __LINE__)
1313 1.56 sommerfe #endif
1314 1.74 thorpej
1315 1.74 thorpej /*
1316 1.113 yamt * pool_grow: grow a pool by a page.
1317 1.113 yamt *
1318 1.113 yamt * => called with pool locked.
1319 1.113 yamt * => unlock and relock the pool.
1320 1.113 yamt * => return with pool locked.
1321 1.113 yamt */
1322 1.113 yamt
1323 1.113 yamt static int
1324 1.113 yamt pool_grow(struct pool *pp, int flags)
1325 1.113 yamt {
1326 1.113 yamt struct pool_item_header *ph = NULL;
1327 1.113 yamt char *cp;
1328 1.113 yamt
1329 1.128.2.2 ad mutex_exit(&pp->pr_lock);
1330 1.113 yamt cp = pool_allocator_alloc(pp, flags);
1331 1.113 yamt if (__predict_true(cp != NULL)) {
1332 1.113 yamt ph = pool_alloc_item_header(pp, cp, flags);
1333 1.113 yamt }
1334 1.113 yamt if (__predict_false(cp == NULL || ph == NULL)) {
1335 1.113 yamt if (cp != NULL) {
1336 1.113 yamt pool_allocator_free(pp, cp);
1337 1.113 yamt }
1338 1.128.2.2 ad mutex_enter(&pp->pr_lock);
1339 1.113 yamt return ENOMEM;
1340 1.113 yamt }
1341 1.113 yamt
1342 1.128.2.2 ad mutex_enter(&pp->pr_lock);
1343 1.113 yamt pool_prime_page(pp, cp, ph);
1344 1.113 yamt pp->pr_npagealloc++;
1345 1.113 yamt return 0;
1346 1.113 yamt }
1347 1.113 yamt
1348 1.113 yamt /*
1349 1.74 thorpej * Add N items to the pool.
1350 1.74 thorpej */
1351 1.74 thorpej int
1352 1.74 thorpej pool_prime(struct pool *pp, int n)
1353 1.74 thorpej {
1354 1.75 simonb int newpages;
1355 1.113 yamt int error = 0;
1356 1.74 thorpej
1357 1.128.2.2 ad mutex_enter(&pp->pr_lock);
1358 1.74 thorpej
1359 1.74 thorpej newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1360 1.74 thorpej
1361 1.74 thorpej while (newpages-- > 0) {
1362 1.113 yamt error = pool_grow(pp, PR_NOWAIT);
1363 1.113 yamt if (error) {
1364 1.74 thorpej break;
1365 1.74 thorpej }
1366 1.74 thorpej pp->pr_minpages++;
1367 1.74 thorpej }
1368 1.74 thorpej
1369 1.74 thorpej if (pp->pr_minpages >= pp->pr_maxpages)
1370 1.74 thorpej pp->pr_maxpages = pp->pr_minpages + 1; /* XXX */
1371 1.74 thorpej
1372 1.128.2.2 ad mutex_exit(&pp->pr_lock);
1373 1.113 yamt return error;
1374 1.74 thorpej }
1375 1.55 thorpej
1376 1.55 thorpej /*
1377 1.3 pk * Add a page worth of items to the pool.
1378 1.21 thorpej *
1379 1.21 thorpej * Note, we must be called with the pool descriptor LOCKED.
1380 1.3 pk */
1381 1.55 thorpej static void
1382 1.128 christos pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
1383 1.3 pk {
1384 1.3 pk struct pool_item *pi;
1385 1.128 christos void *cp = storage;
1386 1.125 ad const unsigned int align = pp->pr_align;
1387 1.125 ad const unsigned int ioff = pp->pr_itemoffset;
1388 1.55 thorpej int n;
1389 1.36 pk
1390 1.128.2.2 ad KASSERT(mutex_owned(&pp->pr_lock));
1391 1.91 yamt
1392 1.66 thorpej #ifdef DIAGNOSTIC
1393 1.121 yamt if ((pp->pr_roflags & PR_NOALIGN) == 0 &&
1394 1.121 yamt ((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) != 0)
1395 1.36 pk panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
1396 1.66 thorpej #endif
1397 1.3 pk
1398 1.3 pk /*
1399 1.3 pk * Insert page header.
1400 1.3 pk */
1401 1.88 chs LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1402 1.102 chs LIST_INIT(&ph->ph_itemlist);
1403 1.3 pk ph->ph_page = storage;
1404 1.3 pk ph->ph_nmissing = 0;
1405 1.118 kardel getmicrotime(&ph->ph_time);
1406 1.88 chs if ((pp->pr_roflags & PR_PHINPAGE) == 0)
1407 1.88 chs SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
1408 1.3 pk
1409 1.6 thorpej pp->pr_nidle++;
1410 1.6 thorpej
1411 1.3 pk /*
1412 1.3 pk * Color this page.
1413 1.3 pk */
1414 1.128 christos cp = (char *)cp + pp->pr_curcolor;
1415 1.3 pk if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
1416 1.3 pk pp->pr_curcolor = 0;
1417 1.3 pk
1418 1.3 pk /*
1419 1.3 pk * Adjust storage to apply aligment to `pr_itemoffset' in each item.
1420 1.3 pk */
1421 1.3 pk if (ioff != 0)
1422 1.128 christos cp = (char *)cp + align - ioff;
1423 1.3 pk
1424 1.125 ad KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
1425 1.125 ad
1426 1.3 pk /*
1427 1.3 pk * Insert remaining chunks on the bucket list.
1428 1.3 pk */
1429 1.3 pk n = pp->pr_itemsperpage;
1430 1.20 thorpej pp->pr_nitems += n;
1431 1.3 pk
1432 1.97 yamt if (pp->pr_roflags & PR_NOTOUCH) {
1433 1.99 yamt pool_item_freelist_t *freelist = PR_FREELIST(ph);
1434 1.97 yamt int i;
1435 1.97 yamt
1436 1.128 christos ph->ph_off = (char *)cp - (char *)storage;
1437 1.97 yamt ph->ph_firstfree = 0;
1438 1.97 yamt for (i = 0; i < n - 1; i++)
1439 1.97 yamt freelist[i] = i + 1;
1440 1.97 yamt freelist[n - 1] = PR_INDEX_EOL;
1441 1.97 yamt } else {
1442 1.97 yamt while (n--) {
1443 1.97 yamt pi = (struct pool_item *)cp;
1444 1.78 thorpej
1445 1.97 yamt KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0);
1446 1.3 pk
1447 1.97 yamt /* Insert on page list */
1448 1.102 chs LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1449 1.3 pk #ifdef DIAGNOSTIC
1450 1.97 yamt pi->pi_magic = PI_MAGIC;
1451 1.3 pk #endif
1452 1.128 christos cp = (char *)cp + pp->pr_size;
1453 1.125 ad
1454 1.125 ad KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
1455 1.97 yamt }
1456 1.3 pk }
1457 1.3 pk
1458 1.3 pk /*
1459 1.3 pk * If the pool was depleted, point at the new page.
1460 1.3 pk */
1461 1.3 pk if (pp->pr_curpage == NULL)
1462 1.3 pk pp->pr_curpage = ph;
1463 1.3 pk
1464 1.3 pk if (++pp->pr_npages > pp->pr_hiwat)
1465 1.3 pk pp->pr_hiwat = pp->pr_npages;
1466 1.3 pk }
1467 1.3 pk
1468 1.20 thorpej /*
1469 1.52 thorpej * Used by pool_get() when nitems drops below the low water mark. This
1470 1.88 chs * is used to catch up pr_nitems with the low water mark.
1471 1.20 thorpej *
1472 1.21 thorpej * Note 1, we never wait for memory here, we let the caller decide what to do.
1473 1.20 thorpej *
1474 1.73 thorpej * Note 2, we must be called with the pool already locked, and we return
1475 1.20 thorpej * with it locked.
1476 1.20 thorpej */
1477 1.20 thorpej static int
1478 1.42 thorpej pool_catchup(struct pool *pp)
1479 1.20 thorpej {
1480 1.20 thorpej int error = 0;
1481 1.20 thorpej
1482 1.54 thorpej while (POOL_NEEDS_CATCHUP(pp)) {
1483 1.113 yamt error = pool_grow(pp, PR_NOWAIT);
1484 1.113 yamt if (error) {
1485 1.20 thorpej break;
1486 1.20 thorpej }
1487 1.20 thorpej }
1488 1.113 yamt return error;
1489 1.20 thorpej }
1490 1.20 thorpej
1491 1.88 chs static void
1492 1.88 chs pool_update_curpage(struct pool *pp)
1493 1.88 chs {
1494 1.88 chs
1495 1.88 chs pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
1496 1.88 chs if (pp->pr_curpage == NULL) {
1497 1.88 chs pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
1498 1.88 chs }
1499 1.88 chs }
1500 1.88 chs
1501 1.3 pk void
1502 1.42 thorpej pool_setlowat(struct pool *pp, int n)
1503 1.3 pk {
1504 1.15 pk
1505 1.128.2.2 ad mutex_enter(&pp->pr_lock);
1506 1.21 thorpej
1507 1.3 pk pp->pr_minitems = n;
1508 1.15 pk pp->pr_minpages = (n == 0)
1509 1.15 pk ? 0
1510 1.18 thorpej : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1511 1.20 thorpej
1512 1.20 thorpej /* Make sure we're caught up with the newly-set low water mark. */
1513 1.75 simonb if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1514 1.20 thorpej /*
1515 1.20 thorpej * XXX: Should we log a warning? Should we set up a timeout
1516 1.20 thorpej * to try again in a second or so? The latter could break
1517 1.20 thorpej * a caller's assumptions about interrupt protection, etc.
