Home | History | Annotate | Line # | Download | only in kern
subr_pool.c revision 1.131.2.2
      1  1.131.2.2      matt /*	$NetBSD: subr_pool.c,v 1.131.2.2 2007/11/08 11:00:05 matt Exp $	*/
      2        1.1        pk 
      3        1.1        pk /*-
      4  1.131.2.2      matt  * Copyright (c) 1997, 1999, 2000, 2002, 2007 The NetBSD Foundation, Inc.
      5        1.1        pk  * All rights reserved.
      6        1.1        pk  *
      7        1.1        pk  * This code is derived from software contributed to The NetBSD Foundation
      8       1.20   thorpej  * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
      9  1.131.2.2      matt  * Simulation Facility, NASA Ames Research Center, and by Andrew Doran.
     10        1.1        pk  *
     11        1.1        pk  * Redistribution and use in source and binary forms, with or without
     12        1.1        pk  * modification, are permitted provided that the following conditions
     13        1.1        pk  * are met:
     14        1.1        pk  * 1. Redistributions of source code must retain the above copyright
     15        1.1        pk  *    notice, this list of conditions and the following disclaimer.
     16        1.1        pk  * 2. Redistributions in binary form must reproduce the above copyright
     17        1.1        pk  *    notice, this list of conditions and the following disclaimer in the
     18        1.1        pk  *    documentation and/or other materials provided with the distribution.
     19        1.1        pk  * 3. All advertising materials mentioning features or use of this software
     20        1.1        pk  *    must display the following acknowledgement:
     21       1.13  christos  *	This product includes software developed by the NetBSD
     22       1.13  christos  *	Foundation, Inc. and its contributors.
     23        1.1        pk  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24        1.1        pk  *    contributors may be used to endorse or promote products derived
     25        1.1        pk  *    from this software without specific prior written permission.
     26        1.1        pk  *
     27        1.1        pk  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28        1.1        pk  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29        1.1        pk  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30        1.1        pk  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31        1.1        pk  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32        1.1        pk  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33        1.1        pk  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34        1.1        pk  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35        1.1        pk  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36        1.1        pk  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37        1.1        pk  * POSSIBILITY OF SUCH DAMAGE.
     38        1.1        pk  */
     39       1.64     lukem 
     40       1.64     lukem #include <sys/cdefs.h>
     41  1.131.2.2      matt __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.131.2.2 2007/11/08 11:00:05 matt Exp $");
     42       1.24    scottr 
     43       1.25   thorpej #include "opt_pool.h"
     44       1.24    scottr #include "opt_poollog.h"
     45       1.28   thorpej #include "opt_lockdebug.h"
     46        1.1        pk 
     47        1.1        pk #include <sys/param.h>
     48        1.1        pk #include <sys/systm.h>
     49        1.1        pk #include <sys/proc.h>
     50        1.1        pk #include <sys/errno.h>
     51        1.1        pk #include <sys/kernel.h>
     52        1.1        pk #include <sys/malloc.h>
     53        1.1        pk #include <sys/lock.h>
     54        1.1        pk #include <sys/pool.h>
     55       1.20   thorpej #include <sys/syslog.h>
     56      1.125        ad #include <sys/debug.h>
     57  1.131.2.2      matt #include <sys/lockdebug.h>
     58  1.131.2.2      matt #include <sys/xcall.h>
     59  1.131.2.2      matt #include <sys/cpu.h>
     60        1.3        pk 
     61        1.3        pk #include <uvm/uvm.h>
     62        1.3        pk 
     63        1.1        pk /*
     64        1.1        pk  * Pool resource management utility.
     65        1.3        pk  *
     66       1.88       chs  * Memory is allocated in pages which are split into pieces according to
     67       1.88       chs  * the pool item size. Each page is kept on one of three lists in the
     68       1.88       chs  * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
     69       1.88       chs  * for empty, full and partially-full pages respectively. The individual
     70       1.88       chs  * pool items are on a linked list headed by `ph_itemlist' in each page
     71       1.88       chs  * header. The memory for building the page list is either taken from
     72       1.88       chs  * the allocated pages themselves (for small pool items) or taken from
     73       1.88       chs  * an internal pool of page headers (`phpool').
     74        1.1        pk  */
     75        1.1        pk 
     76        1.3        pk /* List of all pools */
     77      1.102       chs LIST_HEAD(,pool) pool_head = LIST_HEAD_INITIALIZER(pool_head);
     78        1.3        pk 
     79  1.131.2.2      matt /* List of all caches. */
     80  1.131.2.2      matt LIST_HEAD(,pool_cache) pool_cache_head =
     81  1.131.2.2      matt     LIST_HEAD_INITIALIZER(pool_cache_head);
     82  1.131.2.2      matt 
     83        1.3        pk /* Private pool for page header structures */
     84       1.97      yamt #define	PHPOOL_MAX	8
     85       1.97      yamt static struct pool phpool[PHPOOL_MAX];
     86       1.97      yamt #define	PHPOOL_FREELIST_NELEM(idx)	(((idx) == 0) ? 0 : (1 << (idx)))
     87        1.3        pk 
     88       1.62     bjh21 #ifdef POOL_SUBPAGE
     89       1.62     bjh21 /* Pool of subpages for use by normal pools. */
     90       1.62     bjh21 static struct pool psppool;
     91       1.62     bjh21 #endif
     92       1.62     bjh21 
     93      1.117      yamt static SLIST_HEAD(, pool_allocator) pa_deferinitq =
     94      1.117      yamt     SLIST_HEAD_INITIALIZER(pa_deferinitq);
     95      1.117      yamt 
     96       1.98      yamt static void *pool_page_alloc_meta(struct pool *, int);
     97       1.98      yamt static void pool_page_free_meta(struct pool *, void *);
     98       1.98      yamt 
     99       1.98      yamt /* allocator for pool metadata */
    100  1.131.2.2      matt struct pool_allocator pool_allocator_meta = {
    101      1.117      yamt 	pool_page_alloc_meta, pool_page_free_meta,
    102      1.117      yamt 	.pa_backingmapptr = &kmem_map,
    103       1.98      yamt };
    104       1.98      yamt 
    105        1.3        pk /* # of seconds to retain page after last use */
    106        1.3        pk int pool_inactive_time = 10;
    107        1.3        pk 
    108        1.3        pk /* Next candidate for drainage (see pool_drain()) */
    109       1.23   thorpej static struct pool	*drainpp;
    110       1.23   thorpej 
    111  1.131.2.2      matt /* This lock protects both pool_head and drainpp. */
    112  1.131.2.2      matt static kmutex_t pool_head_lock;
    113  1.131.2.2      matt static kcondvar_t pool_busy;
    114        1.3        pk 
    115       1.99      yamt typedef uint8_t pool_item_freelist_t;
    116       1.99      yamt 
    117        1.3        pk struct pool_item_header {
    118        1.3        pk 	/* Page headers */
    119       1.88       chs 	LIST_ENTRY(pool_item_header)
    120        1.3        pk 				ph_pagelist;	/* pool page list */
    121       1.88       chs 	SPLAY_ENTRY(pool_item_header)
    122       1.88       chs 				ph_node;	/* Off-page page headers */
    123      1.128  christos 	void *			ph_page;	/* this page's address */
    124        1.3        pk 	struct timeval		ph_time;	/* last referenced */
    125       1.97      yamt 	union {
    126       1.97      yamt 		/* !PR_NOTOUCH */
    127       1.97      yamt 		struct {
    128      1.102       chs 			LIST_HEAD(, pool_item)
    129       1.97      yamt 				phu_itemlist;	/* chunk list for this page */
    130       1.97      yamt 		} phu_normal;
    131       1.97      yamt 		/* PR_NOTOUCH */
    132       1.97      yamt 		struct {
    133       1.97      yamt 			uint16_t
    134       1.97      yamt 				phu_off;	/* start offset in page */
    135       1.99      yamt 			pool_item_freelist_t
    136       1.97      yamt 				phu_firstfree;	/* first free item */
    137       1.99      yamt 			/*
    138       1.99      yamt 			 * XXX it might be better to use
    139       1.99      yamt 			 * a simple bitmap and ffs(3)
    140       1.99      yamt 			 */
    141       1.97      yamt 		} phu_notouch;
    142       1.97      yamt 	} ph_u;
    143       1.97      yamt 	uint16_t		ph_nmissing;	/* # of chunks in use */
    144        1.3        pk };
    145       1.97      yamt #define	ph_itemlist	ph_u.phu_normal.phu_itemlist
    146       1.97      yamt #define	ph_off		ph_u.phu_notouch.phu_off
    147       1.97      yamt #define	ph_firstfree	ph_u.phu_notouch.phu_firstfree
    148        1.3        pk 
    149        1.1        pk struct pool_item {
    150        1.3        pk #ifdef DIAGNOSTIC
    151       1.82   thorpej 	u_int pi_magic;
    152       1.33       chs #endif
    153  1.131.2.2      matt #define	PI_MAGIC 0xdeaddeadU
    154        1.3        pk 	/* Other entries use only this list entry */
    155      1.102       chs 	LIST_ENTRY(pool_item)	pi_list;
    156        1.3        pk };
    157        1.3        pk 
    158       1.53   thorpej #define	POOL_NEEDS_CATCHUP(pp)						\
    159       1.53   thorpej 	((pp)->pr_nitems < (pp)->pr_minitems)
    160       1.53   thorpej 
    161       1.43   thorpej /*
    162       1.43   thorpej  * Pool cache management.
    163       1.43   thorpej  *
    164       1.43   thorpej  * Pool caches provide a way for constructed objects to be cached by the
    165       1.43   thorpej  * pool subsystem.  This can lead to performance improvements by avoiding
    166       1.43   thorpej  * needless object construction/destruction; it is deferred until absolutely
    167       1.43   thorpej  * necessary.
    168       1.43   thorpej  *
    169  1.131.2.2      matt  * Caches are grouped into cache groups.  Each cache group references up
    170  1.131.2.2      matt  * to PCG_NUMOBJECTS constructed objects.  When a cache allocates an
    171  1.131.2.2      matt  * object from the pool, it calls the object's constructor and places it
    172  1.131.2.2      matt  * into a cache group.  When a cache group frees an object back to the
    173  1.131.2.2      matt  * pool, it first calls the object's destructor.  This allows the object
    174  1.131.2.2      matt  * to persist in constructed form while freed to the cache.
    175  1.131.2.2      matt  *
    176  1.131.2.2      matt  * The pool references each cache, so that when a pool is drained by the
    177  1.131.2.2      matt  * pagedaemon, it can drain each individual cache as well.  Each time a
    178  1.131.2.2      matt  * cache is drained, the most idle cache group is freed to the pool in
    179  1.131.2.2      matt  * its entirety.
    180       1.43   thorpej  *
    181       1.43   thorpej  * Pool caches are layed on top of pools.  By layering them, we can avoid
    182       1.43   thorpej  * the complexity of cache management for pools which would not benefit
    183       1.43   thorpej  * from it.
    184       1.43   thorpej  */
    185       1.43   thorpej 
    186       1.43   thorpej static struct pool pcgpool;
    187  1.131.2.2      matt static struct pool cache_pool;
    188  1.131.2.2      matt static struct pool cache_cpu_pool;
    189        1.3        pk 
    190  1.131.2.2      matt static pool_cache_cpu_t *pool_cache_put_slow(pool_cache_cpu_t *, int *,
    191  1.131.2.2      matt 					     void *, paddr_t);
    192  1.131.2.2      matt static pool_cache_cpu_t *pool_cache_get_slow(pool_cache_cpu_t *, int *,
    193  1.131.2.2      matt 					     void **, paddr_t *, int);
    194  1.131.2.2      matt static void	pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
    195  1.131.2.2      matt static void	pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
    196  1.131.2.2      matt static void	pool_cache_xcall(pool_cache_t);
    197        1.3        pk 
    198       1.42   thorpej static int	pool_catchup(struct pool *);
    199      1.128  christos static void	pool_prime_page(struct pool *, void *,
    200       1.55   thorpej 		    struct pool_item_header *);
    201       1.88       chs static void	pool_update_curpage(struct pool *);
    202       1.66   thorpej 
    203      1.113      yamt static int	pool_grow(struct pool *, int);
    204      1.117      yamt static void	*pool_allocator_alloc(struct pool *, int);
    205      1.117      yamt static void	pool_allocator_free(struct pool *, void *);
    206        1.3        pk 
    207       1.97      yamt static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
    208       1.88       chs 	void (*)(const char *, ...));
    209       1.42   thorpej static void pool_print1(struct pool *, const char *,
    210       1.42   thorpej 	void (*)(const char *, ...));
    211        1.3        pk 
    212       1.88       chs static int pool_chk_page(struct pool *, const char *,
    213       1.88       chs 			 struct pool_item_header *);
    214       1.88       chs 
    215        1.3        pk /*
    216       1.52   thorpej  * Pool log entry. An array of these is allocated in pool_init().
    217        1.3        pk  */
    218        1.3        pk struct pool_log {
    219        1.3        pk 	const char	*pl_file;
    220        1.3        pk 	long		pl_line;
    221        1.3        pk 	int		pl_action;
    222       1.25   thorpej #define	PRLOG_GET	1
    223       1.25   thorpej #define	PRLOG_PUT	2
    224        1.3        pk 	void		*pl_addr;
    225        1.1        pk };
    226        1.1        pk 
    227       1.86      matt #ifdef POOL_DIAGNOSTIC
    228        1.3        pk /* Number of entries in pool log buffers */
    229       1.17   thorpej #ifndef POOL_LOGSIZE
    230       1.17   thorpej #define	POOL_LOGSIZE	10
    231       1.17   thorpej #endif
    232       1.17   thorpej 
    233       1.17   thorpej int pool_logsize = POOL_LOGSIZE;
    234        1.1        pk 
    235      1.110     perry static inline void
    236       1.42   thorpej pr_log(struct pool *pp, void *v, int action, const char *file, long line)
    237        1.3        pk {
    238        1.3        pk 	int n = pp->pr_curlogentry;
    239        1.3        pk 	struct pool_log *pl;
    240        1.3        pk 
    241       1.20   thorpej 	if ((pp->pr_roflags & PR_LOGGING) == 0)
    242        1.3        pk 		return;
    243        1.3        pk 
    244        1.3        pk 	/*
    245        1.3        pk 	 * Fill in the current entry. Wrap around and overwrite
    246        1.3        pk 	 * the oldest entry if necessary.
    247        1.3        pk 	 */
    248        1.3        pk 	pl = &pp->pr_log[n];
    249        1.3        pk 	pl->pl_file = file;
    250        1.3        pk 	pl->pl_line = line;
    251        1.3        pk 	pl->pl_action = action;
    252        1.3        pk 	pl->pl_addr = v;
    253        1.3        pk 	if (++n >= pp->pr_logsize)
    254        1.3        pk 		n = 0;
    255        1.3        pk 	pp->pr_curlogentry = n;
    256        1.3        pk }
    257        1.3        pk 
    258        1.3        pk static void
    259       1.42   thorpej pr_printlog(struct pool *pp, struct pool_item *pi,
    260       1.42   thorpej     void (*pr)(const char *, ...))
    261        1.3        pk {
    262        1.3        pk 	int i = pp->pr_logsize;
    263        1.3        pk 	int n = pp->pr_curlogentry;
    264        1.3        pk 
    265       1.20   thorpej 	if ((pp->pr_roflags & PR_LOGGING) == 0)
    266        1.3        pk 		return;
    267        1.3        pk 
    268        1.3        pk 	/*
    269        1.3        pk 	 * Print all entries in this pool's log.
    270        1.3        pk 	 */
    271        1.3        pk 	while (i-- > 0) {
    272        1.3        pk 		struct pool_log *pl = &pp->pr_log[n];
    273        1.3        pk 		if (pl->pl_action != 0) {
    274       1.25   thorpej 			if (pi == NULL || pi == pl->pl_addr) {
    275       1.25   thorpej 				(*pr)("\tlog entry %d:\n", i);
    276       1.25   thorpej 				(*pr)("\t\taction = %s, addr = %p\n",
    277       1.25   thorpej 				    pl->pl_action == PRLOG_GET ? "get" : "put",
    278       1.25   thorpej 				    pl->pl_addr);
    279       1.25   thorpej 				(*pr)("\t\tfile: %s at line %lu\n",
    280       1.25   thorpej 				    pl->pl_file, pl->pl_line);
    281       1.25   thorpej 			}
    282        1.3        pk 		}
    283        1.3        pk 		if (++n >= pp->pr_logsize)
    284        1.3        pk 			n = 0;
    285        1.3        pk 	}
    286        1.3        pk }
    287       1.25   thorpej 
    288      1.110     perry static inline void
    289       1.42   thorpej pr_enter(struct pool *pp, const char *file, long line)
    290       1.25   thorpej {
    291       1.25   thorpej 
    292       1.34   thorpej 	if (__predict_false(pp->pr_entered_file != NULL)) {
    293       1.25   thorpej 		printf("pool %s: reentrancy at file %s line %ld\n",
    294       1.25   thorpej 		    pp->pr_wchan, file, line);
    295       1.25   thorpej 		printf("         previous entry at file %s line %ld\n",
    296       1.25   thorpej 		    pp->pr_entered_file, pp->pr_entered_line);
    297       1.25   thorpej 		panic("pr_enter");
    298       1.25   thorpej 	}
    299       1.25   thorpej 
    300       1.25   thorpej 	pp->pr_entered_file = file;
    301       1.25   thorpej 	pp->pr_entered_line = line;
    302       1.25   thorpej }
    303       1.25   thorpej 
    304      1.110     perry static inline void
    305       1.42   thorpej pr_leave(struct pool *pp)
    306       1.25   thorpej {
    307       1.25   thorpej 
    308       1.34   thorpej 	if (__predict_false(pp->pr_entered_file == NULL)) {
    309       1.25   thorpej 		printf("pool %s not entered?\n", pp->pr_wchan);
    310       1.25   thorpej 		panic("pr_leave");
    311       1.25   thorpej 	}
    312       1.25   thorpej 
    313       1.25   thorpej 	pp->pr_entered_file = NULL;
    314       1.25   thorpej 	pp->pr_entered_line = 0;
    315       1.25   thorpej }
    316       1.25   thorpej 
    317      1.110     perry static inline void
    318       1.42   thorpej pr_enter_check(struct pool *pp, void (*pr)(const char *, ...))
    319       1.25   thorpej {
    320       1.25   thorpej 
    321       1.25   thorpej 	if (pp->pr_entered_file != NULL)
    322       1.25   thorpej 		(*pr)("\n\tcurrently entered from file %s line %ld\n",
    323       1.25   thorpej 		    pp->pr_entered_file, pp->pr_entered_line);
    324       1.25   thorpej }
    325        1.3        pk #else
    326       1.25   thorpej #define	pr_log(pp, v, action, file, line)
    327       1.25   thorpej #define	pr_printlog(pp, pi, pr)
    328       1.25   thorpej #define	pr_enter(pp, file, line)
    329       1.25   thorpej #define	pr_leave(pp)
    330       1.25   thorpej #define	pr_enter_check(pp, pr)
    331       1.59   thorpej #endif /* POOL_DIAGNOSTIC */
    332        1.3        pk 
    333      1.110     perry static inline int
    334       1.97      yamt pr_item_notouch_index(const struct pool *pp, const struct pool_item_header *ph,
    335       1.97      yamt     const void *v)
    336       1.97      yamt {
    337       1.97      yamt 	const char *cp = v;
    338       1.97      yamt 	int idx;
    339       1.97      yamt 
    340       1.97      yamt 	KASSERT(pp->pr_roflags & PR_NOTOUCH);
    341      1.128  christos 	idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
    342       1.97      yamt 	KASSERT(idx < pp->pr_itemsperpage);
    343       1.97      yamt 	return idx;
    344       1.97      yamt }
    345       1.97      yamt 
    346       1.99      yamt #define	PR_FREELIST_ALIGN(p) \
    347       1.99      yamt 	roundup((uintptr_t)(p), sizeof(pool_item_freelist_t))
    348       1.99      yamt #define	PR_FREELIST(ph)	((pool_item_freelist_t *)PR_FREELIST_ALIGN((ph) + 1))
    349       1.99      yamt #define	PR_INDEX_USED	((pool_item_freelist_t)-1)
    350       1.99      yamt #define	PR_INDEX_EOL	((pool_item_freelist_t)-2)
    351       1.97      yamt 
    352      1.110     perry static inline void
    353       1.97      yamt pr_item_notouch_put(const struct pool *pp, struct pool_item_header *ph,
    354       1.97      yamt     void *obj)
    355       1.97      yamt {
    356       1.97      yamt 	int idx = pr_item_notouch_index(pp, ph, obj);
    357       1.99      yamt 	pool_item_freelist_t *freelist = PR_FREELIST(ph);
    358       1.97      yamt 
    359       1.97      yamt 	KASSERT(freelist[idx] == PR_INDEX_USED);
    360       1.97      yamt 	freelist[idx] = ph->ph_firstfree;
    361       1.97      yamt 	ph->ph_firstfree = idx;
    362       1.97      yamt }
    363       1.97      yamt 
    364      1.110     perry static inline void *
    365       1.97      yamt pr_item_notouch_get(const struct pool *pp, struct pool_item_header *ph)
    366       1.97      yamt {
    367       1.97      yamt 	int idx = ph->ph_firstfree;
    368       1.99      yamt 	pool_item_freelist_t *freelist = PR_FREELIST(ph);
    369       1.97      yamt 
    370       1.97      yamt 	KASSERT(freelist[idx] != PR_INDEX_USED);
    371       1.97      yamt 	ph->ph_firstfree = freelist[idx];
    372       1.97      yamt 	freelist[idx] = PR_INDEX_USED;
    373       1.97      yamt 
    374      1.128  christos 	return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
    375       1.97      yamt }
    376       1.97      yamt 
    377      1.110     perry static inline int
    378       1.88       chs phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
    379       1.88       chs {
    380      1.121      yamt 
    381      1.121      yamt 	/*
    382      1.121      yamt 	 * we consider pool_item_header with smaller ph_page bigger.
