subr_pool.c revision 1.131.2.2 1 1.131.2.2 matt /* $NetBSD: subr_pool.c,v 1.131.2.2 2007/11/08 11:00:05 matt Exp $ */
2 1.1 pk
3 1.1 pk /*-
4 1.131.2.2 matt * Copyright (c) 1997, 1999, 2000, 2002, 2007 The NetBSD Foundation, Inc.
5 1.1 pk * All rights reserved.
6 1.1 pk *
7 1.1 pk * This code is derived from software contributed to The NetBSD Foundation
8 1.20 thorpej * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
9 1.131.2.2 matt * Simulation Facility, NASA Ames Research Center, and by Andrew Doran.
10 1.1 pk *
11 1.1 pk * Redistribution and use in source and binary forms, with or without
12 1.1 pk * modification, are permitted provided that the following conditions
13 1.1 pk * are met:
14 1.1 pk * 1. Redistributions of source code must retain the above copyright
15 1.1 pk * notice, this list of conditions and the following disclaimer.
16 1.1 pk * 2. Redistributions in binary form must reproduce the above copyright
17 1.1 pk * notice, this list of conditions and the following disclaimer in the
18 1.1 pk * documentation and/or other materials provided with the distribution.
19 1.1 pk * 3. All advertising materials mentioning features or use of this software
20 1.1 pk * must display the following acknowledgement:
21 1.13 christos * This product includes software developed by the NetBSD
22 1.13 christos * Foundation, Inc. and its contributors.
23 1.1 pk * 4. Neither the name of The NetBSD Foundation nor the names of its
24 1.1 pk * contributors may be used to endorse or promote products derived
25 1.1 pk * from this software without specific prior written permission.
26 1.1 pk *
27 1.1 pk * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 1.1 pk * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 1.1 pk * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 1.1 pk * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 1.1 pk * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 1.1 pk * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 1.1 pk * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 1.1 pk * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 1.1 pk * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 1.1 pk * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 1.1 pk * POSSIBILITY OF SUCH DAMAGE.
38 1.1 pk */
39 1.64 lukem
40 1.64 lukem #include <sys/cdefs.h>
41 1.131.2.2 matt __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.131.2.2 2007/11/08 11:00:05 matt Exp $");
42 1.24 scottr
43 1.25 thorpej #include "opt_pool.h"
44 1.24 scottr #include "opt_poollog.h"
45 1.28 thorpej #include "opt_lockdebug.h"
46 1.1 pk
47 1.1 pk #include <sys/param.h>
48 1.1 pk #include <sys/systm.h>
49 1.1 pk #include <sys/proc.h>
50 1.1 pk #include <sys/errno.h>
51 1.1 pk #include <sys/kernel.h>
52 1.1 pk #include <sys/malloc.h>
53 1.1 pk #include <sys/lock.h>
54 1.1 pk #include <sys/pool.h>
55 1.20 thorpej #include <sys/syslog.h>
56 1.125 ad #include <sys/debug.h>
57 1.131.2.2 matt #include <sys/lockdebug.h>
58 1.131.2.2 matt #include <sys/xcall.h>
59 1.131.2.2 matt #include <sys/cpu.h>
60 1.3 pk
61 1.3 pk #include <uvm/uvm.h>
62 1.3 pk
63 1.1 pk /*
64 1.1 pk * Pool resource management utility.
65 1.3 pk *
66 1.88 chs * Memory is allocated in pages which are split into pieces according to
67 1.88 chs * the pool item size. Each page is kept on one of three lists in the
68 1.88 chs * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
69 1.88 chs * for empty, full and partially-full pages respectively. The individual
70 1.88 chs * pool items are on a linked list headed by `ph_itemlist' in each page
71 1.88 chs * header. The memory for building the page list is either taken from
72 1.88 chs * the allocated pages themselves (for small pool items) or taken from
73 1.88 chs * an internal pool of page headers (`phpool').
74 1.1 pk */
75 1.1 pk
76 1.3 pk /* List of all pools */
77 1.102 chs LIST_HEAD(,pool) pool_head = LIST_HEAD_INITIALIZER(pool_head);
78 1.3 pk
79 1.131.2.2 matt /* List of all caches. */
80 1.131.2.2 matt LIST_HEAD(,pool_cache) pool_cache_head =
81 1.131.2.2 matt LIST_HEAD_INITIALIZER(pool_cache_head);
82 1.131.2.2 matt
83 1.3 pk /* Private pool for page header structures */
84 1.97 yamt #define PHPOOL_MAX 8
85 1.97 yamt static struct pool phpool[PHPOOL_MAX];
86 1.97 yamt #define PHPOOL_FREELIST_NELEM(idx) (((idx) == 0) ? 0 : (1 << (idx)))
87 1.3 pk
88 1.62 bjh21 #ifdef POOL_SUBPAGE
89 1.62 bjh21 /* Pool of subpages for use by normal pools. */
90 1.62 bjh21 static struct pool psppool;
91 1.62 bjh21 #endif
92 1.62 bjh21
93 1.117 yamt static SLIST_HEAD(, pool_allocator) pa_deferinitq =
94 1.117 yamt SLIST_HEAD_INITIALIZER(pa_deferinitq);
95 1.117 yamt
96 1.98 yamt static void *pool_page_alloc_meta(struct pool *, int);
97 1.98 yamt static void pool_page_free_meta(struct pool *, void *);
98 1.98 yamt
99 1.98 yamt /* allocator for pool metadata */
100 1.131.2.2 matt struct pool_allocator pool_allocator_meta = {
101 1.117 yamt pool_page_alloc_meta, pool_page_free_meta,
102 1.117 yamt .pa_backingmapptr = &kmem_map,
103 1.98 yamt };
104 1.98 yamt
105 1.3 pk /* # of seconds to retain page after last use */
106 1.3 pk int pool_inactive_time = 10;
107 1.3 pk
108 1.3 pk /* Next candidate for drainage (see pool_drain()) */
109 1.23 thorpej static struct pool *drainpp;
110 1.23 thorpej
111 1.131.2.2 matt /* This lock protects both pool_head and drainpp. */
112 1.131.2.2 matt static kmutex_t pool_head_lock;
113 1.131.2.2 matt static kcondvar_t pool_busy;
114 1.3 pk
115 1.99 yamt typedef uint8_t pool_item_freelist_t;
116 1.99 yamt
117 1.3 pk struct pool_item_header {
118 1.3 pk /* Page headers */
119 1.88 chs LIST_ENTRY(pool_item_header)
120 1.3 pk ph_pagelist; /* pool page list */
121 1.88 chs SPLAY_ENTRY(pool_item_header)
122 1.88 chs ph_node; /* Off-page page headers */
123 1.128 christos void * ph_page; /* this page's address */
124 1.3 pk struct timeval ph_time; /* last referenced */
125 1.97 yamt union {
126 1.97 yamt /* !PR_NOTOUCH */
127 1.97 yamt struct {
128 1.102 chs LIST_HEAD(, pool_item)
129 1.97 yamt phu_itemlist; /* chunk list for this page */
130 1.97 yamt } phu_normal;
131 1.97 yamt /* PR_NOTOUCH */
132 1.97 yamt struct {
133 1.97 yamt uint16_t
134 1.97 yamt phu_off; /* start offset in page */
135 1.99 yamt pool_item_freelist_t
136 1.97 yamt phu_firstfree; /* first free item */
137 1.99 yamt /*
138 1.99 yamt * XXX it might be better to use
139 1.99 yamt * a simple bitmap and ffs(3)
140 1.99 yamt */
141 1.97 yamt } phu_notouch;
142 1.97 yamt } ph_u;
143 1.97 yamt uint16_t ph_nmissing; /* # of chunks in use */
144 1.3 pk };
145 1.97 yamt #define ph_itemlist ph_u.phu_normal.phu_itemlist
146 1.97 yamt #define ph_off ph_u.phu_notouch.phu_off
147 1.97 yamt #define ph_firstfree ph_u.phu_notouch.phu_firstfree
148 1.3 pk
149 1.1 pk struct pool_item {
150 1.3 pk #ifdef DIAGNOSTIC
151 1.82 thorpej u_int pi_magic;
152 1.33 chs #endif
153 1.131.2.2 matt #define PI_MAGIC 0xdeaddeadU
154 1.3 pk /* Other entries use only this list entry */
155 1.102 chs LIST_ENTRY(pool_item) pi_list;
156 1.3 pk };
157 1.3 pk
158 1.53 thorpej #define POOL_NEEDS_CATCHUP(pp) \
159 1.53 thorpej ((pp)->pr_nitems < (pp)->pr_minitems)
160 1.53 thorpej
161 1.43 thorpej /*
162 1.43 thorpej * Pool cache management.
163 1.43 thorpej *
164 1.43 thorpej * Pool caches provide a way for constructed objects to be cached by the
165 1.43 thorpej * pool subsystem. This can lead to performance improvements by avoiding
166 1.43 thorpej * needless object construction/destruction; it is deferred until absolutely
167 1.43 thorpej * necessary.
168 1.43 thorpej *
169 1.131.2.2 matt * Caches are grouped into cache groups. Each cache group references up
170 1.131.2.2 matt * to PCG_NUMOBJECTS constructed objects. When a cache allocates an
171 1.131.2.2 matt * object from the pool, it calls the object's constructor and places it
172 1.131.2.2 matt * into a cache group. When a cache group frees an object back to the
173 1.131.2.2 matt * pool, it first calls the object's destructor. This allows the object
174 1.131.2.2 matt * to persist in constructed form while freed to the cache.
175 1.131.2.2 matt *
176 1.131.2.2 matt * The pool references each cache, so that when a pool is drained by the
177 1.131.2.2 matt * pagedaemon, it can drain each individual cache as well. Each time a
178 1.131.2.2 matt * cache is drained, the most idle cache group is freed to the pool in
179 1.131.2.2 matt * its entirety.
180 1.43 thorpej *
181 1.43 thorpej * Pool caches are layed on top of pools. By layering them, we can avoid
182 1.43 thorpej * the complexity of cache management for pools which would not benefit
183 1.43 thorpej * from it.
184 1.43 thorpej */
185 1.43 thorpej
186 1.43 thorpej static struct pool pcgpool;
187 1.131.2.2 matt static struct pool cache_pool;
188 1.131.2.2 matt static struct pool cache_cpu_pool;
189 1.3 pk
190 1.131.2.2 matt static pool_cache_cpu_t *pool_cache_put_slow(pool_cache_cpu_t *, int *,
191 1.131.2.2 matt void *, paddr_t);
192 1.131.2.2 matt static pool_cache_cpu_t *pool_cache_get_slow(pool_cache_cpu_t *, int *,
193 1.131.2.2 matt void **, paddr_t *, int);
194 1.131.2.2 matt static void pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
195 1.131.2.2 matt static void pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
196 1.131.2.2 matt static void pool_cache_xcall(pool_cache_t);
197 1.3 pk
198 1.42 thorpej static int pool_catchup(struct pool *);
199 1.128 christos static void pool_prime_page(struct pool *, void *,
200 1.55 thorpej struct pool_item_header *);
201 1.88 chs static void pool_update_curpage(struct pool *);
202 1.66 thorpej
203 1.113 yamt static int pool_grow(struct pool *, int);
204 1.117 yamt static void *pool_allocator_alloc(struct pool *, int);
205 1.117 yamt static void pool_allocator_free(struct pool *, void *);
206 1.3 pk
207 1.97 yamt static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
208 1.88 chs void (*)(const char *, ...));
209 1.42 thorpej static void pool_print1(struct pool *, const char *,
210 1.42 thorpej void (*)(const char *, ...));
211 1.3 pk
212 1.88 chs static int pool_chk_page(struct pool *, const char *,
213 1.88 chs struct pool_item_header *);
214 1.88 chs
215 1.3 pk /*
216 1.52 thorpej * Pool log entry. An array of these is allocated in pool_init().
217 1.3 pk */
218 1.3 pk struct pool_log {
219 1.3 pk const char *pl_file;
220 1.3 pk long pl_line;
221 1.3 pk int pl_action;
222 1.25 thorpej #define PRLOG_GET 1
223 1.25 thorpej #define PRLOG_PUT 2
224 1.3 pk void *pl_addr;
225 1.1 pk };
226 1.1 pk
227 1.86 matt #ifdef POOL_DIAGNOSTIC
228 1.3 pk /* Number of entries in pool log buffers */
229 1.17 thorpej #ifndef POOL_LOGSIZE
230 1.17 thorpej #define POOL_LOGSIZE 10
231 1.17 thorpej #endif
232 1.17 thorpej
233 1.17 thorpej int pool_logsize = POOL_LOGSIZE;
234 1.1 pk
235 1.110 perry static inline void
236 1.42 thorpej pr_log(struct pool *pp, void *v, int action, const char *file, long line)
237 1.3 pk {
238 1.3 pk int n = pp->pr_curlogentry;
239 1.3 pk struct pool_log *pl;
240 1.3 pk
241 1.20 thorpej if ((pp->pr_roflags & PR_LOGGING) == 0)
242 1.3 pk return;
243 1.3 pk
244 1.3 pk /*
245 1.3 pk * Fill in the current entry. Wrap around and overwrite
246 1.3 pk * the oldest entry if necessary.
247 1.3 pk */
248 1.3 pk pl = &pp->pr_log[n];
249 1.3 pk pl->pl_file = file;
250 1.3 pk pl->pl_line = line;
251 1.3 pk pl->pl_action = action;
252 1.3 pk pl->pl_addr = v;
253 1.3 pk if (++n >= pp->pr_logsize)
254 1.3 pk n = 0;
255 1.3 pk pp->pr_curlogentry = n;
256 1.3 pk }
257 1.3 pk
258 1.3 pk static void
259 1.42 thorpej pr_printlog(struct pool *pp, struct pool_item *pi,
260 1.42 thorpej void (*pr)(const char *, ...))
261 1.3 pk {
262 1.3 pk int i = pp->pr_logsize;
263 1.3 pk int n = pp->pr_curlogentry;
264 1.3 pk
265 1.20 thorpej if ((pp->pr_roflags & PR_LOGGING) == 0)
266 1.3 pk return;
267 1.3 pk
268 1.3 pk /*
269 1.3 pk * Print all entries in this pool's log.
270 1.3 pk */
271 1.3 pk while (i-- > 0) {
272 1.3 pk struct pool_log *pl = &pp->pr_log[n];
273 1.3 pk if (pl->pl_action != 0) {
274 1.25 thorpej if (pi == NULL || pi == pl->pl_addr) {
275 1.25 thorpej (*pr)("\tlog entry %d:\n", i);
276 1.25 thorpej (*pr)("\t\taction = %s, addr = %p\n",
277 1.25 thorpej pl->pl_action == PRLOG_GET ? "get" : "put",
278 1.25 thorpej pl->pl_addr);
279 1.25 thorpej (*pr)("\t\tfile: %s at line %lu\n",
280 1.25 thorpej pl->pl_file, pl->pl_line);
281 1.25 thorpej }
282 1.3 pk }
283 1.3 pk if (++n >= pp->pr_logsize)
284 1.3 pk n = 0;
285 1.3 pk }
286 1.3 pk }
287 1.25 thorpej
288 1.110 perry static inline void
289 1.42 thorpej pr_enter(struct pool *pp, const char *file, long line)
290 1.25 thorpej {
291 1.25 thorpej
292 1.34 thorpej if (__predict_false(pp->pr_entered_file != NULL)) {
293 1.25 thorpej printf("pool %s: reentrancy at file %s line %ld\n",
294 1.25 thorpej pp->pr_wchan, file, line);
295 1.25 thorpej printf(" previous entry at file %s line %ld\n",
296 1.25 thorpej pp->pr_entered_file, pp->pr_entered_line);
297 1.25 thorpej panic("pr_enter");
298 1.25 thorpej }
299 1.25 thorpej
300 1.25 thorpej pp->pr_entered_file = file;
301 1.25 thorpej pp->pr_entered_line = line;
302 1.25 thorpej }
303 1.25 thorpej
304 1.110 perry static inline void
305 1.42 thorpej pr_leave(struct pool *pp)
306 1.25 thorpej {
307 1.25 thorpej
308 1.34 thorpej if (__predict_false(pp->pr_entered_file == NULL)) {
309 1.25 thorpej printf("pool %s not entered?\n", pp->pr_wchan);
310 1.25 thorpej panic("pr_leave");
311 1.25 thorpej }
312 1.25 thorpej
313 1.25 thorpej pp->pr_entered_file = NULL;
314 1.25 thorpej pp->pr_entered_line = 0;
315 1.25 thorpej }
316 1.25 thorpej
317 1.110 perry static inline void
318 1.42 thorpej pr_enter_check(struct pool *pp, void (*pr)(const char *, ...))
319 1.25 thorpej {
320 1.25 thorpej
321 1.25 thorpej if (pp->pr_entered_file != NULL)
322 1.25 thorpej (*pr)("\n\tcurrently entered from file %s line %ld\n",
323 1.25 thorpej pp->pr_entered_file, pp->pr_entered_line);
324 1.25 thorpej }
325 1.3 pk #else
326 1.25 thorpej #define pr_log(pp, v, action, file, line)
327 1.25 thorpej #define pr_printlog(pp, pi, pr)
328 1.25 thorpej #define pr_enter(pp, file, line)
329 1.25 thorpej #define pr_leave(pp)
330 1.25 thorpej #define pr_enter_check(pp, pr)
331 1.59 thorpej #endif /* POOL_DIAGNOSTIC */
332 1.3 pk
333 1.110 perry static inline int
334 1.97 yamt pr_item_notouch_index(const struct pool *pp, const struct pool_item_header *ph,
335 1.97 yamt const void *v)
336 1.97 yamt {
337 1.97 yamt const char *cp = v;
338 1.97 yamt int idx;
339 1.97 yamt
340 1.97 yamt KASSERT(pp->pr_roflags & PR_NOTOUCH);
341 1.128 christos idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
342 1.97 yamt KASSERT(idx < pp->pr_itemsperpage);
343 1.97 yamt return idx;
344 1.97 yamt }
345 1.97 yamt
346 1.99 yamt #define PR_FREELIST_ALIGN(p) \
347 1.99 yamt roundup((uintptr_t)(p), sizeof(pool_item_freelist_t))
348 1.99 yamt #define PR_FREELIST(ph) ((pool_item_freelist_t *)PR_FREELIST_ALIGN((ph) + 1))
349 1.99 yamt #define PR_INDEX_USED ((pool_item_freelist_t)-1)
350 1.99 yamt #define PR_INDEX_EOL ((pool_item_freelist_t)-2)
351 1.97 yamt
352 1.110 perry static inline void
353 1.97 yamt pr_item_notouch_put(const struct pool *pp, struct pool_item_header *ph,
354 1.97 yamt void *obj)
355 1.97 yamt {
356 1.97 yamt int idx = pr_item_notouch_index(pp, ph, obj);
357 1.99 yamt pool_item_freelist_t *freelist = PR_FREELIST(ph);
358 1.97 yamt
359 1.97 yamt KASSERT(freelist[idx] == PR_INDEX_USED);
360 1.97 yamt freelist[idx] = ph->ph_firstfree;
361 1.97 yamt ph->ph_firstfree = idx;
362 1.97 yamt }
363 1.97 yamt
364 1.110 perry static inline void *
365 1.97 yamt pr_item_notouch_get(const struct pool *pp, struct pool_item_header *ph)
366 1.97 yamt {
367 1.97 yamt int idx = ph->ph_firstfree;
368 1.99 yamt pool_item_freelist_t *freelist = PR_FREELIST(ph);
369 1.97 yamt
370 1.97 yamt KASSERT(freelist[idx] != PR_INDEX_USED);
371 1.97 yamt ph->ph_firstfree = freelist[idx];
372 1.97 yamt freelist[idx] = PR_INDEX_USED;
373 1.97 yamt
374 1.128 christos return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
375 1.97 yamt }
376 1.97 yamt
377 1.110 perry static inline int
378 1.88 chs phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
379 1.88 chs {
380 1.121 yamt
381 1.121 yamt /*
382 1.121 yamt * we consider pool_item_header with smaller ph_page bigger.