1518 1.20 thorpej */
1519 1.20 thorpej }
1520 1.21 thorpej
1521 1.128.2.2 ad mutex_exit(&pp->pr_lock);
1522 1.3 pk }
1523 1.3 pk
1524 1.3 pk void
1525 1.42 thorpej pool_sethiwat(struct pool *pp, int n)
1526 1.3 pk {
1527 1.15 pk
1528 1.128.2.2 ad mutex_enter(&pp->pr_lock);
1529 1.21 thorpej
1530 1.15 pk pp->pr_maxpages = (n == 0)
1531 1.15 pk ? 0
1532 1.18 thorpej : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1533 1.21 thorpej
1534 1.128.2.2 ad mutex_exit(&pp->pr_lock);
1535 1.3 pk }
1536 1.3 pk
1537 1.20 thorpej void
1538 1.42 thorpej pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
1539 1.20 thorpej {
1540 1.20 thorpej
1541 1.128.2.2 ad mutex_enter(&pp->pr_lock);
1542 1.20 thorpej
1543 1.20 thorpej pp->pr_hardlimit = n;
1544 1.20 thorpej pp->pr_hardlimit_warning = warnmess;
1545 1.31 thorpej pp->pr_hardlimit_ratecap.tv_sec = ratecap;
1546 1.31 thorpej pp->pr_hardlimit_warning_last.tv_sec = 0;
1547 1.31 thorpej pp->pr_hardlimit_warning_last.tv_usec = 0;
1548 1.20 thorpej
1549 1.20 thorpej /*
1550 1.21 thorpej * In-line version of pool_sethiwat(), because we don't want to
1551 1.21 thorpej * release the lock.
1552 1.20 thorpej */
1553 1.20 thorpej pp->pr_maxpages = (n == 0)
1554 1.20 thorpej ? 0
1555 1.20 thorpej : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1556 1.21 thorpej
1557 1.128.2.2 ad mutex_exit(&pp->pr_lock);
1558 1.20 thorpej }
1559 1.3 pk
1560 1.3 pk /*
1561 1.3 pk * Release all complete pages that have not been used recently.
1562 1.3 pk */
1563 1.66 thorpej int
1564 1.59 thorpej #ifdef POOL_DIAGNOSTIC
1565 1.42 thorpej _pool_reclaim(struct pool *pp, const char *file, long line)
1566 1.56 sommerfe #else
1567 1.56 sommerfe pool_reclaim(struct pool *pp)
1568 1.56 sommerfe #endif
1569 1.3 pk {
1570 1.3 pk struct pool_item_header *ph, *phnext;
1571 1.61 chs struct pool_pagelist pq;
1572 1.102 chs struct timeval curtime, diff;
1573 1.3 pk
1574 1.68 thorpej if (pp->pr_drain_hook != NULL) {
1575 1.68 thorpej /*
1576 1.68 thorpej * The drain hook must be called with the pool unlocked.
1577 1.68 thorpej */
1578 1.68 thorpej (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
1579 1.68 thorpej }
1580 1.68 thorpej
1581 1.128.2.9 ad /* Reclaim items from the pool's cache (if any). */
1582 1.128.2.9 ad if (pp->pr_cache != NULL)
1583 1.128.2.9 ad pool_cache_invalidate(pp->pr_cache);
1584 1.128.2.9 ad
1585 1.128.2.2 ad if (mutex_tryenter(&pp->pr_lock) == 0)
1586 1.66 thorpej return (0);
1587 1.25 thorpej pr_enter(pp, file, line);
1588 1.68 thorpej
1589 1.88 chs LIST_INIT(&pq);
1590 1.3 pk
1591 1.118 kardel getmicrotime(&curtime);
1592 1.21 thorpej
1593 1.88 chs for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
1594 1.88 chs phnext = LIST_NEXT(ph, ph_pagelist);
1595 1.3 pk
1596 1.3 pk /* Check our minimum page claim */
1597 1.3 pk if (pp->pr_npages <= pp->pr_minpages)
1598 1.3 pk break;
1599 1.3 pk
1600 1.88 chs KASSERT(ph->ph_nmissing == 0);
1601 1.88 chs timersub(&curtime, &ph->ph_time, &diff);
1602 1.117 yamt if (diff.tv_sec < pool_inactive_time
1603 1.117 yamt && !pa_starved_p(pp->pr_alloc))
1604 1.88 chs continue;
1605 1.21 thorpej
1606 1.88 chs /*
1607 1.88 chs * If freeing this page would put us below
1608 1.88 chs * the low water mark, stop now.
1609 1.88 chs */
1610 1.88 chs if ((pp->pr_nitems - pp->pr_itemsperpage) <
1611 1.88 chs pp->pr_minitems)
1612 1.88 chs break;
1613 1.21 thorpej
1614 1.88 chs pr_rmpage(pp, ph, &pq);
1615 1.3 pk }
1616 1.3 pk
1617 1.25 thorpej pr_leave(pp);
1618 1.128.2.2 ad mutex_exit(&pp->pr_lock);
1619 1.128.2.7 ad if (LIST_EMPTY(&pq))
1620 1.102 chs return 0;
1621 1.66 thorpej
1622 1.101 thorpej pr_pagelist_free(pp, &pq);
1623 1.128.2.7 ad
1624 1.66 thorpej return (1);
1625 1.3 pk }
1626 1.3 pk
1627 1.3 pk /*
1628 1.3 pk * Drain pools, one at a time.
1629 1.21 thorpej *
1630 1.21 thorpej * Note, we must never be called from an interrupt context.
1631 1.3 pk */
1632 1.3 pk void
1633 1.124 yamt pool_drain(void *arg)
1634 1.3 pk {
1635 1.3 pk struct pool *pp;
1636 1.3 pk
1637 1.61 chs pp = NULL;
1638 1.128.2.7 ad
1639 1.128.2.7 ad /* Find next pool to drain, and add a reference. */
1640 1.128.2.2 ad mutex_enter(&pool_head_lock);
1641 1.61 chs if (drainpp == NULL) {
1642 1.102 chs drainpp = LIST_FIRST(&pool_head);
1643 1.61 chs }
1644 1.128.2.7 ad if (drainpp != NULL) {
1645 1.61 chs pp = drainpp;
1646 1.102 chs drainpp = LIST_NEXT(pp, pr_poollist);
1647 1.61 chs }
1648 1.128.2.7 ad if (pp != NULL)
1649 1.128.2.7 ad pp->pr_refcnt++;
1650 1.128.2.2 ad mutex_exit(&pool_head_lock);
1651 1.128.2.7 ad
1652 1.128.2.7 ad /* If we have a candidate, drain it and unlock. */
1653 1.128.2.7 ad if (pp != NULL) {
1654 1.115 christos pool_reclaim(pp);
1655 1.128.2.7 ad mutex_enter(&pool_head_lock);
1656 1.128.2.7 ad pp->pr_refcnt--;
1657 1.128.2.7 ad cv_broadcast(&pool_busy);
1658 1.128.2.7 ad mutex_exit(&pool_head_lock);
1659 1.128.2.7 ad }
1660 1.3 pk }
1661 1.3 pk
1662 1.3 pk /*
1663 1.3 pk * Diagnostic helpers.
1664 1.3 pk */
1665 1.3 pk void
1666 1.42 thorpej pool_print(struct pool *pp, const char *modif)
1667 1.21 thorpej {
1668 1.21 thorpej
1669 1.25 thorpej pool_print1(pp, modif, printf);
1670 1.21 thorpej }
1671 1.21 thorpej
1672 1.25 thorpej void
1673 1.108 yamt pool_printall(const char *modif, void (*pr)(const char *, ...))
1674 1.108 yamt {
1675 1.108 yamt struct pool *pp;
1676 1.108 yamt
1677 1.108 yamt LIST_FOREACH(pp, &pool_head, pr_poollist) {
1678 1.108 yamt pool_printit(pp, modif, pr);
1679 1.108 yamt }
1680 1.108 yamt }
1681 1.108 yamt
1682 1.108 yamt void
1683 1.42 thorpej pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1684 1.25 thorpej {
1685 1.25 thorpej
1686 1.25 thorpej if (pp == NULL) {
1687 1.25 thorpej (*pr)("Must specify a pool to print.\n");
1688 1.25 thorpej return;
1689 1.25 thorpej }
1690 1.25 thorpej
1691 1.25 thorpej pool_print1(pp, modif, pr);
1692 1.25 thorpej }
1693 1.25 thorpej
1694 1.21 thorpej static void
1695 1.124 yamt pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
1696 1.97 yamt void (*pr)(const char *, ...))