    383      1.121      yamt 	 * (this unnatural ordering is for the benefit of pr_find_pagehead.)
    384      1.121      yamt 	 */
    385      1.121      yamt 
    386       1.88       chs 	if (a->ph_page < b->ph_page)
    387      1.121      yamt 		return (1);
    388      1.121      yamt 	else if (a->ph_page > b->ph_page)
    389       1.88       chs 		return (-1);
    390       1.88       chs 	else
    391       1.88       chs 		return (0);
    392       1.88       chs }
    393       1.88       chs 
    394       1.88       chs SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
    395       1.88       chs SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
    396       1.88       chs 
    397        1.3        pk /*
    398      1.121      yamt  * Return the pool page header based on item address.
    399        1.3        pk  */
    400      1.110     perry static inline struct pool_item_header *
    401      1.121      yamt pr_find_pagehead(struct pool *pp, void *v)
    402        1.3        pk {
    403       1.88       chs 	struct pool_item_header *ph, tmp;
    404        1.3        pk 
    405      1.121      yamt 	if ((pp->pr_roflags & PR_NOALIGN) != 0) {
    406      1.128  christos 		tmp.ph_page = (void *)(uintptr_t)v;
    407      1.121      yamt 		ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
    408      1.121      yamt 		if (ph == NULL) {
    409      1.121      yamt 			ph = SPLAY_ROOT(&pp->pr_phtree);
    410      1.121      yamt 			if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
    411      1.121      yamt 				ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
    412      1.121      yamt 			}
    413      1.121      yamt 			KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
    414      1.121      yamt 		}
    415      1.121      yamt 	} else {
    416      1.128  christos 		void *page =
    417      1.128  christos 		    (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask);
    418      1.121      yamt 
    419      1.121      yamt 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
    420      1.128  christos 			ph = (struct pool_item_header *)((char *)page + pp->pr_phoffset);
    421      1.121      yamt 		} else {
    422      1.121      yamt 			tmp.ph_page = page;
    423      1.121      yamt 			ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
    424      1.121      yamt 		}
    425      1.121      yamt 	}
    426        1.3        pk 
    427      1.121      yamt 	KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
    428      1.128  christos 	    ((char *)ph->ph_page <= (char *)v &&
    429      1.128  christos 	    (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
    430       1.88       chs 	return ph;
    431        1.3        pk }
    432        1.3        pk 
    433      1.101   thorpej static void
    434      1.101   thorpej pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
    435      1.101   thorpej {
    436      1.101   thorpej 	struct pool_item_header *ph;
    437      1.101   thorpej 
    438      1.101   thorpej 	while ((ph = LIST_FIRST(pq)) != NULL) {
    439      1.101   thorpej 		LIST_REMOVE(ph, ph_pagelist);
    440      1.101   thorpej 		pool_allocator_free(pp, ph->ph_page);
    441  1.131.2.2      matt 		if ((pp->pr_roflags & PR_PHINPAGE) == 0)
    442      1.101   thorpej 			pool_put(pp->pr_phpool, ph);
    443      1.101   thorpej 	}
    444      1.101   thorpej }
    445      1.101   thorpej 
    446        1.3        pk /*
    447        1.3        pk  * Remove a page from the pool.
    448        1.3        pk  */
    449      1.110     perry static inline void
    450       1.61       chs pr_rmpage(struct pool *pp, struct pool_item_header *ph,
    451       1.61       chs      struct pool_pagelist *pq)
    452        1.3        pk {
    453        1.3        pk 
    454  1.131.2.2      matt 	KASSERT(mutex_owned(&pp->pr_lock));
    455       1.91      yamt 
    456        1.3        pk 	/*
    457        1.7   thorpej 	 * If the page was idle, decrement the idle page count.
    458        1.3        pk 	 */
    459        1.6   thorpej 	if (ph->ph_nmissing == 0) {
    460        1.6   thorpej #ifdef DIAGNOSTIC
    461        1.6   thorpej 		if (pp->pr_nidle == 0)
    462        1.6   thorpej 			panic("pr_rmpage: nidle inconsistent");
    463       1.20   thorpej 		if (pp->pr_nitems < pp->pr_itemsperpage)
    464       1.20   thorpej 			panic("pr_rmpage: nitems inconsistent");
    465        1.6   thorpej #endif
    466        1.6   thorpej 		pp->pr_nidle--;
    467        1.6   thorpej 	}
    468        1.7   thorpej 
    469       1.20   thorpej 	pp->pr_nitems -= pp->pr_itemsperpage;
    470       1.20   thorpej 
    471        1.7   thorpej 	/*
    472      1.101   thorpej 	 * Unlink the page from the pool and queue it for release.
    473        1.7   thorpej 	 */
    474       1.88       chs 	LIST_REMOVE(ph, ph_pagelist);
    475       1.91      yamt 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
    476       1.91      yamt 		SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
    477      1.101   thorpej 	LIST_INSERT_HEAD(pq, ph, ph_pagelist);
    478      1.101   thorpej 
    479        1.7   thorpej 	pp->pr_npages--;
    480        1.7   thorpej 	pp->pr_npagefree++;
    481        1.6   thorpej 
    482       1.88       chs 	pool_update_curpage(pp);
    483        1.3        pk }
    484        1.3        pk 
    485      1.126   thorpej static bool
    486      1.117      yamt pa_starved_p(struct pool_allocator *pa)
    487      1.117      yamt {
    488      1.117      yamt 
    489      1.117      yamt 	if (pa->pa_backingmap != NULL) {
    490      1.117      yamt 		return vm_map_starved_p(pa->pa_backingmap);
    491      1.117      yamt 	}
    492      1.127   thorpej 	return false;
    493      1.117      yamt }
    494      1.117      yamt 
    495      1.117      yamt static int
    496      1.124      yamt pool_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
    497      1.117      yamt {
    498      1.117      yamt 	struct pool *pp = obj;
    499      1.117      yamt 	struct pool_allocator *pa = pp->pr_alloc;
    500      1.117      yamt 
    501      1.117      yamt 	KASSERT(&pp->pr_reclaimerentry == ce);
    502      1.117      yamt 	pool_reclaim(pp);
    503      1.117      yamt 	if (!pa_starved_p(pa)) {
    504      1.117      yamt 		return CALLBACK_CHAIN_ABORT;
    505      1.117      yamt 	}
    506      1.117      yamt 	return CALLBACK_CHAIN_CONTINUE;
    507      1.117      yamt }
    508      1.117      yamt 
    509      1.117      yamt static void
    510      1.117      yamt pool_reclaim_register(struct pool *pp)
    511      1.117      yamt {
    512      1.117      yamt 	struct vm_map *map = pp->pr_alloc->pa_backingmap;
    513      1.117      yamt 	int s;
    514      1.117      yamt 
    515      1.117      yamt 	if (map == NULL) {
    516      1.117      yamt 		return;
    517      1.117      yamt 	}
    518      1.117      yamt 
    519      1.117      yamt 	s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
    520      1.117      yamt 	callback_register(&vm_map_to_kernel(map)->vmk_reclaim_callback,
    521      1.117      yamt 	    &pp->pr_reclaimerentry, pp, pool_reclaim_callback);
    522      1.117      yamt 	splx(s);
    523      1.117      yamt }
    524      1.117      yamt 
    525      1.117      yamt static void
    526      1.117      yamt pool_reclaim_unregister(struct pool *pp)
    527      1.117      yamt {
    528      1.117      yamt 	struct vm_map *map = pp->pr_alloc->pa_backingmap;
    529      1.117      yamt 	int s;
    530      1.117      yamt 
    531      1.117      yamt 	if (map == NULL) {
    532      1.117      yamt 		return;
    533      1.117      yamt 	}
    534      1.117      yamt 
    535      1.117      yamt 	s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
    536      1.117      yamt 	callback_unregister(&vm_map_to_kernel(map)->vmk_reclaim_callback,
    537      1.117      yamt 	    &pp->pr_reclaimerentry);
    538      1.117      yamt 	splx(s);
    539      1.117      yamt }
    540      1.117      yamt 
    541      1.117      yamt static void
    542      1.117      yamt pa_reclaim_register(struct pool_allocator *pa)
    543      1.117      yamt {
    544      1.117      yamt 	struct vm_map *map = *pa->pa_backingmapptr;
    545      1.117      yamt 	struct pool *pp;
    546      1.117      yamt 
    547      1.117      yamt 	KASSERT(pa->pa_backingmap == NULL);
    548      1.117      yamt 	if (map == NULL) {
    549      1.117      yamt 		SLIST_INSERT_HEAD(&pa_deferinitq, pa, pa_q);
    550      1.117      yamt 		return;
    551      1.117      yamt 	}
    552      1.117      yamt 	pa->pa_backingmap = map;
    553      1.117      yamt 	TAILQ_FOREACH(pp, &pa->pa_list, pr_alloc_list) {
    554      1.117      yamt 		pool_reclaim_register(pp);
    555      1.117      yamt 	}
    556      1.117      yamt }
    557      1.117      yamt 
    558        1.3        pk /*
    559       1.94    simonb  * Initialize all the pools listed in the "pools" link set.
    560       1.94    simonb  */
    561       1.94    simonb void
    562      1.117      yamt pool_subsystem_init(void)
    563       1.94    simonb {
    564      1.117      yamt 	struct pool_allocator *pa;
    565       1.94    simonb 	__link_set_decl(pools, struct link_pool_init);
    566       1.94    simonb 	struct link_pool_init * const *pi;
    567       1.94    simonb 
    568  1.131.2.2      matt 	mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
    569  1.131.2.2      matt 	cv_init(&pool_busy, "poolbusy");
    570  1.131.2.2      matt 
    571       1.94    simonb 	__link_set_foreach(pi, pools)
    572       1.94    simonb 		pool_init((*pi)->pp, (*pi)->size, (*pi)->align,
    573       1.94    simonb 		    (*pi)->align_offset, (*pi)->flags, (*pi)->wchan,
    574      1.129        ad 		    (*pi)->palloc, (*pi)->ipl);
    575      1.117      yamt 
    576      1.117      yamt 	while ((pa = SLIST_FIRST(&pa_deferinitq)) != NULL) {
    577      1.117      yamt 		KASSERT(pa->pa_backingmapptr != NULL);
    578      1.117      yamt 		KASSERT(*pa->pa_backingmapptr != NULL);
    579      1.117      yamt 		SLIST_REMOVE_HEAD(&pa_deferinitq, pa_q);
    580      1.117      yamt 		pa_reclaim_register(pa);
    581      1.117      yamt 	}
    582  1.131.2.2      matt 
    583  1.131.2.2      matt 	pool_init(&cache_pool, sizeof(struct pool_cache), CACHE_LINE_SIZE,
    584  1.131.2.2      matt 	    0, 0, "pcache", &pool_allocator_nointr, IPL_NONE);
    585  1.131.2.2      matt 
    586  1.131.2.2      matt 	pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), CACHE_LINE_SIZE,
    587  1.131.2.2      matt 	    0, 0, "pcachecpu", &pool_allocator_nointr, IPL_NONE);
    588       1.94    simonb }
    589       1.94    simonb 
    590       1.94    simonb /*
    591        1.3        pk  * Initialize the given pool resource structure.
    592        1.3        pk  *
    593        1.3        pk  * We export this routine to allow other kernel parts to declare
    594        1.3        pk  * static pools that must be initialized before malloc() is available.
    595        1.3        pk  */
    596        1.3        pk void
    597       1.42   thorpej pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
    598      1.129        ad     const char *wchan, struct pool_allocator *palloc, int ipl)
    599        1.3        pk {
    600      1.116    simonb #ifdef DEBUG
    601      1.116    simonb 	struct pool *pp1;
    602      1.116    simonb #endif
    603       1.92     enami 	size_t trysize, phsize;
    604  1.131.2.2      matt 	int off, slack;
    605        1.3        pk 
    606       1.99      yamt 	KASSERT((1UL << (CHAR_BIT * sizeof(pool_item_freelist_t))) - 2 >=
    607       1.99      yamt 	    PHPOOL_FREELIST_NELEM(PHPOOL_MAX - 1));
    608       1.99      yamt 
    609      1.116    simonb #ifdef DEBUG
    610      1.116    simonb 	/*
    611      1.116    simonb 	 * Check that the pool hasn't already been initialised and
    612      1.116    simonb 	 * added to the list of all pools.
    613      1.116    simonb 	 */
    614      1.116    simonb 	LIST_FOREACH(pp1, &pool_head, pr_poollist) {
    615      1.116    simonb 		if (pp == pp1)
    616      1.116    simonb 			panic("pool_init: pool %s already initialised",
    617      1.116    simonb 			    wchan);
    618      1.116    simonb 	}
    619      1.116    simonb #endif
    620      1.116    simonb 
    621       1.25   thorpej #ifdef POOL_DIAGNOSTIC
    622       1.25   thorpej 	/*
    623       1.25   thorpej 	 * Always log if POOL_DIAGNOSTIC is defined.
    624       1.25   thorpej 	 */
    625       1.25   thorpej 	if (pool_logsize != 0)
    626       1.25   thorpej 		flags |= PR_LOGGING;
    627       1.25   thorpej #endif
    628       1.25   thorpej 
    629       1.66   thorpej 	if (palloc == NULL)
    630       1.66   thorpej 		palloc = &pool_allocator_kmem;
    631      1.112     bjh21 #ifdef POOL_SUBPAGE
    632      1.112     bjh21 	if (size > palloc->pa_pagesz) {
    633      1.112     bjh21 		if (palloc == &pool_allocator_kmem)
    634      1.112     bjh21 			palloc = &pool_allocator_kmem_fullpage;
    635      1.112     bjh21 		else if (palloc == &pool_allocator_nointr)
    636      1.112     bjh21 			palloc = &pool_allocator_nointr_fullpage;
    637      1.112     bjh21 	}
    638       1.66   thorpej #endif /* POOL_SUBPAGE */
    639       1.66   thorpej 	if ((palloc->pa_flags & PA_INITIALIZED) == 0) {
    640      1.112     bjh21 		if (palloc->pa_pagesz == 0)
    641       1.66   thorpej 			palloc->pa_pagesz = PAGE_SIZE;
    642       1.66   thorpej 
    643       1.66   thorpej 		TAILQ_INIT(&palloc->pa_list);
    644       1.66   thorpej 
    645  1.131.2.2      matt 		mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
    646       1.66   thorpej 		palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
    647       1.66   thorpej 		palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
    648      1.117      yamt 
    649      1.117      yamt 		if (palloc->pa_backingmapptr != NULL) {
    650      1.117      yamt 			pa_reclaim_register(palloc);
    651      1.117      yamt 		}
    652       1.66   thorpej 		palloc->pa_flags |= PA_INITIALIZED;
    653        1.4   thorpej 	}
    654        1.3        pk 
    655        1.3        pk 	if (align == 0)
    656        1.3        pk 		align = ALIGN(1);
    657       1.14   thorpej 
    658      1.120      yamt 	if ((flags & PR_NOTOUCH) == 0 && size < sizeof(struct pool_item))
    659       1.14   thorpej 		size = sizeof(struct pool_item);
    660        1.3        pk 
    661       1.78   thorpej 	size = roundup(size, align);
    662       1.66   thorpej #ifdef DIAGNOSTIC
    663       1.66   thorpej 	if (size > palloc->pa_pagesz)
    664      1.121      yamt 		panic("pool_init: pool item size (%zu) too large", size);
    665       1.66   thorpej #endif
    666       1.35        pk 
    667        1.3        pk 	/*
    668        1.3        pk 	 * Initialize the pool structure.
    669        1.3        pk 	 */
    670       1.88       chs 	LIST_INIT(&pp->pr_emptypages);
    671       1.88       chs 	LIST_INIT(&pp->pr_fullpages);
    672       1.88       chs 	LIST_INIT(&pp->pr_partpages);
    673  1.131.2.2      matt 	pp->pr_cache = NULL;
    674        1.3        pk 	pp->pr_curpage = NULL;
    675        1.3        pk 	pp->pr_npages = 0;
    676        1.3        pk 	pp->pr_minitems = 0;
    677        1.3        pk 	pp->pr_minpages = 0;
    678        1.3        pk 	pp->pr_maxpages = UINT_MAX;
    679       1.20   thorpej 	pp->pr_roflags = flags;
    680       1.20   thorpej 	pp->pr_flags = 0;
    681       1.35        pk 	pp->pr_size = size;
    682        1.3        pk 	pp->pr_align = align;
    683        1.3        pk 	pp->pr_wchan = wchan;
    684       1.66   thorpej 	pp->pr_alloc = palloc;
    685       1.20   thorpej 	pp->pr_nitems = 0;
    686       1.20   thorpej 	pp->pr_nout = 0;
    687       1.20   thorpej 	pp->pr_hardlimit = UINT_MAX;
    688       1.20   thorpej 	pp->pr_hardlimit_warning = NULL;
    689       1.31   thorpej 	pp->pr_hardlimit_ratecap.tv_sec = 0;
    690       1.31   thorpej 	pp->pr_hardlimit_ratecap.tv_usec = 0;
    691       1.31   thorpej 	pp->pr_hardlimit_warning_last.tv_sec = 0;
    692       1.31   thorpej 	pp->pr_hardlimit_warning_last.tv_usec = 0;
    693       1.68   thorpej 	pp->pr_drain_hook = NULL;
    694       1.68   thorpej 	pp->pr_drain_hook_arg = NULL;
    695      1.125        ad 	pp->pr_freecheck = NULL;
    696        1.3        pk 
    697        1.3        pk 	/*
    698        1.3        pk 	 * Decide whether to put the page header off page to avoid
    699       1.92     enami 	 * wasting too large a part of the page or too big item.
    700       1.92     enami 	 * Off-page page headers go on a hash table, so we can match
    701       1.92     enami 	 * a returned item with its header based on the page address.
    702       1.92     enami 	 * We use 1/16 of the page size and about 8 times of the item
    703       1.92     enami 	 * size as the threshold (XXX: tune)
    704       1.92     enami 	 *
    705       1.92     enami 	 * However, we'll put the header into the page if we can put
    706       1.92     enami 	 * it without wasting any items.
    707       1.92     enami 	 *
    708       1.92     enami 	 * Silently enforce `0 <= ioff < align'.
    709        1.3        pk 	 */
    710       1.92     enami 	pp->pr_itemoffset = ioff %= align;
    711       1.92     enami 	/* See the comment below about reserved bytes. */
    712       1.92     enami 	trysize = palloc->pa_pagesz - ((align - ioff) % align);
    713       1.92     enami 	phsize = ALIGN(sizeof(struct pool_item_header));
    714      1.121      yamt 	if ((pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) == 0 &&
    715       1.97      yamt 	    (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) ||
    716       1.97      yamt 	    trysize / pp->pr_size == (trysize - phsize) / pp->pr_size)) {
    717        1.3        pk 		/* Use the end of the page for the page header */
    718       1.20   thorpej 		pp->pr_roflags |= PR_PHINPAGE;
    719       1.92     enami 		pp->pr_phoffset = off = palloc->pa_pagesz - phsize;
    720        1.2        pk 	} else {
    721        1.3        pk 		/* The page header will be taken from our page header pool */
    722        1.3        pk 		pp->pr_phoffset = 0;
    723       1.66   thorpej 		off = palloc->pa_pagesz;
    724       1.88       chs 		SPLAY_INIT(&pp->pr_phtree);
    725        1.2        pk 	}
    726        1.1        pk 
    727        1.3        pk 	/*
    728        1.3        pk 	 * Alignment is to take place at `ioff' within the item. This means
    729        1.3        pk 	 * we must reserve up to `align - 1' bytes on the page to allow
    730        1.3        pk 	 * appropriate positioning of each item.