383 1.121 yamt * (this unnatural ordering is for the benefit of pr_find_pagehead.)
384 1.121 yamt */
385 1.121 yamt
386 1.88 chs if (a->ph_page < b->ph_page)
387 1.121 yamt return (1);
388 1.121 yamt else if (a->ph_page > b->ph_page)
389 1.88 chs return (-1);
390 1.88 chs else
391 1.88 chs return (0);
392 1.88 chs }
393 1.88 chs
394 1.88 chs SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
395 1.88 chs SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
396 1.88 chs
397 1.3 pk /*
398 1.121 yamt * Return the pool page header based on item address.
399 1.3 pk */
400 1.110 perry static inline struct pool_item_header *
401 1.121 yamt pr_find_pagehead(struct pool *pp, void *v)
402 1.3 pk {
403 1.88 chs struct pool_item_header *ph, tmp;
404 1.3 pk
405 1.121 yamt if ((pp->pr_roflags & PR_NOALIGN) != 0) {
406 1.128 christos tmp.ph_page = (void *)(uintptr_t)v;
407 1.121 yamt ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
408 1.121 yamt if (ph == NULL) {
409 1.121 yamt ph = SPLAY_ROOT(&pp->pr_phtree);
410 1.121 yamt if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
411 1.121 yamt ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
412 1.121 yamt }
413 1.121 yamt KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
414 1.121 yamt }
415 1.121 yamt } else {
416 1.128 christos void *page =
417 1.128 christos (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask);
418 1.121 yamt
419 1.121 yamt if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
420 1.128 christos ph = (struct pool_item_header *)((char *)page + pp->pr_phoffset);
421 1.121 yamt } else {
422 1.121 yamt tmp.ph_page = page;
423 1.121 yamt ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
424 1.121 yamt }
425 1.121 yamt }
426 1.3 pk
427 1.121 yamt KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
428 1.128 christos ((char *)ph->ph_page <= (char *)v &&
429 1.128 christos (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
430 1.88 chs return ph;
431 1.3 pk }
432 1.3 pk
433 1.101 thorpej static void
434 1.101 thorpej pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
435 1.101 thorpej {
436 1.101 thorpej struct pool_item_header *ph;
437 1.101 thorpej
438 1.101 thorpej while ((ph = LIST_FIRST(pq)) != NULL) {
439 1.101 thorpej LIST_REMOVE(ph, ph_pagelist);
440 1.101 thorpej pool_allocator_free(pp, ph->ph_page);
441 1.131.2.2 matt if ((pp->pr_roflags & PR_PHINPAGE) == 0)
442 1.101 thorpej pool_put(pp->pr_phpool, ph);
443 1.101 thorpej }
444 1.101 thorpej }
445 1.101 thorpej
446 1.3 pk /*
447 1.3 pk * Remove a page from the pool.
448 1.3 pk */
449 1.110 perry static inline void
450 1.61 chs pr_rmpage(struct pool *pp, struct pool_item_header *ph,
451 1.61 chs struct pool_pagelist *pq)
452 1.3 pk {
453 1.3 pk
454 1.131.2.2 matt KASSERT(mutex_owned(&pp->pr_lock));
455 1.91 yamt
456 1.3 pk /*
457 1.7 thorpej * If the page was idle, decrement the idle page count.
458 1.3 pk */
459 1.6 thorpej if (ph->ph_nmissing == 0) {
460 1.6 thorpej #ifdef DIAGNOSTIC
461 1.6 thorpej if (pp->pr_nidle == 0)
462 1.6 thorpej panic("pr_rmpage: nidle inconsistent");
463 1.20 thorpej if (pp->pr_nitems < pp->pr_itemsperpage)
464 1.20 thorpej panic("pr_rmpage: nitems inconsistent");
465 1.6 thorpej #endif
466 1.6 thorpej pp->pr_nidle--;
467 1.6 thorpej }
468 1.7 thorpej
469 1.20 thorpej pp->pr_nitems -= pp->pr_itemsperpage;
470 1.20 thorpej
471 1.7 thorpej /*
472 1.101 thorpej * Unlink the page from the pool and queue it for release.
473 1.7 thorpej */
474 1.88 chs LIST_REMOVE(ph, ph_pagelist);
475 1.91 yamt if ((pp->pr_roflags & PR_PHINPAGE) == 0)
476 1.91 yamt SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
477 1.101 thorpej LIST_INSERT_HEAD(pq, ph, ph_pagelist);
478 1.101 thorpej
479 1.7 thorpej pp->pr_npages--;
480 1.7 thorpej pp->pr_npagefree++;
481 1.6 thorpej
482 1.88 chs pool_update_curpage(pp);
483 1.3 pk }
484 1.3 pk
485 1.126 thorpej static bool
486 1.117 yamt pa_starved_p(struct pool_allocator *pa)
487 1.117 yamt {
488 1.117 yamt
489 1.117 yamt if (pa->pa_backingmap != NULL) {
490 1.117 yamt return vm_map_starved_p(pa->pa_backingmap);
491 1.117 yamt }
492 1.127 thorpej return false;
493 1.117 yamt }
494 1.117 yamt
495 1.117 yamt static int
496 1.124 yamt pool_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
497 1.117 yamt {
498 1.117 yamt struct pool *pp = obj;
499 1.117 yamt struct pool_allocator *pa = pp->pr_alloc;
500 1.117 yamt
501 1.117 yamt KASSERT(&pp->pr_reclaimerentry == ce);
502 1.117 yamt pool_reclaim(pp);
503 1.117 yamt if (!pa_starved_p(pa)) {
504 1.117 yamt return CALLBACK_CHAIN_ABORT;
505 1.117 yamt }
506 1.117 yamt return CALLBACK_CHAIN_CONTINUE;
507 1.117 yamt }
508 1.117 yamt
509 1.117 yamt static void
510 1.117 yamt pool_reclaim_register(struct pool *pp)
511 1.117 yamt {
512 1.117 yamt struct vm_map *map = pp->pr_alloc->pa_backingmap;
513 1.117 yamt int s;
514 1.117 yamt
515 1.117 yamt if (map == NULL) {
516 1.117 yamt return;
517 1.117 yamt }
518 1.117 yamt
519 1.117 yamt s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
520 1.117 yamt callback_register(&vm_map_to_kernel(map)->vmk_reclaim_callback,
521 1.117 yamt &pp->pr_reclaimerentry, pp, pool_reclaim_callback);
522 1.117 yamt splx(s);
523 1.117 yamt }
524 1.117 yamt
525 1.117 yamt static void
526 1.117 yamt pool_reclaim_unregister(struct pool *pp)
527 1.117 yamt {
528 1.117 yamt struct vm_map *map = pp->pr_alloc->pa_backingmap;
529 1.117 yamt int s;
530 1.117 yamt
531 1.117 yamt if (map == NULL) {
532 1.117 yamt return;
533 1.117 yamt }
534 1.117 yamt
535 1.117 yamt s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
536 1.117 yamt callback_unregister(&vm_map_to_kernel(map)->vmk_reclaim_callback,
537 1.117 yamt &pp->pr_reclaimerentry);
538 1.117 yamt splx(s);
539 1.117 yamt }
540 1.117 yamt
541 1.117 yamt static void
542 1.117 yamt pa_reclaim_register(struct pool_allocator *pa)
543 1.117 yamt {
544 1.117 yamt struct vm_map *map = *pa->pa_backingmapptr;
545 1.117 yamt struct pool *pp;
546 1.117 yamt
547 1.117 yamt KASSERT(pa->pa_backingmap == NULL);
548 1.117 yamt if (map == NULL) {
549 1.117 yamt SLIST_INSERT_HEAD(&pa_deferinitq, pa, pa_q);
550 1.117 yamt return;
551 1.117 yamt }
552 1.117 yamt pa->pa_backingmap = map;
553 1.117 yamt TAILQ_FOREACH(pp, &pa->pa_list, pr_alloc_list) {
554 1.117 yamt pool_reclaim_register(pp);
555 1.117 yamt }
556 1.117 yamt }
557 1.117 yamt
558 1.3 pk /*
559 1.94 simonb * Initialize all the pools listed in the "pools" link set.
560 1.94 simonb */
561 1.94 simonb void
562 1.117 yamt pool_subsystem_init(void)
563 1.94 simonb {
564 1.117 yamt struct pool_allocator *pa;
565 1.94 simonb __link_set_decl(pools, struct link_pool_init);
566 1.94 simonb struct link_pool_init * const *pi;
567 1.94 simonb
568 1.131.2.2 matt mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
569 1.131.2.2 matt cv_init(&pool_busy, "poolbusy");
570 1.131.2.2 matt
571 1.94 simonb __link_set_foreach(pi, pools)
572 1.94 simonb pool_init((*pi)->pp, (*pi)->size, (*pi)->align,
573 1.94 simonb (*pi)->align_offset, (*pi)->flags, (*pi)->wchan,
574 1.129 ad (*pi)->palloc, (*pi)->ipl);
575 1.117 yamt
576 1.117 yamt while ((pa = SLIST_FIRST(&pa_deferinitq)) != NULL) {
577 1.117 yamt KASSERT(pa->pa_backingmapptr != NULL);
578 1.117 yamt KASSERT(*pa->pa_backingmapptr != NULL);
579 1.117 yamt SLIST_REMOVE_HEAD(&pa_deferinitq, pa_q);
580 1.117 yamt pa_reclaim_register(pa);
581 1.117 yamt }
582 1.131.2.2 matt
583 1.131.2.2 matt pool_init(&cache_pool, sizeof(struct pool_cache), CACHE_LINE_SIZE,
584 1.131.2.2 matt 0, 0, "pcache", &pool_allocator_nointr, IPL_NONE);
585 1.131.2.2 matt
586 1.131.2.2 matt pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), CACHE_LINE_SIZE,
587 1.131.2.2 matt 0, 0, "pcachecpu", &pool_allocator_nointr, IPL_NONE);
588 1.94 simonb }
589 1.94 simonb
590 1.94 simonb /*
591 1.3 pk * Initialize the given pool resource structure.
592 1.3 pk *
593 1.3 pk * We export this routine to allow other kernel parts to declare
594 1.3 pk * static pools that must be initialized before malloc() is available.
595 1.3 pk */
596 1.3 pk void
597 1.42 thorpej pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
598 1.129 ad const char *wchan, struct pool_allocator *palloc, int ipl)
599 1.3 pk {
600 1.116 simonb #ifdef DEBUG
601 1.116 simonb struct pool *pp1;
602 1.116 simonb #endif
603 1.92 enami size_t trysize, phsize;
604 1.131.2.2 matt int off, slack;
605 1.3 pk
606 1.99 yamt KASSERT((1UL << (CHAR_BIT * sizeof(pool_item_freelist_t))) - 2 >=
607 1.99 yamt PHPOOL_FREELIST_NELEM(PHPOOL_MAX - 1));
608 1.99 yamt
609 1.116 simonb #ifdef DEBUG
610 1.116 simonb /*
611 1.116 simonb * Check that the pool hasn't already been initialised and
612 1.116 simonb * added to the list of all pools.
613 1.116 simonb */
614 1.116 simonb LIST_FOREACH(pp1, &pool_head, pr_poollist) {
615 1.116 simonb if (pp == pp1)
616 1.116 simonb panic("pool_init: pool %s already initialised",
617 1.116 simonb wchan);
618 1.116 simonb }
619 1.116 simonb #endif
620 1.116 simonb
621 1.25 thorpej #ifdef POOL_DIAGNOSTIC
622 1.25 thorpej /*
623 1.25 thorpej * Always log if POOL_DIAGNOSTIC is defined.
624 1.25 thorpej */
625 1.25 thorpej if (pool_logsize != 0)
626 1.25 thorpej flags |= PR_LOGGING;
627 1.25 thorpej #endif
628 1.25 thorpej
629 1.66 thorpej if (palloc == NULL)
630 1.66 thorpej palloc = &pool_allocator_kmem;
631 1.112 bjh21 #ifdef POOL_SUBPAGE
632 1.112 bjh21 if (size > palloc->pa_pagesz) {
633 1.112 bjh21 if (palloc == &pool_allocator_kmem)
634 1.112 bjh21 palloc = &pool_allocator_kmem_fullpage;
635 1.112 bjh21 else if (palloc == &pool_allocator_nointr)
636 1.112 bjh21 palloc = &pool_allocator_nointr_fullpage;
637 1.112 bjh21 }
638 1.66 thorpej #endif /* POOL_SUBPAGE */
639 1.66 thorpej if ((palloc->pa_flags & PA_INITIALIZED) == 0) {
640 1.112 bjh21 if (palloc->pa_pagesz == 0)
641 1.66 thorpej palloc->pa_pagesz = PAGE_SIZE;
642 1.66 thorpej
643 1.66 thorpej TAILQ_INIT(&palloc->pa_list);
644 1.66 thorpej
645 1.131.2.2 matt mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
646 1.66 thorpej palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
647 1.66 thorpej palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
648 1.117 yamt
649 1.117 yamt if (palloc->pa_backingmapptr != NULL) {
650 1.117 yamt pa_reclaim_register(palloc);
651 1.117 yamt }
652 1.66 thorpej palloc->pa_flags |= PA_INITIALIZED;
653 1.4 thorpej }
654 1.3 pk
655 1.3 pk if (align == 0)
656 1.3 pk align = ALIGN(1);
657 1.14 thorpej
658 1.120 yamt if ((flags & PR_NOTOUCH) == 0 && size < sizeof(struct pool_item))
659 1.14 thorpej size = sizeof(struct pool_item);
660 1.3 pk
661 1.78 thorpej size = roundup(size, align);
662 1.66 thorpej #ifdef DIAGNOSTIC
663 1.66 thorpej if (size > palloc->pa_pagesz)
664 1.121 yamt panic("pool_init: pool item size (%zu) too large", size);
665 1.66 thorpej #endif
666 1.35 pk
667 1.3 pk /*
668 1.3 pk * Initialize the pool structure.
669 1.3 pk */
670 1.88 chs LIST_INIT(&pp->pr_emptypages);
671 1.88 chs LIST_INIT(&pp->pr_fullpages);
672 1.88 chs LIST_INIT(&pp->pr_partpages);
673 1.131.2.2 matt pp->pr_cache = NULL;
674 1.3 pk pp->pr_curpage = NULL;
675 1.3 pk pp->pr_npages = 0;
676 1.3 pk pp->pr_minitems = 0;
677 1.3 pk pp->pr_minpages = 0;
678 1.3 pk pp->pr_maxpages = UINT_MAX;
679 1.20 thorpej pp->pr_roflags = flags;
680 1.20 thorpej pp->pr_flags = 0;
681 1.35 pk pp->pr_size = size;
682 1.3 pk pp->pr_align = align;
683 1.3 pk pp->pr_wchan = wchan;
684 1.66 thorpej pp->pr_alloc = palloc;
685 1.20 thorpej pp->pr_nitems = 0;
686 1.20 thorpej pp->pr_nout = 0;
687 1.20 thorpej pp->pr_hardlimit = UINT_MAX;
688 1.20 thorpej pp->pr_hardlimit_warning = NULL;
689 1.31 thorpej pp->pr_hardlimit_ratecap.tv_sec = 0;
690 1.31 thorpej pp->pr_hardlimit_ratecap.tv_usec = 0;
691 1.31 thorpej pp->pr_hardlimit_warning_last.tv_sec = 0;
692 1.31 thorpej pp->pr_hardlimit_warning_last.tv_usec = 0;
693 1.68 thorpej pp->pr_drain_hook = NULL;
694 1.68 thorpej pp->pr_drain_hook_arg = NULL;
695 1.125 ad pp->pr_freecheck = NULL;
696 1.3 pk
697 1.3 pk /*
698 1.3 pk * Decide whether to put the page header off page to avoid
699 1.92 enami * wasting too large a part of the page or too big item.
700 1.92 enami * Off-page page headers go on a hash table, so we can match
701 1.92 enami * a returned item with its header based on the page address.
702 1.92 enami * We use 1/16 of the page size and about 8 times of the item
703 1.92 enami * size as the threshold (XXX: tune)
704 1.92 enami *
705 1.92 enami * However, we'll put the header into the page if we can put
706 1.92 enami * it without wasting any items.
707 1.92 enami *
708 1.92 enami * Silently enforce `0 <= ioff < align'.
709 1.3 pk */
710 1.92 enami pp->pr_itemoffset = ioff %= align;
711 1.92 enami /* See the comment below about reserved bytes. */
712 1.92 enami trysize = palloc->pa_pagesz - ((align - ioff) % align);
713 1.92 enami phsize = ALIGN(sizeof(struct pool_item_header));
714 1.121 yamt if ((pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) == 0 &&
715 1.97 yamt (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) ||
716 1.97 yamt trysize / pp->pr_size == (trysize - phsize) / pp->pr_size)) {
717 1.3 pk /* Use the end of the page for the page header */
718 1.20 thorpej pp->pr_roflags |= PR_PHINPAGE;
719 1.92 enami pp->pr_phoffset = off = palloc->pa_pagesz - phsize;
720 1.2 pk } else {
721 1.3 pk /* The page header will be taken from our page header pool */
722 1.3 pk pp->pr_phoffset = 0;
723 1.66 thorpej off = palloc->pa_pagesz;
724 1.88 chs SPLAY_INIT(&pp->pr_phtree);
725 1.2 pk }
726 1.1 pk
727 1.3 pk /*
728 1.3 pk * Alignment is to take place at `ioff' within the item. This means
729 1.3 pk * we must reserve up to `align - 1' bytes on the page to allow
730 1.3 pk * appropriate positioning of each item.