1697 1.88 chs {
1698 1.88 chs struct pool_item_header *ph;
1699 1.88 chs #ifdef DIAGNOSTIC
1700 1.88 chs struct pool_item *pi;
1701 1.88 chs #endif
1702 1.88 chs
1703 1.88 chs LIST_FOREACH(ph, pl, ph_pagelist) {
1704 1.88 chs (*pr)("\t\tpage %p, nmissing %d, time %lu,%lu\n",
1705 1.88 chs ph->ph_page, ph->ph_nmissing,
1706 1.88 chs (u_long)ph->ph_time.tv_sec,
1707 1.88 chs (u_long)ph->ph_time.tv_usec);
1708 1.88 chs #ifdef DIAGNOSTIC
1709 1.97 yamt if (!(pp->pr_roflags & PR_NOTOUCH)) {
1710 1.102 chs LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
1711 1.97 yamt if (pi->pi_magic != PI_MAGIC) {
1712 1.97 yamt (*pr)("\t\t\titem %p, magic 0x%x\n",
1713 1.97 yamt pi, pi->pi_magic);
1714 1.97 yamt }
1715 1.88 chs }
1716 1.88 chs }
1717 1.88 chs #endif
1718 1.88 chs }
1719 1.88 chs }
1720 1.88 chs
1721 1.88 chs static void
1722 1.42 thorpej pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1723 1.3 pk {
1724 1.25 thorpej struct pool_item_header *ph;
1725 1.128.2.7 ad pool_cache_t pc;
1726 1.128.2.7 ad pcg_t *pcg;
1727 1.128.2.7 ad pool_cache_cpu_t *cc;
1728 1.128.2.7 ad uint64_t cpuhit, cpumiss;
1729 1.44 thorpej int i, print_log = 0, print_pagelist = 0, print_cache = 0;
1730 1.25 thorpej char c;
1731 1.25 thorpej
1732 1.25 thorpej while ((c = *modif++) != '\0') {
1733 1.25 thorpej if (c == 'l')
1734 1.25 thorpej print_log = 1;
1735 1.25 thorpej if (c == 'p')
1736 1.25 thorpej print_pagelist = 1;
1737 1.44 thorpej if (c == 'c')
1738 1.44 thorpej print_cache = 1;
1739 1.25 thorpej }
1740 1.25 thorpej
1741 1.128.2.7 ad if ((pc = pp->pr_cache) != NULL) {
1742 1.128.2.7 ad (*pr)("POOL CACHE");
1743 1.128.2.7 ad } else {
1744 1.128.2.7 ad (*pr)("POOL");
1745 1.128.2.7 ad }
1746 1.128.2.7 ad
1747 1.128.2.7 ad (*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
1748 1.25 thorpej pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
1749 1.25 thorpej pp->pr_roflags);
1750 1.66 thorpej (*pr)("\talloc %p\n", pp->pr_alloc);
1751 1.25 thorpej (*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
1752 1.25 thorpej pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
1753 1.25 thorpej (*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
1754 1.25 thorpej pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
1755 1.25 thorpej
1756 1.128.2.7 ad (*pr)("\tnget %lu, nfail %lu, nput %lu\n",
1757 1.25 thorpej pp->pr_nget, pp->pr_nfail, pp->pr_nput);
1758 1.25 thorpej (*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
1759 1.25 thorpej pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
1760 1.25 thorpej
1761 1.25 thorpej if (print_pagelist == 0)
1762 1.25 thorpej goto skip_pagelist;
1763 1.25 thorpej
1764 1.88 chs if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
1765 1.88 chs (*pr)("\n\tempty page list:\n");
1766 1.97 yamt pool_print_pagelist(pp, &pp->pr_emptypages, pr);
1767 1.88 chs if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
1768 1.88 chs (*pr)("\n\tfull page list:\n");
1769 1.97 yamt pool_print_pagelist(pp, &pp->pr_fullpages, pr);
1770 1.88 chs if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
1771 1.88 chs (*pr)("\n\tpartial-page list:\n");
1772 1.97 yamt pool_print_pagelist(pp, &pp->pr_partpages, pr);
1773 1.88 chs
1774 1.25 thorpej if (pp->pr_curpage == NULL)
1775 1.25 thorpej (*pr)("\tno current page\n");
1776 1.25 thorpej else
1777 1.25 thorpej (*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
1778 1.25 thorpej
1779 1.25 thorpej skip_pagelist:
1780 1.25 thorpej if (print_log == 0)
1781 1.25 thorpej goto skip_log;
1782 1.25 thorpej
1783 1.25 thorpej (*pr)("\n");
1784 1.25 thorpej if ((pp->pr_roflags & PR_LOGGING) == 0)
1785 1.25 thorpej (*pr)("\tno log\n");
1786 1.122 christos else {
1787 1.25 thorpej pr_printlog(pp, NULL, pr);
1788 1.122 christos }
1789 1.3 pk
1790 1.25 thorpej skip_log:
1791 1.44 thorpej
1792 1.102 chs #define PR_GROUPLIST(pcg) \
1793 1.102 chs (*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail); \
1794 1.102 chs for (i = 0; i < PCG_NOBJECTS; i++) { \
1795 1.102 chs if (pcg->pcg_objects[i].pcgo_pa != \
1796 1.102 chs POOL_PADDR_INVALID) { \
1797 1.102 chs (*pr)("\t\t\t%p, 0x%llx\n", \
1798 1.102 chs pcg->pcg_objects[i].pcgo_va, \
1799 1.102 chs (unsigned long long) \
1800 1.102 chs pcg->pcg_objects[i].pcgo_pa); \
1801 1.102 chs } else { \
1802 1.102 chs (*pr)("\t\t\t%p\n", \
1803 1.102 chs pcg->pcg_objects[i].pcgo_va); \
1804 1.102 chs } \
1805 1.102 chs }
1806 1.102 chs
1807 1.128.2.7 ad if (pc != NULL) {
1808 1.128.2.7 ad cpuhit = 0;
1809 1.128.2.7 ad cpumiss = 0;
1810 1.128.2.7 ad for (i = 0; i < MAXCPUS; i++) {
1811 1.128.2.7 ad if ((cc = pc->pc_cpus[i]) == NULL)
1812 1.128.2.7 ad continue;
1813 1.128.2.7 ad cpuhit += cc->cc_hits;
1814 1.128.2.7 ad cpumiss += cc->cc_misses;
1815 1.128.2.7 ad }
1816 1.128.2.7 ad (*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
1817 1.128.2.7 ad (*pr)("\tcache layer hits %llu misses %llu\n",
1818 1.128.2.7 ad pc->pc_hits, pc->pc_misses);
1819 1.128.2.7 ad (*pr)("\tcache layer entry uncontended %llu contended %llu\n",
1820 1.128.2.7 ad pc->pc_hits + pc->pc_misses - pc->pc_contended,
1821 1.128.2.7 ad pc->pc_contended);
1822 1.128.2.7 ad (*pr)("\tcache layer empty groups %u full groups %u\n",
1823 1.128.2.7 ad pc->pc_nempty, pc->pc_nfull);
1824 1.128.2.7 ad if (print_cache) {
1825 1.128.2.7 ad (*pr)("\tfull cache groups:\n");
1826 1.128.2.7 ad for (pcg = pc->pc_fullgroups; pcg != NULL;
1827 1.128.2.7 ad pcg = pcg->pcg_next) {
1828 1.128.2.7 ad PR_GROUPLIST(pcg);
1829 1.128.2.7 ad }
1830 1.128.2.7 ad (*pr)("\tempty cache groups:\n");
1831 1.128.2.7 ad for (pcg = pc->pc_emptygroups; pcg != NULL;
1832 1.128.2.7 ad pcg = pcg->pcg_next) {
1833 1.128.2.7 ad PR_GROUPLIST(pcg);
1834 1.128.2.7 ad }
1835 1.103 chs }
1836 1.44 thorpej }
1837 1.102 chs #undef PR_GROUPLIST
1838 1.44 thorpej
1839 1.88 chs pr_enter_check(pp, pr);
1840 1.88 chs }
1841 1.88 chs
1842 1.88 chs static int
1843 1.88 chs pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
1844 1.88 chs {
1845 1.88 chs struct pool_item *pi;
1846 1.128 christos void *page;
1847 1.88 chs int n;
1848 1.88 chs
1849 1.121 yamt if ((pp->pr_roflags & PR_NOALIGN) == 0) {
1850 1.128 christos page = (void *)((uintptr_t)ph & pp->pr_alloc->pa_pagemask);
1851 1.121 yamt if (page != ph->ph_page &&
1852 1.121 yamt (pp->pr_roflags & PR_PHINPAGE) != 0) {
1853 1.121 yamt if (label != NULL)
1854 1.121 yamt printf("%s: ", label);
1855 1.121 yamt printf("pool(%p:%s): page inconsistency: page %p;"
1856 1.121 yamt " at page head addr %p (p %p)\n", pp,
1857 1.121 yamt pp->pr_wchan, ph->ph_page,
1858 1.121 yamt ph, page);
1859 1.121 yamt return 1;
1860 1.121 yamt }
1861 1.88 chs }
1862 1.3 pk
1863 1.97 yamt if ((pp->pr_roflags & PR_NOTOUCH) != 0)
1864 1.97 yamt return 0;
1865 1.97 yamt
1866 1.102 chs for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
1867 1.88 chs pi != NULL;
1868 1.102 chs pi = LIST_NEXT(pi,pi_list), n++) {
1869 1.88 chs
1870 1.88 chs #ifdef DIAGNOSTIC
1871 1.88 chs if (pi->pi_magic != PI_MAGIC) {
1872 1.88 chs if (label != NULL)
1873 1.88 chs printf("%s: ", label);
1874 1.88 chs printf("pool(%s): free list modified: magic=%x;"
1875 1.121 yamt " page %p; item ordinal %d; addr %p\n",
1876 1.88 chs pp->pr_wchan, pi->pi_magic, ph->ph_page,
1877 1.121 yamt n, pi);
1878 1.88 chs panic("pool");
1879 1.88 chs }
1880 1.88 chs #endif
1881 1.121 yamt if ((pp->pr_roflags & PR_NOALIGN) != 0) {
1882 1.121 yamt continue;
1883 1.121 yamt }
1884 1.128 christos page = (void *)((uintptr_t)pi & pp->pr_alloc->pa_pagemask);
1885 1.88 chs if (page == ph->ph_page)
1886 1.88 chs continue;
1887 1.88 chs
1888 1.88 chs if (label != NULL)
1889 1.88 chs printf("%s: ", label);
1890 1.88 chs printf("pool(%p:%s): page inconsistency: page %p;"
1891 1.88 chs " item ordinal %d; addr %p (p %p)\n", pp,
1892 1.88 chs pp->pr_wchan, ph->ph_page,
1893 1.88 chs n, pi, page);
1894 1.88 chs return 1;
1895 1.88 chs }
1896 1.88 chs return 0;
1897 1.3 pk }
1898 1.3 pk
1899 1.88 chs
1900 1.3 pk int
1901 1.42 thorpej pool_chk(struct pool *pp, const char *label)
1902 1.3 pk {
1903 1.3 pk struct pool_item_header *ph;
1904 1.3 pk int r = 0;
1905 1.3 pk
1906 1.128.2.2 ad mutex_enter(&pp->pr_lock);
1907 1.88 chs LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
1908 1.88 chs r = pool_chk_page(pp, label, ph);
1909 1.88 chs if (r) {
1910 1.88 chs goto out;
1911 1.88 chs }
1912 1.88 chs }
1913 1.88 chs LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
1914 1.88 chs r = pool_chk_page(pp, label, ph);
1915 1.88 chs if (r) {
1916 1.3 pk goto out;
1917 1.3 pk }
1918 1.88 chs }
1919 1.88 chs LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
1920 1.88 chs r = pool_chk_page(pp, label, ph);
1921 1.88 chs if (r) {
1922 1.3 pk goto out;
1923 1.3 pk }
1924 1.3 pk }
1925 1.88 chs
1926 1.3 pk out:
1927 1.128.2.2 ad mutex_exit(&pp->pr_lock);
1928 1.3 pk return (r);
1929 1.43 thorpej }
1930 1.43 thorpej
1931 1.43 thorpej /*
1932 1.43 thorpej * pool_cache_init:
1933 1.43 thorpej *
1934 1.43 thorpej * Initialize a pool cache.