    731        1.3        pk 	 */
    732        1.3        pk 	pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
    733       1.43   thorpej 	KASSERT(pp->pr_itemsperpage != 0);
    734       1.97      yamt 	if ((pp->pr_roflags & PR_NOTOUCH)) {
    735       1.97      yamt 		int idx;
    736       1.97      yamt 
    737       1.97      yamt 		for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
    738       1.97      yamt 		    idx++) {
    739       1.97      yamt 			/* nothing */
    740       1.97      yamt 		}
    741       1.97      yamt 		if (idx >= PHPOOL_MAX) {
    742       1.97      yamt 			/*
    743       1.97      yamt 			 * if you see this panic, consider to tweak
    744       1.97      yamt 			 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
    745       1.97      yamt 			 */
    746       1.97      yamt 			panic("%s: too large itemsperpage(%d) for PR_NOTOUCH",
    747       1.97      yamt 			    pp->pr_wchan, pp->pr_itemsperpage);
    748       1.97      yamt 		}
    749       1.97      yamt 		pp->pr_phpool = &phpool[idx];
    750       1.97      yamt 	} else if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
    751       1.97      yamt 		pp->pr_phpool = &phpool[0];
    752       1.97      yamt 	}
    753       1.97      yamt #if defined(DIAGNOSTIC)
    754       1.97      yamt 	else {
    755       1.97      yamt 		pp->pr_phpool = NULL;
    756       1.97      yamt 	}
    757       1.97      yamt #endif
    758        1.3        pk 
    759        1.3        pk 	/*
    760        1.3        pk 	 * Use the slack between the chunks and the page header
    761        1.3        pk 	 * for "cache coloring".
    762        1.3        pk 	 */
    763        1.3        pk 	slack = off - pp->pr_itemsperpage * pp->pr_size;
    764        1.3        pk 	pp->pr_maxcolor = (slack / align) * align;
    765        1.3        pk 	pp->pr_curcolor = 0;
    766        1.3        pk 
    767        1.3        pk 	pp->pr_nget = 0;
    768        1.3        pk 	pp->pr_nfail = 0;
    769        1.3        pk 	pp->pr_nput = 0;
    770        1.3        pk 	pp->pr_npagealloc = 0;
    771        1.3        pk 	pp->pr_npagefree = 0;
    772        1.1        pk 	pp->pr_hiwat = 0;
    773        1.8   thorpej 	pp->pr_nidle = 0;
    774  1.131.2.2      matt 	pp->pr_refcnt = 0;
    775        1.3        pk 
    776       1.59   thorpej #ifdef POOL_DIAGNOSTIC
    777       1.25   thorpej 	if (flags & PR_LOGGING) {
    778       1.25   thorpej 		if (kmem_map == NULL ||
    779       1.25   thorpej 		    (pp->pr_log = malloc(pool_logsize * sizeof(struct pool_log),
    780       1.25   thorpej 		     M_TEMP, M_NOWAIT)) == NULL)
    781       1.20   thorpej 			pp->pr_roflags &= ~PR_LOGGING;
    782        1.3        pk 		pp->pr_curlogentry = 0;
    783        1.3        pk 		pp->pr_logsize = pool_logsize;
    784        1.3        pk 	}
    785       1.59   thorpej #endif
    786       1.25   thorpej 
    787       1.25   thorpej 	pp->pr_entered_file = NULL;
    788       1.25   thorpej 	pp->pr_entered_line = 0;
    789        1.3        pk 
    790  1.131.2.2      matt 	mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
    791  1.131.2.2      matt 	cv_init(&pp->pr_cv, wchan);
    792  1.131.2.2      matt 	pp->pr_ipl = ipl;
    793        1.1        pk 
    794        1.3        pk 	/*
    795       1.43   thorpej 	 * Initialize private page header pool and cache magazine pool if we
    796       1.43   thorpej 	 * haven't done so yet.
    797       1.23   thorpej 	 * XXX LOCKING.
    798        1.3        pk 	 */
    799       1.97      yamt 	if (phpool[0].pr_size == 0) {
    800       1.97      yamt 		int idx;
    801       1.97      yamt 		for (idx = 0; idx < PHPOOL_MAX; idx++) {
    802       1.97      yamt 			static char phpool_names[PHPOOL_MAX][6+1+6+1];
    803       1.97      yamt 			int nelem;
    804       1.97      yamt 			size_t sz;
    805       1.97      yamt 
    806       1.97      yamt 			nelem = PHPOOL_FREELIST_NELEM(idx);
    807       1.97      yamt 			snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
    808       1.97      yamt 			    "phpool-%d", nelem);
    809       1.97      yamt 			sz = sizeof(struct pool_item_header);
    810       1.97      yamt 			if (nelem) {
    811       1.97      yamt 				sz = PR_FREELIST_ALIGN(sz)
    812       1.99      yamt 				    + nelem * sizeof(pool_item_freelist_t);
    813       1.97      yamt 			}
    814       1.97      yamt 			pool_init(&phpool[idx], sz, 0, 0, 0,
    815      1.129        ad 			    phpool_names[idx], &pool_allocator_meta, IPL_VM);
    816       1.97      yamt 		}
    817       1.62     bjh21 #ifdef POOL_SUBPAGE
    818       1.62     bjh21 		pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
    819      1.129        ad 		    PR_RECURSIVE, "psppool", &pool_allocator_meta, IPL_VM);
    820       1.62     bjh21 #endif
    821  1.131.2.2      matt 		pool_init(&pcgpool, sizeof(pcg_t), CACHE_LINE_SIZE, 0, 0,
    822  1.131.2.2      matt 		    "cachegrp", &pool_allocator_meta, IPL_VM);
    823        1.1        pk 	}
    824        1.1        pk 
    825  1.131.2.2      matt 	if (__predict_true(!cold)) {
    826  1.131.2.2      matt 		/* Insert into the list of all pools. */
    827  1.131.2.2      matt 		mutex_enter(&pool_head_lock);
    828  1.131.2.2      matt 		LIST_INSERT_HEAD(&pool_head, pp, pr_poollist);
    829  1.131.2.2      matt 		mutex_exit(&pool_head_lock);
    830  1.131.2.2      matt 
    831  1.131.2.2      matt 		/* Insert this into the list of pools using this allocator. */
    832  1.131.2.2      matt 		mutex_enter(&palloc->pa_lock);
    833  1.131.2.2      matt 		TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
    834  1.131.2.2      matt 		mutex_exit(&palloc->pa_lock);
    835  1.131.2.2      matt 	} else {
    836  1.131.2.2      matt 		LIST_INSERT_HEAD(&pool_head, pp, pr_poollist);
    837  1.131.2.2      matt 		TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
    838  1.131.2.2      matt 	}
    839       1.66   thorpej 
    840      1.117      yamt 	pool_reclaim_register(pp);
    841        1.1        pk }
    842        1.1        pk 
    843        1.1        pk /*
    844        1.1        pk  * De-commision a pool resource.
    845        1.1        pk  */
    846        1.1        pk void
    847       1.42   thorpej pool_destroy(struct pool *pp)
    848        1.1        pk {
    849      1.101   thorpej 	struct pool_pagelist pq;
    850        1.3        pk 	struct pool_item_header *ph;
    851       1.43   thorpej 
    852      1.101   thorpej 	/* Remove from global pool list */
    853  1.131.2.2      matt 	mutex_enter(&pool_head_lock);
    854  1.131.2.2      matt 	while (pp->pr_refcnt != 0)
    855  1.131.2.2      matt 		cv_wait(&pool_busy, &pool_head_lock);
    856      1.102       chs 	LIST_REMOVE(pp, pr_poollist);
    857      1.101   thorpej 	if (drainpp == pp)
    858      1.101   thorpej 		drainpp = NULL;
    859  1.131.2.2      matt 	mutex_exit(&pool_head_lock);
    860      1.101   thorpej 
    861      1.101   thorpej 	/* Remove this pool from its allocator's list of pools. */
    862      1.117      yamt 	pool_reclaim_unregister(pp);
    863  1.131.2.2      matt 	mutex_enter(&pp->pr_alloc->pa_lock);
    864       1.66   thorpej 	TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
    865  1.131.2.2      matt 	mutex_exit(&pp->pr_alloc->pa_lock);
    866       1.66   thorpej 
    867  1.131.2.2      matt 	mutex_enter(&pp->pr_lock);
    868      1.101   thorpej 
    869  1.131.2.2      matt 	KASSERT(pp->pr_cache == NULL);
    870        1.3        pk 
    871        1.3        pk #ifdef DIAGNOSTIC
    872       1.20   thorpej 	if (pp->pr_nout != 0) {
    873       1.25   thorpej 		pr_printlog(pp, NULL, printf);
    874       1.80    provos 		panic("pool_destroy: pool busy: still out: %u",
    875       1.20   thorpej 		    pp->pr_nout);
    876        1.3        pk 	}
    877        1.3        pk #endif
    878        1.1        pk 
    879      1.101   thorpej 	KASSERT(LIST_EMPTY(&pp->pr_fullpages));
    880      1.101   thorpej 	KASSERT(LIST_EMPTY(&pp->pr_partpages));
    881      1.101   thorpej 
    882        1.3        pk 	/* Remove all pages */
    883      1.101   thorpej 	LIST_INIT(&pq);
    884       1.88       chs 	while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
    885      1.101   thorpej 		pr_rmpage(pp, ph, &pq);
    886      1.101   thorpej 
    887  1.131.2.2      matt 	mutex_exit(&pp->pr_lock);
    888        1.3        pk 
    889      1.101   thorpej 	pr_pagelist_free(pp, &pq);
    890        1.3        pk 
    891       1.59   thorpej #ifdef POOL_DIAGNOSTIC
    892       1.20   thorpej 	if ((pp->pr_roflags & PR_LOGGING) != 0)
    893        1.3        pk 		free(pp->pr_log, M_TEMP);
    894       1.59   thorpej #endif
    895  1.131.2.2      matt 
    896  1.131.2.2      matt 	cv_destroy(&pp->pr_cv);
    897  1.131.2.2      matt 	mutex_destroy(&pp->pr_lock);
    898        1.1        pk }
    899        1.1        pk 
    900       1.68   thorpej void
    901       1.68   thorpej pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
    902       1.68   thorpej {
    903       1.68   thorpej 
    904       1.68   thorpej 	/* XXX no locking -- must be used just after pool_init() */
    905       1.68   thorpej #ifdef DIAGNOSTIC
    906       1.68   thorpej 	if (pp->pr_drain_hook != NULL)
    907       1.68   thorpej 		panic("pool_set_drain_hook(%s): already set", pp->pr_wchan);
    908       1.68   thorpej #endif
    909       1.68   thorpej 	pp->pr_drain_hook = fn;
    910       1.68   thorpej 	pp->pr_drain_hook_arg = arg;
    911       1.68   thorpej }
    912       1.68   thorpej 
    913       1.88       chs static struct pool_item_header *
    914      1.128  christos pool_alloc_item_header(struct pool *pp, void *storage, int flags)
    915       1.55   thorpej {
    916       1.55   thorpej 	struct pool_item_header *ph;
    917       1.55   thorpej 
    918       1.55   thorpej 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
    919      1.128  christos 		ph = (struct pool_item_header *) ((char *)storage + pp->pr_phoffset);
    920  1.131.2.2      matt 	else
    921       1.97      yamt 		ph = pool_get(pp->pr_phpool, flags);
    922       1.55   thorpej 
    923       1.55   thorpej 	return (ph);
    924       1.55   thorpej }
    925        1.1        pk 
    926        1.1        pk /*
    927  1.131.2.2      matt  * Grab an item from the pool.
    928        1.1        pk  */
    929        1.3        pk void *
    930       1.59   thorpej #ifdef POOL_DIAGNOSTIC
    931       1.42   thorpej _pool_get(struct pool *pp, int flags, const char *file, long line)
    932       1.56  sommerfe #else
    933       1.56  sommerfe pool_get(struct pool *pp, int flags)
    934       1.56  sommerfe #endif
    935        1.1        pk {
    936        1.1        pk 	struct pool_item *pi;
    937        1.3        pk 	struct pool_item_header *ph;
    938       1.55   thorpej 	void *v;
    939        1.1        pk 
    940        1.2        pk #ifdef DIAGNOSTIC
    941       1.95    atatat 	if (__predict_false(pp->pr_itemsperpage == 0))
    942       1.95    atatat 		panic("pool_get: pool %p: pr_itemsperpage is zero, "
    943       1.95    atatat 		    "pool not initialized?", pp);
    944       1.84   thorpej 	if (__predict_false(curlwp == NULL && doing_shutdown == 0 &&
    945       1.37  sommerfe 			    (flags & PR_WAITOK) != 0))
    946       1.77      matt 		panic("pool_get: %s: must have NOWAIT", pp->pr_wchan);
    947       1.58   thorpej 
    948      1.102       chs #endif /* DIAGNOSTIC */
    949       1.58   thorpej #ifdef LOCKDEBUG
    950       1.58   thorpej 	if (flags & PR_WAITOK)
    951      1.119      yamt 		ASSERT_SLEEPABLE(NULL, "pool_get(PR_WAITOK)");
    952       1.56  sommerfe #endif
    953        1.1        pk 
    954  1.131.2.2      matt 	mutex_enter(&pp->pr_lock);
    955       1.25   thorpej 	pr_enter(pp, file, line);
    956       1.20   thorpej 
    957       1.20   thorpej  startover:
    958       1.20   thorpej 	/*
    959       1.20   thorpej 	 * Check to see if we've reached the hard limit.  If we have,
    960       1.20   thorpej 	 * and we can wait, then wait until an item has been returned to
    961       1.20   thorpej 	 * the pool.
    962       1.20   thorpej 	 */
    963       1.20   thorpej #ifdef DIAGNOSTIC
    964       1.34   thorpej 	if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
    965       1.25   thorpej 		pr_leave(pp);
    966  1.131.2.2      matt 		mutex_exit(&pp->pr_lock);
    967       1.20   thorpej 		panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
    968       1.20   thorpej 	}
    969       1.20   thorpej #endif
    970       1.34   thorpej 	if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
    971       1.68   thorpej 		if (pp->pr_drain_hook != NULL) {
    972       1.68   thorpej 			/*
    973       1.68   thorpej 			 * Since the drain hook is going to free things
    974       1.68   thorpej 			 * back to the pool, unlock, call the hook, re-lock,
    975       1.68   thorpej 			 * and check the hardlimit condition again.
    976       1.68   thorpej 			 */
    977       1.68   thorpej 			pr_leave(pp);
    978  1.131.2.2      matt 			mutex_exit(&pp->pr_lock);
    979       1.68   thorpej 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
    980  1.131.2.2      matt 			mutex_enter(&pp->pr_lock);
    981       1.68   thorpej 			pr_enter(pp, file, line);
    982       1.68   thorpej 			if (pp->pr_nout < pp->pr_hardlimit)
    983       1.68   thorpej 				goto startover;
    984       1.68   thorpej 		}
    985       1.68   thorpej 
    986       1.29  sommerfe 		if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
    987       1.20   thorpej 			/*
    988       1.20   thorpej 			 * XXX: A warning isn't logged in this case.  Should
    989       1.20   thorpej 			 * it be?
    990       1.20   thorpej 			 */
    991       1.20   thorpej 			pp->pr_flags |= PR_WANTED;
    992       1.25   thorpej 			pr_leave(pp);
    993  1.131.2.2      matt 			cv_wait(&pp->pr_cv, &pp->pr_lock);
    994       1.25   thorpej 			pr_enter(pp, file, line);
    995       1.20   thorpej 			goto startover;
    996       1.20   thorpej 		}
    997       1.31   thorpej 
    998       1.31   thorpej 		/*
    999       1.31   thorpej 		 * Log a message that the hard limit has been hit.
   1000       1.31   thorpej 		 */
   1001       1.31   thorpej 		if (pp->pr_hardlimit_warning != NULL &&
   1002       1.31   thorpej 		    ratecheck(&pp->pr_hardlimit_warning_last,
   1003       1.31   thorpej 			      &pp->pr_hardlimit_ratecap))
   1004       1.31   thorpej 			log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
   1005       1.21   thorpej 
   1006       1.21   thorpej 		pp->pr_nfail++;
   1007       1.21   thorpej 
   1008       1.25   thorpej 		pr_leave(pp);
   1009  1.131.2.2      matt 		mutex_exit(&pp->pr_lock);
   1010       1.20   thorpej 		return (NULL);
   1011       1.20   thorpej 	}
   1012       1.20   thorpej 
   1013        1.3        pk 	/*
   1014        1.3        pk 	 * The convention we use is that if `curpage' is not NULL, then
   1015        1.3        pk 	 * it points at a non-empty bucket. In particular, `curpage'
   1016        1.3        pk 	 * never points at a page header which has PR_PHINPAGE set and
   1017        1.3        pk 	 * has no items in its bucket.
   1018        1.3        pk 	 */
   1019       1.20   thorpej 	if ((ph = pp->pr_curpage) == NULL) {
   1020      1.113      yamt 		int error;
   1021      1.113      yamt 
   1022       1.20   thorpej #ifdef DIAGNOSTIC
   1023       1.20   thorpej 		if (pp->pr_nitems != 0) {
   1024  1.131.2.2      matt 			mutex_exit(&pp->pr_lock);
   1025       1.20   thorpej 			printf("pool_get: %s: curpage NULL, nitems %u\n",
   1026       1.20   thorpej 			    pp->pr_wchan, pp->pr_nitems);
   1027       1.80    provos 			panic("pool_get: nitems inconsistent");
   1028       1.20   thorpej 		}
   1029       1.20   thorpej #endif
   1030       1.20   thorpej 
   1031       1.21   thorpej 		/*
   1032       1.21   thorpej 		 * Call the back-end page allocator for more memory.
   1033       1.21   thorpej 		 * Release the pool lock, as the back-end page allocator
   1034       1.21   thorpej 		 * may block.
   1035       1.21   thorpej 		 */
   1036       1.25   thorpej 		pr_leave(pp);
   1037      1.113      yamt 		error = pool_grow(pp, flags);
   1038      1.113      yamt 		pr_enter(pp, file, line);
   1039      1.113      yamt 		if (error != 0) {
   1040       1.21   thorpej 			/*
   1041       1.55   thorpej 			 * We were unable to allocate a page or item
   1042       1.55   thorpej 			 * header, but we released the lock during
   1043       1.55   thorpej 			 * allocation, so perhaps items were freed
   1044       1.55   thorpej 			 * back to the pool.  Check for this case.
   1045       1.21   thorpej 			 */
   1046       1.21   thorpej 			if (pp->pr_curpage != NULL)
   1047       1.21   thorpej 				goto startover;
   1048       1.15        pk 
   1049      1.117      yamt 			pp->pr_nfail++;
   1050       1.25   thorpej 			pr_leave(pp);
   1051  1.131.2.2      matt 			mutex_exit(&pp->pr_lock);
   1052      1.117      yamt 			return (NULL);
   1053        1.1        pk 		}
   1054        1.3        pk 
   1055       1.20   thorpej 		/* Start the allocation process over. */
   1056       1.20   thorpej 		goto startover;
   1057        1.3        pk 	}
   1058       1.97      yamt 	if (pp->pr_roflags & PR_NOTOUCH) {
   1059       1.97      yamt #ifdef DIAGNOSTIC
   1060       1.97      yamt 		if (__predict_false(ph->ph_nmissing == pp->pr_itemsperpage)) {
   1061       1.97      yamt 			pr_leave(pp);
   1062  1.131.2.2      matt 			mutex_exit(&pp->pr_lock);
   1063       1.97      yamt 			panic("pool_get: %s: page empty", pp->pr_wchan);
   1064       1.97      yamt 		}
   1065       1.97      yamt #endif
   1066       1.97      yamt 		v = pr_item_notouch_get(pp, ph);
   1067       1.97      yamt #ifdef POOL_DIAGNOSTIC
   1068       1.97      yamt 		pr_log(pp, v, PRLOG_GET, file, line);
   1069       1.97      yamt #endif
   1070       1.97      yamt 	} else {
   1071      1.102       chs 		v = pi = LIST_FIRST(&ph->ph_itemlist);
   1072       1.97      yamt 		if (__predict_false(v == NULL)) {
   1073       1.97      yamt 			pr_leave(pp);
   1074  1.131.2.2      matt 			mutex_exit(&pp->pr_lock);
   1075       1.97      yamt 			panic("pool_get: %s: page empty", pp->pr_wchan);
   1076       1.97      yamt 		}
   1077       1.20   thorpej #ifdef DIAGNOSTIC
   1078       1.97      yamt 		if (__predict_false(pp->pr_nitems == 0)) {
   1079       1.97      yamt 			pr_leave(pp);
   1080  1.131.2.2      matt 			mutex_exit(&pp->pr_lock);
   1081       1.97      yamt 			printf("pool_get: %s: items on itemlist, nitems %u\n",
   1082       1.97      yamt 			    pp->pr_wchan, pp->pr_nitems);
   1083       1.97      yamt 			panic("pool_get: nitems inconsistent");
   1084       1.97      yamt 		}
   1085       1.65     enami #endif
   1086       1.56  sommerfe 
   1087       1.65     enami #ifdef POOL_DIAGNOSTIC
   1088       1.97      yamt 		pr_log(pp, v, PRLOG_GET, file, line);
   1089       1.65     enami #endif
   1090        1.3        pk 
   1091       1.65     enami #ifdef DIAGNOSTIC
   1092       1.97      yamt 		if (__predict_false(pi->pi_magic != PI_MAGIC)) {
   1093       1.97      yamt 			pr_printlog(pp, pi, printf);
   1094       1.97      yamt 			panic("pool_get(%s): free list modified: "
   1095       1.97      yamt 			    "magic=%x; page %p; item addr %p\n",
   1096       1.97      yamt 			    pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
   1097       1.97      yamt 		}
   1098        1.3        pk #endif
   1099        1.3        pk 
   1100       1.97      yamt 		/*
   1101       1.97      yamt 		 * Remove from item list.