731 1.3 pk */
732 1.3 pk pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
733 1.43 thorpej KASSERT(pp->pr_itemsperpage != 0);
734 1.97 yamt if ((pp->pr_roflags & PR_NOTOUCH)) {
735 1.97 yamt int idx;
736 1.97 yamt
737 1.97 yamt for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
738 1.97 yamt idx++) {
739 1.97 yamt /* nothing */
740 1.97 yamt }
741 1.97 yamt if (idx >= PHPOOL_MAX) {
742 1.97 yamt /*
743 1.97 yamt * if you see this panic, consider to tweak
744 1.97 yamt * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
745 1.97 yamt */
746 1.97 yamt panic("%s: too large itemsperpage(%d) for PR_NOTOUCH",
747 1.97 yamt pp->pr_wchan, pp->pr_itemsperpage);
748 1.97 yamt }
749 1.97 yamt pp->pr_phpool = &phpool[idx];
750 1.97 yamt } else if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
751 1.97 yamt pp->pr_phpool = &phpool[0];
752 1.97 yamt }
753 1.97 yamt #if defined(DIAGNOSTIC)
754 1.97 yamt else {
755 1.97 yamt pp->pr_phpool = NULL;
756 1.97 yamt }
757 1.97 yamt #endif
758 1.3 pk
759 1.3 pk /*
760 1.3 pk * Use the slack between the chunks and the page header
761 1.3 pk * for "cache coloring".
762 1.3 pk */
763 1.3 pk slack = off - pp->pr_itemsperpage * pp->pr_size;
764 1.3 pk pp->pr_maxcolor = (slack / align) * align;
765 1.3 pk pp->pr_curcolor = 0;
766 1.3 pk
767 1.3 pk pp->pr_nget = 0;
768 1.3 pk pp->pr_nfail = 0;
769 1.3 pk pp->pr_nput = 0;
770 1.3 pk pp->pr_npagealloc = 0;
771 1.3 pk pp->pr_npagefree = 0;
772 1.1 pk pp->pr_hiwat = 0;
773 1.8 thorpej pp->pr_nidle = 0;
774 1.131.2.2 matt pp->pr_refcnt = 0;
775 1.3 pk
776 1.59 thorpej #ifdef POOL_DIAGNOSTIC
777 1.25 thorpej if (flags & PR_LOGGING) {
778 1.25 thorpej if (kmem_map == NULL ||
779 1.25 thorpej (pp->pr_log = malloc(pool_logsize * sizeof(struct pool_log),
780 1.25 thorpej M_TEMP, M_NOWAIT)) == NULL)
781 1.20 thorpej pp->pr_roflags &= ~PR_LOGGING;
782 1.3 pk pp->pr_curlogentry = 0;
783 1.3 pk pp->pr_logsize = pool_logsize;
784 1.3 pk }
785 1.59 thorpej #endif
786 1.25 thorpej
787 1.25 thorpej pp->pr_entered_file = NULL;
788 1.25 thorpej pp->pr_entered_line = 0;
789 1.3 pk
790 1.131.2.2 matt mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
791 1.131.2.2 matt cv_init(&pp->pr_cv, wchan);
792 1.131.2.2 matt pp->pr_ipl = ipl;
793 1.1 pk
794 1.3 pk /*
795 1.43 thorpej * Initialize private page header pool and cache magazine pool if we
796 1.43 thorpej * haven't done so yet.
797 1.23 thorpej * XXX LOCKING.
798 1.3 pk */
799 1.97 yamt if (phpool[0].pr_size == 0) {
800 1.97 yamt int idx;
801 1.97 yamt for (idx = 0; idx < PHPOOL_MAX; idx++) {
802 1.97 yamt static char phpool_names[PHPOOL_MAX][6+1+6+1];
803 1.97 yamt int nelem;
804 1.97 yamt size_t sz;
805 1.97 yamt
806 1.97 yamt nelem = PHPOOL_FREELIST_NELEM(idx);
807 1.97 yamt snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
808 1.97 yamt "phpool-%d", nelem);
809 1.97 yamt sz = sizeof(struct pool_item_header);
810 1.97 yamt if (nelem) {
811 1.97 yamt sz = PR_FREELIST_ALIGN(sz)
812 1.99 yamt + nelem * sizeof(pool_item_freelist_t);
813 1.97 yamt }
814 1.97 yamt pool_init(&phpool[idx], sz, 0, 0, 0,
815 1.129 ad phpool_names[idx], &pool_allocator_meta, IPL_VM);
816 1.97 yamt }
817 1.62 bjh21 #ifdef POOL_SUBPAGE
818 1.62 bjh21 pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
819 1.129 ad PR_RECURSIVE, "psppool", &pool_allocator_meta, IPL_VM);
820 1.62 bjh21 #endif
821 1.131.2.2 matt pool_init(&pcgpool, sizeof(pcg_t), CACHE_LINE_SIZE, 0, 0,
822 1.131.2.2 matt "cachegrp", &pool_allocator_meta, IPL_VM);
823 1.1 pk }
824 1.1 pk
825 1.131.2.2 matt if (__predict_true(!cold)) {
826 1.131.2.2 matt /* Insert into the list of all pools. */
827 1.131.2.2 matt mutex_enter(&pool_head_lock);
828 1.131.2.2 matt LIST_INSERT_HEAD(&pool_head, pp, pr_poollist);
829 1.131.2.2 matt mutex_exit(&pool_head_lock);
830 1.131.2.2 matt
831 1.131.2.2 matt /* Insert this into the list of pools using this allocator. */
832 1.131.2.2 matt mutex_enter(&palloc->pa_lock);
833 1.131.2.2 matt TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
834 1.131.2.2 matt mutex_exit(&palloc->pa_lock);
835 1.131.2.2 matt } else {
836 1.131.2.2 matt LIST_INSERT_HEAD(&pool_head, pp, pr_poollist);
837 1.131.2.2 matt TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
838 1.131.2.2 matt }
839 1.66 thorpej
840 1.117 yamt pool_reclaim_register(pp);
841 1.1 pk }
842 1.1 pk
843 1.1 pk /*
844 1.1 pk * De-commision a pool resource.
845 1.1 pk */
846 1.1 pk void
847 1.42 thorpej pool_destroy(struct pool *pp)
848 1.1 pk {
849 1.101 thorpej struct pool_pagelist pq;
850 1.3 pk struct pool_item_header *ph;
851 1.43 thorpej
852 1.101 thorpej /* Remove from global pool list */
853 1.131.2.2 matt mutex_enter(&pool_head_lock);
854 1.131.2.2 matt while (pp->pr_refcnt != 0)
855 1.131.2.2 matt cv_wait(&pool_busy, &pool_head_lock);
856 1.102 chs LIST_REMOVE(pp, pr_poollist);
857 1.101 thorpej if (drainpp == pp)
858 1.101 thorpej drainpp = NULL;
859 1.131.2.2 matt mutex_exit(&pool_head_lock);
860 1.101 thorpej
861 1.101 thorpej /* Remove this pool from its allocator's list of pools. */
862 1.117 yamt pool_reclaim_unregister(pp);
863 1.131.2.2 matt mutex_enter(&pp->pr_alloc->pa_lock);
864 1.66 thorpej TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
865 1.131.2.2 matt mutex_exit(&pp->pr_alloc->pa_lock);
866 1.66 thorpej
867 1.131.2.2 matt mutex_enter(&pp->pr_lock);
868 1.101 thorpej
869 1.131.2.2 matt KASSERT(pp->pr_cache == NULL);
870 1.3 pk
871 1.3 pk #ifdef DIAGNOSTIC
872 1.20 thorpej if (pp->pr_nout != 0) {
873 1.25 thorpej pr_printlog(pp, NULL, printf);
874 1.80 provos panic("pool_destroy: pool busy: still out: %u",
875 1.20 thorpej pp->pr_nout);
876 1.3 pk }
877 1.3 pk #endif
878 1.1 pk
879 1.101 thorpej KASSERT(LIST_EMPTY(&pp->pr_fullpages));
880 1.101 thorpej KASSERT(LIST_EMPTY(&pp->pr_partpages));
881 1.101 thorpej
882 1.3 pk /* Remove all pages */
883 1.101 thorpej LIST_INIT(&pq);
884 1.88 chs while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
885 1.101 thorpej pr_rmpage(pp, ph, &pq);
886 1.101 thorpej
887 1.131.2.2 matt mutex_exit(&pp->pr_lock);
888 1.3 pk
889 1.101 thorpej pr_pagelist_free(pp, &pq);
890 1.3 pk
891 1.59 thorpej #ifdef POOL_DIAGNOSTIC
892 1.20 thorpej if ((pp->pr_roflags & PR_LOGGING) != 0)
893 1.3 pk free(pp->pr_log, M_TEMP);
894 1.59 thorpej #endif
895 1.131.2.2 matt
896 1.131.2.2 matt cv_destroy(&pp->pr_cv);
897 1.131.2.2 matt mutex_destroy(&pp->pr_lock);
898 1.1 pk }
899 1.1 pk
900 1.68 thorpej void
901 1.68 thorpej pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
902 1.68 thorpej {
903 1.68 thorpej
904 1.68 thorpej /* XXX no locking -- must be used just after pool_init() */
905 1.68 thorpej #ifdef DIAGNOSTIC
906 1.68 thorpej if (pp->pr_drain_hook != NULL)
907 1.68 thorpej panic("pool_set_drain_hook(%s): already set", pp->pr_wchan);
908 1.68 thorpej #endif
909 1.68 thorpej pp->pr_drain_hook = fn;
910 1.68 thorpej pp->pr_drain_hook_arg = arg;
911 1.68 thorpej }
912 1.68 thorpej
913 1.88 chs static struct pool_item_header *
914 1.128 christos pool_alloc_item_header(struct pool *pp, void *storage, int flags)
915 1.55 thorpej {
916 1.55 thorpej struct pool_item_header *ph;
917 1.55 thorpej
918 1.55 thorpej if ((pp->pr_roflags & PR_PHINPAGE) != 0)
919 1.128 christos ph = (struct pool_item_header *) ((char *)storage + pp->pr_phoffset);
920 1.131.2.2 matt else
921 1.97 yamt ph = pool_get(pp->pr_phpool, flags);
922 1.55 thorpej
923 1.55 thorpej return (ph);
924 1.55 thorpej }
925 1.1 pk
926 1.1 pk /*
927 1.131.2.2 matt * Grab an item from the pool.
928 1.1 pk */
929 1.3 pk void *
930 1.59 thorpej #ifdef POOL_DIAGNOSTIC
931 1.42 thorpej _pool_get(struct pool *pp, int flags, const char *file, long line)
932 1.56 sommerfe #else
933 1.56 sommerfe pool_get(struct pool *pp, int flags)
934 1.56 sommerfe #endif
935 1.1 pk {
936 1.1 pk struct pool_item *pi;
937 1.3 pk struct pool_item_header *ph;
938 1.55 thorpej void *v;
939 1.1 pk
940 1.2 pk #ifdef DIAGNOSTIC
941 1.95 atatat if (__predict_false(pp->pr_itemsperpage == 0))
942 1.95 atatat panic("pool_get: pool %p: pr_itemsperpage is zero, "
943 1.95 atatat "pool not initialized?", pp);
944 1.84 thorpej if (__predict_false(curlwp == NULL && doing_shutdown == 0 &&
945 1.37 sommerfe (flags & PR_WAITOK) != 0))
946 1.77 matt panic("pool_get: %s: must have NOWAIT", pp->pr_wchan);
947 1.58 thorpej
948 1.102 chs #endif /* DIAGNOSTIC */
949 1.58 thorpej #ifdef LOCKDEBUG
950 1.58 thorpej if (flags & PR_WAITOK)
951 1.119 yamt ASSERT_SLEEPABLE(NULL, "pool_get(PR_WAITOK)");
952 1.56 sommerfe #endif
953 1.1 pk
954 1.131.2.2 matt mutex_enter(&pp->pr_lock);
955 1.25 thorpej pr_enter(pp, file, line);
956 1.20 thorpej
957 1.20 thorpej startover:
958 1.20 thorpej /*
959 1.20 thorpej * Check to see if we've reached the hard limit. If we have,
960 1.20 thorpej * and we can wait, then wait until an item has been returned to
961 1.20 thorpej * the pool.
962 1.20 thorpej */
963 1.20 thorpej #ifdef DIAGNOSTIC
964 1.34 thorpej if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
965 1.25 thorpej pr_leave(pp);
966 1.131.2.2 matt mutex_exit(&pp->pr_lock);
967 1.20 thorpej panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
968 1.20 thorpej }
969 1.20 thorpej #endif
970 1.34 thorpej if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
971 1.68 thorpej if (pp->pr_drain_hook != NULL) {
972 1.68 thorpej /*
973 1.68 thorpej * Since the drain hook is going to free things
974 1.68 thorpej * back to the pool, unlock, call the hook, re-lock,
975 1.68 thorpej * and check the hardlimit condition again.
976 1.68 thorpej */
977 1.68 thorpej pr_leave(pp);
978 1.131.2.2 matt mutex_exit(&pp->pr_lock);
979 1.68 thorpej (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
980 1.131.2.2 matt mutex_enter(&pp->pr_lock);
981 1.68 thorpej pr_enter(pp, file, line);
982 1.68 thorpej if (pp->pr_nout < pp->pr_hardlimit)
983 1.68 thorpej goto startover;
984 1.68 thorpej }
985 1.68 thorpej
986 1.29 sommerfe if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
987 1.20 thorpej /*
988 1.20 thorpej * XXX: A warning isn't logged in this case. Should
989 1.20 thorpej * it be?
990 1.20 thorpej */
991 1.20 thorpej pp->pr_flags |= PR_WANTED;
992 1.25 thorpej pr_leave(pp);
993 1.131.2.2 matt cv_wait(&pp->pr_cv, &pp->pr_lock);
994 1.25 thorpej pr_enter(pp, file, line);
995 1.20 thorpej goto startover;
996 1.20 thorpej }
997 1.31 thorpej
998 1.31 thorpej /*
999 1.31 thorpej * Log a message that the hard limit has been hit.
1000 1.31 thorpej */
1001 1.31 thorpej if (pp->pr_hardlimit_warning != NULL &&
1002 1.31 thorpej ratecheck(&pp->pr_hardlimit_warning_last,
1003 1.31 thorpej &pp->pr_hardlimit_ratecap))
1004 1.31 thorpej log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
1005 1.21 thorpej
1006 1.21 thorpej pp->pr_nfail++;
1007 1.21 thorpej
1008 1.25 thorpej pr_leave(pp);
1009 1.131.2.2 matt mutex_exit(&pp->pr_lock);
1010 1.20 thorpej return (NULL);
1011 1.20 thorpej }
1012 1.20 thorpej
1013 1.3 pk /*
1014 1.3 pk * The convention we use is that if `curpage' is not NULL, then
1015 1.3 pk * it points at a non-empty bucket. In particular, `curpage'
1016 1.3 pk * never points at a page header which has PR_PHINPAGE set and
1017 1.3 pk * has no items in its bucket.
1018 1.3 pk */
1019 1.20 thorpej if ((ph = pp->pr_curpage) == NULL) {
1020 1.113 yamt int error;
1021 1.113 yamt
1022 1.20 thorpej #ifdef DIAGNOSTIC
1023 1.20 thorpej if (pp->pr_nitems != 0) {
1024 1.131.2.2 matt mutex_exit(&pp->pr_lock);
1025 1.20 thorpej printf("pool_get: %s: curpage NULL, nitems %u\n",
1026 1.20 thorpej pp->pr_wchan, pp->pr_nitems);
1027 1.80 provos panic("pool_get: nitems inconsistent");
1028 1.20 thorpej }
1029 1.20 thorpej #endif
1030 1.20 thorpej
1031 1.21 thorpej /*
1032 1.21 thorpej * Call the back-end page allocator for more memory.
1033 1.21 thorpej * Release the pool lock, as the back-end page allocator
1034 1.21 thorpej * may block.
1035 1.21 thorpej */
1036 1.25 thorpej pr_leave(pp);
1037 1.113 yamt error = pool_grow(pp, flags);
1038 1.113 yamt pr_enter(pp, file, line);
1039 1.113 yamt if (error != 0) {
1040 1.21 thorpej /*
1041 1.55 thorpej * We were unable to allocate a page or item
1042 1.55 thorpej * header, but we released the lock during
1043 1.55 thorpej * allocation, so perhaps items were freed
1044 1.55 thorpej * back to the pool. Check for this case.
1045 1.21 thorpej */
1046 1.21 thorpej if (pp->pr_curpage != NULL)
1047 1.21 thorpej goto startover;
1048 1.15 pk
1049 1.117 yamt pp->pr_nfail++;
1050 1.25 thorpej pr_leave(pp);
1051 1.131.2.2 matt mutex_exit(&pp->pr_lock);
1052 1.117 yamt return (NULL);
1053 1.1 pk }
1054 1.3 pk
1055 1.20 thorpej /* Start the allocation process over. */
1056 1.20 thorpej goto startover;
1057 1.3 pk }
1058 1.97 yamt if (pp->pr_roflags & PR_NOTOUCH) {
1059 1.97 yamt #ifdef DIAGNOSTIC
1060 1.97 yamt if (__predict_false(ph->ph_nmissing == pp->pr_itemsperpage)) {
1061 1.97 yamt pr_leave(pp);
1062 1.131.2.2 matt mutex_exit(&pp->pr_lock);
1063 1.97 yamt panic("pool_get: %s: page empty", pp->pr_wchan);
1064 1.97 yamt }
1065 1.97 yamt #endif
1066 1.97 yamt v = pr_item_notouch_get(pp, ph);
1067 1.97 yamt #ifdef POOL_DIAGNOSTIC
1068 1.97 yamt pr_log(pp, v, PRLOG_GET, file, line);
1069 1.97 yamt #endif
1070 1.97 yamt } else {
1071 1.102 chs v = pi = LIST_FIRST(&ph->ph_itemlist);
1072 1.97 yamt if (__predict_false(v == NULL)) {
1073 1.97 yamt pr_leave(pp);
1074 1.131.2.2 matt mutex_exit(&pp->pr_lock);
1075 1.97 yamt panic("pool_get: %s: page empty", pp->pr_wchan);
1076 1.97 yamt }
1077 1.20 thorpej #ifdef DIAGNOSTIC
1078 1.97 yamt if (__predict_false(pp->pr_nitems == 0)) {
1079 1.97 yamt pr_leave(pp);
1080 1.131.2.2 matt mutex_exit(&pp->pr_lock);
1081 1.97 yamt printf("pool_get: %s: items on itemlist, nitems %u\n",
1082 1.97 yamt pp->pr_wchan, pp->pr_nitems);
1083 1.97 yamt panic("pool_get: nitems inconsistent");
1084 1.97 yamt }
1085 1.65 enami #endif
1086 1.56 sommerfe
1087 1.65 enami #ifdef POOL_DIAGNOSTIC
1088 1.97 yamt pr_log(pp, v, PRLOG_GET, file, line);
1089 1.65 enami #endif
1090 1.3 pk
1091 1.65 enami #ifdef DIAGNOSTIC
1092 1.97 yamt if (__predict_false(pi->pi_magic != PI_MAGIC)) {
1093 1.97 yamt pr_printlog(pp, pi, printf);
1094 1.97 yamt panic("pool_get(%s): free list modified: "
1095 1.97 yamt "magic=%x; page %p; item addr %p\n",
1096 1.97 yamt pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
1097 1.97 yamt }
1098 1.3 pk #endif
1099 1.3 pk
1100 1.97 yamt /*
1101 1.97 yamt * Remove from item list.