1935 1.128.2.7 ad */
1936 1.128.2.7 ad pool_cache_t
1937 1.128.2.7 ad pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
1938 1.128.2.7 ad const char *wchan, struct pool_allocator *palloc, int ipl,
1939 1.128.2.7 ad int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
1940 1.128.2.7 ad {
1941 1.128.2.7 ad pool_cache_t pc;
1942 1.128.2.7 ad
1943 1.128.2.7 ad pc = pool_get(&cache_pool, PR_WAITOK);
1944 1.128.2.7 ad if (pc == NULL)
1945 1.128.2.7 ad return NULL;
1946 1.128.2.7 ad
1947 1.128.2.7 ad pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
1948 1.128.2.7 ad palloc, ipl, ctor, dtor, arg);
1949 1.128.2.7 ad
1950 1.128.2.7 ad return pc;
1951 1.128.2.7 ad }
1952 1.128.2.7 ad
1953 1.128.2.7 ad /*
1954 1.128.2.7 ad * pool_cache_bootstrap:
1955 1.43 thorpej *
1956 1.128.2.7 ad * Kernel-private version of pool_cache_init(). The caller
1957 1.128.2.7 ad * provides initial storage.
1958 1.43 thorpej */
1959 1.43 thorpej void
1960 1.128.2.7 ad pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
1961 1.128.2.7 ad u_int align_offset, u_int flags, const char *wchan,
1962 1.128.2.7 ad struct pool_allocator *palloc, int ipl,
1963 1.128.2.7 ad int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
1964 1.43 thorpej void *arg)
1965 1.43 thorpej {
1966 1.128.2.7 ad CPU_INFO_ITERATOR cii;
1967 1.128.2.7 ad struct cpu_info *ci;
1968 1.128.2.7 ad struct pool *pp;
1969 1.43 thorpej
1970 1.128.2.7 ad pp = &pc->pc_pool;
1971 1.128.2.7 ad if (palloc == NULL && ipl == IPL_NONE)
1972 1.128.2.7 ad palloc = &pool_allocator_nointr;
1973 1.128.2.7 ad pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl);
1974 1.43 thorpej
1975 1.128.2.7 ad mutex_init(&pc->pc_lock, MUTEX_DEFAULT, pp->pr_ipl);
1976 1.43 thorpej
1977 1.128.2.7 ad pc->pc_emptygroups = NULL;
1978 1.128.2.7 ad pc->pc_fullgroups = NULL;
1979 1.43 thorpej pc->pc_ctor = ctor;
1980 1.43 thorpej pc->pc_dtor = dtor;
1981 1.43 thorpej pc->pc_arg = arg;
1982 1.128.2.7 ad pc->pc_hits = 0;
1983 1.48 thorpej pc->pc_misses = 0;
1984 1.128.2.7 ad pc->pc_nempty = 0;
1985 1.128.2.7 ad pc->pc_nfull = 0;
1986 1.128.2.7 ad pc->pc_contended = 0;
1987 1.128.2.7 ad pc->pc_refcnt = 0;
1988 1.128.2.7 ad
1989 1.128.2.7 ad /* Allocate per-CPU caches. */
1990 1.128.2.7 ad memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
1991 1.128.2.7 ad pc->pc_ncpu = 0;
1992 1.128.2.7 ad for (CPU_INFO_FOREACH(cii, ci)) {
1993 1.128.2.7 ad pool_cache_cpu_init1(ci, pc);
1994 1.128.2.7 ad }
1995 1.128.2.7 ad
1996 1.128.2.2 ad if (__predict_true(!cold)) {
1997 1.128.2.2 ad mutex_enter(&pp->pr_lock);
1998 1.128.2.7 ad pp->pr_cache = pc;
1999 1.128.2.2 ad mutex_exit(&pp->pr_lock);
2000 1.128.2.7 ad mutex_enter(&pool_head_lock);
2001 1.128.2.7 ad LIST_INSERT_HEAD(&pool_cache_head, pc, pc_cachelist);
2002 1.128.2.7 ad mutex_exit(&pool_head_lock);
2003 1.128.2.7 ad } else {
2004 1.128.2.7 ad pp->pr_cache = pc;
2005 1.128.2.7 ad LIST_INSERT_HEAD(&pool_cache_head, pc, pc_cachelist);
2006 1.128.2.7 ad }
2007 1.43 thorpej }
2008 1.43 thorpej
2009 1.43 thorpej /*
2010 1.43 thorpej * pool_cache_destroy:
2011 1.43 thorpej *
2012 1.43 thorpej * Destroy a pool cache.
2013 1.43 thorpej */
2014 1.43 thorpej void
2015 1.128.2.7 ad pool_cache_destroy(pool_cache_t pc)
2016 1.43 thorpej {
2017 1.128.2.7 ad struct pool *pp = &pc->pc_pool;
2018 1.128.2.7 ad pool_cache_cpu_t *cc;
2019 1.128.2.7 ad pcg_t *pcg;
2020 1.128.2.7 ad int i;
2021 1.128.2.7 ad
2022 1.128.2.7 ad /* Remove it from the global list. */
2023 1.128.2.7 ad mutex_enter(&pool_head_lock);
2024 1.128.2.7 ad while (pc->pc_refcnt != 0)
2025 1.128.2.7 ad cv_wait(&pool_busy, &pool_head_lock);
2026 1.128.2.7 ad LIST_REMOVE(pc, pc_cachelist);
2027 1.128.2.7 ad mutex_exit(&pool_head_lock);
2028 1.43 thorpej
2029 1.43 thorpej /* First, invalidate the entire cache. */
2030 1.43 thorpej pool_cache_invalidate(pc);
2031 1.43 thorpej
2032 1.128.2.7 ad /* Disassociate it from the pool. */
2033 1.128.2.2 ad mutex_enter(&pp->pr_lock);
2034 1.128.2.7 ad pp->pr_cache = NULL;
2035 1.128.2.2 ad mutex_exit(&pp->pr_lock);
2036 1.128.2.2 ad
2037 1.128.2.7 ad /* Destroy per-CPU data */
2038 1.128.2.7 ad for (i = 0; i < MAXCPUS; i++) {
2039 1.128.2.7 ad if ((cc = pc->pc_cpus[i]) == NULL)
2040 1.128.2.7 ad continue;
2041 1.128.2.7 ad if ((pcg = cc->cc_current) != NULL) {
2042 1.128.2.7 ad pcg->pcg_next = NULL;
2043 1.128.2.7 ad pool_cache_invalidate_groups(pc, pcg);
2044 1.128.2.7 ad }
2045 1.128.2.7 ad if ((pcg = cc->cc_previous) != NULL) {
2046 1.128.2.7 ad pcg->pcg_next = NULL;
2047 1.128.2.7 ad pool_cache_invalidate_groups(pc, pcg);
2048 1.128.2.7 ad }
2049 1.128.2.7 ad if (cc != &pc->pc_cpu0)
2050 1.128.2.7 ad pool_put(&cache_cpu_pool, cc);
2051 1.128.2.7 ad }
2052 1.128.2.7 ad
2053 1.128.2.7 ad /* Finally, destroy it. */
2054 1.128.2.2 ad mutex_destroy(&pc->pc_lock);
2055 1.128.2.7 ad pool_destroy(pp);
2056 1.128.2.7 ad pool_put(&cache_pool, pc);
2057 1.128.2.7 ad }
2058 1.128.2.7 ad
2059 1.128.2.7 ad /*
2060 1.128.2.7 ad * pool_cache_cpu_init1:
2061 1.128.2.7 ad *
2062 1.128.2.7 ad * Called for each pool_cache whenever a new CPU is attached.