   1102       1.97      yamt 		 */
   1103      1.102       chs 		LIST_REMOVE(pi, pi_list);
   1104       1.97      yamt 	}
   1105       1.20   thorpej 	pp->pr_nitems--;
   1106       1.20   thorpej 	pp->pr_nout++;
   1107        1.6   thorpej 	if (ph->ph_nmissing == 0) {
   1108        1.6   thorpej #ifdef DIAGNOSTIC
   1109       1.34   thorpej 		if (__predict_false(pp->pr_nidle == 0))
   1110        1.6   thorpej 			panic("pool_get: nidle inconsistent");
   1111        1.6   thorpej #endif
   1112        1.6   thorpej 		pp->pr_nidle--;
   1113       1.88       chs 
   1114       1.88       chs 		/*
   1115       1.88       chs 		 * This page was previously empty.  Move it to the list of
   1116       1.88       chs 		 * partially-full pages.  This page is already curpage.
   1117       1.88       chs 		 */
   1118       1.88       chs 		LIST_REMOVE(ph, ph_pagelist);
   1119       1.88       chs 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
   1120        1.6   thorpej 	}
   1121        1.3        pk 	ph->ph_nmissing++;
   1122       1.97      yamt 	if (ph->ph_nmissing == pp->pr_itemsperpage) {
   1123       1.21   thorpej #ifdef DIAGNOSTIC
   1124       1.97      yamt 		if (__predict_false((pp->pr_roflags & PR_NOTOUCH) == 0 &&
   1125      1.102       chs 		    !LIST_EMPTY(&ph->ph_itemlist))) {
   1126       1.25   thorpej 			pr_leave(pp);
   1127  1.131.2.2      matt 			mutex_exit(&pp->pr_lock);
   1128       1.21   thorpej 			panic("pool_get: %s: nmissing inconsistent",
   1129       1.21   thorpej 			    pp->pr_wchan);
   1130       1.21   thorpej 		}
   1131       1.21   thorpej #endif
   1132        1.3        pk 		/*
   1133       1.88       chs 		 * This page is now full.  Move it to the full list
   1134       1.88       chs 		 * and select a new current page.
   1135        1.3        pk 		 */
   1136       1.88       chs 		LIST_REMOVE(ph, ph_pagelist);
   1137       1.88       chs 		LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
   1138       1.88       chs 		pool_update_curpage(pp);
   1139        1.1        pk 	}
   1140        1.3        pk 
   1141        1.3        pk 	pp->pr_nget++;
   1142      1.111  christos 	pr_leave(pp);
   1143       1.20   thorpej 
   1144       1.20   thorpej 	/*
   1145       1.20   thorpej 	 * If we have a low water mark and we are now below that low
   1146       1.20   thorpej 	 * water mark, add more items to the pool.
   1147       1.20   thorpej 	 */
   1148       1.53   thorpej 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
   1149       1.20   thorpej 		/*
   1150       1.20   thorpej 		 * XXX: Should we log a warning?  Should we set up a timeout
   1151       1.20   thorpej 		 * to try again in a second or so?  The latter could break
   1152       1.20   thorpej 		 * a caller's assumptions about interrupt protection, etc.
   1153       1.20   thorpej 		 */
   1154       1.20   thorpej 	}
   1155       1.20   thorpej 
   1156  1.131.2.2      matt 	mutex_exit(&pp->pr_lock);
   1157      1.125        ad 	KASSERT((((vaddr_t)v + pp->pr_itemoffset) & (pp->pr_align - 1)) == 0);
   1158      1.125        ad 	FREECHECK_OUT(&pp->pr_freecheck, v);
   1159        1.1        pk 	return (v);
   1160        1.1        pk }
   1161        1.1        pk 
   1162        1.1        pk /*
   1163       1.43   thorpej  * Internal version of pool_put().  Pool is already locked/entered.
   1164        1.1        pk  */
   1165       1.43   thorpej static void
   1166      1.101   thorpej pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
   1167        1.1        pk {
   1168        1.1        pk 	struct pool_item *pi = v;
   1169        1.3        pk 	struct pool_item_header *ph;
   1170        1.3        pk 
   1171  1.131.2.2      matt 	KASSERT(mutex_owned(&pp->pr_lock));
   1172      1.125        ad 	FREECHECK_IN(&pp->pr_freecheck, v);
   1173  1.131.2.2      matt 	LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
   1174       1.61       chs 
   1175       1.30   thorpej #ifdef DIAGNOSTIC
   1176       1.34   thorpej 	if (__predict_false(pp->pr_nout == 0)) {
   1177       1.30   thorpej 		printf("pool %s: putting with none out\n",
   1178       1.30   thorpej 		    pp->pr_wchan);
   1179       1.30   thorpej 		panic("pool_put");
   1180       1.30   thorpej 	}
   1181       1.30   thorpej #endif
   1182        1.3        pk 
   1183      1.121      yamt 	if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
   1184       1.25   thorpej 		pr_printlog(pp, NULL, printf);
   1185        1.3        pk 		panic("pool_put: %s: page header missing", pp->pr_wchan);
   1186        1.3        pk 	}
   1187       1.28   thorpej 
   1188        1.3        pk 	/*
   1189        1.3        pk 	 * Return to item list.
   1190        1.3        pk 	 */
   1191       1.97      yamt 	if (pp->pr_roflags & PR_NOTOUCH) {
   1192       1.97      yamt 		pr_item_notouch_put(pp, ph, v);
   1193       1.97      yamt 	} else {
   1194        1.2        pk #ifdef DIAGNOSTIC
   1195       1.97      yamt 		pi->pi_magic = PI_MAGIC;
   1196        1.3        pk #endif
   1197       1.32       chs #ifdef DEBUG
   1198       1.97      yamt 		{
   1199       1.97      yamt 			int i, *ip = v;
   1200       1.32       chs 
   1201       1.97      yamt 			for (i = 0; i < pp->pr_size / sizeof(int); i++) {
   1202       1.97      yamt 				*ip++ = PI_MAGIC;
   1203       1.97      yamt 			}
   1204       1.32       chs 		}
   1205       1.32       chs #endif
   1206       1.32       chs 
   1207      1.102       chs 		LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
   1208       1.97      yamt 	}
   1209       1.79   thorpej 	KDASSERT(ph->ph_nmissing != 0);
   1210        1.3        pk 	ph->ph_nmissing--;
   1211        1.3        pk 	pp->pr_nput++;
   1212       1.20   thorpej 	pp->pr_nitems++;
   1213       1.20   thorpej 	pp->pr_nout--;
   1214        1.3        pk 
   1215        1.3        pk 	/* Cancel "pool empty" condition if it exists */
   1216        1.3        pk 	if (pp->pr_curpage == NULL)
   1217        1.3        pk 		pp->pr_curpage = ph;
   1218        1.3        pk 
   1219        1.3        pk 	if (pp->pr_flags & PR_WANTED) {
   1220        1.3        pk 		pp->pr_flags &= ~PR_WANTED;
   1221       1.15        pk 		if (ph->ph_nmissing == 0)
   1222       1.15        pk 			pp->pr_nidle++;
   1223  1.131.2.2      matt 		cv_broadcast(&pp->pr_cv);
   1224        1.3        pk 		return;
   1225        1.3        pk 	}
   1226        1.3        pk 
   1227        1.3        pk 	/*
   1228       1.88       chs 	 * If this page is now empty, do one of two things:
   1229       1.21   thorpej 	 *
   1230       1.88       chs 	 *	(1) If we have more pages than the page high water mark,
   1231       1.96   thorpej 	 *	    free the page back to the system.  ONLY CONSIDER
   1232       1.90   thorpej 	 *	    FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
   1233       1.90   thorpej 	 *	    CLAIM.
   1234       1.21   thorpej 	 *
   1235       1.88       chs 	 *	(2) Otherwise, move the page to the empty page list.
   1236       1.88       chs 	 *
   1237       1.88       chs 	 * Either way, select a new current page (so we use a partially-full
   1238       1.88       chs 	 * page if one is available).
   1239        1.3        pk 	 */
   1240        1.3        pk 	if (ph->ph_nmissing == 0) {
   1241        1.6   thorpej 		pp->pr_nidle++;
   1242       1.90   thorpej 		if (pp->pr_npages > pp->pr_minpages &&
   1243       1.90   thorpej 		    (pp->pr_npages > pp->pr_maxpages ||
   1244      1.117      yamt 		     pa_starved_p(pp->pr_alloc))) {
   1245      1.101   thorpej 			pr_rmpage(pp, ph, pq);
   1246        1.3        pk 		} else {
   1247       1.88       chs 			LIST_REMOVE(ph, ph_pagelist);
   1248       1.88       chs 			LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
   1249        1.3        pk 
   1250       1.21   thorpej 			/*
   1251       1.21   thorpej 			 * Update the timestamp on the page.  A page must
   1252       1.21   thorpej 			 * be idle for some period of time before it can
   1253       1.21   thorpej 			 * be reclaimed by the pagedaemon.  This minimizes
   1254       1.21   thorpej 			 * ping-pong'ing for memory.
   1255       1.21   thorpej 			 */
   1256      1.118    kardel 			getmicrotime(&ph->ph_time);
   1257        1.1        pk 		}
   1258       1.88       chs 		pool_update_curpage(pp);
   1259        1.1        pk 	}
   1260       1.88       chs 
   1261       1.21   thorpej 	/*
   1262       1.88       chs 	 * If the page was previously completely full, move it to the
   1263       1.88       chs 	 * partially-full list and make it the current page.  The next
   1264       1.88       chs 	 * allocation will get the item from this page, instead of
   1265       1.88       chs 	 * further fragmenting the pool.
   1266       1.21   thorpej 	 */
   1267       1.21   thorpej 	else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
   1268       1.88       chs 		LIST_REMOVE(ph, ph_pagelist);
   1269       1.88       chs 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
   1270       1.21   thorpej 		pp->pr_curpage = ph;
   1271       1.21   thorpej 	}
   1272       1.43   thorpej }
   1273       1.43   thorpej 
   1274       1.43   thorpej /*
   1275  1.131.2.2      matt  * Return resource to the pool.
   1276       1.43   thorpej  */
   1277       1.59   thorpej #ifdef POOL_DIAGNOSTIC
   1278       1.43   thorpej void
   1279       1.43   thorpej _pool_put(struct pool *pp, void *v, const char *file, long line)
   1280       1.43   thorpej {
   1281      1.101   thorpej 	struct pool_pagelist pq;
   1282      1.101   thorpej 
   1283      1.101   thorpej 	LIST_INIT(&pq);
   1284       1.43   thorpej 
   1285  1.131.2.2      matt 	mutex_enter(&pp->pr_lock);
   1286       1.43   thorpej 	pr_enter(pp, file, line);
   1287       1.43   thorpej 
   1288       1.56  sommerfe 	pr_log(pp, v, PRLOG_PUT, file, line);
   1289       1.56  sommerfe 
   1290      1.101   thorpej 	pool_do_put(pp, v, &pq);
   1291       1.21   thorpej 
   1292       1.25   thorpej 	pr_leave(pp);
   1293  1.131.2.2      matt 	mutex_exit(&pp->pr_lock);
   1294      1.101   thorpej 
   1295      1.102       chs 	pr_pagelist_free(pp, &pq);
   1296        1.1        pk }
   1297       1.57  sommerfe #undef pool_put
   1298       1.59   thorpej #endif /* POOL_DIAGNOSTIC */
   1299        1.1        pk 
   1300       1.56  sommerfe void
   1301       1.56  sommerfe pool_put(struct pool *pp, void *v)
   1302       1.56  sommerfe {
   1303      1.101   thorpej 	struct pool_pagelist pq;
   1304      1.101   thorpej 
   1305      1.101   thorpej 	LIST_INIT(&pq);
   1306       1.56  sommerfe 
   1307  1.131.2.2      matt 	mutex_enter(&pp->pr_lock);
   1308      1.101   thorpej 	pool_do_put(pp, v, &pq);
   1309  1.131.2.2      matt 	mutex_exit(&pp->pr_lock);
   1310       1.56  sommerfe 
   1311      1.102       chs 	pr_pagelist_free(pp, &pq);
   1312       1.56  sommerfe }
   1313       1.57  sommerfe 
   1314       1.59   thorpej #ifdef POOL_DIAGNOSTIC
   1315       1.57  sommerfe #define		pool_put(h, v)	_pool_put((h), (v), __FILE__, __LINE__)
   1316       1.56  sommerfe #endif
   1317       1.74   thorpej 
   1318       1.74   thorpej /*
   1319      1.113      yamt  * pool_grow: grow a pool by a page.
   1320      1.113      yamt  *
   1321      1.113      yamt  * => called with pool locked.
   1322      1.113      yamt  * => unlock and relock the pool.
   1323      1.113      yamt  * => return with pool locked.
   1324      1.113      yamt  */
   1325      1.113      yamt 
   1326      1.113      yamt static int
   1327      1.113      yamt pool_grow(struct pool *pp, int flags)
   1328      1.113      yamt {
   1329      1.113      yamt 	struct pool_item_header *ph = NULL;
   1330      1.113      yamt 	char *cp;
   1331      1.113      yamt 
   1332  1.131.2.2      matt 	mutex_exit(&pp->pr_lock);
   1333      1.113      yamt 	cp = pool_allocator_alloc(pp, flags);
   1334      1.113      yamt 	if (__predict_true(cp != NULL)) {
   1335      1.113      yamt 		ph = pool_alloc_item_header(pp, cp, flags);
   1336      1.113      yamt 	}
   1337      1.113      yamt 	if (__predict_false(cp == NULL || ph == NULL)) {
   1338      1.113      yamt 		if (cp != NULL) {
   1339      1.113      yamt 			pool_allocator_free(pp, cp);
   1340      1.113      yamt 		}
   1341  1.131.2.2      matt 		mutex_enter(&pp->pr_lock);
   1342      1.113      yamt 		return ENOMEM;
   1343      1.113      yamt 	}
   1344      1.113      yamt 
   1345  1.131.2.2      matt 	mutex_enter(&pp->pr_lock);
   1346      1.113      yamt 	pool_prime_page(pp, cp, ph);
   1347      1.113      yamt 	pp->pr_npagealloc++;
   1348      1.113      yamt 	return 0;
   1349      1.113      yamt }
   1350      1.113      yamt 
   1351      1.113      yamt /*
   1352       1.74   thorpej  * Add N items to the pool.
   1353       1.74   thorpej  */
   1354       1.74   thorpej int
   1355       1.74   thorpej pool_prime(struct pool *pp, int n)
   1356       1.74   thorpej {
   1357       1.75    simonb 	int newpages;
   1358      1.113      yamt 	int error = 0;
   1359       1.74   thorpej 
   1360  1.131.2.2      matt 	mutex_enter(&pp->pr_lock);
   1361       1.74   thorpej 
   1362       1.74   thorpej 	newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1363       1.74   thorpej 
   1364       1.74   thorpej 	while (newpages-- > 0) {
   1365      1.113      yamt 		error = pool_grow(pp, PR_NOWAIT);
   1366      1.113      yamt 		if (error) {
   1367       1.74   thorpej 			break;
   1368       1.74   thorpej 		}
   1369       1.74   thorpej 		pp->pr_minpages++;
   1370       1.74   thorpej 	}
   1371       1.74   thorpej 
   1372       1.74   thorpej 	if (pp->pr_minpages >= pp->pr_maxpages)
   1373       1.74   thorpej 		pp->pr_maxpages = pp->pr_minpages + 1;	/* XXX */
   1374       1.74   thorpej 
   1375  1.131.2.2      matt 	mutex_exit(&pp->pr_lock);
   1376      1.113      yamt 	return error;
   1377       1.74   thorpej }
   1378       1.55   thorpej 
   1379       1.55   thorpej /*
   1380        1.3        pk  * Add a page worth of items to the pool.
   1381       1.21   thorpej  *
   1382       1.21   thorpej  * Note, we must be called with the pool descriptor LOCKED.
   1383        1.3        pk  */
   1384       1.55   thorpej static void
   1385      1.128  christos pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
   1386        1.3        pk {
   1387        1.3        pk 	struct pool_item *pi;
   1388      1.128  christos 	void *cp = storage;
   1389      1.125        ad 	const unsigned int align = pp->pr_align;
   1390      1.125        ad 	const unsigned int ioff = pp->pr_itemoffset;
   1391       1.55   thorpej 	int n;
   1392       1.36        pk 
   1393  1.131.2.2      matt 	KASSERT(mutex_owned(&pp->pr_lock));
   1394       1.91      yamt 
   1395       1.66   thorpej #ifdef DIAGNOSTIC
   1396      1.121      yamt 	if ((pp->pr_roflags & PR_NOALIGN) == 0 &&
   1397      1.121      yamt 	    ((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) != 0)
   1398       1.36        pk 		panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
   1399       1.66   thorpej #endif
   1400        1.3        pk 
   1401        1.3        pk 	/*
   1402        1.3        pk 	 * Insert page header.
   1403        1.3        pk 	 */
   1404       1.88       chs 	LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
   1405      1.102       chs 	LIST_INIT(&ph->ph_itemlist);
   1406        1.3        pk 	ph->ph_page = storage;
   1407        1.3        pk 	ph->ph_nmissing = 0;
   1408      1.118    kardel 	getmicrotime(&ph->ph_time);
   1409       1.88       chs 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
   1410       1.88       chs 		SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
   1411        1.3        pk 
   1412        1.6   thorpej 	pp->pr_nidle++;
   1413        1.6   thorpej 
   1414        1.3        pk 	/*
   1415        1.3        pk 	 * Color this page.
   1416        1.3        pk 	 */
   1417      1.128  christos 	cp = (char *)cp + pp->pr_curcolor;
   1418        1.3        pk 	if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
   1419        1.3        pk 		pp->pr_curcolor = 0;
   1420        1.3        pk 
   1421        1.3        pk 	/*
   1422        1.3        pk 	 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
   1423        1.3        pk 	 */
   1424        1.3        pk 	if (ioff != 0)
   1425      1.128  christos 		cp = (char *)cp + align - ioff;
   1426        1.3        pk 
   1427      1.125        ad 	KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
   1428      1.125        ad 
   1429        1.3        pk 	/*
   1430        1.3        pk 	 * Insert remaining chunks on the bucket list.
   1431        1.3        pk 	 */
   1432        1.3        pk 	n = pp->pr_itemsperpage;
   1433       1.20   thorpej 	pp->pr_nitems += n;
   1434        1.3        pk 
   1435       1.97      yamt 	if (pp->pr_roflags & PR_NOTOUCH) {
   1436       1.99      yamt 		pool_item_freelist_t *freelist = PR_FREELIST(ph);
   1437       1.97      yamt 		int i;
   1438       1.97      yamt 
   1439      1.128  christos 		ph->ph_off = (char *)cp - (char *)storage;
   1440       1.97      yamt 		ph->ph_firstfree = 0;
   1441       1.97      yamt 		for (i = 0; i < n - 1; i++)
   1442       1.97      yamt 			freelist[i] = i + 1;
   1443       1.97      yamt 		freelist[n - 1] = PR_INDEX_EOL;
   1444       1.97      yamt 	} else {
   1445       1.97      yamt 		while (n--) {
   1446       1.97      yamt 			pi = (struct pool_item *)cp;
   1447       1.78   thorpej 
   1448       1.97      yamt 			KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0);
   1449        1.3        pk 
   1450       1.97      yamt 			/* Insert on page list */
   1451      1.102       chs 			LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
   1452        1.3        pk #ifdef DIAGNOSTIC
   1453       1.97      yamt 			pi->pi_magic = PI_MAGIC;
   1454        1.3        pk #endif
   1455      1.128  christos 			cp = (char *)cp + pp->pr_size;
   1456      1.125        ad 
   1457      1.125        ad 			KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
   1458       1.97      yamt 		}
   1459        1.3        pk 	}
   1460        1.3        pk 
   1461        1.3        pk 	/*
   1462        1.3        pk 	 * If the pool was depleted, point at the new page.
   1463        1.3        pk 	 */
   1464        1.3        pk 	if (pp->pr_curpage == NULL)
   1465        1.3        pk 		pp->pr_curpage = ph;
   1466        1.3        pk 
   1467        1.3        pk 	if (++pp->pr_npages > pp->pr_hiwat)
   1468        1.3        pk 		pp->pr_hiwat = pp->pr_npages;
   1469        1.3        pk }
   1470        1.3        pk 
   1471       1.20   thorpej /*
   1472       1.52   thorpej  * Used by pool_get() when nitems drops below the low water mark.  This
   1473       1.88       chs  * is used to catch up pr_nitems with the low water mark.