1102 1.97 yamt */
1103 1.102 chs LIST_REMOVE(pi, pi_list);
1104 1.97 yamt }
1105 1.20 thorpej pp->pr_nitems--;
1106 1.20 thorpej pp->pr_nout++;
1107 1.6 thorpej if (ph->ph_nmissing == 0) {
1108 1.6 thorpej #ifdef DIAGNOSTIC
1109 1.34 thorpej if (__predict_false(pp->pr_nidle == 0))
1110 1.6 thorpej panic("pool_get: nidle inconsistent");
1111 1.6 thorpej #endif
1112 1.6 thorpej pp->pr_nidle--;
1113 1.88 chs
1114 1.88 chs /*
1115 1.88 chs * This page was previously empty. Move it to the list of
1116 1.88 chs * partially-full pages. This page is already curpage.
1117 1.88 chs */
1118 1.88 chs LIST_REMOVE(ph, ph_pagelist);
1119 1.88 chs LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1120 1.6 thorpej }
1121 1.3 pk ph->ph_nmissing++;
1122 1.97 yamt if (ph->ph_nmissing == pp->pr_itemsperpage) {
1123 1.21 thorpej #ifdef DIAGNOSTIC
1124 1.97 yamt if (__predict_false((pp->pr_roflags & PR_NOTOUCH) == 0 &&
1125 1.102 chs !LIST_EMPTY(&ph->ph_itemlist))) {
1126 1.25 thorpej pr_leave(pp);
1127 1.131.2.2 matt mutex_exit(&pp->pr_lock);
1128 1.21 thorpej panic("pool_get: %s: nmissing inconsistent",
1129 1.21 thorpej pp->pr_wchan);
1130 1.21 thorpej }
1131 1.21 thorpej #endif
1132 1.3 pk /*
1133 1.88 chs * This page is now full. Move it to the full list
1134 1.88 chs * and select a new current page.
1135 1.3 pk */
1136 1.88 chs LIST_REMOVE(ph, ph_pagelist);
1137 1.88 chs LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
1138 1.88 chs pool_update_curpage(pp);
1139 1.1 pk }
1140 1.3 pk
1141 1.3 pk pp->pr_nget++;
1142 1.111 christos pr_leave(pp);
1143 1.20 thorpej
1144 1.20 thorpej /*
1145 1.20 thorpej * If we have a low water mark and we are now below that low
1146 1.20 thorpej * water mark, add more items to the pool.
1147 1.20 thorpej */
1148 1.53 thorpej if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1149 1.20 thorpej /*
1150 1.20 thorpej * XXX: Should we log a warning? Should we set up a timeout
1151 1.20 thorpej * to try again in a second or so? The latter could break
1152 1.20 thorpej * a caller's assumptions about interrupt protection, etc.
1153 1.20 thorpej */
1154 1.20 thorpej }
1155 1.20 thorpej
1156 1.131.2.2 matt mutex_exit(&pp->pr_lock);
1157 1.125 ad KASSERT((((vaddr_t)v + pp->pr_itemoffset) & (pp->pr_align - 1)) == 0);
1158 1.125 ad FREECHECK_OUT(&pp->pr_freecheck, v);
1159 1.1 pk return (v);
1160 1.1 pk }
1161 1.1 pk
1162 1.1 pk /*
1163 1.43 thorpej * Internal version of pool_put(). Pool is already locked/entered.
1164 1.1 pk */
1165 1.43 thorpej static void
1166 1.101 thorpej pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
1167 1.1 pk {
1168 1.1 pk struct pool_item *pi = v;
1169 1.3 pk struct pool_item_header *ph;
1170 1.3 pk
1171 1.131.2.2 matt KASSERT(mutex_owned(&pp->pr_lock));
1172 1.125 ad FREECHECK_IN(&pp->pr_freecheck, v);
1173 1.131.2.2 matt LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
1174 1.61 chs
1175 1.30 thorpej #ifdef DIAGNOSTIC
1176 1.34 thorpej if (__predict_false(pp->pr_nout == 0)) {
1177 1.30 thorpej printf("pool %s: putting with none out\n",
1178 1.30 thorpej pp->pr_wchan);
1179 1.30 thorpej panic("pool_put");
1180 1.30 thorpej }
1181 1.30 thorpej #endif
1182 1.3 pk
1183 1.121 yamt if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
1184 1.25 thorpej pr_printlog(pp, NULL, printf);
1185 1.3 pk panic("pool_put: %s: page header missing", pp->pr_wchan);
1186 1.3 pk }
1187 1.28 thorpej
1188 1.3 pk /*
1189 1.3 pk * Return to item list.
1190 1.3 pk */
1191 1.97 yamt if (pp->pr_roflags & PR_NOTOUCH) {
1192 1.97 yamt pr_item_notouch_put(pp, ph, v);
1193 1.97 yamt } else {
1194 1.2 pk #ifdef DIAGNOSTIC
1195 1.97 yamt pi->pi_magic = PI_MAGIC;
1196 1.3 pk #endif
1197 1.32 chs #ifdef DEBUG
1198 1.97 yamt {
1199 1.97 yamt int i, *ip = v;
1200 1.32 chs
1201 1.97 yamt for (i = 0; i < pp->pr_size / sizeof(int); i++) {
1202 1.97 yamt *ip++ = PI_MAGIC;
1203 1.97 yamt }
1204 1.32 chs }
1205 1.32 chs #endif
1206 1.32 chs
1207 1.102 chs LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1208 1.97 yamt }
1209 1.79 thorpej KDASSERT(ph->ph_nmissing != 0);
1210 1.3 pk ph->ph_nmissing--;
1211 1.3 pk pp->pr_nput++;
1212 1.20 thorpej pp->pr_nitems++;
1213 1.20 thorpej pp->pr_nout--;
1214 1.3 pk
1215 1.3 pk /* Cancel "pool empty" condition if it exists */
1216 1.3 pk if (pp->pr_curpage == NULL)
1217 1.3 pk pp->pr_curpage = ph;
1218 1.3 pk
1219 1.3 pk if (pp->pr_flags & PR_WANTED) {
1220 1.3 pk pp->pr_flags &= ~PR_WANTED;
1221 1.15 pk if (ph->ph_nmissing == 0)
1222 1.15 pk pp->pr_nidle++;
1223 1.131.2.2 matt cv_broadcast(&pp->pr_cv);
1224 1.3 pk return;
1225 1.3 pk }
1226 1.3 pk
1227 1.3 pk /*
1228 1.88 chs * If this page is now empty, do one of two things:
1229 1.21 thorpej *
1230 1.88 chs * (1) If we have more pages than the page high water mark,
1231 1.96 thorpej * free the page back to the system. ONLY CONSIDER
1232 1.90 thorpej * FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
1233 1.90 thorpej * CLAIM.
1234 1.21 thorpej *
1235 1.88 chs * (2) Otherwise, move the page to the empty page list.
1236 1.88 chs *
1237 1.88 chs * Either way, select a new current page (so we use a partially-full
1238 1.88 chs * page if one is available).
1239 1.3 pk */
1240 1.3 pk if (ph->ph_nmissing == 0) {
1241 1.6 thorpej pp->pr_nidle++;
1242 1.90 thorpej if (pp->pr_npages > pp->pr_minpages &&
1243 1.90 thorpej (pp->pr_npages > pp->pr_maxpages ||
1244 1.117 yamt pa_starved_p(pp->pr_alloc))) {
1245 1.101 thorpej pr_rmpage(pp, ph, pq);
1246 1.3 pk } else {
1247 1.88 chs LIST_REMOVE(ph, ph_pagelist);
1248 1.88 chs LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1249 1.3 pk
1250 1.21 thorpej /*
1251 1.21 thorpej * Update the timestamp on the page. A page must
1252 1.21 thorpej * be idle for some period of time before it can
1253 1.21 thorpej * be reclaimed by the pagedaemon. This minimizes
1254 1.21 thorpej * ping-pong'ing for memory.
1255 1.21 thorpej */
1256 1.118 kardel getmicrotime(&ph->ph_time);
1257 1.1 pk }
1258 1.88 chs pool_update_curpage(pp);
1259 1.1 pk }
1260 1.88 chs
1261 1.21 thorpej /*
1262 1.88 chs * If the page was previously completely full, move it to the
1263 1.88 chs * partially-full list and make it the current page. The next
1264 1.88 chs * allocation will get the item from this page, instead of
1265 1.88 chs * further fragmenting the pool.
1266 1.21 thorpej */
1267 1.21 thorpej else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
1268 1.88 chs LIST_REMOVE(ph, ph_pagelist);
1269 1.88 chs LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1270 1.21 thorpej pp->pr_curpage = ph;
1271 1.21 thorpej }
1272 1.43 thorpej }
1273 1.43 thorpej
1274 1.43 thorpej /*
1275 1.131.2.2 matt * Return resource to the pool.
1276 1.43 thorpej */
1277 1.59 thorpej #ifdef POOL_DIAGNOSTIC
1278 1.43 thorpej void
1279 1.43 thorpej _pool_put(struct pool *pp, void *v, const char *file, long line)
1280 1.43 thorpej {
1281 1.101 thorpej struct pool_pagelist pq;
1282 1.101 thorpej
1283 1.101 thorpej LIST_INIT(&pq);
1284 1.43 thorpej
1285 1.131.2.2 matt mutex_enter(&pp->pr_lock);
1286 1.43 thorpej pr_enter(pp, file, line);
1287 1.43 thorpej
1288 1.56 sommerfe pr_log(pp, v, PRLOG_PUT, file, line);
1289 1.56 sommerfe
1290 1.101 thorpej pool_do_put(pp, v, &pq);
1291 1.21 thorpej
1292 1.25 thorpej pr_leave(pp);
1293 1.131.2.2 matt mutex_exit(&pp->pr_lock);
1294 1.101 thorpej
1295 1.102 chs pr_pagelist_free(pp, &pq);
1296 1.1 pk }
1297 1.57 sommerfe #undef pool_put
1298 1.59 thorpej #endif /* POOL_DIAGNOSTIC */
1299 1.1 pk
1300 1.56 sommerfe void
1301 1.56 sommerfe pool_put(struct pool *pp, void *v)
1302 1.56 sommerfe {
1303 1.101 thorpej struct pool_pagelist pq;
1304 1.101 thorpej
1305 1.101 thorpej LIST_INIT(&pq);
1306 1.56 sommerfe
1307 1.131.2.2 matt mutex_enter(&pp->pr_lock);
1308 1.101 thorpej pool_do_put(pp, v, &pq);
1309 1.131.2.2 matt mutex_exit(&pp->pr_lock);
1310 1.56 sommerfe
1311 1.102 chs pr_pagelist_free(pp, &pq);
1312 1.56 sommerfe }
1313 1.57 sommerfe
1314 1.59 thorpej #ifdef POOL_DIAGNOSTIC
1315 1.57 sommerfe #define pool_put(h, v) _pool_put((h), (v), __FILE__, __LINE__)
1316 1.56 sommerfe #endif
1317 1.74 thorpej
1318 1.74 thorpej /*
1319 1.113 yamt * pool_grow: grow a pool by a page.
1320 1.113 yamt *
1321 1.113 yamt * => called with pool locked.
1322 1.113 yamt * => unlock and relock the pool.
1323 1.113 yamt * => return with pool locked.
1324 1.113 yamt */
1325 1.113 yamt
1326 1.113 yamt static int
1327 1.113 yamt pool_grow(struct pool *pp, int flags)
1328 1.113 yamt {
1329 1.113 yamt struct pool_item_header *ph = NULL;
1330 1.113 yamt char *cp;
1331 1.113 yamt
1332 1.131.2.2 matt mutex_exit(&pp->pr_lock);
1333 1.113 yamt cp = pool_allocator_alloc(pp, flags);
1334 1.113 yamt if (__predict_true(cp != NULL)) {
1335 1.113 yamt ph = pool_alloc_item_header(pp, cp, flags);
1336 1.113 yamt }
1337 1.113 yamt if (__predict_false(cp == NULL || ph == NULL)) {
1338 1.113 yamt if (cp != NULL) {
1339 1.113 yamt pool_allocator_free(pp, cp);
1340 1.113 yamt }
1341 1.131.2.2 matt mutex_enter(&pp->pr_lock);
1342 1.113 yamt return ENOMEM;
1343 1.113 yamt }
1344 1.113 yamt
1345 1.131.2.2 matt mutex_enter(&pp->pr_lock);
1346 1.113 yamt pool_prime_page(pp, cp, ph);
1347 1.113 yamt pp->pr_npagealloc++;
1348 1.113 yamt return 0;
1349 1.113 yamt }
1350 1.113 yamt
1351 1.113 yamt /*
1352 1.74 thorpej * Add N items to the pool.
1353 1.74 thorpej */
1354 1.74 thorpej int
1355 1.74 thorpej pool_prime(struct pool *pp, int n)
1356 1.74 thorpej {
1357 1.75 simonb int newpages;
1358 1.113 yamt int error = 0;
1359 1.74 thorpej
1360 1.131.2.2 matt mutex_enter(&pp->pr_lock);
1361 1.74 thorpej
1362 1.74 thorpej newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1363 1.74 thorpej
1364 1.74 thorpej while (newpages-- > 0) {
1365 1.113 yamt error = pool_grow(pp, PR_NOWAIT);
1366 1.113 yamt if (error) {
1367 1.74 thorpej break;
1368 1.74 thorpej }
1369 1.74 thorpej pp->pr_minpages++;
1370 1.74 thorpej }
1371 1.74 thorpej
1372 1.74 thorpej if (pp->pr_minpages >= pp->pr_maxpages)
1373 1.74 thorpej pp->pr_maxpages = pp->pr_minpages + 1; /* XXX */
1374 1.74 thorpej
1375 1.131.2.2 matt mutex_exit(&pp->pr_lock);
1376 1.113 yamt return error;
1377 1.74 thorpej }
1378 1.55 thorpej
1379 1.55 thorpej /*
1380 1.3 pk * Add a page worth of items to the pool.
1381 1.21 thorpej *
1382 1.21 thorpej * Note, we must be called with the pool descriptor LOCKED.
1383 1.3 pk */
1384 1.55 thorpej static void
1385 1.128 christos pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
1386 1.3 pk {
1387 1.3 pk struct pool_item *pi;
1388 1.128 christos void *cp = storage;
1389 1.125 ad const unsigned int align = pp->pr_align;
1390 1.125 ad const unsigned int ioff = pp->pr_itemoffset;
1391 1.55 thorpej int n;
1392 1.36 pk
1393 1.131.2.2 matt KASSERT(mutex_owned(&pp->pr_lock));
1394 1.91 yamt
1395 1.66 thorpej #ifdef DIAGNOSTIC
1396 1.121 yamt if ((pp->pr_roflags & PR_NOALIGN) == 0 &&
1397 1.121 yamt ((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) != 0)
1398 1.36 pk panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
1399 1.66 thorpej #endif
1400 1.3 pk
1401 1.3 pk /*
1402 1.3 pk * Insert page header.
1403 1.3 pk */
1404 1.88 chs LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1405 1.102 chs LIST_INIT(&ph->ph_itemlist);
1406 1.3 pk ph->ph_page = storage;
1407 1.3 pk ph->ph_nmissing = 0;
1408 1.118 kardel getmicrotime(&ph->ph_time);
1409 1.88 chs if ((pp->pr_roflags & PR_PHINPAGE) == 0)
1410 1.88 chs SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
1411 1.3 pk
1412 1.6 thorpej pp->pr_nidle++;
1413 1.6 thorpej
1414 1.3 pk /*
1415 1.3 pk * Color this page.
1416 1.3 pk */
1417 1.128 christos cp = (char *)cp + pp->pr_curcolor;
1418 1.3 pk if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
1419 1.3 pk pp->pr_curcolor = 0;
1420 1.3 pk
1421 1.3 pk /*
1422 1.3 pk * Adjust storage to apply aligment to `pr_itemoffset' in each item.
1423 1.3 pk */
1424 1.3 pk if (ioff != 0)
1425 1.128 christos cp = (char *)cp + align - ioff;
1426 1.3 pk
1427 1.125 ad KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
1428 1.125 ad
1429 1.3 pk /*
1430 1.3 pk * Insert remaining chunks on the bucket list.
1431 1.3 pk */
1432 1.3 pk n = pp->pr_itemsperpage;
1433 1.20 thorpej pp->pr_nitems += n;
1434 1.3 pk
1435 1.97 yamt if (pp->pr_roflags & PR_NOTOUCH) {
1436 1.99 yamt pool_item_freelist_t *freelist = PR_FREELIST(ph);
1437 1.97 yamt int i;
1438 1.97 yamt
1439 1.128 christos ph->ph_off = (char *)cp - (char *)storage;
1440 1.97 yamt ph->ph_firstfree = 0;
1441 1.97 yamt for (i = 0; i < n - 1; i++)
1442 1.97 yamt freelist[i] = i + 1;
1443 1.97 yamt freelist[n - 1] = PR_INDEX_EOL;
1444 1.97 yamt } else {
1445 1.97 yamt while (n--) {
1446 1.97 yamt pi = (struct pool_item *)cp;
1447 1.78 thorpej
1448 1.97 yamt KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0);
1449 1.3 pk
1450 1.97 yamt /* Insert on page list */
1451 1.102 chs LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1452 1.3 pk #ifdef DIAGNOSTIC
1453 1.97 yamt pi->pi_magic = PI_MAGIC;
1454 1.3 pk #endif
1455 1.128 christos cp = (char *)cp + pp->pr_size;
1456 1.125 ad
1457 1.125 ad KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
1458 1.97 yamt }
1459 1.3 pk }
1460 1.3 pk
1461 1.3 pk /*
1462 1.3 pk * If the pool was depleted, point at the new page.
1463 1.3 pk */
1464 1.3 pk if (pp->pr_curpage == NULL)
1465 1.3 pk pp->pr_curpage = ph;
1466 1.3 pk
1467 1.3 pk if (++pp->pr_npages > pp->pr_hiwat)
1468 1.3 pk pp->pr_hiwat = pp->pr_npages;
1469 1.3 pk }
1470 1.3 pk
1471 1.20 thorpej /*
1472 1.52 thorpej * Used by pool_get() when nitems drops below the low water mark. This
1473 1.88 chs * is used to catch up pr_nitems with the low water mark.