2063 1.128.2.7 ad */
2064 1.128.2.7 ad static void
2065 1.128.2.7 ad pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
2066 1.128.2.7 ad {
2067 1.128.2.7 ad pool_cache_cpu_t *cc;
2068 1.128.2.7 ad
2069 1.128.2.7 ad KASSERT(((uintptr_t)pc->pc_cpus & (CACHE_LINE_SIZE - 1)) == 0);
2070 1.128.2.7 ad
2071 1.128.2.7 ad if ((cc = pc->pc_cpus[ci->ci_index]) != NULL) {
2072 1.128.2.7 ad KASSERT(cc->cc_cpu = ci);
2073 1.128.2.7 ad return;
2074 1.128.2.7 ad }
2075 1.128.2.7 ad
2076 1.128.2.7 ad /*
2077 1.128.2.7 ad * The first CPU is 'free'. This needs to be the case for
2078 1.128.2.7 ad * bootstrap - we may not be able to allocate yet.
2079 1.128.2.7 ad */
2080 1.128.2.7 ad if (pc->pc_ncpu == 0) {
2081 1.128.2.7 ad cc = &pc->pc_cpu0;
2082 1.128.2.7 ad pc->pc_ncpu = 1;
2083 1.128.2.7 ad } else {
2084 1.128.2.7 ad mutex_enter(&pc->pc_lock);
2085 1.128.2.7 ad pc->pc_ncpu++;
2086 1.128.2.7 ad mutex_exit(&pc->pc_lock);
2087 1.128.2.7 ad cc = pool_get(&cache_cpu_pool, PR_WAITOK);
2088 1.128.2.7 ad }
2089 1.128.2.7 ad
2090 1.128.2.7 ad cc->cc_ipl = pc->pc_pool.pr_ipl;
2091 1.128.2.7 ad cc->cc_iplcookie = makeiplcookie(cc->cc_ipl);
2092 1.128.2.7 ad cc->cc_cache = pc;
2093 1.128.2.7 ad cc->cc_cpu = ci;
2094 1.128.2.7 ad cc->cc_hits = 0;
2095 1.128.2.7 ad cc->cc_misses = 0;
2096 1.128.2.7 ad cc->cc_current = NULL;
2097 1.128.2.7 ad cc->cc_previous = NULL;
2098 1.128.2.7 ad
2099 1.128.2.7 ad pc->pc_cpus[ci->ci_index] = cc;
2100 1.128.2.7 ad }
2101 1.128.2.7 ad
2102 1.128.2.7 ad /*
2103 1.128.2.7 ad * pool_cache_cpu_init:
2104 1.128.2.7 ad *
2105 1.128.2.7 ad * Called whenever a new CPU is attached.
2106 1.128.2.7 ad */
2107 1.128.2.7 ad void
2108 1.128.2.7 ad pool_cache_cpu_init(struct cpu_info *ci)
2109 1.128.2.7 ad {
2110 1.128.2.7 ad pool_cache_t pc;
2111 1.128.2.7 ad
2112 1.128.2.7 ad mutex_enter(&pool_head_lock);
2113 1.128.2.7 ad LIST_FOREACH(pc, &pool_cache_head, pc_cachelist) {
2114 1.128.2.7 ad pc->pc_refcnt++;
2115 1.128.2.7 ad mutex_exit(&pool_head_lock);
2116 1.128.2.7 ad
2117 1.128.2.7 ad pool_cache_cpu_init1(ci, pc);
2118 1.128.2.7 ad
2119 1.128.2.7 ad mutex_enter(&pool_head_lock);
2120 1.128.2.7 ad pc->pc_refcnt--;
2121 1.128.2.7 ad cv_broadcast(&pool_busy);
2122 1.128.2.7 ad }
2123 1.128.2.7 ad mutex_exit(&pool_head_lock);
2124 1.128.2.7 ad }
2125 1.128.2.7 ad
2126 1.128.2.7 ad /*
2127 1.128.2.7 ad * pool_cache_reclaim:
2128 1.128.2.7 ad *
2129 1.128.2.7 ad * Reclaim memory from a pool cache.
2130 1.128.2.7 ad */
2131 1.128.2.7 ad bool
2132 1.128.2.7 ad pool_cache_reclaim(pool_cache_t pc)
2133 1.128.2.7 ad {
2134 1.128.2.7 ad
2135 1.128.2.7 ad return pool_reclaim(&pc->pc_pool);
2136 1.43 thorpej }
2137 1.43 thorpej
2138 1.128.2.7 ad /*
2139 1.128.2.7 ad * pool_cache_destruct_object:
2140 1.128.2.7 ad *
2141 1.128.2.7 ad * Force destruction of an object and its release back into
2142 1.128.2.7 ad * the pool.
2143 1.128.2.7 ad */
2144 1.128.2.7 ad void
2145 1.128.2.7 ad pool_cache_destruct_object(pool_cache_t pc, void *object)
2146 1.128.2.7 ad {
2147 1.128.2.7 ad
2148 1.128.2.7 ad if (pc->pc_dtor != NULL)
2149 1.128.2.7 ad (*pc->pc_dtor)(pc->pc_arg, object);
2150 1.128.2.7 ad pool_put(&pc->pc_pool, object);
2151 1.128.2.7 ad }
2152 1.128.2.7 ad
2153 1.128.2.7 ad /*
2154 1.128.2.7 ad * pool_cache_invalidate_groups:
2155 1.128.2.7 ad *
2156 1.128.2.7 ad * Invalidate a chain of groups and destruct all objects.
2157 1.128.2.7 ad */
2158 1.102 chs static void
2159 1.128.2.7 ad pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
2160 1.102 chs {
2161 1.128.2.7 ad void *object;
2162 1.128.2.7 ad pcg_t *next;
2163 1.128.2.7 ad int i;
2164 1.128.2.7 ad
2165 1.128.2.7 ad for (; pcg != NULL; pcg = next) {
2166 1.128.2.7 ad next = pcg->pcg_next;
2167 1.128.2.7 ad
2168 1.128.2.7 ad for (i = 0; i < pcg->pcg_avail; i++) {
2169 1.128.2.7 ad object = pcg->pcg_objects[i].pcgo_va;
2170 1.128.2.8 ad pool_cache_destruct_object(pc, object);
2171 1.128.2.7 ad }
2172 1.102 chs
2173 1.102 chs pool_put(&pcgpool, pcg);
2174 1.102 chs }
2175 1.102 chs }
2176 1.102 chs
2177 1.43 thorpej /*
2178 1.128.2.7 ad * pool_cache_invalidate:
2179 1.43 thorpej *
2180 1.128.2.7 ad * Invalidate a pool cache (destruct and release all of the
2181 1.128.2.7 ad * cached objects). Does not reclaim objects from the pool.
2182 1.43 thorpej */
2183 1.128.2.7 ad void
2184 1.128.2.7 ad pool_cache_invalidate(pool_cache_t pc)
2185 1.43 thorpej {
2186 1.128.2.7 ad pcg_t *full, *empty;
2187 1.43 thorpej
2188 1.128.2.2 ad mutex_enter(&pc->pc_lock);
2189 1.128.2.7 ad full = pc->pc_fullgroups;
2190 1.128.2.7 ad empty = pc->pc_emptygroups;
2191 1.128.2.7 ad pc->pc_fullgroups = NULL;
2192 1.128.2.7 ad pc->pc_emptygroups = NULL;
2193 1.128.2.7 ad pc->pc_nfull = 0;
2194 1.128.2.7 ad pc->pc_nempty = 0;
2195 1.128.2.7 ad mutex_exit(&pc->pc_lock);
2196 1.43 thorpej
2197 1.128.2.7 ad pool_cache_invalidate_groups(pc, full);
2198 1.128.2.7 ad pool_cache_invalidate_groups(pc, empty);
2199 1.128.2.7 ad }
2200 1.43 thorpej
2201 1.128.2.7 ad void
2202 1.128.2.7 ad pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
2203 1.128.2.7 ad {
2204 1.125 ad
2205 1.128.2.7 ad pool_set_drain_hook(&pc->pc_pool, fn, arg);
2206 1.128.2.7 ad }
2207 1.43 thorpej
2208 1.128.2.7 ad void
2209 1.128.2.7 ad pool_cache_setlowat(pool_cache_t pc, int n)
2210 1.128.2.7 ad {
2211 1.43 thorpej
2212 1.128.2.7 ad pool_setlowat(&pc->pc_pool, n);
2213 1.128.2.7 ad }
2214 1.43 thorpej
2215 1.128.2.7 ad void
2216 1.128.2.7 ad pool_cache_sethiwat(pool_cache_t pc, int n)
2217 1.128.2.7 ad {
2218 1.128.2.7 ad
2219 1.128.2.7 ad pool_sethiwat(&pc->pc_pool, n);
2220 1.43 thorpej }
2221 1.43 thorpej
2222 1.43 thorpej void
2223 1.128.2.7 ad pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
2224 1.43 thorpej {
2225 1.43 thorpej
2226 1.128.2.7 ad pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
2227 1.128.2.7 ad }
2228 1.128.2.7 ad
2229 1.128.2.7 ad static inline pool_cache_cpu_t *
2230 1.128.2.7 ad pool_cache_cpu_enter(pool_cache_t pc, int *s)
2231 1.128.2.7 ad {
2232 1.128.2.7 ad pool_cache_cpu_t *cc;
2233 1.128.2.7 ad struct cpu_info *ci;
2234 1.125 ad
2235 1.128.2.7 ad /*
2236 1.128.2.7 ad * Prevent other users of the cache from accessing our
2237 1.128.2.7 ad * CPU-local data. To avoid touching shared state, we
2238 1.128.2.7 ad * pull the neccessary information from CPU local data.