   1474       1.20   thorpej  *
   1475       1.21   thorpej  * Note 1, we never wait for memory here, we let the caller decide what to do.
   1476       1.20   thorpej  *
   1477       1.73   thorpej  * Note 2, we must be called with the pool already locked, and we return
   1478       1.20   thorpej  * with it locked.
   1479       1.20   thorpej  */
   1480       1.20   thorpej static int
   1481       1.42   thorpej pool_catchup(struct pool *pp)
   1482       1.20   thorpej {
   1483       1.20   thorpej 	int error = 0;
   1484       1.20   thorpej 
   1485       1.54   thorpej 	while (POOL_NEEDS_CATCHUP(pp)) {
   1486      1.113      yamt 		error = pool_grow(pp, PR_NOWAIT);
   1487      1.113      yamt 		if (error) {
   1488       1.20   thorpej 			break;
   1489       1.20   thorpej 		}
   1490       1.20   thorpej 	}
   1491      1.113      yamt 	return error;
   1492       1.20   thorpej }
   1493       1.20   thorpej 
   1494       1.88       chs static void
   1495       1.88       chs pool_update_curpage(struct pool *pp)
   1496       1.88       chs {
   1497       1.88       chs 
   1498       1.88       chs 	pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
   1499       1.88       chs 	if (pp->pr_curpage == NULL) {
   1500       1.88       chs 		pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
   1501       1.88       chs 	}
   1502       1.88       chs }
   1503       1.88       chs 
   1504        1.3        pk void
   1505       1.42   thorpej pool_setlowat(struct pool *pp, int n)
   1506        1.3        pk {
   1507       1.15        pk 
   1508  1.131.2.2      matt 	mutex_enter(&pp->pr_lock);
   1509       1.21   thorpej 
   1510        1.3        pk 	pp->pr_minitems = n;
   1511       1.15        pk 	pp->pr_minpages = (n == 0)
   1512       1.15        pk 		? 0
   1513       1.18   thorpej 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1514       1.20   thorpej 
   1515       1.20   thorpej 	/* Make sure we're caught up with the newly-set low water mark. */
   1516       1.75    simonb 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
   1517       1.20   thorpej 		/*
   1518       1.20   thorpej 		 * XXX: Should we log a warning?  Should we set up a timeout
   1519       1.20   thorpej 		 * to try again in a second or so?  The latter could break
   1520       1.20   thorpej 		 * a caller's assumptions about interrupt protection, etc.
   1521       1.20   thorpej 		 */
   1522       1.20   thorpej 	}
   1523       1.21   thorpej 
   1524  1.131.2.2      matt 	mutex_exit(&pp->pr_lock);
   1525        1.3        pk }
   1526        1.3        pk 
   1527        1.3        pk void
   1528       1.42   thorpej pool_sethiwat(struct pool *pp, int n)
   1529        1.3        pk {
   1530       1.15        pk 
   1531  1.131.2.2      matt 	mutex_enter(&pp->pr_lock);
   1532       1.21   thorpej 
   1533       1.15        pk 	pp->pr_maxpages = (n == 0)
   1534       1.15        pk 		? 0
   1535       1.18   thorpej 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1536       1.21   thorpej 
   1537  1.131.2.2      matt 	mutex_exit(&pp->pr_lock);
   1538        1.3        pk }
   1539        1.3        pk 
   1540       1.20   thorpej void
   1541       1.42   thorpej pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
   1542       1.20   thorpej {
   1543       1.20   thorpej 
   1544  1.131.2.2      matt 	mutex_enter(&pp->pr_lock);
   1545       1.20   thorpej 
   1546       1.20   thorpej 	pp->pr_hardlimit = n;
   1547       1.20   thorpej 	pp->pr_hardlimit_warning = warnmess;
   1548       1.31   thorpej 	pp->pr_hardlimit_ratecap.tv_sec = ratecap;
   1549       1.31   thorpej 	pp->pr_hardlimit_warning_last.tv_sec = 0;
   1550       1.31   thorpej 	pp->pr_hardlimit_warning_last.tv_usec = 0;
   1551       1.20   thorpej 
   1552       1.20   thorpej 	/*
   1553       1.21   thorpej 	 * In-line version of pool_sethiwat(), because we don't want to
   1554       1.21   thorpej 	 * release the lock.
   1555       1.20   thorpej 	 */
   1556       1.20   thorpej 	pp->pr_maxpages = (n == 0)
   1557       1.20   thorpej 		? 0
   1558       1.20   thorpej 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1559       1.21   thorpej 
   1560  1.131.2.2      matt 	mutex_exit(&pp->pr_lock);
   1561       1.20   thorpej }
   1562        1.3        pk 
   1563        1.3        pk /*
   1564        1.3        pk  * Release all complete pages that have not been used recently.
   1565        1.3        pk  */
   1566       1.66   thorpej int
   1567       1.59   thorpej #ifdef POOL_DIAGNOSTIC
   1568       1.42   thorpej _pool_reclaim(struct pool *pp, const char *file, long line)
   1569       1.56  sommerfe #else
   1570       1.56  sommerfe pool_reclaim(struct pool *pp)
   1571       1.56  sommerfe #endif
   1572        1.3        pk {
   1573        1.3        pk 	struct pool_item_header *ph, *phnext;
   1574       1.61       chs 	struct pool_pagelist pq;
   1575      1.102       chs 	struct timeval curtime, diff;
   1576  1.131.2.2      matt 	bool klock;
   1577  1.131.2.2      matt 	int rv;
   1578        1.3        pk 
   1579       1.68   thorpej 	if (pp->pr_drain_hook != NULL) {
   1580       1.68   thorpej 		/*
   1581       1.68   thorpej 		 * The drain hook must be called with the pool unlocked.
   1582       1.68   thorpej 		 */
   1583       1.68   thorpej 		(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
   1584       1.68   thorpej 	}
   1585       1.68   thorpej 
   1586  1.131.2.2      matt 	/*
   1587  1.131.2.2      matt 	 * XXXSMP Because mutexes at IPL_SOFTXXX are still spinlocks,
   1588  1.131.2.2      matt 	 * and we are called from the pagedaemon without kernel_lock.
   1589  1.131.2.2      matt 	 * Does not apply to IPL_SOFTBIO.
   1590  1.131.2.2      matt 	 */
   1591  1.131.2.2      matt 	if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK ||
   1592  1.131.2.2      matt 	    pp->pr_ipl == IPL_SOFTSERIAL) {
   1593  1.131.2.2      matt 		KERNEL_LOCK(1, NULL);
   1594  1.131.2.2      matt 		klock = true;
   1595  1.131.2.2      matt 	} else
   1596  1.131.2.2      matt 		klock = false;
   1597  1.131.2.2      matt 
   1598  1.131.2.2      matt 	/* Reclaim items from the pool's cache (if any). */
   1599  1.131.2.2      matt 	if (pp->pr_cache != NULL)
   1600  1.131.2.2      matt 		pool_cache_invalidate(pp->pr_cache);
   1601  1.131.2.2      matt 
   1602  1.131.2.2      matt 	if (mutex_tryenter(&pp->pr_lock) == 0) {
   1603  1.131.2.2      matt 		if (klock) {
   1604  1.131.2.2      matt 			KERNEL_UNLOCK_ONE(NULL);
   1605  1.131.2.2      matt 		}
   1606       1.66   thorpej 		return (0);
   1607  1.131.2.2      matt 	}
   1608       1.25   thorpej 	pr_enter(pp, file, line);
   1609       1.68   thorpej 
   1610       1.88       chs 	LIST_INIT(&pq);
   1611       1.43   thorpej 
   1612      1.118    kardel 	getmicrotime(&curtime);
   1613       1.21   thorpej 
   1614       1.88       chs 	for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
   1615       1.88       chs 		phnext = LIST_NEXT(ph, ph_pagelist);
   1616        1.3        pk 
   1617        1.3        pk 		/* Check our minimum page claim */
   1618        1.3        pk 		if (pp->pr_npages <= pp->pr_minpages)
   1619        1.3        pk 			break;
   1620        1.3        pk 
   1621       1.88       chs 		KASSERT(ph->ph_nmissing == 0);
   1622       1.88       chs 		timersub(&curtime, &ph->ph_time, &diff);
   1623      1.117      yamt 		if (diff.tv_sec < pool_inactive_time
   1624      1.117      yamt 		    && !pa_starved_p(pp->pr_alloc))
   1625       1.88       chs 			continue;
   1626       1.21   thorpej 
   1627       1.88       chs 		/*
   1628       1.88       chs 		 * If freeing this page would put us below
   1629       1.88       chs 		 * the low water mark, stop now.
   1630       1.88       chs 		 */
   1631       1.88       chs 		if ((pp->pr_nitems - pp->pr_itemsperpage) <
   1632       1.88       chs 		    pp->pr_minitems)
   1633       1.88       chs 			break;
   1634       1.21   thorpej 
   1635       1.88       chs 		pr_rmpage(pp, ph, &pq);
   1636        1.3        pk 	}
   1637        1.3        pk 
   1638       1.25   thorpej 	pr_leave(pp);
   1639  1.131.2.2      matt 	mutex_exit(&pp->pr_lock);
   1640       1.66   thorpej 
   1641  1.131.2.2      matt 	if (LIST_EMPTY(&pq))
   1642  1.131.2.2      matt 		rv = 0;
   1643  1.131.2.2      matt 	else {
   1644  1.131.2.2      matt 		pr_pagelist_free(pp, &pq);
   1645  1.131.2.2      matt 		rv = 1;
   1646  1.131.2.2      matt 	}
   1647  1.131.2.2      matt 
   1648  1.131.2.2      matt 	if (klock) {
   1649  1.131.2.2      matt 		KERNEL_UNLOCK_ONE(NULL);
   1650  1.131.2.2      matt 	}
   1651  1.131.2.2      matt 
   1652  1.131.2.2      matt 	return (rv);
   1653        1.3        pk }
   1654        1.3        pk 
   1655        1.3        pk /*
   1656  1.131.2.2      matt  * Drain pools, one at a time.  This is a two stage process;
   1657  1.131.2.2      matt  * drain_start kicks off a cross call to drain CPU-level caches
   1658  1.131.2.2      matt  * if the pool has an associated pool_cache.  drain_end waits
   1659  1.131.2.2      matt  * for those cross calls to finish, and then drains the cache
   1660  1.131.2.2      matt  * (if any) and pool.
   1661      1.131        ad  *
   1662  1.131.2.2      matt  * Note, must never be called from interrupt context.
   1663        1.3        pk  */
   1664        1.3        pk void
   1665  1.131.2.2      matt pool_drain_start(struct pool **ppp, uint64_t *wp)
   1666        1.3        pk {
   1667        1.3        pk 	struct pool *pp;
   1668  1.131.2.2      matt 
   1669  1.131.2.2      matt 	KASSERT(!LIST_EMPTY(&pool_head));
   1670        1.3        pk 
   1671       1.61       chs 	pp = NULL;
   1672  1.131.2.2      matt 
   1673  1.131.2.2      matt 	/* Find next pool to drain, and add a reference. */
   1674  1.131.2.2      matt 	mutex_enter(&pool_head_lock);
   1675  1.131.2.2      matt 	do {
   1676  1.131.2.2      matt 		if (drainpp == NULL) {
   1677  1.131.2.2      matt 			drainpp = LIST_FIRST(&pool_head);
   1678  1.131.2.2      matt 		}
   1679  1.131.2.2      matt 		if (drainpp != NULL) {
   1680  1.131.2.2      matt 			pp = drainpp;
   1681  1.131.2.2      matt 			drainpp = LIST_NEXT(pp, pr_poollist);
   1682  1.131.2.2      matt 		}
   1683  1.131.2.2      matt 		/*
   1684  1.131.2.2      matt 		 * Skip completely idle pools.  We depend on at least
   1685  1.131.2.2      matt 		 * one pool in the system being active.
   1686  1.131.2.2      matt 		 */
   1687  1.131.2.2      matt 	} while (pp == NULL || pp->pr_npages == 0);
   1688  1.131.2.2      matt 	pp->pr_refcnt++;
   1689  1.131.2.2      matt 	mutex_exit(&pool_head_lock);
   1690  1.131.2.2      matt 
   1691  1.131.2.2      matt 	/* If there is a pool_cache, drain CPU level caches. */
   1692  1.131.2.2      matt 	*ppp = pp;
   1693  1.131.2.2      matt 	if (pp->pr_cache != NULL) {
   1694  1.131.2.2      matt 		*wp = xc_broadcast(0, (xcfunc_t)pool_cache_xcall,
   1695  1.131.2.2      matt 		    pp->pr_cache, NULL);
   1696  1.131.2.2      matt 	}
   1697  1.131.2.2      matt }
   1698  1.131.2.2      matt 
   1699  1.131.2.2      matt void
   1700  1.131.2.2      matt pool_drain_end(struct pool *pp, uint64_t where)
   1701  1.131.2.2      matt {
   1702  1.131.2.2      matt 
   1703  1.131.2.2      matt 	if (pp == NULL)
   1704  1.131.2.2      matt 		return;
   1705  1.131.2.2      matt 
   1706  1.131.2.2      matt 	KASSERT(pp->pr_refcnt > 0);
   1707  1.131.2.2      matt 
   1708  1.131.2.2      matt 	/* Wait for remote draining to complete. */
   1709  1.131.2.2      matt 	if (pp->pr_cache != NULL)
   1710  1.131.2.2      matt 		xc_wait(where);
   1711  1.131.2.2      matt 
   1712  1.131.2.2      matt 	/* Drain the cache (if any) and pool.. */
   1713  1.131.2.2      matt 	pool_reclaim(pp);
   1714  1.131.2.2      matt 
   1715  1.131.2.2      matt 	/* Finally, unlock the pool. */
   1716  1.131.2.2      matt 	mutex_enter(&pool_head_lock);
   1717  1.131.2.2      matt 	pp->pr_refcnt--;
   1718  1.131.2.2      matt 	cv_broadcast(&pool_busy);
   1719  1.131.2.2      matt 	mutex_exit(&pool_head_lock);
   1720        1.3        pk }
   1721        1.3        pk 
   1722        1.3        pk /*
   1723        1.3        pk  * Diagnostic helpers.
   1724        1.3        pk  */
   1725        1.3        pk void
   1726       1.42   thorpej pool_print(struct pool *pp, const char *modif)
   1727       1.21   thorpej {
   1728       1.21   thorpej 
   1729       1.25   thorpej 	pool_print1(pp, modif, printf);
   1730       1.21   thorpej }
   1731       1.21   thorpej 
   1732       1.25   thorpej void
   1733      1.108      yamt pool_printall(const char *modif, void (*pr)(const char *, ...))
   1734      1.108      yamt {
   1735      1.108      yamt 	struct pool *pp;
   1736      1.108      yamt 
   1737      1.108      yamt 	LIST_FOREACH(pp, &pool_head, pr_poollist) {
   1738      1.108      yamt 		pool_printit(pp, modif, pr);
   1739      1.108      yamt 	}
   1740      1.108      yamt }
   1741      1.108      yamt 
   1742      1.108      yamt void
   1743       1.42   thorpej pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1744       1.25   thorpej {
   1745       1.25   thorpej 
   1746       1.25   thorpej 	if (pp == NULL) {
   1747       1.25   thorpej 		(*pr)("Must specify a pool to print.\n");
   1748       1.25   thorpej 		return;
   1749       1.25   thorpej 	}
   1750       1.25   thorpej 
   1751       1.25   thorpej 	pool_print1(pp, modif, pr);
   1752       1.25   thorpej }
   1753       1.25   thorpej 
   1754       1.21   thorpej static void
   1755      1.124      yamt pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
   1756       1.97      yamt     void (*pr)(const char *, ...))