1474 1.20 thorpej *
1475 1.21 thorpej * Note 1, we never wait for memory here, we let the caller decide what to do.
1476 1.20 thorpej *
1477 1.73 thorpej * Note 2, we must be called with the pool already locked, and we return
1478 1.20 thorpej * with it locked.
1479 1.20 thorpej */
1480 1.20 thorpej static int
1481 1.42 thorpej pool_catchup(struct pool *pp)
1482 1.20 thorpej {
1483 1.20 thorpej int error = 0;
1484 1.20 thorpej
1485 1.54 thorpej while (POOL_NEEDS_CATCHUP(pp)) {
1486 1.113 yamt error = pool_grow(pp, PR_NOWAIT);
1487 1.113 yamt if (error) {
1488 1.20 thorpej break;
1489 1.20 thorpej }
1490 1.20 thorpej }
1491 1.113 yamt return error;
1492 1.20 thorpej }
1493 1.20 thorpej
1494 1.88 chs static void
1495 1.88 chs pool_update_curpage(struct pool *pp)
1496 1.88 chs {
1497 1.88 chs
1498 1.88 chs pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
1499 1.88 chs if (pp->pr_curpage == NULL) {
1500 1.88 chs pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
1501 1.88 chs }
1502 1.88 chs }
1503 1.88 chs
1504 1.3 pk void
1505 1.42 thorpej pool_setlowat(struct pool *pp, int n)
1506 1.3 pk {
1507 1.15 pk
1508 1.131.2.2 matt mutex_enter(&pp->pr_lock);
1509 1.21 thorpej
1510 1.3 pk pp->pr_minitems = n;
1511 1.15 pk pp->pr_minpages = (n == 0)
1512 1.15 pk ? 0
1513 1.18 thorpej : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1514 1.20 thorpej
1515 1.20 thorpej /* Make sure we're caught up with the newly-set low water mark. */
1516 1.75 simonb if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1517 1.20 thorpej /*
1518 1.20 thorpej * XXX: Should we log a warning? Should we set up a timeout
1519 1.20 thorpej * to try again in a second or so? The latter could break
1520 1.20 thorpej * a caller's assumptions about interrupt protection, etc.
1521 1.20 thorpej */
1522 1.20 thorpej }
1523 1.21 thorpej
1524 1.131.2.2 matt mutex_exit(&pp->pr_lock);
1525 1.3 pk }
1526 1.3 pk
1527 1.3 pk void
1528 1.42 thorpej pool_sethiwat(struct pool *pp, int n)
1529 1.3 pk {
1530 1.15 pk
1531 1.131.2.2 matt mutex_enter(&pp->pr_lock);
1532 1.21 thorpej
1533 1.15 pk pp->pr_maxpages = (n == 0)
1534 1.15 pk ? 0
1535 1.18 thorpej : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1536 1.21 thorpej
1537 1.131.2.2 matt mutex_exit(&pp->pr_lock);
1538 1.3 pk }
1539 1.3 pk
1540 1.20 thorpej void
1541 1.42 thorpej pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
1542 1.20 thorpej {
1543 1.20 thorpej
1544 1.131.2.2 matt mutex_enter(&pp->pr_lock);
1545 1.20 thorpej
1546 1.20 thorpej pp->pr_hardlimit = n;
1547 1.20 thorpej pp->pr_hardlimit_warning = warnmess;
1548 1.31 thorpej pp->pr_hardlimit_ratecap.tv_sec = ratecap;
1549 1.31 thorpej pp->pr_hardlimit_warning_last.tv_sec = 0;
1550 1.31 thorpej pp->pr_hardlimit_warning_last.tv_usec = 0;
1551 1.20 thorpej
1552 1.20 thorpej /*
1553 1.21 thorpej * In-line version of pool_sethiwat(), because we don't want to
1554 1.21 thorpej * release the lock.
1555 1.20 thorpej */
1556 1.20 thorpej pp->pr_maxpages = (n == 0)
1557 1.20 thorpej ? 0
1558 1.20 thorpej : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1559 1.21 thorpej
1560 1.131.2.2 matt mutex_exit(&pp->pr_lock);
1561 1.20 thorpej }
1562 1.3 pk
1563 1.3 pk /*
1564 1.3 pk * Release all complete pages that have not been used recently.
1565 1.3 pk */
1566 1.66 thorpej int
1567 1.59 thorpej #ifdef POOL_DIAGNOSTIC
1568 1.42 thorpej _pool_reclaim(struct pool *pp, const char *file, long line)
1569 1.56 sommerfe #else
1570 1.56 sommerfe pool_reclaim(struct pool *pp)
1571 1.56 sommerfe #endif
1572 1.3 pk {
1573 1.3 pk struct pool_item_header *ph, *phnext;
1574 1.61 chs struct pool_pagelist pq;
1575 1.102 chs struct timeval curtime, diff;
1576 1.131.2.2 matt bool klock;
1577 1.131.2.2 matt int rv;
1578 1.3 pk
1579 1.68 thorpej if (pp->pr_drain_hook != NULL) {
1580 1.68 thorpej /*
1581 1.68 thorpej * The drain hook must be called with the pool unlocked.
1582 1.68 thorpej */
1583 1.68 thorpej (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
1584 1.68 thorpej }
1585 1.68 thorpej
1586 1.131.2.2 matt /*
1587 1.131.2.2 matt * XXXSMP Because mutexes at IPL_SOFTXXX are still spinlocks,
1588 1.131.2.2 matt * and we are called from the pagedaemon without kernel_lock.
1589 1.131.2.2 matt * Does not apply to IPL_SOFTBIO.
1590 1.131.2.2 matt */
1591 1.131.2.2 matt if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK ||
1592 1.131.2.2 matt pp->pr_ipl == IPL_SOFTSERIAL) {
1593 1.131.2.2 matt KERNEL_LOCK(1, NULL);
1594 1.131.2.2 matt klock = true;
1595 1.131.2.2 matt } else
1596 1.131.2.2 matt klock = false;
1597 1.131.2.2 matt
1598 1.131.2.2 matt /* Reclaim items from the pool's cache (if any). */
1599 1.131.2.2 matt if (pp->pr_cache != NULL)
1600 1.131.2.2 matt pool_cache_invalidate(pp->pr_cache);
1601 1.131.2.2 matt
1602 1.131.2.2 matt if (mutex_tryenter(&pp->pr_lock) == 0) {
1603 1.131.2.2 matt if (klock) {
1604 1.131.2.2 matt KERNEL_UNLOCK_ONE(NULL);
1605 1.131.2.2 matt }
1606 1.66 thorpej return (0);
1607 1.131.2.2 matt }
1608 1.25 thorpej pr_enter(pp, file, line);
1609 1.68 thorpej
1610 1.88 chs LIST_INIT(&pq);
1611 1.43 thorpej
1612 1.118 kardel getmicrotime(&curtime);
1613 1.21 thorpej
1614 1.88 chs for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
1615 1.88 chs phnext = LIST_NEXT(ph, ph_pagelist);
1616 1.3 pk
1617 1.3 pk /* Check our minimum page claim */
1618 1.3 pk if (pp->pr_npages <= pp->pr_minpages)
1619 1.3 pk break;
1620 1.3 pk
1621 1.88 chs KASSERT(ph->ph_nmissing == 0);
1622 1.88 chs timersub(&curtime, &ph->ph_time, &diff);
1623 1.117 yamt if (diff.tv_sec < pool_inactive_time
1624 1.117 yamt && !pa_starved_p(pp->pr_alloc))
1625 1.88 chs continue;
1626 1.21 thorpej
1627 1.88 chs /*
1628 1.88 chs * If freeing this page would put us below
1629 1.88 chs * the low water mark, stop now.
1630 1.88 chs */
1631 1.88 chs if ((pp->pr_nitems - pp->pr_itemsperpage) <
1632 1.88 chs pp->pr_minitems)
1633 1.88 chs break;
1634 1.21 thorpej
1635 1.88 chs pr_rmpage(pp, ph, &pq);
1636 1.3 pk }
1637 1.3 pk
1638 1.25 thorpej pr_leave(pp);
1639 1.131.2.2 matt mutex_exit(&pp->pr_lock);
1640 1.66 thorpej
1641 1.131.2.2 matt if (LIST_EMPTY(&pq))
1642 1.131.2.2 matt rv = 0;
1643 1.131.2.2 matt else {
1644 1.131.2.2 matt pr_pagelist_free(pp, &pq);
1645 1.131.2.2 matt rv = 1;
1646 1.131.2.2 matt }
1647 1.131.2.2 matt
1648 1.131.2.2 matt if (klock) {
1649 1.131.2.2 matt KERNEL_UNLOCK_ONE(NULL);
1650 1.131.2.2 matt }
1651 1.131.2.2 matt
1652 1.131.2.2 matt return (rv);
1653 1.3 pk }
1654 1.3 pk
1655 1.3 pk /*
1656 1.131.2.2 matt * Drain pools, one at a time. This is a two stage process;
1657 1.131.2.2 matt * drain_start kicks off a cross call to drain CPU-level caches
1658 1.131.2.2 matt * if the pool has an associated pool_cache. drain_end waits
1659 1.131.2.2 matt * for those cross calls to finish, and then drains the cache
1660 1.131.2.2 matt * (if any) and pool.
1661 1.131 ad *
1662 1.131.2.2 matt * Note, must never be called from interrupt context.
1663 1.3 pk */
1664 1.3 pk void
1665 1.131.2.2 matt pool_drain_start(struct pool **ppp, uint64_t *wp)
1666 1.3 pk {
1667 1.3 pk struct pool *pp;
1668 1.131.2.2 matt
1669 1.131.2.2 matt KASSERT(!LIST_EMPTY(&pool_head));
1670 1.3 pk
1671 1.61 chs pp = NULL;
1672 1.131.2.2 matt
1673 1.131.2.2 matt /* Find next pool to drain, and add a reference. */
1674 1.131.2.2 matt mutex_enter(&pool_head_lock);
1675 1.131.2.2 matt do {
1676 1.131.2.2 matt if (drainpp == NULL) {
1677 1.131.2.2 matt drainpp = LIST_FIRST(&pool_head);
1678 1.131.2.2 matt }
1679 1.131.2.2 matt if (drainpp != NULL) {
1680 1.131.2.2 matt pp = drainpp;
1681 1.131.2.2 matt drainpp = LIST_NEXT(pp, pr_poollist);
1682 1.131.2.2 matt }
1683 1.131.2.2 matt /*
1684 1.131.2.2 matt * Skip completely idle pools. We depend on at least
1685 1.131.2.2 matt * one pool in the system being active.
1686 1.131.2.2 matt */
1687 1.131.2.2 matt } while (pp == NULL || pp->pr_npages == 0);
1688 1.131.2.2 matt pp->pr_refcnt++;
1689 1.131.2.2 matt mutex_exit(&pool_head_lock);
1690 1.131.2.2 matt
1691 1.131.2.2 matt /* If there is a pool_cache, drain CPU level caches. */
1692 1.131.2.2 matt *ppp = pp;
1693 1.131.2.2 matt if (pp->pr_cache != NULL) {
1694 1.131.2.2 matt *wp = xc_broadcast(0, (xcfunc_t)pool_cache_xcall,
1695 1.131.2.2 matt pp->pr_cache, NULL);
1696 1.131.2.2 matt }
1697 1.131.2.2 matt }
1698 1.131.2.2 matt
1699 1.131.2.2 matt void
1700 1.131.2.2 matt pool_drain_end(struct pool *pp, uint64_t where)
1701 1.131.2.2 matt {
1702 1.131.2.2 matt
1703 1.131.2.2 matt if (pp == NULL)
1704 1.131.2.2 matt return;
1705 1.131.2.2 matt
1706 1.131.2.2 matt KASSERT(pp->pr_refcnt > 0);
1707 1.131.2.2 matt
1708 1.131.2.2 matt /* Wait for remote draining to complete. */
1709 1.131.2.2 matt if (pp->pr_cache != NULL)
1710 1.131.2.2 matt xc_wait(where);
1711 1.131.2.2 matt
1712 1.131.2.2 matt /* Drain the cache (if any) and pool.. */
1713 1.131.2.2 matt pool_reclaim(pp);
1714 1.131.2.2 matt
1715 1.131.2.2 matt /* Finally, unlock the pool. */
1716 1.131.2.2 matt mutex_enter(&pool_head_lock);
1717 1.131.2.2 matt pp->pr_refcnt--;
1718 1.131.2.2 matt cv_broadcast(&pool_busy);
1719 1.131.2.2 matt mutex_exit(&pool_head_lock);
1720 1.3 pk }
1721 1.3 pk
1722 1.3 pk /*
1723 1.3 pk * Diagnostic helpers.
1724 1.3 pk */
1725 1.3 pk void
1726 1.42 thorpej pool_print(struct pool *pp, const char *modif)
1727 1.21 thorpej {
1728 1.21 thorpej
1729 1.25 thorpej pool_print1(pp, modif, printf);
1730 1.21 thorpej }
1731 1.21 thorpej
1732 1.25 thorpej void
1733 1.108 yamt pool_printall(const char *modif, void (*pr)(const char *, ...))
1734 1.108 yamt {
1735 1.108 yamt struct pool *pp;
1736 1.108 yamt
1737 1.108 yamt LIST_FOREACH(pp, &pool_head, pr_poollist) {
1738 1.108 yamt pool_printit(pp, modif, pr);
1739 1.108 yamt }
1740 1.108 yamt }
1741 1.108 yamt
1742 1.108 yamt void
1743 1.42 thorpej pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1744 1.25 thorpej {
1745 1.25 thorpej
1746 1.25 thorpej if (pp == NULL) {
1747 1.25 thorpej (*pr)("Must specify a pool to print.\n");
1748 1.25 thorpej return;
1749 1.25 thorpej }
1750 1.25 thorpej
1751 1.25 thorpej pool_print1(pp, modif, pr);
1752 1.25 thorpej }
1753 1.25 thorpej
1754 1.21 thorpej static void
1755 1.124 yamt pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
1756 1.97 yamt void (*pr)(const char *, ...))