2239 1.128.2.7 ad */
2240 1.128.2.7 ad ci = curcpu();
2241 1.128.2.8 ad KASSERT(ci->ci_data.cpu_index < MAXCPUS);
2242 1.128.2.7 ad cc = pc->pc_cpus[ci->ci_data.cpu_index];
2243 1.128.2.8 ad KASSERT(cc->cc_cache == pc);
2244 1.128.2.7 ad if (cc->cc_ipl == IPL_NONE) {
2245 1.128.2.7 ad crit_enter();
2246 1.128.2.7 ad } else {
2247 1.128.2.7 ad *s = splraiseipl(cc->cc_iplcookie);
2248 1.109 christos }
2249 1.109 christos
2250 1.128.2.7 ad /* Moved to another CPU before disabling preemption? */
2251 1.128.2.7 ad if (__predict_false(ci != curcpu())) {
2252 1.128.2.7 ad ci = curcpu();
2253 1.128.2.7 ad cc = pc->pc_cpus[ci->ci_data.cpu_index];
2254 1.128.2.7 ad }
2255 1.43 thorpej
2256 1.128.2.7 ad #ifdef DIAGNOSTIC
2257 1.128.2.7 ad KASSERT(cc->cc_cpu == ci);
2258 1.128.2.7 ad KASSERT(((uintptr_t)cc & (CACHE_LINE_SIZE - 1)) == 0);
2259 1.128.2.7 ad #endif
2260 1.128.2.7 ad
2261 1.128.2.7 ad return cc;
2262 1.128.2.7 ad }
2263 1.128.2.7 ad
2264 1.128.2.7 ad static inline void
2265 1.128.2.7 ad pool_cache_cpu_exit(pool_cache_cpu_t *cc, int *s)
2266 1.128.2.7 ad {
2267 1.128.2.7 ad
2268 1.128.2.7 ad /* No longer need exclusive access to the per-CPU data. */
2269 1.128.2.7 ad if (cc->cc_ipl == IPL_NONE) {
2270 1.128.2.7 ad crit_exit();
2271 1.128.2.7 ad } else {
2272 1.128.2.7 ad splx(*s);
2273 1.128.2.7 ad }
2274 1.128.2.7 ad }
2275 1.128.2.7 ad
2276 1.128.2.7 ad #if __GNUC_PREREQ__(3, 0)
2277 1.128.2.7 ad __attribute ((noinline))
2278 1.128.2.7 ad #endif
2279 1.128.2.7 ad pool_cache_cpu_t *
2280 1.128.2.7 ad pool_cache_get_slow(pool_cache_cpu_t *cc, int *s, void **objectp,
2281 1.128.2.7 ad paddr_t *pap, int flags)
2282 1.128.2.7 ad {
2283 1.128.2.7 ad pcg_t *pcg, *cur;
2284 1.128.2.7 ad uint64_t ncsw;
2285 1.128.2.7 ad pool_cache_t pc;
2286 1.128.2.7 ad void *object;
2287 1.128.2.7 ad
2288 1.128.2.7 ad pc = cc->cc_cache;
2289 1.128.2.7 ad cc->cc_misses++;
2290 1.128.2.7 ad
2291 1.128.2.7 ad /*
2292 1.128.2.7 ad * Nothing was available locally. Try and grab a group
2293 1.128.2.7 ad * from the cache.
2294 1.128.2.7 ad */
2295 1.128.2.7 ad if (!mutex_tryenter(&pc->pc_lock)) {
2296 1.128.2.7 ad ncsw = curlwp->l_ncsw;
2297 1.128.2.7 ad mutex_enter(&pc->pc_lock);
2298 1.128.2.7 ad pc->pc_contended++;
2299 1.128.2.7 ad
2300 1.128.2.7 ad /*
2301 1.128.2.7 ad * If we context switched while locking, then
2302 1.128.2.7 ad * our view of the per-CPU data is invalid:
2303 1.128.2.7 ad * retry.
2304 1.128.2.7 ad */
2305 1.128.2.7 ad if (curlwp->l_ncsw != ncsw) {
2306 1.128.2.7 ad mutex_exit(&pc->pc_lock);
2307 1.128.2.7 ad pool_cache_cpu_exit(cc, s);
2308 1.128.2.7 ad return pool_cache_cpu_enter(pc, s);
2309 1.43 thorpej }
2310 1.102 chs }
2311 1.43 thorpej
2312 1.128.2.7 ad if ((pcg = pc->pc_fullgroups) != NULL) {
2313 1.43 thorpej /*
2314 1.128.2.7 ad * If there's a full group, release our empty
2315 1.128.2.7 ad * group back to the cache. Install the full
2316 1.128.2.7 ad * group as cc_current and return.
2317 1.43 thorpej */
2318 1.128.2.7 ad if ((cur = cc->cc_current) != NULL) {
2319 1.128.2.7 ad KASSERT(cur->pcg_avail == 0);
2320 1.128.2.7 ad cur->pcg_next = pc->pc_emptygroups;
2321 1.128.2.7 ad pc->pc_emptygroups = cur;
2322 1.128.2.7 ad pc->pc_nempty++;
2323 1.128.2.7 ad }
2324 1.128.2.7 ad KASSERT(pcg->pcg_avail == PCG_NOBJECTS);
2325 1.128.2.7 ad cc->cc_current = pcg;
2326 1.128.2.7 ad pc->pc_fullgroups = pcg->pcg_next;
2327 1.128.2.7 ad pc->pc_hits++;
2328 1.128.2.7 ad pc->pc_nfull--;
2329 1.128.2.2 ad mutex_exit(&pc->pc_lock);
2330 1.128.2.7 ad return cc;
2331 1.128.2.7 ad }
2332 1.102 chs
2333 1.128.2.7 ad /*
2334 1.128.2.7 ad * Nothing available locally or in cache. Take the slow
2335 1.128.2.7 ad * path: fetch a new object from the pool and construct
2336 1.128.2.7 ad * it.
2337 1.128.2.7 ad */
2338 1.128.2.7 ad pc->pc_misses++;
2339 1.128.2.7 ad mutex_exit(&pc->pc_lock);
2340 1.128.2.7 ad pool_cache_cpu_exit(cc, s);
2341 1.128.2.7 ad
2342 1.128.2.7 ad object = pool_get(&pc->pc_pool, flags);
2343 1.128.2.7 ad *objectp = object;
2344 1.128.2.7 ad if (object == NULL)
2345 1.128.2.7 ad return NULL;
2346 1.128.2.7 ad
2347 1.128.2.7 ad if (pc->pc_ctor != NULL) {
2348 1.128.2.7 ad if ((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0) {
2349 1.128.2.7 ad pool_put(&pc->pc_pool, object);
2350 1.128.2.7 ad *objectp = NULL;
2351 1.128.2.7 ad return NULL;
2352 1.43 thorpej }
2353 1.43 thorpej }
2354 1.43 thorpej
2355 1.128.2.7 ad KASSERT((((vaddr_t)object + pc->pc_pool.pr_itemoffset) &
2356 1.128.2.7 ad (pc->pc_pool.pr_align - 1)) == 0);
2357 1.43 thorpej
2358 1.128.2.7 ad if (pap != NULL) {
2359 1.128.2.7 ad #ifdef POOL_VTOPHYS
2360 1.128.2.7 ad *pap = POOL_VTOPHYS(object);
2361 1.128.2.7 ad #else
2362 1.128.2.7 ad *pap = POOL_PADDR_INVALID;
2363 1.128.2.7 ad #endif
2364 1.102 chs }
2365 1.51 thorpej
2366 1.128.2.7 ad FREECHECK_OUT(&pc->pc_freecheck, object);
2367 1.128.2.7 ad return NULL;
2368 1.43 thorpej }
2369 1.43 thorpej
2370 1.128.2.6 ad /*
2371 1.128.2.7 ad * pool_cache_get{,_paddr}:
2372 1.128.2.6 ad *
2373 1.128.2.7 ad * Get an object from a pool cache (optionally returning
2374 1.128.2.7 ad * the physical address of the object).
2375 1.128.2.6 ad */
2376 1.128.2.7 ad void *
2377 1.128.2.7 ad pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
2378 1.102 chs {
2379 1.128.2.7 ad pool_cache_cpu_t *cc;
2380 1.128.2.7 ad pcg_t *pcg;
2381 1.102 chs void *object;
2382 1.128.2.7 ad int s;
2383 1.102 chs
2384 1.128.2.7 ad #ifdef LOCKDEBUG
2385 1.128.2.7 ad if (flags & PR_WAITOK)
2386 1.128.2.7 ad ASSERT_SLEEPABLE(NULL, "pool_cache_get(PR_WAITOK)");
2387 1.128.2.7 ad #endif
2388 1.128.2.6 ad
2389 1.128.2.7 ad cc = pool_cache_cpu_enter(pc, &s);
2390 1.128.2.7 ad do {
2391 1.128.2.7 ad /* Try and allocate an object from the current group. */
2392 1.128.2.7 ad pcg = cc->cc_current;
2393 1.128.2.7 ad if (pcg != NULL && pcg->pcg_avail > 0) {
2394 1.128.2.8 ad object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;
2395 1.128.2.8 ad if (pap != NULL)
2396 1.128.2.8 ad *pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa;
2397 1.128.2.8 ad pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL;
2398 1.128.2.8 ad KASSERT(pcg->pcg_avail <= PCG_NOBJECTS);
2399 1.128.2.8 ad KASSERT(object != NULL);
2400 1.128.2.7 ad cc->cc_hits++;
2401 1.128.2.7 ad pool_cache_cpu_exit(cc, &s);
2402 1.128.2.7 ad FREECHECK_OUT(&pc->pc_freecheck, object);
2403 1.128.2.7 ad return object;
2404 1.128.2.7 ad }
2405 1.128.2.6 ad
2406 1.128.2.7 ad /*
2407 1.128.2.7 ad * That failed. If the previous group isn't empty, swap
2408 1.128.2.7 ad * it with the current group and allocate from there.