   1757       1.88       chs {
   1758       1.88       chs 	struct pool_item_header *ph;
   1759       1.88       chs #ifdef DIAGNOSTIC
   1760       1.88       chs 	struct pool_item *pi;
   1761       1.88       chs #endif
   1762       1.88       chs 
   1763       1.88       chs 	LIST_FOREACH(ph, pl, ph_pagelist) {
   1764       1.88       chs 		(*pr)("\t\tpage %p, nmissing %d, time %lu,%lu\n",
   1765       1.88       chs 		    ph->ph_page, ph->ph_nmissing,
   1766       1.88       chs 		    (u_long)ph->ph_time.tv_sec,
   1767       1.88       chs 		    (u_long)ph->ph_time.tv_usec);
   1768       1.88       chs #ifdef DIAGNOSTIC
   1769       1.97      yamt 		if (!(pp->pr_roflags & PR_NOTOUCH)) {
   1770      1.102       chs 			LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
   1771       1.97      yamt 				if (pi->pi_magic != PI_MAGIC) {
   1772       1.97      yamt 					(*pr)("\t\t\titem %p, magic 0x%x\n",
   1773       1.97      yamt 					    pi, pi->pi_magic);
   1774       1.97      yamt 				}
   1775       1.88       chs 			}
   1776       1.88       chs 		}
   1777       1.88       chs #endif
   1778       1.88       chs 	}
   1779       1.88       chs }
   1780       1.88       chs 
   1781       1.88       chs static void
   1782       1.42   thorpej pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1783        1.3        pk {
   1784       1.25   thorpej 	struct pool_item_header *ph;
   1785  1.131.2.2      matt 	pool_cache_t pc;
   1786  1.131.2.2      matt 	pcg_t *pcg;
   1787  1.131.2.2      matt 	pool_cache_cpu_t *cc;
   1788  1.131.2.2      matt 	uint64_t cpuhit, cpumiss;
   1789       1.44   thorpej 	int i, print_log = 0, print_pagelist = 0, print_cache = 0;
   1790       1.25   thorpej 	char c;
   1791       1.25   thorpej 
   1792       1.25   thorpej 	while ((c = *modif++) != '\0') {
   1793       1.25   thorpej 		if (c == 'l')
   1794       1.25   thorpej 			print_log = 1;
   1795       1.25   thorpej 		if (c == 'p')
   1796       1.25   thorpej 			print_pagelist = 1;
   1797       1.44   thorpej 		if (c == 'c')
   1798       1.44   thorpej 			print_cache = 1;
   1799       1.25   thorpej 	}
   1800       1.25   thorpej 
   1801  1.131.2.2      matt 	if ((pc = pp->pr_cache) != NULL) {
   1802  1.131.2.2      matt 		(*pr)("POOL CACHE");
   1803  1.131.2.2      matt 	} else {
   1804  1.131.2.2      matt 		(*pr)("POOL");
   1805  1.131.2.2      matt 	}
   1806  1.131.2.2      matt 
   1807  1.131.2.2      matt 	(*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
   1808       1.25   thorpej 	    pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
   1809       1.25   thorpej 	    pp->pr_roflags);
   1810       1.66   thorpej 	(*pr)("\talloc %p\n", pp->pr_alloc);
   1811       1.25   thorpej 	(*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
   1812       1.25   thorpej 	    pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
   1813       1.25   thorpej 	(*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
   1814       1.25   thorpej 	    pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
   1815       1.25   thorpej 
   1816  1.131.2.2      matt 	(*pr)("\tnget %lu, nfail %lu, nput %lu\n",
   1817       1.25   thorpej 	    pp->pr_nget, pp->pr_nfail, pp->pr_nput);
   1818       1.25   thorpej 	(*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
   1819       1.25   thorpej 	    pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
   1820       1.25   thorpej 
   1821       1.25   thorpej 	if (print_pagelist == 0)
   1822       1.25   thorpej 		goto skip_pagelist;
   1823       1.25   thorpej 
   1824       1.88       chs 	if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
   1825       1.88       chs 		(*pr)("\n\tempty page list:\n");
   1826       1.97      yamt 	pool_print_pagelist(pp, &pp->pr_emptypages, pr);
   1827       1.88       chs 	if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
   1828       1.88       chs 		(*pr)("\n\tfull page list:\n");
   1829       1.97      yamt 	pool_print_pagelist(pp, &pp->pr_fullpages, pr);
   1830       1.88       chs 	if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
   1831       1.88       chs 		(*pr)("\n\tpartial-page list:\n");
   1832       1.97      yamt 	pool_print_pagelist(pp, &pp->pr_partpages, pr);
   1833       1.88       chs 
   1834       1.25   thorpej 	if (pp->pr_curpage == NULL)
   1835       1.25   thorpej 		(*pr)("\tno current page\n");
   1836       1.25   thorpej 	else
   1837       1.25   thorpej 		(*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
   1838       1.25   thorpej 
   1839       1.25   thorpej  skip_pagelist:
   1840       1.25   thorpej 	if (print_log == 0)
   1841       1.25   thorpej 		goto skip_log;
   1842       1.25   thorpej 
   1843       1.25   thorpej 	(*pr)("\n");
   1844       1.25   thorpej 	if ((pp->pr_roflags & PR_LOGGING) == 0)
   1845       1.25   thorpej 		(*pr)("\tno log\n");
   1846      1.122  christos 	else {
   1847       1.25   thorpej 		pr_printlog(pp, NULL, pr);
   1848      1.122  christos 	}
   1849        1.3        pk 
   1850       1.25   thorpej  skip_log:
   1851       1.44   thorpej 
   1852      1.102       chs #define PR_GROUPLIST(pcg)						\
   1853      1.102       chs 	(*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail);		\
   1854      1.102       chs 	for (i = 0; i < PCG_NOBJECTS; i++) {				\
   1855      1.102       chs 		if (pcg->pcg_objects[i].pcgo_pa !=			\
   1856      1.102       chs 		    POOL_PADDR_INVALID) {				\
   1857      1.102       chs 			(*pr)("\t\t\t%p, 0x%llx\n",			\
   1858      1.102       chs 			    pcg->pcg_objects[i].pcgo_va,		\
   1859      1.102       chs 			    (unsigned long long)			\
   1860      1.102       chs 			    pcg->pcg_objects[i].pcgo_pa);		\
   1861      1.102       chs 		} else {						\
   1862      1.102       chs 			(*pr)("\t\t\t%p\n",				\
   1863      1.102       chs 			    pcg->pcg_objects[i].pcgo_va);		\
   1864      1.102       chs 		}							\
   1865      1.102       chs 	}
   1866      1.102       chs 
   1867  1.131.2.2      matt 	if (pc != NULL) {
   1868  1.131.2.2      matt 		cpuhit = 0;
   1869  1.131.2.2      matt 		cpumiss = 0;
   1870  1.131.2.2      matt 		for (i = 0; i < MAXCPUS; i++) {
   1871  1.131.2.2      matt 			if ((cc = pc->pc_cpus[i]) == NULL)
   1872  1.131.2.2      matt 				continue;
   1873  1.131.2.2      matt 			cpuhit += cc->cc_hits;
   1874  1.131.2.2      matt 			cpumiss += cc->cc_misses;
   1875  1.131.2.2      matt 		}
   1876  1.131.2.2      matt 		(*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
   1877  1.131.2.2      matt 		(*pr)("\tcache layer hits %llu misses %llu\n",
   1878  1.131.2.2      matt 		    pc->pc_hits, pc->pc_misses);
   1879  1.131.2.2      matt 		(*pr)("\tcache layer entry uncontended %llu contended %llu\n",
   1880  1.131.2.2      matt 		    pc->pc_hits + pc->pc_misses - pc->pc_contended,
   1881  1.131.2.2      matt 		    pc->pc_contended);
   1882  1.131.2.2      matt 		(*pr)("\tcache layer empty groups %u full groups %u\n",
   1883  1.131.2.2      matt 		    pc->pc_nempty, pc->pc_nfull);
   1884  1.131.2.2      matt 		if (print_cache) {
   1885  1.131.2.2      matt 			(*pr)("\tfull cache groups:\n");
   1886  1.131.2.2      matt 			for (pcg = pc->pc_fullgroups; pcg != NULL;
   1887  1.131.2.2      matt 			    pcg = pcg->pcg_next) {
   1888  1.131.2.2      matt 				PR_GROUPLIST(pcg);
   1889  1.131.2.2      matt 			}
   1890  1.131.2.2      matt 			(*pr)("\tempty cache groups:\n");
   1891  1.131.2.2      matt 			for (pcg = pc->pc_emptygroups; pcg != NULL;
   1892  1.131.2.2      matt 			    pcg = pcg->pcg_next) {
   1893  1.131.2.2      matt 				PR_GROUPLIST(pcg);
   1894  1.131.2.2      matt 			}
   1895      1.103       chs 		}
   1896       1.44   thorpej 	}
   1897      1.102       chs #undef PR_GROUPLIST
   1898       1.44   thorpej 
   1899       1.88       chs 	pr_enter_check(pp, pr);
   1900       1.88       chs }
   1901       1.88       chs 
   1902       1.88       chs static int
   1903       1.88       chs pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
   1904       1.88       chs {
   1905       1.88       chs 	struct pool_item *pi;
   1906      1.128  christos 	void *page;
   1907       1.88       chs 	int n;
   1908       1.88       chs 
   1909      1.121      yamt 	if ((pp->pr_roflags & PR_NOALIGN) == 0) {
   1910      1.128  christos 		page = (void *)((uintptr_t)ph & pp->pr_alloc->pa_pagemask);
   1911      1.121      yamt 		if (page != ph->ph_page &&
   1912      1.121      yamt 		    (pp->pr_roflags & PR_PHINPAGE) != 0) {
   1913      1.121      yamt 			if (label != NULL)
   1914      1.121      yamt 				printf("%s: ", label);
   1915      1.121      yamt 			printf("pool(%p:%s): page inconsistency: page %p;"
   1916      1.121      yamt 			       " at page head addr %p (p %p)\n", pp,
   1917      1.121      yamt 				pp->pr_wchan, ph->ph_page,
   1918      1.121      yamt 				ph, page);
   1919      1.121      yamt 			return 1;
   1920      1.121      yamt 		}
   1921       1.88       chs 	}
   1922        1.3        pk 
   1923       1.97      yamt 	if ((pp->pr_roflags & PR_NOTOUCH) != 0)
   1924       1.97      yamt 		return 0;
   1925       1.97      yamt 
   1926      1.102       chs 	for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
   1927       1.88       chs 	     pi != NULL;
   1928      1.102       chs 	     pi = LIST_NEXT(pi,pi_list), n++) {
   1929       1.88       chs 
   1930       1.88       chs #ifdef DIAGNOSTIC
   1931       1.88       chs 		if (pi->pi_magic != PI_MAGIC) {
   1932       1.88       chs 			if (label != NULL)
   1933       1.88       chs 				printf("%s: ", label);
   1934       1.88       chs 			printf("pool(%s): free list modified: magic=%x;"
   1935      1.121      yamt 			       " page %p; item ordinal %d; addr %p\n",
   1936       1.88       chs 				pp->pr_wchan, pi->pi_magic, ph->ph_page,
   1937      1.121      yamt 				n, pi);
   1938       1.88       chs 			panic("pool");
   1939       1.88       chs 		}
   1940       1.88       chs #endif
   1941      1.121      yamt 		if ((pp->pr_roflags & PR_NOALIGN) != 0) {
   1942      1.121      yamt 			continue;
   1943      1.121      yamt 		}
   1944      1.128  christos 		page = (void *)((uintptr_t)pi & pp->pr_alloc->pa_pagemask);
   1945       1.88       chs 		if (page == ph->ph_page)
   1946       1.88       chs 			continue;
   1947       1.88       chs 
   1948       1.88       chs 		if (label != NULL)
   1949       1.88       chs 			printf("%s: ", label);
   1950       1.88       chs 		printf("pool(%p:%s): page inconsistency: page %p;"
   1951       1.88       chs 		       " item ordinal %d; addr %p (p %p)\n", pp,
   1952       1.88       chs 			pp->pr_wchan, ph->ph_page,
   1953       1.88       chs 			n, pi, page);
   1954       1.88       chs 		return 1;
   1955       1.88       chs 	}
   1956       1.88       chs 	return 0;
   1957        1.3        pk }
   1958        1.3        pk 
   1959       1.88       chs 
   1960        1.3        pk int
   1961       1.42   thorpej pool_chk(struct pool *pp, const char *label)
   1962        1.3        pk {
   1963        1.3        pk 	struct pool_item_header *ph;
   1964        1.3        pk 	int r = 0;
   1965        1.3        pk 
   1966  1.131.2.2      matt 	mutex_enter(&pp->pr_lock);
   1967       1.88       chs 	LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
   1968       1.88       chs 		r = pool_chk_page(pp, label, ph);
   1969       1.88       chs 		if (r) {
   1970       1.88       chs 			goto out;
   1971       1.88       chs 		}
   1972       1.88       chs 	}
   1973       1.88       chs 	LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
   1974       1.88       chs 		r = pool_chk_page(pp, label, ph);
   1975       1.88       chs 		if (r) {
   1976        1.3        pk 			goto out;
   1977        1.3        pk 		}
   1978       1.88       chs 	}
   1979       1.88       chs 	LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
   1980       1.88       chs 		r = pool_chk_page(pp, label, ph);
   1981       1.88       chs 		if (r) {
   1982        1.3        pk 			goto out;
   1983        1.3        pk 		}
   1984        1.3        pk 	}
   1985       1.88       chs 
   1986        1.3        pk out:
   1987  1.131.2.2      matt 	mutex_exit(&pp->pr_lock);
   1988        1.3        pk 	return (r);
   1989       1.43   thorpej }
   1990       1.43   thorpej 
   1991       1.43   thorpej /*
   1992       1.43   thorpej  * pool_cache_init:
   1993       1.43   thorpej  *
   1994       1.43   thorpej  *	Initialize a pool cache.
   1995  1.131.2.2      matt  */
   1996  1.131.2.2      matt pool_cache_t
   1997  1.131.2.2      matt pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
   1998  1.131.2.2      matt     const char *wchan, struct pool_allocator *palloc, int ipl,
   1999  1.131.2.2      matt     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
   2000  1.131.2.2      matt {
   2001  1.131.2.2      matt 	pool_cache_t pc;
   2002  1.131.2.2      matt 
   2003  1.131.2.2      matt 	pc = pool_get(&cache_pool, PR_WAITOK);
   2004  1.131.2.2      matt 	if (pc == NULL)
   2005  1.131.2.2      matt 		return NULL;
   2006  1.131.2.2      matt 
   2007  1.131.2.2      matt 	pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
   2008  1.131.2.2      matt 	   palloc, ipl, ctor, dtor, arg);
   2009  1.131.2.2      matt 
   2010  1.131.2.2      matt 	return pc;
   2011  1.131.2.2      matt }
   2012  1.131.2.2      matt 
   2013  1.131.2.2      matt /*
   2014  1.131.2.2      matt  * pool_cache_bootstrap:
   2015       1.43   thorpej  *
   2016  1.131.2.2      matt  *	Kernel-private version of pool_cache_init().  The caller
   2017  1.131.2.2      matt  *	provides initial storage.
   2018       1.43   thorpej  */
   2019       1.43   thorpej void
   2020  1.131.2.2      matt pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
   2021  1.131.2.2      matt     u_int align_offset, u_int flags, const char *wchan,
   2022  1.131.2.2      matt     struct pool_allocator *palloc, int ipl,
   2023  1.131.2.2      matt     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
   2024       1.43   thorpej     void *arg)
   2025       1.43   thorpej {
   2026  1.131.2.2      matt 	CPU_INFO_ITERATOR cii;
   2027  1.131.2.2      matt 	struct cpu_info *ci;
   2028  1.131.2.2      matt 	struct pool *pp;
   2029  1.131.2.2      matt 
   2030  1.131.2.2      matt 	pp = &pc->pc_pool;
   2031  1.131.2.2      matt 	if (palloc == NULL && ipl == IPL_NONE)
   2032  1.131.2.2      matt 		palloc = &pool_allocator_nointr;
   2033  1.131.2.2      matt 	pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl);
   2034       1.43   thorpej 
   2035  1.131.2.2      matt 	mutex_init(&pc->pc_lock, MUTEX_DEFAULT, pp->pr_ipl);
   2036       1.43   thorpej 
   2037  1.131.2.2      matt 	if (ctor == NULL) {
   2038  1.131.2.2      matt 		ctor = (int (*)(void *, void *, int))nullop;
   2039  1.131.2.2      matt 	}
   2040  1.131.2.2      matt 	if (dtor == NULL) {
   2041  1.131.2.2      matt 		dtor = (void (*)(void *, void *))nullop;
   2042  1.131.2.2      matt 	}
   2043       1.43   thorpej 
   2044  1.131.2.2      matt 	pc->pc_emptygroups = NULL;
   2045  1.131.2.2      matt 	pc->pc_fullgroups = NULL;
   2046  1.131.2.2      matt 	pc->pc_partgroups = NULL;
   2047       1.43   thorpej 	pc->pc_ctor = ctor;
   2048       1.43   thorpej 	pc->pc_dtor = dtor;
   2049       1.43   thorpej 	pc->pc_arg  = arg;
   2050  1.131.2.2      matt 	pc->pc_hits  = 0;
   2051       1.48   thorpej 	pc->pc_misses = 0;
   2052  1.131.2.2      matt 	pc->pc_nempty = 0;
   2053  1.131.2.2      matt 	pc->pc_npart = 0;
   2054  1.131.2.2      matt 	pc->pc_nfull = 0;
   2055  1.131.2.2      matt 	pc->pc_contended = 0;
   2056  1.131.2.2      matt 	pc->pc_refcnt = 0;
   2057  1.131.2.2      matt 
   2058  1.131.2.2      matt 	/* Allocate per-CPU caches. */
   2059  1.131.2.2      matt 	memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
   2060  1.131.2.2      matt 	pc->pc_ncpu = 0;
   2061  1.131.2.2      matt 	for (CPU_INFO_FOREACH(cii, ci)) {
   2062  1.131.2.2      matt 		pool_cache_cpu_init1(ci, pc);
   2063  1.131.2.2      matt 	}
   2064  1.131.2.2      matt 
   2065  1.131.2.2      matt 	if (__predict_true(!cold)) {
   2066  1.131.2.2      matt 		mutex_enter(&pp->pr_lock);
   2067  1.131.2.2      matt 		pp->pr_cache = pc;
   2068  1.131.2.2      matt 		mutex_exit(&pp->pr_lock);
   2069  1.131.2.2      matt 		mutex_enter(&pool_head_lock);
   2070  1.131.2.2      matt 		LIST_INSERT_HEAD(&pool_cache_head, pc, pc_cachelist);
   2071  1.131.2.2      matt 		mutex_exit(&pool_head_lock);
   2072  1.131.2.2      matt 	} else {
   2073  1.131.2.2      matt 		pp->pr_cache = pc;
   2074  1.131.2.2      matt 		LIST_INSERT_HEAD(&pool_cache_head, pc, pc_cachelist);
   2075  1.131.2.2      matt 	}
   2076       1.43   thorpej }
   2077       1.43   thorpej 
   2078       1.43   thorpej /*
   2079       1.43   thorpej  * pool_cache_destroy:
   2080       1.43   thorpej  *
   2081       1.43   thorpej  *	Destroy a pool cache.
   2082       1.43   thorpej  */
   2083       1.43   thorpej void
   2084  1.131.2.2      matt pool_cache_destroy(pool_cache_t pc)
   2085       1.43   thorpej {
   2086  1.131.2.2      matt 	struct pool *pp = &pc->pc_pool;
   2087  1.131.2.2      matt 	pool_cache_cpu_t *cc;
   2088  1.131.2.2      matt 	pcg_t *pcg;
   2089  1.131.2.2      matt 	int i;
   2090  1.131.2.2      matt 
   2091  1.131.2.2      matt 	/* Remove it from the global list. */
   2092  1.131.2.2      matt 	mutex_enter(&pool_head_lock);
   2093  1.131.2.2      matt 	while (pc->pc_refcnt != 0)
   2094  1.131.2.2      matt 		cv_wait(&pool_busy, &pool_head_lock);
   2095  1.131.2.2      matt 	LIST_REMOVE(pc, pc_cachelist);
   2096  1.131.2.2      matt 	mutex_exit(&pool_head_lock);
   2097       1.43   thorpej 
   2098       1.43   thorpej 	/* First, invalidate the entire cache. */
   2099       1.43   thorpej 	pool_cache_invalidate(pc);
   2100       1.43   thorpej 
   2101  1.131.2.2      matt 	/* Disassociate it from the pool. */
   2102  1.131.2.2      matt 	mutex_enter(&pp->pr_lock);
   2103  1.131.2.2      matt 	pp->pr_cache = NULL;
   2104  1.131.2.2      matt 	mutex_exit(&pp->pr_lock);
   2105  1.131.2.2      matt 
   2106  1.131.2.2      matt 	/* Destroy per-CPU data */
   2107  1.131.2.2      matt 	for (i = 0; i < MAXCPUS; i++) {
   2108  1.131.2.2      matt 		if ((cc = pc->pc_cpus[i]) == NULL)
   2109  1.131.2.2      matt 			continue;
   2110  1.131.2.2      matt 		if ((pcg = cc->cc_current) != NULL) {
   2111  1.131.2.2      matt 			pcg->pcg_next = NULL;
   2112  1.131.2.2      matt 			pool_cache_invalidate_groups(pc, pcg);
   2113  1.131.2.2      matt 		}
   2114  1.131.2.2      matt 		if ((pcg = cc->cc_previous) != NULL) {
   2115  1.131.2.2      matt 			pcg->pcg_next = NULL;
   2116  1.131.2.2      matt 			pool_cache_invalidate_groups(pc, pcg);
   2117  1.131.2.2      matt 		}
   2118  1.131.2.2      matt 		if (cc != &pc->pc_cpu0)
   2119  1.131.2.2      matt 			pool_put(&cache_cpu_pool, cc);
   2120  1.131.2.2      matt 	}
   2121  1.131.2.2      matt 
   2122  1.131.2.2      matt 	/* Finally, destroy it. */
   2123  1.131.2.2      matt 	mutex_destroy(&pc->pc_lock);
   2124  1.131.2.2      matt 	pool_destroy(pp);
   2125  1.131.2.2      matt 	pool_put(&cache_pool, pc);
   2126       1.43   thorpej }
   2127       1.43   thorpej 
   2128  1.131.2.2      matt /*
   2129  1.131.2.2      matt  * pool_cache_cpu_init1:
   2130  1.131.2.2      matt  *
   2131  1.131.2.2      matt  *	Called for each pool_cache whenever a new CPU is attached.
   2132  1.131.2.2      matt  */
   2133  1.131.2.2      matt static void
   2134  1.131.2.2      matt pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
   2135       1.43   thorpej {
   2136  1.131.2.2      matt 	pool_cache_cpu_t *cc;
   2137       1.43   thorpej 
   2138  1.131.2.2      matt 	KASSERT(((uintptr_t)pc->pc_cpus & (CACHE_LINE_SIZE - 1)) == 0);
   2139       1.43   thorpej 
   2140  1.131.2.2      matt 	if ((cc = pc->pc_cpus[ci->ci_index]) != NULL) {
   2141  1.131.2.2      matt 		KASSERT(cc->cc_cpu = ci);
   2142  1.131.2.2      matt 		return;
   2143  1.131.2.2      matt 	}
   2144  1.131.2.2      matt 
   2145  1.131.2.2      matt 	/*
   2146  1.131.2.2      matt 	 * The first CPU is 'free'.  This needs to be the case for
   2147  1.131.2.2      matt 	 * bootstrap - we may not be able to allocate yet.
   2148  1.131.2.2      matt 	 */
   2149  1.131.2.2      matt 	if (pc->pc_ncpu == 0) {
   2150  1.131.2.2      matt 		cc = &pc->pc_cpu0;
   2151  1.131.2.2      matt 		pc->pc_ncpu = 1;
   2152  1.131.2.2      matt 	} else {
   2153  1.131.2.2      matt 		mutex_enter(&pc->pc_lock);
   2154  1.131.2.2      matt 		pc->pc_ncpu++;
   2155  1.131.2.2      matt 		mutex_exit(&pc->pc_lock);
   2156  1.131.2.2      matt 		cc = pool_get(&cache_cpu_pool, PR_WAITOK);
   2157  1.131.2.2      matt 	}
   2158  1.131.2.2      matt 
   2159  1.131.2.2      matt 	cc->cc_ipl = pc->pc_pool.pr_ipl;
   2160  1.131.2.2      matt 	cc->cc_iplcookie = makeiplcookie(cc->cc_ipl);
   2161  1.131.2.2      matt 	cc->cc_cache = pc;
   2162  1.131.2.2      matt 	cc->cc_cpu = ci;
   2163  1.131.2.2      matt 	cc->cc_hits = 0;
   2164  1.131.2.2      matt 	cc->cc_misses = 0;
   2165  1.131.2.2      matt 	cc->cc_current = NULL;
   2166  1.131.2.2      matt 	cc->cc_previous = NULL;
   2167  1.131.2.2      matt 
   2168  1.131.2.2      matt 	pc->pc_cpus[ci->ci_index] = cc;
   2169       1.43   thorpej }
   2170       1.43   thorpej 
   2171  1.131.2.2      matt /*
   2172  1.131.2.2      matt  * pool_cache_cpu_init:
   2173  1.131.2.2      matt  *
   2174  1.131.2.2      matt  *	Called whenever a new CPU is attached.