1757 1.88 chs {
1758 1.88 chs struct pool_item_header *ph;
1759 1.88 chs #ifdef DIAGNOSTIC
1760 1.88 chs struct pool_item *pi;
1761 1.88 chs #endif
1762 1.88 chs
1763 1.88 chs LIST_FOREACH(ph, pl, ph_pagelist) {
1764 1.88 chs (*pr)("\t\tpage %p, nmissing %d, time %lu,%lu\n",
1765 1.88 chs ph->ph_page, ph->ph_nmissing,
1766 1.88 chs (u_long)ph->ph_time.tv_sec,
1767 1.88 chs (u_long)ph->ph_time.tv_usec);
1768 1.88 chs #ifdef DIAGNOSTIC
1769 1.97 yamt if (!(pp->pr_roflags & PR_NOTOUCH)) {
1770 1.102 chs LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
1771 1.97 yamt if (pi->pi_magic != PI_MAGIC) {
1772 1.97 yamt (*pr)("\t\t\titem %p, magic 0x%x\n",
1773 1.97 yamt pi, pi->pi_magic);
1774 1.97 yamt }
1775 1.88 chs }
1776 1.88 chs }
1777 1.88 chs #endif
1778 1.88 chs }
1779 1.88 chs }
1780 1.88 chs
1781 1.88 chs static void
1782 1.42 thorpej pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1783 1.3 pk {
1784 1.25 thorpej struct pool_item_header *ph;
1785 1.131.2.2 matt pool_cache_t pc;
1786 1.131.2.2 matt pcg_t *pcg;
1787 1.131.2.2 matt pool_cache_cpu_t *cc;
1788 1.131.2.2 matt uint64_t cpuhit, cpumiss;
1789 1.44 thorpej int i, print_log = 0, print_pagelist = 0, print_cache = 0;
1790 1.25 thorpej char c;
1791 1.25 thorpej
1792 1.25 thorpej while ((c = *modif++) != '\0') {
1793 1.25 thorpej if (c == 'l')
1794 1.25 thorpej print_log = 1;
1795 1.25 thorpej if (c == 'p')
1796 1.25 thorpej print_pagelist = 1;
1797 1.44 thorpej if (c == 'c')
1798 1.44 thorpej print_cache = 1;
1799 1.25 thorpej }
1800 1.25 thorpej
1801 1.131.2.2 matt if ((pc = pp->pr_cache) != NULL) {
1802 1.131.2.2 matt (*pr)("POOL CACHE");
1803 1.131.2.2 matt } else {
1804 1.131.2.2 matt (*pr)("POOL");
1805 1.131.2.2 matt }
1806 1.131.2.2 matt
1807 1.131.2.2 matt (*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
1808 1.25 thorpej pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
1809 1.25 thorpej pp->pr_roflags);
1810 1.66 thorpej (*pr)("\talloc %p\n", pp->pr_alloc);
1811 1.25 thorpej (*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
1812 1.25 thorpej pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
1813 1.25 thorpej (*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
1814 1.25 thorpej pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
1815 1.25 thorpej
1816 1.131.2.2 matt (*pr)("\tnget %lu, nfail %lu, nput %lu\n",
1817 1.25 thorpej pp->pr_nget, pp->pr_nfail, pp->pr_nput);
1818 1.25 thorpej (*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
1819 1.25 thorpej pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
1820 1.25 thorpej
1821 1.25 thorpej if (print_pagelist == 0)
1822 1.25 thorpej goto skip_pagelist;
1823 1.25 thorpej
1824 1.88 chs if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
1825 1.88 chs (*pr)("\n\tempty page list:\n");
1826 1.97 yamt pool_print_pagelist(pp, &pp->pr_emptypages, pr);
1827 1.88 chs if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
1828 1.88 chs (*pr)("\n\tfull page list:\n");
1829 1.97 yamt pool_print_pagelist(pp, &pp->pr_fullpages, pr);
1830 1.88 chs if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
1831 1.88 chs (*pr)("\n\tpartial-page list:\n");
1832 1.97 yamt pool_print_pagelist(pp, &pp->pr_partpages, pr);
1833 1.88 chs
1834 1.25 thorpej if (pp->pr_curpage == NULL)
1835 1.25 thorpej (*pr)("\tno current page\n");
1836 1.25 thorpej else
1837 1.25 thorpej (*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
1838 1.25 thorpej
1839 1.25 thorpej skip_pagelist:
1840 1.25 thorpej if (print_log == 0)
1841 1.25 thorpej goto skip_log;
1842 1.25 thorpej
1843 1.25 thorpej (*pr)("\n");
1844 1.25 thorpej if ((pp->pr_roflags & PR_LOGGING) == 0)
1845 1.25 thorpej (*pr)("\tno log\n");
1846 1.122 christos else {
1847 1.25 thorpej pr_printlog(pp, NULL, pr);
1848 1.122 christos }
1849 1.3 pk
1850 1.25 thorpej skip_log:
1851 1.44 thorpej
1852 1.102 chs #define PR_GROUPLIST(pcg) \
1853 1.102 chs (*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail); \
1854 1.102 chs for (i = 0; i < PCG_NOBJECTS; i++) { \
1855 1.102 chs if (pcg->pcg_objects[i].pcgo_pa != \
1856 1.102 chs POOL_PADDR_INVALID) { \
1857 1.102 chs (*pr)("\t\t\t%p, 0x%llx\n", \
1858 1.102 chs pcg->pcg_objects[i].pcgo_va, \
1859 1.102 chs (unsigned long long) \
1860 1.102 chs pcg->pcg_objects[i].pcgo_pa); \
1861 1.102 chs } else { \
1862 1.102 chs (*pr)("\t\t\t%p\n", \
1863 1.102 chs pcg->pcg_objects[i].pcgo_va); \
1864 1.102 chs } \
1865 1.102 chs }
1866 1.102 chs
1867 1.131.2.2 matt if (pc != NULL) {
1868 1.131.2.2 matt cpuhit = 0;
1869 1.131.2.2 matt cpumiss = 0;
1870 1.131.2.2 matt for (i = 0; i < MAXCPUS; i++) {
1871 1.131.2.2 matt if ((cc = pc->pc_cpus[i]) == NULL)
1872 1.131.2.2 matt continue;
1873 1.131.2.2 matt cpuhit += cc->cc_hits;
1874 1.131.2.2 matt cpumiss += cc->cc_misses;
1875 1.131.2.2 matt }
1876 1.131.2.2 matt (*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
1877 1.131.2.2 matt (*pr)("\tcache layer hits %llu misses %llu\n",
1878 1.131.2.2 matt pc->pc_hits, pc->pc_misses);
1879 1.131.2.2 matt (*pr)("\tcache layer entry uncontended %llu contended %llu\n",
1880 1.131.2.2 matt pc->pc_hits + pc->pc_misses - pc->pc_contended,
1881 1.131.2.2 matt pc->pc_contended);
1882 1.131.2.2 matt (*pr)("\tcache layer empty groups %u full groups %u\n",
1883 1.131.2.2 matt pc->pc_nempty, pc->pc_nfull);
1884 1.131.2.2 matt if (print_cache) {
1885 1.131.2.2 matt (*pr)("\tfull cache groups:\n");
1886 1.131.2.2 matt for (pcg = pc->pc_fullgroups; pcg != NULL;
1887 1.131.2.2 matt pcg = pcg->pcg_next) {
1888 1.131.2.2 matt PR_GROUPLIST(pcg);
1889 1.131.2.2 matt }
1890 1.131.2.2 matt (*pr)("\tempty cache groups:\n");
1891 1.131.2.2 matt for (pcg = pc->pc_emptygroups; pcg != NULL;
1892 1.131.2.2 matt pcg = pcg->pcg_next) {
1893 1.131.2.2 matt PR_GROUPLIST(pcg);
1894 1.131.2.2 matt }
1895 1.103 chs }
1896 1.44 thorpej }
1897 1.102 chs #undef PR_GROUPLIST
1898 1.44 thorpej
1899 1.88 chs pr_enter_check(pp, pr);
1900 1.88 chs }
1901 1.88 chs
1902 1.88 chs static int
1903 1.88 chs pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
1904 1.88 chs {
1905 1.88 chs struct pool_item *pi;
1906 1.128 christos void *page;
1907 1.88 chs int n;
1908 1.88 chs
1909 1.121 yamt if ((pp->pr_roflags & PR_NOALIGN) == 0) {
1910 1.128 christos page = (void *)((uintptr_t)ph & pp->pr_alloc->pa_pagemask);
1911 1.121 yamt if (page != ph->ph_page &&
1912 1.121 yamt (pp->pr_roflags & PR_PHINPAGE) != 0) {
1913 1.121 yamt if (label != NULL)
1914 1.121 yamt printf("%s: ", label);
1915 1.121 yamt printf("pool(%p:%s): page inconsistency: page %p;"
1916 1.121 yamt " at page head addr %p (p %p)\n", pp,
1917 1.121 yamt pp->pr_wchan, ph->ph_page,
1918 1.121 yamt ph, page);
1919 1.121 yamt return 1;
1920 1.121 yamt }
1921 1.88 chs }
1922 1.3 pk
1923 1.97 yamt if ((pp->pr_roflags & PR_NOTOUCH) != 0)
1924 1.97 yamt return 0;
1925 1.97 yamt
1926 1.102 chs for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
1927 1.88 chs pi != NULL;
1928 1.102 chs pi = LIST_NEXT(pi,pi_list), n++) {
1929 1.88 chs
1930 1.88 chs #ifdef DIAGNOSTIC
1931 1.88 chs if (pi->pi_magic != PI_MAGIC) {
1932 1.88 chs if (label != NULL)
1933 1.88 chs printf("%s: ", label);
1934 1.88 chs printf("pool(%s): free list modified: magic=%x;"
1935 1.121 yamt " page %p; item ordinal %d; addr %p\n",
1936 1.88 chs pp->pr_wchan, pi->pi_magic, ph->ph_page,
1937 1.121 yamt n, pi);
1938 1.88 chs panic("pool");
1939 1.88 chs }
1940 1.88 chs #endif
1941 1.121 yamt if ((pp->pr_roflags & PR_NOALIGN) != 0) {
1942 1.121 yamt continue;
1943 1.121 yamt }
1944 1.128 christos page = (void *)((uintptr_t)pi & pp->pr_alloc->pa_pagemask);
1945 1.88 chs if (page == ph->ph_page)
1946 1.88 chs continue;
1947 1.88 chs
1948 1.88 chs if (label != NULL)
1949 1.88 chs printf("%s: ", label);
1950 1.88 chs printf("pool(%p:%s): page inconsistency: page %p;"
1951 1.88 chs " item ordinal %d; addr %p (p %p)\n", pp,
1952 1.88 chs pp->pr_wchan, ph->ph_page,
1953 1.88 chs n, pi, page);
1954 1.88 chs return 1;
1955 1.88 chs }
1956 1.88 chs return 0;
1957 1.3 pk }
1958 1.3 pk
1959 1.88 chs
1960 1.3 pk int
1961 1.42 thorpej pool_chk(struct pool *pp, const char *label)
1962 1.3 pk {
1963 1.3 pk struct pool_item_header *ph;
1964 1.3 pk int r = 0;
1965 1.3 pk
1966 1.131.2.2 matt mutex_enter(&pp->pr_lock);
1967 1.88 chs LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
1968 1.88 chs r = pool_chk_page(pp, label, ph);
1969 1.88 chs if (r) {
1970 1.88 chs goto out;
1971 1.88 chs }
1972 1.88 chs }
1973 1.88 chs LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
1974 1.88 chs r = pool_chk_page(pp, label, ph);
1975 1.88 chs if (r) {
1976 1.3 pk goto out;
1977 1.3 pk }
1978 1.88 chs }
1979 1.88 chs LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
1980 1.88 chs r = pool_chk_page(pp, label, ph);
1981 1.88 chs if (r) {
1982 1.3 pk goto out;
1983 1.3 pk }
1984 1.3 pk }
1985 1.88 chs
1986 1.3 pk out:
1987 1.131.2.2 matt mutex_exit(&pp->pr_lock);
1988 1.3 pk return (r);
1989 1.43 thorpej }
1990 1.43 thorpej
1991 1.43 thorpej /*
1992 1.43 thorpej * pool_cache_init:
1993 1.43 thorpej *
1994 1.43 thorpej * Initialize a pool cache.
1995 1.131.2.2 matt */
1996 1.131.2.2 matt pool_cache_t
1997 1.131.2.2 matt pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
1998 1.131.2.2 matt const char *wchan, struct pool_allocator *palloc, int ipl,
1999 1.131.2.2 matt int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
2000 1.131.2.2 matt {
2001 1.131.2.2 matt pool_cache_t pc;
2002 1.131.2.2 matt
2003 1.131.2.2 matt pc = pool_get(&cache_pool, PR_WAITOK);
2004 1.131.2.2 matt if (pc == NULL)
2005 1.131.2.2 matt return NULL;
2006 1.131.2.2 matt
2007 1.131.2.2 matt pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
2008 1.131.2.2 matt palloc, ipl, ctor, dtor, arg);
2009 1.131.2.2 matt
2010 1.131.2.2 matt return pc;
2011 1.131.2.2 matt }
2012 1.131.2.2 matt
2013 1.131.2.2 matt /*
2014 1.131.2.2 matt * pool_cache_bootstrap:
2015 1.43 thorpej *
2016 1.131.2.2 matt * Kernel-private version of pool_cache_init(). The caller
2017 1.131.2.2 matt * provides initial storage.
2018 1.43 thorpej */
2019 1.43 thorpej void
2020 1.131.2.2 matt pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
2021 1.131.2.2 matt u_int align_offset, u_int flags, const char *wchan,
2022 1.131.2.2 matt struct pool_allocator *palloc, int ipl,
2023 1.131.2.2 matt int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
2024 1.43 thorpej void *arg)
2025 1.43 thorpej {
2026 1.131.2.2 matt CPU_INFO_ITERATOR cii;
2027 1.131.2.2 matt struct cpu_info *ci;
2028 1.131.2.2 matt struct pool *pp;
2029 1.131.2.2 matt
2030 1.131.2.2 matt pp = &pc->pc_pool;
2031 1.131.2.2 matt if (palloc == NULL && ipl == IPL_NONE)
2032 1.131.2.2 matt palloc = &pool_allocator_nointr;
2033 1.131.2.2 matt pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl);
2034 1.43 thorpej
2035 1.131.2.2 matt mutex_init(&pc->pc_lock, MUTEX_DEFAULT, pp->pr_ipl);
2036 1.43 thorpej
2037 1.131.2.2 matt if (ctor == NULL) {
2038 1.131.2.2 matt ctor = (int (*)(void *, void *, int))nullop;
2039 1.131.2.2 matt }
2040 1.131.2.2 matt if (dtor == NULL) {
2041 1.131.2.2 matt dtor = (void (*)(void *, void *))nullop;
2042 1.131.2.2 matt }
2043 1.43 thorpej
2044 1.131.2.2 matt pc->pc_emptygroups = NULL;
2045 1.131.2.2 matt pc->pc_fullgroups = NULL;
2046 1.131.2.2 matt pc->pc_partgroups = NULL;
2047 1.43 thorpej pc->pc_ctor = ctor;
2048 1.43 thorpej pc->pc_dtor = dtor;
2049 1.43 thorpej pc->pc_arg = arg;
2050 1.131.2.2 matt pc->pc_hits = 0;
2051 1.48 thorpej pc->pc_misses = 0;
2052 1.131.2.2 matt pc->pc_nempty = 0;
2053 1.131.2.2 matt pc->pc_npart = 0;
2054 1.131.2.2 matt pc->pc_nfull = 0;
2055 1.131.2.2 matt pc->pc_contended = 0;
2056 1.131.2.2 matt pc->pc_refcnt = 0;
2057 1.131.2.2 matt
2058 1.131.2.2 matt /* Allocate per-CPU caches. */
2059 1.131.2.2 matt memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
2060 1.131.2.2 matt pc->pc_ncpu = 0;
2061 1.131.2.2 matt for (CPU_INFO_FOREACH(cii, ci)) {
2062 1.131.2.2 matt pool_cache_cpu_init1(ci, pc);
2063 1.131.2.2 matt }
2064 1.131.2.2 matt
2065 1.131.2.2 matt if (__predict_true(!cold)) {
2066 1.131.2.2 matt mutex_enter(&pp->pr_lock);
2067 1.131.2.2 matt pp->pr_cache = pc;
2068 1.131.2.2 matt mutex_exit(&pp->pr_lock);
2069 1.131.2.2 matt mutex_enter(&pool_head_lock);
2070 1.131.2.2 matt LIST_INSERT_HEAD(&pool_cache_head, pc, pc_cachelist);
2071 1.131.2.2 matt mutex_exit(&pool_head_lock);
2072 1.131.2.2 matt } else {
2073 1.131.2.2 matt pp->pr_cache = pc;
2074 1.131.2.2 matt LIST_INSERT_HEAD(&pool_cache_head, pc, pc_cachelist);
2075 1.131.2.2 matt }
2076 1.43 thorpej }
2077 1.43 thorpej
2078 1.43 thorpej /*
2079 1.43 thorpej * pool_cache_destroy:
2080 1.43 thorpej *
2081 1.43 thorpej * Destroy a pool cache.
2082 1.43 thorpej */
2083 1.43 thorpej void
2084 1.131.2.2 matt pool_cache_destroy(pool_cache_t pc)
2085 1.43 thorpej {
2086 1.131.2.2 matt struct pool *pp = &pc->pc_pool;
2087 1.131.2.2 matt pool_cache_cpu_t *cc;
2088 1.131.2.2 matt pcg_t *pcg;
2089 1.131.2.2 matt int i;
2090 1.131.2.2 matt
2091 1.131.2.2 matt /* Remove it from the global list. */
2092 1.131.2.2 matt mutex_enter(&pool_head_lock);
2093 1.131.2.2 matt while (pc->pc_refcnt != 0)
2094 1.131.2.2 matt cv_wait(&pool_busy, &pool_head_lock);
2095 1.131.2.2 matt LIST_REMOVE(pc, pc_cachelist);
2096 1.131.2.2 matt mutex_exit(&pool_head_lock);
2097 1.43 thorpej
2098 1.43 thorpej /* First, invalidate the entire cache. */
2099 1.43 thorpej pool_cache_invalidate(pc);
2100 1.43 thorpej
2101 1.131.2.2 matt /* Disassociate it from the pool. */
2102 1.131.2.2 matt mutex_enter(&pp->pr_lock);
2103 1.131.2.2 matt pp->pr_cache = NULL;
2104 1.131.2.2 matt mutex_exit(&pp->pr_lock);
2105 1.131.2.2 matt
2106 1.131.2.2 matt /* Destroy per-CPU data */
2107 1.131.2.2 matt for (i = 0; i < MAXCPUS; i++) {
2108 1.131.2.2 matt if ((cc = pc->pc_cpus[i]) == NULL)
2109 1.131.2.2 matt continue;
2110 1.131.2.2 matt if ((pcg = cc->cc_current) != NULL) {
2111 1.131.2.2 matt pcg->pcg_next = NULL;
2112 1.131.2.2 matt pool_cache_invalidate_groups(pc, pcg);
2113 1.131.2.2 matt }
2114 1.131.2.2 matt if ((pcg = cc->cc_previous) != NULL) {
2115 1.131.2.2 matt pcg->pcg_next = NULL;
2116 1.131.2.2 matt pool_cache_invalidate_groups(pc, pcg);
2117 1.131.2.2 matt }
2118 1.131.2.2 matt if (cc != &pc->pc_cpu0)
2119 1.131.2.2 matt pool_put(&cache_cpu_pool, cc);
2120 1.131.2.2 matt }
2121 1.131.2.2 matt
2122 1.131.2.2 matt /* Finally, destroy it. */
2123 1.131.2.2 matt mutex_destroy(&pc->pc_lock);
2124 1.131.2.2 matt pool_destroy(pp);
2125 1.131.2.2 matt pool_put(&cache_pool, pc);
2126 1.43 thorpej }
2127 1.43 thorpej
2128 1.131.2.2 matt /*
2129 1.131.2.2 matt * pool_cache_cpu_init1:
2130 1.131.2.2 matt *
2131 1.131.2.2 matt * Called for each pool_cache whenever a new CPU is attached.
2132 1.131.2.2 matt */
2133 1.131.2.2 matt static void
2134 1.131.2.2 matt pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
2135 1.43 thorpej {
2136 1.131.2.2 matt pool_cache_cpu_t *cc;
2137 1.43 thorpej
2138 1.131.2.2 matt KASSERT(((uintptr_t)pc->pc_cpus & (CACHE_LINE_SIZE - 1)) == 0);
2139 1.43 thorpej
2140 1.131.2.2 matt if ((cc = pc->pc_cpus[ci->ci_index]) != NULL) {
2141 1.131.2.2 matt KASSERT(cc->cc_cpu = ci);
2142 1.131.2.2 matt return;
2143 1.131.2.2 matt }
2144 1.131.2.2 matt
2145 1.131.2.2 matt /*
2146 1.131.2.2 matt * The first CPU is 'free'. This needs to be the case for
2147 1.131.2.2 matt * bootstrap - we may not be able to allocate yet.
2148 1.131.2.2 matt */
2149 1.131.2.2 matt if (pc->pc_ncpu == 0) {
2150 1.131.2.2 matt cc = &pc->pc_cpu0;
2151 1.131.2.2 matt pc->pc_ncpu = 1;
2152 1.131.2.2 matt } else {
2153 1.131.2.2 matt mutex_enter(&pc->pc_lock);
2154 1.131.2.2 matt pc->pc_ncpu++;
2155 1.131.2.2 matt mutex_exit(&pc->pc_lock);
2156 1.131.2.2 matt cc = pool_get(&cache_cpu_pool, PR_WAITOK);
2157 1.131.2.2 matt }
2158 1.131.2.2 matt
2159 1.131.2.2 matt cc->cc_ipl = pc->pc_pool.pr_ipl;
2160 1.131.2.2 matt cc->cc_iplcookie = makeiplcookie(cc->cc_ipl);
2161 1.131.2.2 matt cc->cc_cache = pc;
2162 1.131.2.2 matt cc->cc_cpu = ci;
2163 1.131.2.2 matt cc->cc_hits = 0;
2164 1.131.2.2 matt cc->cc_misses = 0;
2165 1.131.2.2 matt cc->cc_current = NULL;
2166 1.131.2.2 matt cc->cc_previous = NULL;
2167 1.131.2.2 matt
2168 1.131.2.2 matt pc->pc_cpus[ci->ci_index] = cc;
2169 1.43 thorpej }
2170 1.43 thorpej
2171 1.131.2.2 matt /*
2172 1.131.2.2 matt * pool_cache_cpu_init:
2173 1.131.2.2 matt *
2174 1.131.2.2 matt * Called whenever a new CPU is attached.
2175 1.131.2.2 matt */
2176 1.131.2.2 matt void
2177 1.131.2.2 matt pool_cache_cpu_init(struct cpu_info *ci)
2178 1.131.2.2 matt {
2179 1.131.2.2 matt pool_cache_t pc;
2180 1.131.2.2 matt
2181 1.131.2.2 matt mutex_enter(&pool_head_lock);
2182 1.131.2.2 matt LIST_FOREACH(pc, &pool_cache_head, pc_cachelist) {
2183 1.131.2.2 matt pc->pc_refcnt++;
2184 1.131.2.2 matt mutex_exit(&pool_head_lock);
2185 1.131.2.2 matt
2186 1.131.2.2 matt pool_cache_cpu_init1(ci, pc);
2187 1.131.2.2 matt
2188 1.131.2.2 matt mutex_enter(&pool_head_lock);
2189 1.131.2.2 matt pc->pc_refcnt--;
2190 1.131.2.2 matt cv_broadcast(&pool_busy);
2191 1.131.2.2 matt }
2192 1.131.2.2 matt mutex_exit(&pool_head_lock);
2193 1.131.2.2 matt }
2194 1.131.2.2 matt
2195 1.131.2.2 matt /*
2196 1.131.2.2 matt * pool_cache_reclaim:
2197 1.131.2.2 matt *
2198 1.131.2.2 matt * Reclaim memory from a pool cache.