2409 1.128.2.7 ad */
2410 1.128.2.7 ad pcg = cc->cc_previous;
2411 1.128.2.7 ad if (pcg != NULL && pcg->pcg_avail > 0) {
2412 1.128.2.7 ad cc->cc_previous = cc->cc_current;
2413 1.128.2.7 ad cc->cc_current = pcg;
2414 1.128.2.7 ad continue;
2415 1.102 chs }
2416 1.128.2.6 ad
2417 1.128.2.7 ad /*
2418 1.128.2.7 ad * Can't allocate from either group: try the slow path.
2419 1.128.2.7 ad * If get_slow() allocated an object for us, or if
2420 1.128.2.7 ad * no more objects are available, it will return NULL.
2421 1.128.2.7 ad * Otherwise, we need to retry.
2422 1.128.2.7 ad */
2423 1.128.2.7 ad cc = pool_cache_get_slow(cc, &s, &object, pap, flags);
2424 1.128.2.7 ad } while (cc != NULL);
2425 1.128.2.7 ad
2426 1.128.2.7 ad return object;
2427 1.105 christos }
2428 1.105 christos
2429 1.128.2.7 ad #if __GNUC_PREREQ__(3, 0)
2430 1.128.2.7 ad __attribute ((noinline))
2431 1.128.2.7 ad #endif
2432 1.128.2.7 ad pool_cache_cpu_t *
2433 1.128.2.7 ad pool_cache_put_slow(pool_cache_cpu_t *cc, int *s, void *object, paddr_t pa)
2434 1.105 christos {
2435 1.128.2.7 ad pcg_t *pcg, *cur;
2436 1.128.2.7 ad uint64_t ncsw;
2437 1.128.2.7 ad pool_cache_t pc;
2438 1.105 christos
2439 1.128.2.7 ad pc = cc->cc_cache;
2440 1.128.2.7 ad cc->cc_misses++;
2441 1.105 christos
2442 1.128.2.7 ad /*
2443 1.128.2.7 ad * No free slots locally. Try to grab an empty, unused
2444 1.128.2.7 ad * group from the cache.
2445 1.128.2.7 ad */
2446 1.128.2.7 ad if (!mutex_tryenter(&pc->pc_lock)) {
2447 1.128.2.7 ad ncsw = curlwp->l_ncsw;
2448 1.128.2.7 ad mutex_enter(&pc->pc_lock);
2449 1.128.2.7 ad pc->pc_contended++;
2450 1.102 chs
2451 1.128.2.7 ad /*
2452 1.128.2.7 ad * If we context switched while locking, then
2453 1.128.2.7 ad * our view of the per-CPU data is invalid:
2454 1.128.2.7 ad * retry.
2455 1.128.2.7 ad */
2456 1.128.2.7 ad if (curlwp->l_ncsw != ncsw) {
2457 1.128.2.7 ad mutex_exit(&pc->pc_lock);
2458 1.128.2.7 ad pool_cache_cpu_exit(cc, s);
2459 1.128.2.7 ad return pool_cache_cpu_enter(pc, s);
2460 1.128.2.7 ad }
2461 1.128.2.7 ad }
2462 1.101 thorpej
2463 1.128.2.7 ad if ((pcg = pc->pc_emptygroups) != NULL) {
2464 1.128.2.7 ad /*
2465 1.128.2.7 ad * If there's a empty group, release our full
2466 1.128.2.7 ad * group back to the cache. Install the empty
2467 1.128.2.7 ad * group as cc_current and return.
2468 1.128.2.7 ad */
2469 1.128.2.7 ad if ((cur = cc->cc_current) != NULL) {
2470 1.128.2.7 ad KASSERT(cur->pcg_avail == PCG_NOBJECTS);
2471 1.128.2.7 ad cur->pcg_next = pc->pc_fullgroups;
2472 1.128.2.7 ad pc->pc_fullgroups = cur;
2473 1.128.2.7 ad pc->pc_nfull++;
2474 1.128.2.7 ad }
2475 1.128.2.7 ad KASSERT(pcg->pcg_avail == 0);
2476 1.128.2.7 ad cc->cc_current = pcg;
2477 1.128.2.7 ad pc->pc_emptygroups = pcg->pcg_next;
2478 1.128.2.7 ad pc->pc_hits++;
2479 1.128.2.7 ad pc->pc_nempty--;
2480 1.128.2.7 ad mutex_exit(&pc->pc_lock);
2481 1.128.2.7 ad return cc;
2482 1.128.2.7 ad }
2483 1.101 thorpej
2484 1.128.2.7 ad /*
2485 1.128.2.7 ad * Nothing available locally or in cache. Take the
2486 1.128.2.7 ad * slow path and try to allocate a new group that we
2487 1.128.2.7 ad * can release to.
2488 1.128.2.7 ad */
2489 1.128.2.7 ad pc->pc_misses++;
2490 1.128.2.7 ad mutex_exit(&pc->pc_lock);
2491 1.128.2.7 ad pool_cache_cpu_exit(cc, s);
2492 1.43 thorpej
2493 1.128.2.7 ad /*
2494 1.128.2.7 ad * If we can't allocate a new group, just throw the
2495 1.128.2.7 ad * object away.
2496 1.128.2.7 ad */
2497 1.128.2.7 ad pcg = pool_get(&pcgpool, PR_NOWAIT);
2498 1.128.2.7 ad if (pcg == NULL) {
2499 1.128.2.7 ad pool_cache_destruct_object(pc, object);
2500 1.128.2.7 ad return NULL;
2501 1.128.2.7 ad }
2502 1.128.2.7 ad #ifdef DIAGNOSTIC
2503 1.128.2.7 ad memset(pcg, 0, sizeof(*pcg));
2504 1.128.2.7 ad #else
2505 1.128.2.7 ad pcg->pcg_avail = 0;
2506 1.128.2.7 ad #endif
2507 1.43 thorpej
2508 1.128.2.7 ad /*
2509 1.128.2.7 ad * Add the empty group to the cache and try again.
2510 1.128.2.7 ad */
2511 1.128.2.7 ad mutex_enter(&pc->pc_lock);
2512 1.128.2.7 ad pcg->pcg_next = pc->pc_emptygroups;
2513 1.128.2.7 ad pc->pc_emptygroups = pcg;
2514 1.128.2.7 ad pc->pc_nempty++;
2515 1.128.2.2 ad mutex_exit(&pc->pc_lock);
2516 1.43 thorpej
2517 1.128.2.7 ad return pool_cache_cpu_enter(pc, s);
2518 1.128.2.7 ad }
2519 1.43 thorpej
2520 1.43 thorpej /*
2521 1.128.2.7 ad * pool_cache_put{,_paddr}:
2522 1.43 thorpej *
2523 1.128.2.7 ad * Put an object back to the pool cache (optionally caching the
2524 1.128.2.7 ad * physical address of the object).
2525 1.43 thorpej */
2526 1.128.2.7 ad void
2527 1.128.2.7 ad pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
2528 1.43 thorpej {
2529 1.128.2.7 ad pool_cache_cpu_t *cc;
2530 1.128.2.7 ad pcg_t *pcg;
2531 1.128.2.7 ad int s;
2532 1.101 thorpej
2533 1.128.2.7 ad FREECHECK_IN(&pc->pc_freecheck, object);
2534 1.101 thorpej
2535 1.128.2.7 ad cc = pool_cache_cpu_enter(pc, &s);
2536 1.128.2.7 ad do {
2537 1.128.2.7 ad /* If the current group isn't full, release it there. */
2538 1.128.2.7 ad pcg = cc->cc_current;
2539 1.128.2.7 ad if (pcg != NULL && pcg->pcg_avail < PCG_NOBJECTS) {
2540 1.128.2.8 ad KASSERT(pcg->pcg_objects[pcg->pcg_avail].pcgo_va
2541 1.128.2.8 ad == NULL);
2542 1.128.2.8 ad pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object;
2543 1.128.2.8 ad pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa;
2544 1.128.2.8 ad pcg->pcg_avail++;
2545 1.128.2.7 ad cc->cc_hits++;
2546 1.128.2.7 ad pool_cache_cpu_exit(cc, &s);
2547 1.128.2.7 ad return;
2548 1.128.2.7 ad }
2549 1.43 thorpej
2550 1.128.2.7 ad /*
2551 1.128.2.7 ad * That failed. If the previous group is empty, swap
2552 1.128.2.7 ad * it with the current group and try again.