   2175  1.131.2.2      matt  */
   2176  1.131.2.2      matt void
   2177  1.131.2.2      matt pool_cache_cpu_init(struct cpu_info *ci)
   2178  1.131.2.2      matt {
   2179  1.131.2.2      matt 	pool_cache_t pc;
   2180  1.131.2.2      matt 
   2181  1.131.2.2      matt 	mutex_enter(&pool_head_lock);
   2182  1.131.2.2      matt 	LIST_FOREACH(pc, &pool_cache_head, pc_cachelist) {
   2183  1.131.2.2      matt 		pc->pc_refcnt++;
   2184  1.131.2.2      matt 		mutex_exit(&pool_head_lock);
   2185  1.131.2.2      matt 
   2186  1.131.2.2      matt 		pool_cache_cpu_init1(ci, pc);
   2187  1.131.2.2      matt 
   2188  1.131.2.2      matt 		mutex_enter(&pool_head_lock);
   2189  1.131.2.2      matt 		pc->pc_refcnt--;
   2190  1.131.2.2      matt 		cv_broadcast(&pool_busy);
   2191  1.131.2.2      matt 	}
   2192  1.131.2.2      matt 	mutex_exit(&pool_head_lock);
   2193  1.131.2.2      matt }
   2194  1.131.2.2      matt 
   2195  1.131.2.2      matt /*
   2196  1.131.2.2      matt  * pool_cache_reclaim:
   2197  1.131.2.2      matt  *
   2198  1.131.2.2      matt  *	Reclaim memory from a pool cache.
   2199  1.131.2.2      matt  */
   2200  1.131.2.2      matt bool
   2201  1.131.2.2      matt pool_cache_reclaim(pool_cache_t pc)
   2202       1.43   thorpej {
   2203       1.43   thorpej 
   2204  1.131.2.2      matt 	return pool_reclaim(&pc->pc_pool);
   2205  1.131.2.2      matt }
   2206       1.43   thorpej 
   2207  1.131.2.2      matt /*
   2208  1.131.2.2      matt  * pool_cache_destruct_object:
   2209  1.131.2.2      matt  *
   2210  1.131.2.2      matt  *	Force destruction of an object and its release back into
   2211  1.131.2.2      matt  *	the pool.
   2212  1.131.2.2      matt  */
   2213  1.131.2.2      matt void
   2214  1.131.2.2      matt pool_cache_destruct_object(pool_cache_t pc, void *object)
   2215  1.131.2.2      matt {
   2216  1.131.2.2      matt 
   2217  1.131.2.2      matt 	(*pc->pc_dtor)(pc->pc_arg, object);
   2218  1.131.2.2      matt 	pool_put(&pc->pc_pool, object);
   2219       1.43   thorpej }
   2220       1.43   thorpej 
   2221  1.131.2.2      matt /*
   2222  1.131.2.2      matt  * pool_cache_invalidate_groups:
   2223  1.131.2.2      matt  *
   2224  1.131.2.2      matt  *	Invalidate a chain of groups and destruct all objects.
   2225  1.131.2.2      matt  */
   2226      1.102       chs static void
   2227  1.131.2.2      matt pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
   2228      1.102       chs {
   2229  1.131.2.2      matt 	void *object;
   2230  1.131.2.2      matt 	pcg_t *next;
   2231  1.131.2.2      matt 	int i;
   2232  1.131.2.2      matt 
   2233  1.131.2.2      matt 	for (; pcg != NULL; pcg = next) {
   2234  1.131.2.2      matt 		next = pcg->pcg_next;
   2235  1.131.2.2      matt 
   2236  1.131.2.2      matt 		for (i = 0; i < pcg->pcg_avail; i++) {
   2237  1.131.2.2      matt 			object = pcg->pcg_objects[i].pcgo_va;
   2238  1.131.2.2      matt 			pool_cache_destruct_object(pc, object);
   2239  1.131.2.2      matt 		}
   2240      1.102       chs 
   2241      1.102       chs 		pool_put(&pcgpool, pcg);
   2242      1.102       chs 	}
   2243      1.102       chs }
   2244      1.102       chs 
   2245       1.43   thorpej /*
   2246  1.131.2.2      matt  * pool_cache_invalidate:
   2247       1.43   thorpej  *
   2248  1.131.2.2      matt  *	Invalidate a pool cache (destruct and release all of the
   2249  1.131.2.2      matt  *	cached objects).  Does not reclaim objects from the pool.
   2250       1.43   thorpej  */
   2251  1.131.2.2      matt void
   2252  1.131.2.2      matt pool_cache_invalidate(pool_cache_t pc)
   2253       1.43   thorpej {
   2254  1.131.2.2      matt 	pcg_t *full, *empty, *part;
   2255       1.58   thorpej 
   2256  1.131.2.2      matt 	mutex_enter(&pc->pc_lock);
   2257  1.131.2.2      matt 	full = pc->pc_fullgroups;
   2258  1.131.2.2      matt 	empty = pc->pc_emptygroups;
   2259  1.131.2.2      matt 	part = pc->pc_partgroups;
   2260  1.131.2.2      matt 	pc->pc_fullgroups = NULL;
   2261  1.131.2.2      matt 	pc->pc_emptygroups = NULL;
   2262  1.131.2.2      matt 	pc->pc_partgroups = NULL;
   2263  1.131.2.2      matt 	pc->pc_nfull = 0;
   2264  1.131.2.2      matt 	pc->pc_nempty = 0;
   2265  1.131.2.2      matt 	pc->pc_npart = 0;
   2266  1.131.2.2      matt 	mutex_exit(&pc->pc_lock);
   2267       1.43   thorpej 
   2268  1.131.2.2      matt 	pool_cache_invalidate_groups(pc, full);
   2269  1.131.2.2      matt 	pool_cache_invalidate_groups(pc, empty);
   2270  1.131.2.2      matt 	pool_cache_invalidate_groups(pc, part);
   2271  1.131.2.2      matt }
   2272       1.43   thorpej 
   2273  1.131.2.2      matt void
   2274  1.131.2.2      matt pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
   2275  1.131.2.2      matt {
   2276       1.43   thorpej 
   2277  1.131.2.2      matt 	pool_set_drain_hook(&pc->pc_pool, fn, arg);
   2278  1.131.2.2      matt }
   2279      1.125        ad 
   2280  1.131.2.2      matt void
   2281  1.131.2.2      matt pool_cache_setlowat(pool_cache_t pc, int n)
   2282  1.131.2.2      matt {
   2283       1.43   thorpej 
   2284  1.131.2.2      matt 	pool_setlowat(&pc->pc_pool, n);
   2285  1.131.2.2      matt }
   2286       1.43   thorpej 
   2287  1.131.2.2      matt void
   2288  1.131.2.2      matt pool_cache_sethiwat(pool_cache_t pc, int n)
   2289  1.131.2.2      matt {
   2290       1.43   thorpej 
   2291  1.131.2.2      matt 	pool_sethiwat(&pc->pc_pool, n);
   2292       1.43   thorpej }
   2293       1.43   thorpej 
   2294       1.43   thorpej void
   2295  1.131.2.2      matt pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
   2296       1.43   thorpej {
   2297       1.43   thorpej 
   2298  1.131.2.2      matt 	pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
   2299  1.131.2.2      matt }
   2300  1.131.2.2      matt 
   2301  1.131.2.2      matt static inline pool_cache_cpu_t *
   2302  1.131.2.2      matt pool_cache_cpu_enter(pool_cache_t pc, int *s)
   2303  1.131.2.2      matt {
   2304  1.131.2.2      matt 	pool_cache_cpu_t *cc;
   2305  1.131.2.2      matt 	struct cpu_info *ci;
   2306      1.125        ad 
   2307  1.131.2.2      matt 	/*
   2308  1.131.2.2      matt 	 * Prevent other users of the cache from accessing our
   2309  1.131.2.2      matt 	 * CPU-local data.  To avoid touching shared state, we
   2310  1.131.2.2      matt 	 * pull the neccessary information from CPU local data.
   2311  1.131.2.2      matt 	 */
   2312  1.131.2.2      matt 	ci = curcpu();
   2313  1.131.2.2      matt 	KASSERT(ci->ci_data.cpu_index < MAXCPUS);
   2314  1.131.2.2      matt 	cc = pc->pc_cpus[ci->ci_data.cpu_index];
   2315  1.131.2.2      matt 	KASSERT(cc->cc_cache == pc);
   2316  1.131.2.2      matt 	if (cc->cc_ipl == IPL_NONE) {
   2317  1.131.2.2      matt 		crit_enter();
   2318  1.131.2.2      matt 	} else {
   2319  1.131.2.2      matt 		*s = splraiseipl(cc->cc_iplcookie);
   2320      1.109  christos 	}
   2321      1.109  christos 
   2322  1.131.2.2      matt 	/* Moved to another CPU before disabling preemption? */
   2323  1.131.2.2      matt 	if (__predict_false(ci != curcpu())) {
   2324  1.131.2.2      matt 		ci = curcpu();
   2325  1.131.2.2      matt 		cc = pc->pc_cpus[ci->ci_data.cpu_index];
   2326  1.131.2.2      matt 	}
   2327       1.43   thorpej 
   2328  1.131.2.2      matt #ifdef DIAGNOSTIC
   2329  1.131.2.2      matt 	KASSERT(cc->cc_cpu == ci);
   2330  1.131.2.2      matt 	KASSERT(((uintptr_t)cc & (CACHE_LINE_SIZE - 1)) == 0);
   2331  1.131.2.2      matt #endif
   2332  1.131.2.2      matt 
   2333  1.131.2.2      matt 	return cc;
   2334  1.131.2.2      matt }
   2335  1.131.2.2      matt 
   2336  1.131.2.2      matt static inline void
   2337  1.131.2.2      matt pool_cache_cpu_exit(pool_cache_cpu_t *cc, int *s)
   2338  1.131.2.2      matt {
   2339  1.131.2.2      matt 
   2340  1.131.2.2      matt 	/* No longer need exclusive access to the per-CPU data. */
   2341  1.131.2.2      matt 	if (cc->cc_ipl == IPL_NONE) {
   2342  1.131.2.2      matt 		crit_exit();
   2343  1.131.2.2      matt 	} else {
   2344  1.131.2.2      matt 		splx(*s);
   2345      1.102       chs 	}
   2346  1.131.2.2      matt }
   2347  1.131.2.2      matt 
   2348  1.131.2.2      matt #if __GNUC_PREREQ__(3, 0)
   2349  1.131.2.2      matt __attribute ((noinline))
   2350  1.131.2.2      matt #endif
   2351  1.131.2.2      matt pool_cache_cpu_t *
   2352  1.131.2.2      matt pool_cache_get_slow(pool_cache_cpu_t *cc, int *s, void **objectp,
   2353  1.131.2.2      matt 		    paddr_t *pap, int flags)
   2354  1.131.2.2      matt {
   2355  1.131.2.2      matt 	pcg_t *pcg, *cur;
   2356  1.131.2.2      matt 	uint64_t ncsw;
   2357  1.131.2.2      matt 	pool_cache_t pc;
   2358  1.131.2.2      matt 	void *object;
   2359  1.131.2.2      matt 
   2360  1.131.2.2      matt 	pc = cc->cc_cache;
   2361  1.131.2.2      matt 	cc->cc_misses++;
   2362  1.131.2.2      matt 
   2363  1.131.2.2      matt 	/*
   2364  1.131.2.2      matt 	 * Nothing was available locally.  Try and grab a group
   2365  1.131.2.2      matt 	 * from the cache.
   2366  1.131.2.2      matt 	 */
   2367  1.131.2.2      matt 	if (!mutex_tryenter(&pc->pc_lock)) {
   2368  1.131.2.2      matt 		ncsw = curlwp->l_ncsw;
   2369  1.131.2.2      matt 		mutex_enter(&pc->pc_lock);
   2370  1.131.2.2      matt 		pc->pc_contended++;
   2371       1.43   thorpej 
   2372       1.43   thorpej 		/*
   2373  1.131.2.2      matt 		 * If we context switched while locking, then
   2374  1.131.2.2      matt 		 * our view of the per-CPU data is invalid:
   2375  1.131.2.2      matt 		 * retry.
   2376       1.43   thorpej 		 */
   2377  1.131.2.2      matt 		if (curlwp->l_ncsw != ncsw) {
   2378  1.131.2.2      matt 			mutex_exit(&pc->pc_lock);
   2379  1.131.2.2      matt 			pool_cache_cpu_exit(cc, s);
   2380  1.131.2.2      matt 			return pool_cache_cpu_enter(pc, s);
   2381  1.131.2.2      matt 		}
   2382  1.131.2.2      matt 	}
   2383      1.102       chs 
   2384  1.131.2.2      matt 	if ((pcg = pc->pc_fullgroups) != NULL) {
   2385  1.131.2.2      matt 		/*
   2386  1.131.2.2      matt 		 * If there's a full group, release our empty
   2387  1.131.2.2      matt 		 * group back to the cache.  Install the full
   2388  1.131.2.2      matt 		 * group as cc_current and return.
   2389  1.131.2.2      matt 		 */
   2390  1.131.2.2      matt 		if ((cur = cc->cc_current) != NULL) {
   2391  1.131.2.2      matt 			KASSERT(cur->pcg_avail == 0);
   2392  1.131.2.2      matt 			cur->pcg_next = pc->pc_emptygroups;
   2393  1.131.2.2      matt 			pc->pc_emptygroups = cur;
   2394  1.131.2.2      matt 			pc->pc_nempty++;
   2395       1.43   thorpej 		}
   2396  1.131.2.2      matt 		KASSERT(pcg->pcg_avail == PCG_NOBJECTS);
   2397  1.131.2.2      matt 		cc->cc_current = pcg;
   2398  1.131.2.2      matt 		pc->pc_fullgroups = pcg->pcg_next;
   2399  1.131.2.2      matt 		pc->pc_hits++;
   2400  1.131.2.2      matt 		pc->pc_nfull--;
   2401  1.131.2.2      matt 		mutex_exit(&pc->pc_lock);
   2402  1.131.2.2      matt 		return cc;
   2403       1.43   thorpej 	}
   2404       1.43   thorpej 
   2405  1.131.2.2      matt 	/*
   2406  1.131.2.2      matt 	 * Nothing available locally or in cache.  Take the slow
   2407  1.131.2.2      matt 	 * path: fetch a new object from the pool and construct
   2408  1.131.2.2      matt 	 * it.
   2409  1.131.2.2      matt 	 */
   2410  1.131.2.2      matt 	pc->pc_misses++;
   2411  1.131.2.2      matt 	mutex_exit(&pc->pc_lock);
   2412  1.131.2.2      matt 	pool_cache_cpu_exit(cc, s);
   2413  1.131.2.2      matt 
   2414  1.131.2.2      matt 	object = pool_get(&pc->pc_pool, flags);
   2415  1.131.2.2      matt 	*objectp = object;
   2416  1.131.2.2      matt 	if (object == NULL)
   2417  1.131.2.2      matt 		return NULL;
   2418       1.43   thorpej 
   2419  1.131.2.2      matt 	if ((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0) {
   2420  1.131.2.2      matt 		pool_put(&pc->pc_pool, object);
   2421  1.131.2.2      matt 		*objectp = NULL;
   2422  1.131.2.2      matt 		return NULL;
   2423      1.102       chs 	}
   2424       1.51   thorpej 
   2425  1.131.2.2      matt 	KASSERT((((vaddr_t)object + pc->pc_pool.pr_itemoffset) &
   2426  1.131.2.2      matt 	    (pc->pc_pool.pr_align - 1)) == 0);
   2427  1.131.2.2      matt 
   2428  1.131.2.2      matt 	if (pap != NULL) {
   2429  1.131.2.2      matt #ifdef POOL_VTOPHYS
   2430  1.131.2.2      matt 		*pap = POOL_VTOPHYS(object);
   2431  1.131.2.2      matt #else
   2432  1.131.2.2      matt 		*pap = POOL_PADDR_INVALID;
   2433  1.131.2.2      matt #endif
   2434  1.131.2.2      matt 	}
   2435       1.51   thorpej 
   2436  1.131.2.2      matt 	FREECHECK_OUT(&pc->pc_freecheck, object);
   2437  1.131.2.2      matt 	return NULL;
   2438       1.43   thorpej }
   2439       1.43   thorpej 
   2440      1.130        ad /*
   2441  1.131.2.2      matt  * pool_cache_get{,_paddr}:
   2442      1.130        ad  *
   2443  1.131.2.2      matt  *	Get an object from a pool cache (optionally returning
   2444  1.131.2.2      matt  *	the physical address of the object).
   2445      1.130        ad  */
   2446  1.131.2.2      matt void *
   2447  1.131.2.2      matt pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
   2448      1.102       chs {
   2449  1.131.2.2      matt 	pool_cache_cpu_t *cc;
   2450  1.131.2.2      matt 	pcg_t *pcg;
   2451      1.102       chs 	void *object;
   2452  1.131.2.2      matt 	int s;
   2453      1.102       chs 
   2454  1.131.2.2      matt #ifdef LOCKDEBUG
   2455  1.131.2.2      matt 	if (flags & PR_WAITOK)
   2456  1.131.2.2      matt 		ASSERT_SLEEPABLE(NULL, "pool_cache_get(PR_WAITOK)");
   2457  1.131.2.2      matt #endif
   2458      1.130        ad 
   2459  1.131.2.2      matt 	cc = pool_cache_cpu_enter(pc, &s);
   2460  1.131.2.2      matt 	do {
   2461  1.131.2.2      matt 		/* Try and allocate an object from the current group. */
   2462  1.131.2.2      matt 	 	pcg = cc->cc_current;
   2463  1.131.2.2      matt 		if (pcg != NULL && pcg->pcg_avail > 0) {
   2464  1.131.2.2      matt 			object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;
   2465  1.131.2.2      matt 			if (pap != NULL)
   2466  1.131.2.2      matt 				*pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa;
   2467  1.131.2.2      matt 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL;
   2468  1.131.2.2      matt 			KASSERT(pcg->pcg_avail <= PCG_NOBJECTS);
   2469  1.131.2.2      matt 			KASSERT(object != NULL);
   2470  1.131.2.2      matt 			cc->cc_hits++;
   2471  1.131.2.2      matt 			pool_cache_cpu_exit(cc, &s);
   2472  1.131.2.2      matt 			FREECHECK_OUT(&pc->pc_freecheck, object);
   2473  1.131.2.2      matt 			return object;
   2474      1.102       chs 		}
   2475      1.130        ad 
   2476  1.131.2.2      matt 		/*
   2477  1.131.2.2      matt 		 * That failed.  If the previous group isn't empty, swap
   2478  1.131.2.2      matt 		 * it with the current group and allocate from there.
   2479  1.131.2.2      matt 		 */
   2480  1.131.2.2      matt 		pcg = cc->cc_previous;
   2481  1.131.2.2      matt 		if (pcg != NULL && pcg->pcg_avail > 0) {
   2482  1.131.2.2      matt 			cc->cc_previous = cc->cc_current;
   2483  1.131.2.2      matt 			cc->cc_current = pcg;
   2484  1.131.2.2      matt 			continue;
   2485  1.131.2.2      matt 		}
   2486  1.131.2.2      matt 
   2487  1.131.2.2      matt 		/*
   2488  1.131.2.2      matt 		 * Can't allocate from either group: try the slow path.
   2489  1.131.2.2      matt 		 * If get_slow() allocated an object for us, or if
   2490  1.131.2.2      matt 		 * no more objects are available, it will return NULL.
   2491  1.131.2.2      matt 		 * Otherwise, we need to retry.
   2492  1.131.2.2      matt 		 */
   2493  1.131.2.2      matt 		cc = pool_cache_get_slow(cc, &s, &object, pap, flags);
   2494  1.131.2.2      matt 	} while (cc != NULL);
   2495  1.131.2.2      matt 
   2496  1.131.2.2      matt 	return object;
   2497      1.105  christos }
   2498      1.105  christos 
   2499  1.131.2.2      matt #if __GNUC_PREREQ__(3, 0)
   2500  1.131.2.2      matt __attribute ((noinline))
   2501  1.131.2.2      matt #endif
   2502  1.131.2.2      matt pool_cache_cpu_t *
   2503  1.131.2.2      matt pool_cache_put_slow(pool_cache_cpu_t *cc, int *s, void *object, paddr_t pa)
   2504      1.105  christos {
   2505  1.131.2.2      matt 	pcg_t *pcg, *cur;
   2506  1.131.2.2      matt 	uint64_t ncsw;
   2507  1.131.2.2      matt 	pool_cache_t pc;
   2508      1.105  christos 
   2509  1.131.2.2      matt 	pc = cc->cc_cache;
   2510  1.131.2.2      matt 	cc->cc_misses++;
   2511      1.105  christos 
   2512  1.131.2.2      matt 	/*
   2513  1.131.2.2      matt 	 * No free slots locally.  Try to grab an empty, unused
   2514  1.131.2.2      matt 	 * group from the cache.
   2515  1.131.2.2      matt 	 */
   2516  1.131.2.2      matt 	if (!mutex_tryenter(&pc->pc_lock)) {
   2517  1.131.2.2      matt 		ncsw = curlwp->l_ncsw;
   2518  1.131.2.2      matt 		mutex_enter(&pc->pc_lock);
   2519  1.131.2.2      matt 		pc->pc_contended++;
   2520      1.103       chs 
   2521  1.131.2.2      matt 		/*
   2522  1.131.2.2      matt 		 * If we context switched while locking, then
   2523  1.131.2.2      matt 		 * our view of the per-CPU data is invalid:
   2524  1.131.2.2      matt 		 * retry.