2199 1.131.2.2 matt */
2200 1.131.2.2 matt bool
2201 1.131.2.2 matt pool_cache_reclaim(pool_cache_t pc)
2202 1.43 thorpej {
2203 1.43 thorpej
2204 1.131.2.2 matt return pool_reclaim(&pc->pc_pool);
2205 1.131.2.2 matt }
2206 1.43 thorpej
2207 1.131.2.2 matt /*
2208 1.131.2.2 matt * pool_cache_destruct_object:
2209 1.131.2.2 matt *
2210 1.131.2.2 matt * Force destruction of an object and its release back into
2211 1.131.2.2 matt * the pool.
2212 1.131.2.2 matt */
2213 1.131.2.2 matt void
2214 1.131.2.2 matt pool_cache_destruct_object(pool_cache_t pc, void *object)
2215 1.131.2.2 matt {
2216 1.131.2.2 matt
2217 1.131.2.2 matt (*pc->pc_dtor)(pc->pc_arg, object);
2218 1.131.2.2 matt pool_put(&pc->pc_pool, object);
2219 1.43 thorpej }
2220 1.43 thorpej
2221 1.131.2.2 matt /*
2222 1.131.2.2 matt * pool_cache_invalidate_groups:
2223 1.131.2.2 matt *
2224 1.131.2.2 matt * Invalidate a chain of groups and destruct all objects.
2225 1.131.2.2 matt */
2226 1.102 chs static void
2227 1.131.2.2 matt pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
2228 1.102 chs {
2229 1.131.2.2 matt void *object;
2230 1.131.2.2 matt pcg_t *next;
2231 1.131.2.2 matt int i;
2232 1.131.2.2 matt
2233 1.131.2.2 matt for (; pcg != NULL; pcg = next) {
2234 1.131.2.2 matt next = pcg->pcg_next;
2235 1.131.2.2 matt
2236 1.131.2.2 matt for (i = 0; i < pcg->pcg_avail; i++) {
2237 1.131.2.2 matt object = pcg->pcg_objects[i].pcgo_va;
2238 1.131.2.2 matt pool_cache_destruct_object(pc, object);
2239 1.131.2.2 matt }
2240 1.102 chs
2241 1.102 chs pool_put(&pcgpool, pcg);
2242 1.102 chs }
2243 1.102 chs }
2244 1.102 chs
2245 1.43 thorpej /*
2246 1.131.2.2 matt * pool_cache_invalidate:
2247 1.43 thorpej *
2248 1.131.2.2 matt * Invalidate a pool cache (destruct and release all of the
2249 1.131.2.2 matt * cached objects). Does not reclaim objects from the pool.
2250 1.43 thorpej */
2251 1.131.2.2 matt void
2252 1.131.2.2 matt pool_cache_invalidate(pool_cache_t pc)
2253 1.43 thorpej {
2254 1.131.2.2 matt pcg_t *full, *empty, *part;
2255 1.58 thorpej
2256 1.131.2.2 matt mutex_enter(&pc->pc_lock);
2257 1.131.2.2 matt full = pc->pc_fullgroups;
2258 1.131.2.2 matt empty = pc->pc_emptygroups;
2259 1.131.2.2 matt part = pc->pc_partgroups;
2260 1.131.2.2 matt pc->pc_fullgroups = NULL;
2261 1.131.2.2 matt pc->pc_emptygroups = NULL;
2262 1.131.2.2 matt pc->pc_partgroups = NULL;
2263 1.131.2.2 matt pc->pc_nfull = 0;
2264 1.131.2.2 matt pc->pc_nempty = 0;
2265 1.131.2.2 matt pc->pc_npart = 0;
2266 1.131.2.2 matt mutex_exit(&pc->pc_lock);
2267 1.43 thorpej
2268 1.131.2.2 matt pool_cache_invalidate_groups(pc, full);
2269 1.131.2.2 matt pool_cache_invalidate_groups(pc, empty);
2270 1.131.2.2 matt pool_cache_invalidate_groups(pc, part);
2271 1.131.2.2 matt }
2272 1.43 thorpej
2273 1.131.2.2 matt void
2274 1.131.2.2 matt pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
2275 1.131.2.2 matt {
2276 1.43 thorpej
2277 1.131.2.2 matt pool_set_drain_hook(&pc->pc_pool, fn, arg);
2278 1.131.2.2 matt }
2279 1.125 ad
2280 1.131.2.2 matt void
2281 1.131.2.2 matt pool_cache_setlowat(pool_cache_t pc, int n)
2282 1.131.2.2 matt {
2283 1.43 thorpej
2284 1.131.2.2 matt pool_setlowat(&pc->pc_pool, n);
2285 1.131.2.2 matt }
2286 1.43 thorpej
2287 1.131.2.2 matt void
2288 1.131.2.2 matt pool_cache_sethiwat(pool_cache_t pc, int n)
2289 1.131.2.2 matt {
2290 1.43 thorpej
2291 1.131.2.2 matt pool_sethiwat(&pc->pc_pool, n);
2292 1.43 thorpej }
2293 1.43 thorpej
2294 1.43 thorpej void
2295 1.131.2.2 matt pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
2296 1.43 thorpej {
2297 1.43 thorpej
2298 1.131.2.2 matt pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
2299 1.131.2.2 matt }
2300 1.131.2.2 matt
2301 1.131.2.2 matt static inline pool_cache_cpu_t *
2302 1.131.2.2 matt pool_cache_cpu_enter(pool_cache_t pc, int *s)
2303 1.131.2.2 matt {
2304 1.131.2.2 matt pool_cache_cpu_t *cc;
2305 1.131.2.2 matt struct cpu_info *ci;
2306 1.125 ad
2307 1.131.2.2 matt /*
2308 1.131.2.2 matt * Prevent other users of the cache from accessing our
2309 1.131.2.2 matt * CPU-local data. To avoid touching shared state, we
2310 1.131.2.2 matt * pull the neccessary information from CPU local data.
2311 1.131.2.2 matt */
2312 1.131.2.2 matt ci = curcpu();
2313 1.131.2.2 matt KASSERT(ci->ci_data.cpu_index < MAXCPUS);
2314 1.131.2.2 matt cc = pc->pc_cpus[ci->ci_data.cpu_index];
2315 1.131.2.2 matt KASSERT(cc->cc_cache == pc);
2316 1.131.2.2 matt if (cc->cc_ipl == IPL_NONE) {
2317 1.131.2.2 matt crit_enter();
2318 1.131.2.2 matt } else {
2319 1.131.2.2 matt *s = splraiseipl(cc->cc_iplcookie);
2320 1.109 christos }
2321 1.109 christos
2322 1.131.2.2 matt /* Moved to another CPU before disabling preemption? */
2323 1.131.2.2 matt if (__predict_false(ci != curcpu())) {
2324 1.131.2.2 matt ci = curcpu();
2325 1.131.2.2 matt cc = pc->pc_cpus[ci->ci_data.cpu_index];
2326 1.131.2.2 matt }
2327 1.43 thorpej
2328 1.131.2.2 matt #ifdef DIAGNOSTIC
2329 1.131.2.2 matt KASSERT(cc->cc_cpu == ci);
2330 1.131.2.2 matt KASSERT(((uintptr_t)cc & (CACHE_LINE_SIZE - 1)) == 0);
2331 1.131.2.2 matt #endif
2332 1.131.2.2 matt
2333 1.131.2.2 matt return cc;
2334 1.131.2.2 matt }
2335 1.131.2.2 matt
2336 1.131.2.2 matt static inline void
2337 1.131.2.2 matt pool_cache_cpu_exit(pool_cache_cpu_t *cc, int *s)
2338 1.131.2.2 matt {
2339 1.131.2.2 matt
2340 1.131.2.2 matt /* No longer need exclusive access to the per-CPU data. */
2341 1.131.2.2 matt if (cc->cc_ipl == IPL_NONE) {
2342 1.131.2.2 matt crit_exit();
2343 1.131.2.2 matt } else {
2344 1.131.2.2 matt splx(*s);
2345 1.102 chs }
2346 1.131.2.2 matt }
2347 1.131.2.2 matt
2348 1.131.2.2 matt #if __GNUC_PREREQ__(3, 0)
2349 1.131.2.2 matt __attribute ((noinline))
2350 1.131.2.2 matt #endif
2351 1.131.2.2 matt pool_cache_cpu_t *
2352 1.131.2.2 matt pool_cache_get_slow(pool_cache_cpu_t *cc, int *s, void **objectp,
2353 1.131.2.2 matt paddr_t *pap, int flags)
2354 1.131.2.2 matt {
2355 1.131.2.2 matt pcg_t *pcg, *cur;
2356 1.131.2.2 matt uint64_t ncsw;
2357 1.131.2.2 matt pool_cache_t pc;
2358 1.131.2.2 matt void *object;
2359 1.131.2.2 matt
2360 1.131.2.2 matt pc = cc->cc_cache;
2361 1.131.2.2 matt cc->cc_misses++;
2362 1.131.2.2 matt
2363 1.131.2.2 matt /*
2364 1.131.2.2 matt * Nothing was available locally. Try and grab a group
2365 1.131.2.2 matt * from the cache.
2366 1.131.2.2 matt */
2367 1.131.2.2 matt if (!mutex_tryenter(&pc->pc_lock)) {
2368 1.131.2.2 matt ncsw = curlwp->l_ncsw;
2369 1.131.2.2 matt mutex_enter(&pc->pc_lock);
2370 1.131.2.2 matt pc->pc_contended++;
2371 1.43 thorpej
2372 1.43 thorpej /*
2373 1.131.2.2 matt * If we context switched while locking, then
2374 1.131.2.2 matt * our view of the per-CPU data is invalid:
2375 1.131.2.2 matt * retry.
2376 1.43 thorpej */
2377 1.131.2.2 matt if (curlwp->l_ncsw != ncsw) {
2378 1.131.2.2 matt mutex_exit(&pc->pc_lock);
2379 1.131.2.2 matt pool_cache_cpu_exit(cc, s);
2380 1.131.2.2 matt return pool_cache_cpu_enter(pc, s);
2381 1.131.2.2 matt }
2382 1.131.2.2 matt }
2383 1.102 chs
2384 1.131.2.2 matt if ((pcg = pc->pc_fullgroups) != NULL) {
2385 1.131.2.2 matt /*
2386 1.131.2.2 matt * If there's a full group, release our empty
2387 1.131.2.2 matt * group back to the cache. Install the full
2388 1.131.2.2 matt * group as cc_current and return.
2389 1.131.2.2 matt */
2390 1.131.2.2 matt if ((cur = cc->cc_current) != NULL) {
2391 1.131.2.2 matt KASSERT(cur->pcg_avail == 0);
2392 1.131.2.2 matt cur->pcg_next = pc->pc_emptygroups;
2393 1.131.2.2 matt pc->pc_emptygroups = cur;
2394 1.131.2.2 matt pc->pc_nempty++;
2395 1.43 thorpej }
2396 1.131.2.2 matt KASSERT(pcg->pcg_avail == PCG_NOBJECTS);
2397 1.131.2.2 matt cc->cc_current = pcg;
2398 1.131.2.2 matt pc->pc_fullgroups = pcg->pcg_next;
2399 1.131.2.2 matt pc->pc_hits++;
2400 1.131.2.2 matt pc->pc_nfull--;
2401 1.131.2.2 matt mutex_exit(&pc->pc_lock);
2402 1.131.2.2 matt return cc;
2403 1.43 thorpej }
2404 1.43 thorpej
2405 1.131.2.2 matt /*
2406 1.131.2.2 matt * Nothing available locally or in cache. Take the slow
2407 1.131.2.2 matt * path: fetch a new object from the pool and construct
2408 1.131.2.2 matt * it.
2409 1.131.2.2 matt */
2410 1.131.2.2 matt pc->pc_misses++;
2411 1.131.2.2 matt mutex_exit(&pc->pc_lock);
2412 1.131.2.2 matt pool_cache_cpu_exit(cc, s);
2413 1.131.2.2 matt
2414 1.131.2.2 matt object = pool_get(&pc->pc_pool, flags);
2415 1.131.2.2 matt *objectp = object;
2416 1.131.2.2 matt if (object == NULL)
2417 1.131.2.2 matt return NULL;
2418 1.43 thorpej
2419 1.131.2.2 matt if ((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0) {
2420 1.131.2.2 matt pool_put(&pc->pc_pool, object);
2421 1.131.2.2 matt *objectp = NULL;
2422 1.131.2.2 matt return NULL;
2423 1.102 chs }
2424 1.51 thorpej
2425 1.131.2.2 matt KASSERT((((vaddr_t)object + pc->pc_pool.pr_itemoffset) &
2426 1.131.2.2 matt (pc->pc_pool.pr_align - 1)) == 0);
2427 1.131.2.2 matt
2428 1.131.2.2 matt if (pap != NULL) {
2429 1.131.2.2 matt #ifdef POOL_VTOPHYS
2430 1.131.2.2 matt *pap = POOL_VTOPHYS(object);
2431 1.131.2.2 matt #else
2432 1.131.2.2 matt *pap = POOL_PADDR_INVALID;
2433 1.131.2.2 matt #endif
2434 1.131.2.2 matt }
2435 1.51 thorpej
2436 1.131.2.2 matt FREECHECK_OUT(&pc->pc_freecheck, object);
2437 1.131.2.2 matt return NULL;
2438 1.43 thorpej }
2439 1.43 thorpej
2440 1.130 ad /*
2441 1.131.2.2 matt * pool_cache_get{,_paddr}:
2442 1.130 ad *
2443 1.131.2.2 matt * Get an object from a pool cache (optionally returning
2444 1.131.2.2 matt * the physical address of the object).
2445 1.130 ad */
2446 1.131.2.2 matt void *
2447 1.131.2.2 matt pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
2448 1.102 chs {
2449 1.131.2.2 matt pool_cache_cpu_t *cc;
2450 1.131.2.2 matt pcg_t *pcg;
2451 1.102 chs void *object;
2452 1.131.2.2 matt int s;
2453 1.102 chs
2454 1.131.2.2 matt #ifdef LOCKDEBUG
2455 1.131.2.2 matt if (flags & PR_WAITOK)
2456 1.131.2.2 matt ASSERT_SLEEPABLE(NULL, "pool_cache_get(PR_WAITOK)");
2457 1.131.2.2 matt #endif
2458 1.130 ad
2459 1.131.2.2 matt cc = pool_cache_cpu_enter(pc, &s);
2460 1.131.2.2 matt do {
2461 1.131.2.2 matt /* Try and allocate an object from the current group. */
2462 1.131.2.2 matt pcg = cc->cc_current;
2463 1.131.2.2 matt if (pcg != NULL && pcg->pcg_avail > 0) {
2464 1.131.2.2 matt object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;
2465 1.131.2.2 matt if (pap != NULL)
2466 1.131.2.2 matt *pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa;
2467 1.131.2.2 matt pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL;
2468 1.131.2.2 matt KASSERT(pcg->pcg_avail <= PCG_NOBJECTS);
2469 1.131.2.2 matt KASSERT(object != NULL);
2470 1.131.2.2 matt cc->cc_hits++;
2471 1.131.2.2 matt pool_cache_cpu_exit(cc, &s);
2472 1.131.2.2 matt FREECHECK_OUT(&pc->pc_freecheck, object);
2473 1.131.2.2 matt return object;
2474 1.102 chs }
2475 1.130 ad
2476 1.131.2.2 matt /*
2477 1.131.2.2 matt * That failed. If the previous group isn't empty, swap
2478 1.131.2.2 matt * it with the current group and allocate from there.
2479 1.131.2.2 matt */
2480 1.131.2.2 matt pcg = cc->cc_previous;
2481 1.131.2.2 matt if (pcg != NULL && pcg->pcg_avail > 0) {
2482 1.131.2.2 matt cc->cc_previous = cc->cc_current;
2483 1.131.2.2 matt cc->cc_current = pcg;
2484 1.131.2.2 matt continue;
2485 1.131.2.2 matt }
2486 1.131.2.2 matt
2487 1.131.2.2 matt /*
2488 1.131.2.2 matt * Can't allocate from either group: try the slow path.
2489 1.131.2.2 matt * If get_slow() allocated an object for us, or if
2490 1.131.2.2 matt * no more objects are available, it will return NULL.
2491 1.131.2.2 matt * Otherwise, we need to retry.
2492 1.131.2.2 matt */
2493 1.131.2.2 matt cc = pool_cache_get_slow(cc, &s, &object, pap, flags);
2494 1.131.2.2 matt } while (cc != NULL);
2495 1.131.2.2 matt
2496 1.131.2.2 matt return object;
2497 1.105 christos }
2498 1.105 christos
2499 1.131.2.2 matt #if __GNUC_PREREQ__(3, 0)
2500 1.131.2.2 matt __attribute ((noinline))
2501 1.131.2.2 matt #endif
2502 1.131.2.2 matt pool_cache_cpu_t *
2503 1.131.2.2 matt pool_cache_put_slow(pool_cache_cpu_t *cc, int *s, void *object, paddr_t pa)
2504 1.105 christos {
2505 1.131.2.2 matt pcg_t *pcg, *cur;
2506 1.131.2.2 matt uint64_t ncsw;
2507 1.131.2.2 matt pool_cache_t pc;
2508 1.105 christos
2509 1.131.2.2 matt pc = cc->cc_cache;
2510 1.131.2.2 matt cc->cc_misses++;
2511 1.105 christos
2512 1.131.2.2 matt /*
2513 1.131.2.2 matt * No free slots locally. Try to grab an empty, unused
2514 1.131.2.2 matt * group from the cache.
2515 1.131.2.2 matt */
2516 1.131.2.2 matt if (!mutex_tryenter(&pc->pc_lock)) {
2517 1.131.2.2 matt ncsw = curlwp->l_ncsw;
2518 1.131.2.2 matt mutex_enter(&pc->pc_lock);
2519 1.131.2.2 matt pc->pc_contended++;
2520 1.103 chs
2521 1.131.2.2 matt /*
2522 1.131.2.2 matt * If we context switched while locking, then
2523 1.131.2.2 matt * our view of the per-CPU data is invalid:
2524 1.131.2.2 matt * retry.