2553 1.128.2.7 ad */
2554 1.128.2.7 ad pcg = cc->cc_previous;
2555 1.128.2.7 ad if (pcg != NULL && pcg->pcg_avail == 0) {
2556 1.128.2.7 ad cc->cc_previous = cc->cc_current;
2557 1.128.2.7 ad cc->cc_current = pcg;
2558 1.128.2.7 ad continue;
2559 1.128.2.7 ad }
2560 1.128.2.7 ad
2561 1.128.2.7 ad /*
2562 1.128.2.7 ad * Can't free to either group: try the slow path.
2563 1.128.2.7 ad * If put_slow() releases the object for us, it
2564 1.128.2.7 ad * will return NULL. Otherwise we need to retry.
2565 1.128.2.7 ad */
2566 1.128.2.7 ad cc = pool_cache_put_slow(cc, &s, object, pa);
2567 1.128.2.7 ad } while (cc != NULL);
2568 1.3 pk }
2569 1.66 thorpej
2570 1.66 thorpej /*
2571 1.66 thorpej * Pool backend allocators.
2572 1.66 thorpej *
2573 1.66 thorpej * Each pool has a backend allocator that handles allocation, deallocation,
2574 1.66 thorpej * and any additional draining that might be needed.
2575 1.66 thorpej *
2576 1.66 thorpej * We provide two standard allocators:
2577 1.66 thorpej *
2578 1.66 thorpej * pool_allocator_kmem - the default when no allocator is specified
2579 1.66 thorpej *
2580 1.66 thorpej * pool_allocator_nointr - used for pools that will not be accessed
2581 1.66 thorpej * in interrupt context.
2582 1.66 thorpej */
2583 1.66 thorpej void *pool_page_alloc(struct pool *, int);
2584 1.66 thorpej void pool_page_free(struct pool *, void *);
2585 1.66 thorpej
2586 1.112 bjh21 #ifdef POOL_SUBPAGE
2587 1.112 bjh21 struct pool_allocator pool_allocator_kmem_fullpage = {
2588 1.112 bjh21 pool_page_alloc, pool_page_free, 0,
2589 1.117 yamt .pa_backingmapptr = &kmem_map,
2590 1.112 bjh21 };
2591 1.112 bjh21 #else
2592 1.66 thorpej struct pool_allocator pool_allocator_kmem = {
2593 1.66 thorpej pool_page_alloc, pool_page_free, 0,
2594 1.117 yamt .pa_backingmapptr = &kmem_map,
2595 1.66 thorpej };
2596 1.112 bjh21 #endif
2597 1.66 thorpej
2598 1.66 thorpej void *pool_page_alloc_nointr(struct pool *, int);
2599 1.66 thorpej void pool_page_free_nointr(struct pool *, void *);
2600 1.66 thorpej
2601 1.112 bjh21 #ifdef POOL_SUBPAGE
2602 1.112 bjh21 struct pool_allocator pool_allocator_nointr_fullpage = {
2603 1.112 bjh21 pool_page_alloc_nointr, pool_page_free_nointr, 0,
2604 1.117 yamt .pa_backingmapptr = &kernel_map,
2605 1.112 bjh21 };
2606 1.112 bjh21 #else
2607 1.66 thorpej struct pool_allocator pool_allocator_nointr = {
2608 1.66 thorpej pool_page_alloc_nointr, pool_page_free_nointr, 0,
2609 1.117 yamt .pa_backingmapptr = &kernel_map,
2610 1.66 thorpej };
2611 1.112 bjh21 #endif
2612 1.66 thorpej
2613 1.66 thorpej #ifdef POOL_SUBPAGE
2614 1.66 thorpej void *pool_subpage_alloc(struct pool *, int);
2615 1.66 thorpej void pool_subpage_free(struct pool *, void *);
2616 1.66 thorpej
2617 1.112 bjh21 struct pool_allocator pool_allocator_kmem = {
2618 1.112 bjh21 pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
2619 1.117 yamt .pa_backingmapptr = &kmem_map,
2620 1.112 bjh21 };
2621 1.112 bjh21
2622 1.112 bjh21 void *pool_subpage_alloc_nointr(struct pool *, int);
2623 1.112 bjh21 void pool_subpage_free_nointr(struct pool *, void *);
2624 1.112 bjh21
2625 1.112 bjh21 struct pool_allocator pool_allocator_nointr = {
2626 1.112 bjh21 pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
2627 1.117 yamt .pa_backingmapptr = &kmem_map,
2628 1.66 thorpej };
2629 1.66 thorpej #endif /* POOL_SUBPAGE */
2630 1.66 thorpej
2631 1.117 yamt static void *
2632 1.117 yamt pool_allocator_alloc(struct pool *pp, int flags)
2633 1.66 thorpej {
2634 1.117 yamt struct pool_allocator *pa = pp->pr_alloc;
2635 1.66 thorpej void *res;
2636 1.66 thorpej
2637 1.117 yamt res = (*pa->pa_alloc)(pp, flags);
2638 1.117 yamt if (res == NULL && (flags & PR_WAITOK) == 0) {
2639 1.66 thorpej /*
2640 1.117 yamt * We only run the drain hook here if PR_NOWAIT.
2641 1.117 yamt * In other cases, the hook will be run in
2642 1.117 yamt * pool_reclaim().
2643 1.66 thorpej */
2644 1.117 yamt if (pp->pr_drain_hook != NULL) {
2645 1.117 yamt (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
2646 1.117 yamt res = (*pa->pa_alloc)(pp, flags);
2647 1.66 thorpej }
2648 1.117 yamt }
2649 1.117 yamt return res;
2650 1.66 thorpej }
2651 1.66 thorpej
2652 1.117 yamt static void
2653 1.66 thorpej pool_allocator_free(struct pool *pp, void *v)
2654 1.66 thorpej {
2655 1.66 thorpej struct pool_allocator *pa = pp->pr_alloc;
2656 1.66 thorpej
2657 1.66 thorpej (*pa->pa_free)(pp, v);
2658 1.66 thorpej }
2659 1.66 thorpej
2660 1.66 thorpej void *
2661 1.124 yamt pool_page_alloc(struct pool *pp, int flags)
2662 1.66 thorpej {
2663 1.127 thorpej bool waitok = (flags & PR_WAITOK) ? true : false;
2664 1.66 thorpej
2665 1.100 yamt return ((void *) uvm_km_alloc_poolpage_cache(kmem_map, waitok));
2666 1.66 thorpej }
2667 1.66 thorpej
2668 1.66 thorpej void
2669 1.124 yamt pool_page_free(struct pool *pp, void *v)
2670 1.66 thorpej {
2671 1.66 thorpej
2672 1.98 yamt uvm_km_free_poolpage_cache(kmem_map, (vaddr_t) v);
2673 1.98 yamt }
2674 1.98 yamt
2675 1.98 yamt static void *
2676 1.124 yamt pool_page_alloc_meta(struct pool *pp, int flags)
2677 1.98 yamt {
2678 1.127 thorpej bool waitok = (flags & PR_WAITOK) ? true : false;
2679 1.98 yamt
2680 1.100 yamt return ((void *) uvm_km_alloc_poolpage(kmem_map, waitok));
2681 1.98 yamt }
2682 1.98 yamt
2683 1.98 yamt static void
2684 1.124 yamt pool_page_free_meta(struct pool *pp, void *v)
2685 1.98 yamt {
2686 1.98 yamt
2687 1.100 yamt uvm_km_free_poolpage(kmem_map, (vaddr_t) v);
2688 1.66 thorpej }
2689 1.66 thorpej
2690 1.66 thorpej #ifdef POOL_SUBPAGE
2691 1.66 thorpej /* Sub-page allocator, for machines with large hardware pages. */
2692 1.66 thorpej void *
2693 1.66 thorpej pool_subpage_alloc(struct pool *pp, int flags)
2694 1.66 thorpej {
2695 1.128.2.2 ad return pool_get(&psppool, flags);
2696 1.66 thorpej }
2697 1.66 thorpej
2698 1.66 thorpej void
2699 1.66 thorpej pool_subpage_free(struct pool *pp, void *v)
2700 1.66 thorpej {
2701 1.66 thorpej pool_put(&psppool, v);
2702 1.66 thorpej }
2703 1.66 thorpej
2704 1.66 thorpej /* We don't provide a real nointr allocator. Maybe later. */
2705 1.66 thorpej void *
2706 1.112 bjh21 pool_subpage_alloc_nointr(struct pool *pp, int flags)
2707 1.66 thorpej {
2708 1.66 thorpej
2709 1.66 thorpej return (pool_subpage_alloc(pp, flags));
2710 1.66 thorpej }
2711 1.66 thorpej
2712 1.66 thorpej void
2713 1.112 bjh21 pool_subpage_free_nointr(struct pool *pp, void *v)
2714 1.66 thorpej {
2715 1.66 thorpej
2716 1.66 thorpej pool_subpage_free(pp, v);
2717 1.66 thorpej }
2718 1.112 bjh21 #endif /* POOL_SUBPAGE */
2719 1.66 thorpej void *
2720 1.124 yamt pool_page_alloc_nointr(struct pool *pp, int flags)
2721 1.66 thorpej {
2722 1.127 thorpej bool waitok = (flags & PR_WAITOK) ? true : false;
2723 1.66 thorpej
2724 1.100 yamt return ((void *) uvm_km_alloc_poolpage_cache(kernel_map, waitok));
2725 1.66 thorpej }
2726 1.66 thorpej
2727 1.66 thorpej void
2728 1.124 yamt pool_page_free_nointr(struct pool *pp, void *v)
2729 1.66 thorpej {
2730 1.66 thorpej
2731 1.98 yamt uvm_km_free_poolpage_cache(kernel_map, (vaddr_t) v);
2732 1.66 thorpej }
2733