   2525  1.131.2.2      matt 		 */
   2526  1.131.2.2      matt 		if (curlwp->l_ncsw != ncsw) {
   2527  1.131.2.2      matt 			mutex_exit(&pc->pc_lock);
   2528  1.131.2.2      matt 			pool_cache_cpu_exit(cc, s);
   2529  1.131.2.2      matt 			return pool_cache_cpu_enter(pc, s);
   2530  1.131.2.2      matt 		}
   2531  1.131.2.2      matt 	}
   2532  1.131.2.2      matt 
   2533  1.131.2.2      matt 	if ((pcg = pc->pc_emptygroups) != NULL) {
   2534  1.131.2.2      matt 		/*
   2535  1.131.2.2      matt 		 * If there's a empty group, release our full
   2536  1.131.2.2      matt 		 * group back to the cache.  Install the empty
   2537  1.131.2.2      matt 		 * group as cc_current and return.
   2538  1.131.2.2      matt 		 */
   2539  1.131.2.2      matt 		if ((cur = cc->cc_current) != NULL) {
   2540  1.131.2.2      matt 			KASSERT(cur->pcg_avail == PCG_NOBJECTS);
   2541  1.131.2.2      matt 			cur->pcg_next = pc->pc_fullgroups;
   2542  1.131.2.2      matt 			pc->pc_fullgroups = cur;
   2543  1.131.2.2      matt 			pc->pc_nfull++;
   2544  1.131.2.2      matt 		}
   2545  1.131.2.2      matt 		KASSERT(pcg->pcg_avail == 0);
   2546  1.131.2.2      matt 		cc->cc_current = pcg;
   2547  1.131.2.2      matt 		pc->pc_emptygroups = pcg->pcg_next;
   2548  1.131.2.2      matt 		pc->pc_hits++;
   2549  1.131.2.2      matt 		pc->pc_nempty--;
   2550  1.131.2.2      matt 		mutex_exit(&pc->pc_lock);
   2551  1.131.2.2      matt 		return cc;
   2552  1.131.2.2      matt 	}
   2553  1.131.2.2      matt 
   2554  1.131.2.2      matt 	/*
   2555  1.131.2.2      matt 	 * Nothing available locally or in cache.  Take the
   2556  1.131.2.2      matt 	 * slow path and try to allocate a new group that we
   2557  1.131.2.2      matt 	 * can release to.
   2558  1.131.2.2      matt 	 */
   2559  1.131.2.2      matt 	pc->pc_misses++;
   2560  1.131.2.2      matt 	mutex_exit(&pc->pc_lock);
   2561  1.131.2.2      matt 	pool_cache_cpu_exit(cc, s);
   2562  1.131.2.2      matt 
   2563  1.131.2.2      matt 	/*
   2564  1.131.2.2      matt 	 * If we can't allocate a new group, just throw the
   2565  1.131.2.2      matt 	 * object away.
   2566  1.131.2.2      matt 	 */
   2567  1.131.2.2      matt 	pcg = pool_get(&pcgpool, PR_NOWAIT);
   2568  1.131.2.2      matt 	if (pcg == NULL) {
   2569  1.131.2.2      matt 		pool_cache_destruct_object(pc, object);
   2570  1.131.2.2      matt 		return NULL;
   2571  1.131.2.2      matt 	}
   2572  1.131.2.2      matt #ifdef DIAGNOSTIC
   2573  1.131.2.2      matt 	memset(pcg, 0, sizeof(*pcg));
   2574  1.131.2.2      matt #else
   2575  1.131.2.2      matt 	pcg->pcg_avail = 0;
   2576  1.131.2.2      matt #endif
   2577  1.131.2.2      matt 
   2578  1.131.2.2      matt 	/*
   2579  1.131.2.2      matt 	 * Add the empty group to the cache and try again.
   2580  1.131.2.2      matt 	 */
   2581  1.131.2.2      matt 	mutex_enter(&pc->pc_lock);
   2582  1.131.2.2      matt 	pcg->pcg_next = pc->pc_emptygroups;
   2583  1.131.2.2      matt 	pc->pc_emptygroups = pcg;
   2584  1.131.2.2      matt 	pc->pc_nempty++;
   2585  1.131.2.2      matt 	mutex_exit(&pc->pc_lock);
   2586  1.131.2.2      matt 
   2587  1.131.2.2      matt 	return pool_cache_cpu_enter(pc, s);
   2588  1.131.2.2      matt }
   2589      1.102       chs 
   2590       1.43   thorpej /*
   2591  1.131.2.2      matt  * pool_cache_put{,_paddr}:
   2592       1.43   thorpej  *
   2593  1.131.2.2      matt  *	Put an object back to the pool cache (optionally caching the
   2594  1.131.2.2      matt  *	physical address of the object).
   2595       1.43   thorpej  */
   2596      1.101   thorpej void
   2597  1.131.2.2      matt pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
   2598       1.43   thorpej {
   2599  1.131.2.2      matt 	pool_cache_cpu_t *cc;
   2600  1.131.2.2      matt 	pcg_t *pcg;
   2601  1.131.2.2      matt 	int s;
   2602      1.101   thorpej 
   2603  1.131.2.2      matt 	FREECHECK_IN(&pc->pc_freecheck, object);
   2604       1.43   thorpej 
   2605  1.131.2.2      matt 	cc = pool_cache_cpu_enter(pc, &s);
   2606  1.131.2.2      matt 	do {
   2607  1.131.2.2      matt 		/* If the current group isn't full, release it there. */
   2608  1.131.2.2      matt 	 	pcg = cc->cc_current;
   2609  1.131.2.2      matt 		if (pcg != NULL && pcg->pcg_avail < PCG_NOBJECTS) {
   2610  1.131.2.2      matt 			KASSERT(pcg->pcg_objects[pcg->pcg_avail].pcgo_va
   2611  1.131.2.2      matt 			    == NULL);
   2612  1.131.2.2      matt 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object;
   2613  1.131.2.2      matt 			pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa;
   2614  1.131.2.2      matt 			pcg->pcg_avail++;
   2615  1.131.2.2      matt 			cc->cc_hits++;
   2616  1.131.2.2      matt 			pool_cache_cpu_exit(cc, &s);
   2617  1.131.2.2      matt 			return;
   2618  1.131.2.2      matt 		}
   2619       1.43   thorpej 
   2620  1.131.2.2      matt 		/*
   2621  1.131.2.2      matt 		 * That failed.  If the previous group is empty, swap
   2622  1.131.2.2      matt 		 * it with the current group and try again.
   2623  1.131.2.2      matt 		 */
   2624  1.131.2.2      matt 		pcg = cc->cc_previous;
   2625  1.131.2.2      matt 		if (pcg != NULL && pcg->pcg_avail == 0) {
   2626  1.131.2.2      matt 			cc->cc_previous = cc->cc_current;
   2627  1.131.2.2      matt 			cc->cc_current = pcg;
   2628  1.131.2.2      matt 			continue;
   2629  1.131.2.2      matt 		}
   2630       1.43   thorpej 
   2631  1.131.2.2      matt 		/*
   2632  1.131.2.2      matt 		 * Can't free to either group: try the slow path.
   2633  1.131.2.2      matt 		 * If put_slow() releases the object for us, it
   2634  1.131.2.2      matt 		 * will return NULL.  Otherwise we need to retry.
   2635  1.131.2.2      matt 		 */
   2636  1.131.2.2      matt 		cc = pool_cache_put_slow(cc, &s, object, pa);
   2637  1.131.2.2      matt 	} while (cc != NULL);
   2638       1.43   thorpej }
   2639       1.43   thorpej 
   2640       1.43   thorpej /*
   2641  1.131.2.2      matt  * pool_cache_xcall:
   2642       1.43   thorpej  *
   2643  1.131.2.2      matt  *	Transfer objects from the per-CPU cache to the global cache.
   2644  1.131.2.2      matt  *	Run within a cross-call thread.
   2645       1.43   thorpej  */
   2646       1.43   thorpej static void
   2647  1.131.2.2      matt pool_cache_xcall(pool_cache_t pc)
   2648       1.43   thorpej {
   2649  1.131.2.2      matt 	pool_cache_cpu_t *cc;
   2650  1.131.2.2      matt 	pcg_t *prev, *cur, **list;
   2651  1.131.2.2      matt 	int s = 0; /* XXXgcc */
   2652  1.131.2.2      matt 
   2653  1.131.2.2      matt 	cc = pool_cache_cpu_enter(pc, &s);
   2654  1.131.2.2      matt 	cur = cc->cc_current;
   2655  1.131.2.2      matt 	cc->cc_current = NULL;
   2656  1.131.2.2      matt 	prev = cc->cc_previous;
   2657  1.131.2.2      matt 	cc->cc_previous = NULL;
   2658  1.131.2.2      matt 	pool_cache_cpu_exit(cc, &s);
   2659  1.131.2.2      matt 
   2660  1.131.2.2      matt 	/*
   2661  1.131.2.2      matt 	 * XXXSMP Go to splvm to prevent kernel_lock from being taken,
   2662  1.131.2.2      matt 	 * because locks at IPL_SOFTXXX are still spinlocks.  Does not
   2663  1.131.2.2      matt 	 * apply to IPL_SOFTBIO.  Cross-call threads do not take the
   2664  1.131.2.2      matt 	 * kernel_lock.
   2665      1.101   thorpej 	 */
   2666  1.131.2.2      matt 	s = splvm();
   2667  1.131.2.2      matt 	mutex_enter(&pc->pc_lock);
   2668  1.131.2.2      matt 	if (cur != NULL) {
   2669  1.131.2.2      matt 		if (cur->pcg_avail == PCG_NOBJECTS) {
   2670  1.131.2.2      matt 			list = &pc->pc_fullgroups;
   2671  1.131.2.2      matt 			pc->pc_nfull++;
   2672  1.131.2.2      matt 		} else if (cur->pcg_avail == 0) {
   2673  1.131.2.2      matt 			list = &pc->pc_emptygroups;
   2674  1.131.2.2      matt 			pc->pc_nempty++;
   2675  1.131.2.2      matt 		} else {
   2676  1.131.2.2      matt 			list = &pc->pc_partgroups;
   2677  1.131.2.2      matt 			pc->pc_npart++;
   2678  1.131.2.2      matt 		}
   2679  1.131.2.2      matt 		cur->pcg_next = *list;
   2680  1.131.2.2      matt 		*list = cur;
   2681  1.131.2.2      matt 	}
   2682  1.131.2.2      matt 	if (prev != NULL) {
   2683  1.131.2.2      matt 		if (prev->pcg_avail == PCG_NOBJECTS) {
   2684  1.131.2.2      matt 			list = &pc->pc_fullgroups;
   2685  1.131.2.2      matt 			pc->pc_nfull++;
   2686  1.131.2.2      matt 		} else if (prev->pcg_avail == 0) {
   2687  1.131.2.2      matt 			list = &pc->pc_emptygroups;
   2688  1.131.2.2      matt 			pc->pc_nempty++;
   2689  1.131.2.2      matt 		} else {
   2690  1.131.2.2      matt 			list = &pc->pc_partgroups;
   2691  1.131.2.2      matt 			pc->pc_npart++;
   2692  1.131.2.2      matt 		}
   2693  1.131.2.2      matt 		prev->pcg_next = *list;
   2694  1.131.2.2      matt 		*list = prev;
   2695  1.131.2.2      matt 	}
   2696  1.131.2.2      matt 	mutex_exit(&pc->pc_lock);
   2697  1.131.2.2      matt 	splx(s);
   2698        1.3        pk }
   2699       1.66   thorpej 
   2700       1.66   thorpej /*
   2701       1.66   thorpej  * Pool backend allocators.
   2702       1.66   thorpej  *
   2703       1.66   thorpej  * Each pool has a backend allocator that handles allocation, deallocation,
   2704       1.66   thorpej  * and any additional draining that might be needed.
   2705       1.66   thorpej  *
   2706       1.66   thorpej  * We provide two standard allocators:
   2707       1.66   thorpej  *
   2708       1.66   thorpej  *	pool_allocator_kmem - the default when no allocator is specified
   2709       1.66   thorpej  *
   2710       1.66   thorpej  *	pool_allocator_nointr - used for pools that will not be accessed
   2711       1.66   thorpej  *	in interrupt context.
   2712       1.66   thorpej  */
   2713       1.66   thorpej void	*pool_page_alloc(struct pool *, int);
   2714       1.66   thorpej void	pool_page_free(struct pool *, void *);
   2715       1.66   thorpej 
   2716      1.112     bjh21 #ifdef POOL_SUBPAGE
   2717      1.112     bjh21 struct pool_allocator pool_allocator_kmem_fullpage = {
   2718      1.112     bjh21 	pool_page_alloc, pool_page_free, 0,
   2719      1.117      yamt 	.pa_backingmapptr = &kmem_map,
   2720      1.112     bjh21 };
   2721      1.112     bjh21 #else
   2722       1.66   thorpej struct pool_allocator pool_allocator_kmem = {
   2723       1.66   thorpej 	pool_page_alloc, pool_page_free, 0,
   2724      1.117      yamt 	.pa_backingmapptr = &kmem_map,
   2725       1.66   thorpej };
   2726      1.112     bjh21 #endif
   2727       1.66   thorpej 
   2728       1.66   thorpej void	*pool_page_alloc_nointr(struct pool *, int);
   2729       1.66   thorpej void	pool_page_free_nointr(struct pool *, void *);
   2730       1.66   thorpej 
   2731      1.112     bjh21 #ifdef POOL_SUBPAGE
   2732      1.112     bjh21 struct pool_allocator pool_allocator_nointr_fullpage = {
   2733      1.112     bjh21 	pool_page_alloc_nointr, pool_page_free_nointr, 0,
   2734      1.117      yamt 	.pa_backingmapptr = &kernel_map,
   2735      1.112     bjh21 };
   2736      1.112     bjh21 #else
   2737       1.66   thorpej struct pool_allocator pool_allocator_nointr = {
   2738       1.66   thorpej 	pool_page_alloc_nointr, pool_page_free_nointr, 0,
   2739      1.117      yamt 	.pa_backingmapptr = &kernel_map,
   2740       1.66   thorpej };
   2741      1.112     bjh21 #endif
   2742       1.66   thorpej 
   2743       1.66   thorpej #ifdef POOL_SUBPAGE
   2744       1.66   thorpej void	*pool_subpage_alloc(struct pool *, int);
   2745       1.66   thorpej void	pool_subpage_free(struct pool *, void *);
   2746       1.66   thorpej 
   2747      1.112     bjh21 struct pool_allocator pool_allocator_kmem = {
   2748      1.112     bjh21 	pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
   2749      1.117      yamt 	.pa_backingmapptr = &kmem_map,
   2750      1.112     bjh21 };
   2751      1.112     bjh21 
   2752      1.112     bjh21 void	*pool_subpage_alloc_nointr(struct pool *, int);
   2753      1.112     bjh21 void	pool_subpage_free_nointr(struct pool *, void *);
   2754      1.112     bjh21 
   2755      1.112     bjh21 struct pool_allocator pool_allocator_nointr = {
   2756      1.112     bjh21 	pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
   2757      1.117      yamt 	.pa_backingmapptr = &kmem_map,
   2758       1.66   thorpej };
   2759       1.66   thorpej #endif /* POOL_SUBPAGE */
   2760       1.66   thorpej 
   2761      1.117      yamt static void *
   2762      1.117      yamt pool_allocator_alloc(struct pool *pp, int flags)
   2763       1.66   thorpej {
   2764      1.117      yamt 	struct pool_allocator *pa = pp->pr_alloc;
   2765       1.66   thorpej 	void *res;
   2766       1.66   thorpej 
   2767      1.117      yamt 	res = (*pa->pa_alloc)(pp, flags);
   2768      1.117      yamt 	if (res == NULL && (flags & PR_WAITOK) == 0) {
   2769       1.66   thorpej 		/*
   2770      1.117      yamt 		 * We only run the drain hook here if PR_NOWAIT.
   2771      1.117      yamt 		 * In other cases, the hook will be run in
   2772      1.117      yamt 		 * pool_reclaim().
   2773       1.66   thorpej 		 */
   2774      1.117      yamt 		if (pp->pr_drain_hook != NULL) {
   2775      1.117      yamt 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
   2776      1.117      yamt 			res = (*pa->pa_alloc)(pp, flags);
   2777       1.66   thorpej 		}
   2778      1.117      yamt 	}
   2779      1.117      yamt 	return res;
   2780       1.66   thorpej }
   2781       1.66   thorpej 
   2782      1.117      yamt static void
   2783       1.66   thorpej pool_allocator_free(struct pool *pp, void *v)
   2784       1.66   thorpej {
   2785       1.66   thorpej 	struct pool_allocator *pa = pp->pr_alloc;
   2786       1.66   thorpej 
   2787       1.66   thorpej 	(*pa->pa_free)(pp, v);
   2788       1.66   thorpej }
   2789       1.66   thorpej 
   2790       1.66   thorpej void *
   2791      1.124      yamt pool_page_alloc(struct pool *pp, int flags)
   2792       1.66   thorpej {
   2793      1.127   thorpej 	bool waitok = (flags & PR_WAITOK) ? true : false;
   2794       1.66   thorpej 
   2795      1.100      yamt 	return ((void *) uvm_km_alloc_poolpage_cache(kmem_map, waitok));
   2796       1.66   thorpej }
   2797       1.66   thorpej 
   2798       1.66   thorpej void
   2799      1.124      yamt pool_page_free(struct pool *pp, void *v)
   2800       1.66   thorpej {
   2801       1.66   thorpej 
   2802       1.98      yamt 	uvm_km_free_poolpage_cache(kmem_map, (vaddr_t) v);
   2803       1.98      yamt }
   2804       1.98      yamt 
   2805       1.98      yamt static void *
   2806      1.124      yamt pool_page_alloc_meta(struct pool *pp, int flags)
   2807       1.98      yamt {
   2808      1.127   thorpej 	bool waitok = (flags & PR_WAITOK) ? true : false;
   2809       1.98      yamt 
   2810      1.100      yamt 	return ((void *) uvm_km_alloc_poolpage(kmem_map, waitok));
   2811       1.98      yamt }
   2812       1.98      yamt 
   2813       1.98      yamt static void
   2814      1.124      yamt pool_page_free_meta(struct pool *pp, void *v)
   2815       1.98      yamt {
   2816       1.98      yamt 
   2817      1.100      yamt 	uvm_km_free_poolpage(kmem_map, (vaddr_t) v);
   2818       1.66   thorpej }
   2819       1.66   thorpej 
   2820       1.66   thorpej #ifdef POOL_SUBPAGE
   2821       1.66   thorpej /* Sub-page allocator, for machines with large hardware pages. */
   2822       1.66   thorpej void *
   2823       1.66   thorpej pool_subpage_alloc(struct pool *pp, int flags)
   2824       1.66   thorpej {
   2825  1.131.2.2      matt 	return pool_get(&psppool, flags);
   2826       1.66   thorpej }
   2827       1.66   thorpej 
   2828       1.66   thorpej void
   2829       1.66   thorpej pool_subpage_free(struct pool *pp, void *v)
   2830       1.66   thorpej {
   2831       1.66   thorpej 	pool_put(&psppool, v);
   2832       1.66   thorpej }
   2833       1.66   thorpej 
   2834       1.66   thorpej /* We don't provide a real nointr allocator.  Maybe later. */
   2835       1.66   thorpej void *
   2836      1.112     bjh21 pool_subpage_alloc_nointr(struct pool *pp, int flags)
   2837       1.66   thorpej {
   2838       1.66   thorpej 
   2839       1.66   thorpej 	return (pool_subpage_alloc(pp, flags));
   2840       1.66   thorpej }
   2841       1.66   thorpej 
   2842       1.66   thorpej void
   2843      1.112     bjh21 pool_subpage_free_nointr(struct pool *pp, void *v)
   2844       1.66   thorpej {
   2845       1.66   thorpej 
   2846       1.66   thorpej 	pool_subpage_free(pp, v);
   2847       1.66   thorpej }
   2848      1.112     bjh21 #endif /* POOL_SUBPAGE */
   2849       1.66   thorpej void *
   2850      1.124      yamt pool_page_alloc_nointr(struct pool *pp, int flags)
   2851       1.66   thorpej {
   2852      1.127   thorpej 	bool waitok = (flags & PR_WAITOK) ? true : false;
   2853       1.66   thorpej 
   2854      1.100      yamt 	return ((void *) uvm_km_alloc_poolpage_cache(kernel_map, waitok));
   2855       1.66   thorpej }
   2856       1.66   thorpej 
   2857       1.66   thorpej void
   2858      1.124      yamt pool_page_free_nointr(struct pool *pp, void *v)
   2859       1.66   thorpej {
   2860       1.66   thorpej 
   2861       1.98      yamt 	uvm_km_free_poolpage_cache(kernel_map, (vaddr_t) v);
   2862       1.66   thorpej }
   2863