2525 1.131.2.2 matt */
2526 1.131.2.2 matt if (curlwp->l_ncsw != ncsw) {
2527 1.131.2.2 matt mutex_exit(&pc->pc_lock);
2528 1.131.2.2 matt pool_cache_cpu_exit(cc, s);
2529 1.131.2.2 matt return pool_cache_cpu_enter(pc, s);
2530 1.131.2.2 matt }
2531 1.131.2.2 matt }
2532 1.131.2.2 matt
2533 1.131.2.2 matt if ((pcg = pc->pc_emptygroups) != NULL) {
2534 1.131.2.2 matt /*
2535 1.131.2.2 matt * If there's a empty group, release our full
2536 1.131.2.2 matt * group back to the cache. Install the empty
2537 1.131.2.2 matt * group as cc_current and return.
2538 1.131.2.2 matt */
2539 1.131.2.2 matt if ((cur = cc->cc_current) != NULL) {
2540 1.131.2.2 matt KASSERT(cur->pcg_avail == PCG_NOBJECTS);
2541 1.131.2.2 matt cur->pcg_next = pc->pc_fullgroups;
2542 1.131.2.2 matt pc->pc_fullgroups = cur;
2543 1.131.2.2 matt pc->pc_nfull++;
2544 1.131.2.2 matt }
2545 1.131.2.2 matt KASSERT(pcg->pcg_avail == 0);
2546 1.131.2.2 matt cc->cc_current = pcg;
2547 1.131.2.2 matt pc->pc_emptygroups = pcg->pcg_next;
2548 1.131.2.2 matt pc->pc_hits++;
2549 1.131.2.2 matt pc->pc_nempty--;
2550 1.131.2.2 matt mutex_exit(&pc->pc_lock);
2551 1.131.2.2 matt return cc;
2552 1.131.2.2 matt }
2553 1.131.2.2 matt
2554 1.131.2.2 matt /*
2555 1.131.2.2 matt * Nothing available locally or in cache. Take the
2556 1.131.2.2 matt * slow path and try to allocate a new group that we
2557 1.131.2.2 matt * can release to.
2558 1.131.2.2 matt */
2559 1.131.2.2 matt pc->pc_misses++;
2560 1.131.2.2 matt mutex_exit(&pc->pc_lock);
2561 1.131.2.2 matt pool_cache_cpu_exit(cc, s);
2562 1.131.2.2 matt
2563 1.131.2.2 matt /*
2564 1.131.2.2 matt * If we can't allocate a new group, just throw the
2565 1.131.2.2 matt * object away.
2566 1.131.2.2 matt */
2567 1.131.2.2 matt pcg = pool_get(&pcgpool, PR_NOWAIT);
2568 1.131.2.2 matt if (pcg == NULL) {
2569 1.131.2.2 matt pool_cache_destruct_object(pc, object);
2570 1.131.2.2 matt return NULL;
2571 1.131.2.2 matt }
2572 1.131.2.2 matt #ifdef DIAGNOSTIC
2573 1.131.2.2 matt memset(pcg, 0, sizeof(*pcg));
2574 1.131.2.2 matt #else
2575 1.131.2.2 matt pcg->pcg_avail = 0;
2576 1.131.2.2 matt #endif
2577 1.131.2.2 matt
2578 1.131.2.2 matt /*
2579 1.131.2.2 matt * Add the empty group to the cache and try again.
2580 1.131.2.2 matt */
2581 1.131.2.2 matt mutex_enter(&pc->pc_lock);
2582 1.131.2.2 matt pcg->pcg_next = pc->pc_emptygroups;
2583 1.131.2.2 matt pc->pc_emptygroups = pcg;
2584 1.131.2.2 matt pc->pc_nempty++;
2585 1.131.2.2 matt mutex_exit(&pc->pc_lock);
2586 1.131.2.2 matt
2587 1.131.2.2 matt return pool_cache_cpu_enter(pc, s);
2588 1.131.2.2 matt }
2589 1.102 chs
2590 1.43 thorpej /*
2591 1.131.2.2 matt * pool_cache_put{,_paddr}:
2592 1.43 thorpej *
2593 1.131.2.2 matt * Put an object back to the pool cache (optionally caching the
2594 1.131.2.2 matt * physical address of the object).
2595 1.43 thorpej */
2596 1.101 thorpej void
2597 1.131.2.2 matt pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
2598 1.43 thorpej {
2599 1.131.2.2 matt pool_cache_cpu_t *cc;
2600 1.131.2.2 matt pcg_t *pcg;
2601 1.131.2.2 matt int s;
2602 1.101 thorpej
2603 1.131.2.2 matt FREECHECK_IN(&pc->pc_freecheck, object);
2604 1.43 thorpej
2605 1.131.2.2 matt cc = pool_cache_cpu_enter(pc, &s);
2606 1.131.2.2 matt do {
2607 1.131.2.2 matt /* If the current group isn't full, release it there. */
2608 1.131.2.2 matt pcg = cc->cc_current;
2609 1.131.2.2 matt if (pcg != NULL && pcg->pcg_avail < PCG_NOBJECTS) {
2610 1.131.2.2 matt KASSERT(pcg->pcg_objects[pcg->pcg_avail].pcgo_va
2611 1.131.2.2 matt == NULL);
2612 1.131.2.2 matt pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object;
2613 1.131.2.2 matt pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa;
2614 1.131.2.2 matt pcg->pcg_avail++;
2615 1.131.2.2 matt cc->cc_hits++;
2616 1.131.2.2 matt pool_cache_cpu_exit(cc, &s);
2617 1.131.2.2 matt return;
2618 1.131.2.2 matt }
2619 1.43 thorpej
2620 1.131.2.2 matt /*
2621 1.131.2.2 matt * That failed. If the previous group is empty, swap
2622 1.131.2.2 matt * it with the current group and try again.
2623 1.131.2.2 matt */
2624 1.131.2.2 matt pcg = cc->cc_previous;
2625 1.131.2.2 matt if (pcg != NULL && pcg->pcg_avail == 0) {
2626 1.131.2.2 matt cc->cc_previous = cc->cc_current;
2627 1.131.2.2 matt cc->cc_current = pcg;
2628 1.131.2.2 matt continue;
2629 1.131.2.2 matt }
2630 1.43 thorpej
2631 1.131.2.2 matt /*
2632 1.131.2.2 matt * Can't free to either group: try the slow path.
2633 1.131.2.2 matt * If put_slow() releases the object for us, it
2634 1.131.2.2 matt * will return NULL. Otherwise we need to retry.
2635 1.131.2.2 matt */
2636 1.131.2.2 matt cc = pool_cache_put_slow(cc, &s, object, pa);
2637 1.131.2.2 matt } while (cc != NULL);
2638 1.43 thorpej }
2639 1.43 thorpej
2640 1.43 thorpej /*
2641 1.131.2.2 matt * pool_cache_xcall:
2642 1.43 thorpej *
2643 1.131.2.2 matt * Transfer objects from the per-CPU cache to the global cache.
2644 1.131.2.2 matt * Run within a cross-call thread.
2645 1.43 thorpej */
2646 1.43 thorpej static void
2647 1.131.2.2 matt pool_cache_xcall(pool_cache_t pc)
2648 1.43 thorpej {
2649 1.131.2.2 matt pool_cache_cpu_t *cc;
2650 1.131.2.2 matt pcg_t *prev, *cur, **list;
2651 1.131.2.2 matt int s = 0; /* XXXgcc */
2652 1.131.2.2 matt
2653 1.131.2.2 matt cc = pool_cache_cpu_enter(pc, &s);
2654 1.131.2.2 matt cur = cc->cc_current;
2655 1.131.2.2 matt cc->cc_current = NULL;
2656 1.131.2.2 matt prev = cc->cc_previous;
2657 1.131.2.2 matt cc->cc_previous = NULL;
2658 1.131.2.2 matt pool_cache_cpu_exit(cc, &s);
2659 1.131.2.2 matt
2660 1.131.2.2 matt /*
2661 1.131.2.2 matt * XXXSMP Go to splvm to prevent kernel_lock from being taken,
2662 1.131.2.2 matt * because locks at IPL_SOFTXXX are still spinlocks. Does not
2663 1.131.2.2 matt * apply to IPL_SOFTBIO. Cross-call threads do not take the
2664 1.131.2.2 matt * kernel_lock.
2665 1.101 thorpej */
2666 1.131.2.2 matt s = splvm();
2667 1.131.2.2 matt mutex_enter(&pc->pc_lock);
2668 1.131.2.2 matt if (cur != NULL) {
2669 1.131.2.2 matt if (cur->pcg_avail == PCG_NOBJECTS) {
2670 1.131.2.2 matt list = &pc->pc_fullgroups;
2671 1.131.2.2 matt pc->pc_nfull++;
2672 1.131.2.2 matt } else if (cur->pcg_avail == 0) {
2673 1.131.2.2 matt list = &pc->pc_emptygroups;
2674 1.131.2.2 matt pc->pc_nempty++;
2675 1.131.2.2 matt } else {
2676 1.131.2.2 matt list = &pc->pc_partgroups;
2677 1.131.2.2 matt pc->pc_npart++;
2678 1.131.2.2 matt }
2679 1.131.2.2 matt cur->pcg_next = *list;
2680 1.131.2.2 matt *list = cur;
2681 1.131.2.2 matt }
2682 1.131.2.2 matt if (prev != NULL) {
2683 1.131.2.2 matt if (prev->pcg_avail == PCG_NOBJECTS) {
2684 1.131.2.2 matt list = &pc->pc_fullgroups;
2685 1.131.2.2 matt pc->pc_nfull++;
2686 1.131.2.2 matt } else if (prev->pcg_avail == 0) {
2687 1.131.2.2 matt list = &pc->pc_emptygroups;
2688 1.131.2.2 matt pc->pc_nempty++;
2689 1.131.2.2 matt } else {
2690 1.131.2.2 matt list = &pc->pc_partgroups;
2691 1.131.2.2 matt pc->pc_npart++;
2692 1.131.2.2 matt }
2693 1.131.2.2 matt prev->pcg_next = *list;
2694 1.131.2.2 matt *list = prev;
2695 1.131.2.2 matt }
2696 1.131.2.2 matt mutex_exit(&pc->pc_lock);
2697 1.131.2.2 matt splx(s);
2698 1.3 pk }
2699 1.66 thorpej
2700 1.66 thorpej /*
2701 1.66 thorpej * Pool backend allocators.
2702 1.66 thorpej *
2703 1.66 thorpej * Each pool has a backend allocator that handles allocation, deallocation,
2704 1.66 thorpej * and any additional draining that might be needed.
2705 1.66 thorpej *
2706 1.66 thorpej * We provide two standard allocators:
2707 1.66 thorpej *
2708 1.66 thorpej * pool_allocator_kmem - the default when no allocator is specified
2709 1.66 thorpej *
2710 1.66 thorpej * pool_allocator_nointr - used for pools that will not be accessed
2711 1.66 thorpej * in interrupt context.
2712 1.66 thorpej */
2713 1.66 thorpej void *pool_page_alloc(struct pool *, int);
2714 1.66 thorpej void pool_page_free(struct pool *, void *);
2715 1.66 thorpej
2716 1.112 bjh21 #ifdef POOL_SUBPAGE
2717 1.112 bjh21 struct pool_allocator pool_allocator_kmem_fullpage = {
2718 1.112 bjh21 pool_page_alloc, pool_page_free, 0,
2719 1.117 yamt .pa_backingmapptr = &kmem_map,
2720 1.112 bjh21 };
2721 1.112 bjh21 #else
2722 1.66 thorpej struct pool_allocator pool_allocator_kmem = {
2723 1.66 thorpej pool_page_alloc, pool_page_free, 0,
2724 1.117 yamt .pa_backingmapptr = &kmem_map,
2725 1.66 thorpej };
2726 1.112 bjh21 #endif
2727 1.66 thorpej
2728 1.66 thorpej void *pool_page_alloc_nointr(struct pool *, int);
2729 1.66 thorpej void pool_page_free_nointr(struct pool *, void *);
2730 1.66 thorpej
2731 1.112 bjh21 #ifdef POOL_SUBPAGE
2732 1.112 bjh21 struct pool_allocator pool_allocator_nointr_fullpage = {
2733 1.112 bjh21 pool_page_alloc_nointr, pool_page_free_nointr, 0,
2734 1.117 yamt .pa_backingmapptr = &kernel_map,
2735 1.112 bjh21 };
2736 1.112 bjh21 #else
2737 1.66 thorpej struct pool_allocator pool_allocator_nointr = {
2738 1.66 thorpej pool_page_alloc_nointr, pool_page_free_nointr, 0,
2739 1.117 yamt .pa_backingmapptr = &kernel_map,
2740 1.66 thorpej };
2741 1.112 bjh21 #endif
2742 1.66 thorpej
2743 1.66 thorpej #ifdef POOL_SUBPAGE
2744 1.66 thorpej void *pool_subpage_alloc(struct pool *, int);
2745 1.66 thorpej void pool_subpage_free(struct pool *, void *);
2746 1.66 thorpej
2747 1.112 bjh21 struct pool_allocator pool_allocator_kmem = {
2748 1.112 bjh21 pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
2749 1.117 yamt .pa_backingmapptr = &kmem_map,
2750 1.112 bjh21 };
2751 1.112 bjh21
2752 1.112 bjh21 void *pool_subpage_alloc_nointr(struct pool *, int);
2753 1.112 bjh21 void pool_subpage_free_nointr(struct pool *, void *);
2754 1.112 bjh21
2755 1.112 bjh21 struct pool_allocator pool_allocator_nointr = {
2756 1.112 bjh21 pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
2757 1.117 yamt .pa_backingmapptr = &kmem_map,
2758 1.66 thorpej };
2759 1.66 thorpej #endif /* POOL_SUBPAGE */
2760 1.66 thorpej
2761 1.117 yamt static void *
2762 1.117 yamt pool_allocator_alloc(struct pool *pp, int flags)
2763 1.66 thorpej {
2764 1.117 yamt struct pool_allocator *pa = pp->pr_alloc;
2765 1.66 thorpej void *res;
2766 1.66 thorpej
2767 1.117 yamt res = (*pa->pa_alloc)(pp, flags);
2768 1.117 yamt if (res == NULL && (flags & PR_WAITOK) == 0) {
2769 1.66 thorpej /*
2770 1.117 yamt * We only run the drain hook here if PR_NOWAIT.
2771 1.117 yamt * In other cases, the hook will be run in
2772 1.117 yamt * pool_reclaim().
2773 1.66 thorpej */
2774 1.117 yamt if (pp->pr_drain_hook != NULL) {
2775 1.117 yamt (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
2776 1.117 yamt res = (*pa->pa_alloc)(pp, flags);
2777 1.66 thorpej }
2778 1.117 yamt }
2779 1.117 yamt return res;
2780 1.66 thorpej }
2781 1.66 thorpej
2782 1.117 yamt static void
2783 1.66 thorpej pool_allocator_free(struct pool *pp, void *v)
2784 1.66 thorpej {
2785 1.66 thorpej struct pool_allocator *pa = pp->pr_alloc;
2786 1.66 thorpej
2787 1.66 thorpej (*pa->pa_free)(pp, v);
2788 1.66 thorpej }
2789 1.66 thorpej
2790 1.66 thorpej void *
2791 1.124 yamt pool_page_alloc(struct pool *pp, int flags)
2792 1.66 thorpej {
2793 1.127 thorpej bool waitok = (flags & PR_WAITOK) ? true : false;
2794 1.66 thorpej
2795 1.100 yamt return ((void *) uvm_km_alloc_poolpage_cache(kmem_map, waitok));
2796 1.66 thorpej }
2797 1.66 thorpej
2798 1.66 thorpej void
2799 1.124 yamt pool_page_free(struct pool *pp, void *v)
2800 1.66 thorpej {
2801 1.66 thorpej
2802 1.98 yamt uvm_km_free_poolpage_cache(kmem_map, (vaddr_t) v);
2803 1.98 yamt }
2804 1.98 yamt
2805 1.98 yamt static void *
2806 1.124 yamt pool_page_alloc_meta(struct pool *pp, int flags)
2807 1.98 yamt {
2808 1.127 thorpej bool waitok = (flags & PR_WAITOK) ? true : false;
2809 1.98 yamt
2810 1.100 yamt return ((void *) uvm_km_alloc_poolpage(kmem_map, waitok));
2811 1.98 yamt }
2812 1.98 yamt
2813 1.98 yamt static void
2814 1.124 yamt pool_page_free_meta(struct pool *pp, void *v)
2815 1.98 yamt {
2816 1.98 yamt
2817 1.100 yamt uvm_km_free_poolpage(kmem_map, (vaddr_t) v);
2818 1.66 thorpej }
2819 1.66 thorpej
2820 1.66 thorpej #ifdef POOL_SUBPAGE
2821 1.66 thorpej /* Sub-page allocator, for machines with large hardware pages. */
2822 1.66 thorpej void *
2823 1.66 thorpej pool_subpage_alloc(struct pool *pp, int flags)
2824 1.66 thorpej {
2825 1.131.2.2 matt return pool_get(&psppool, flags);
2826 1.66 thorpej }
2827 1.66 thorpej
2828 1.66 thorpej void
2829 1.66 thorpej pool_subpage_free(struct pool *pp, void *v)
2830 1.66 thorpej {
2831 1.66 thorpej pool_put(&psppool, v);
2832 1.66 thorpej }
2833 1.66 thorpej
2834 1.66 thorpej /* We don't provide a real nointr allocator. Maybe later. */
2835 1.66 thorpej void *
2836 1.112 bjh21 pool_subpage_alloc_nointr(struct pool *pp, int flags)
2837 1.66 thorpej {
2838 1.66 thorpej
2839 1.66 thorpej return (pool_subpage_alloc(pp, flags));
2840 1.66 thorpej }
2841 1.66 thorpej
2842 1.66 thorpej void
2843 1.112 bjh21 pool_subpage_free_nointr(struct pool *pp, void *v)
2844 1.66 thorpej {
2845 1.66 thorpej
2846 1.66 thorpej pool_subpage_free(pp, v);
2847 1.66 thorpej }
2848 1.112 bjh21 #endif /* POOL_SUBPAGE */
2849 1.66 thorpej void *
2850 1.124 yamt pool_page_alloc_nointr(struct pool *pp, int flags)
2851 1.66 thorpej {
2852 1.127 thorpej bool waitok = (flags & PR_WAITOK) ? true : false;
2853 1.66 thorpej
2854 1.100 yamt return ((void *) uvm_km_alloc_poolpage_cache(kernel_map, waitok));
2855 1.66 thorpej }
2856 1.66 thorpej
2857 1.66 thorpej void
2858 1.124 yamt pool_page_free_nointr(struct pool *pp, void *v)
2859 1.66 thorpej {
2860 1.66 thorpej
2861 1.98 yamt uvm_km_free_poolpage_cache(kernel_map, (vaddr_t) v);
2862 1.66 thorpej }
2863