Home | History | Annotate | Line # | Download | only in kern
subr_pool.c revision 1.133.4.3
      1  1.133.4.3       mjf /*	$NetBSD: subr_pool.c,v 1.133.4.3 2007/12/27 00:46:08 mjf Exp $	*/
      2        1.1        pk 
      3        1.1        pk /*-
      4  1.133.4.1       mjf  * Copyright (c) 1997, 1999, 2000, 2002, 2007 The NetBSD Foundation, Inc.
      5        1.1        pk  * All rights reserved.
      6        1.1        pk  *
      7        1.1        pk  * This code is derived from software contributed to The NetBSD Foundation
      8       1.20   thorpej  * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
      9  1.133.4.1       mjf  * Simulation Facility, NASA Ames Research Center, and by Andrew Doran.
     10        1.1        pk  *
     11        1.1        pk  * Redistribution and use in source and binary forms, with or without
     12        1.1        pk  * modification, are permitted provided that the following conditions
     13        1.1        pk  * are met:
     14        1.1        pk  * 1. Redistributions of source code must retain the above copyright
     15        1.1        pk  *    notice, this list of conditions and the following disclaimer.
     16        1.1        pk  * 2. Redistributions in binary form must reproduce the above copyright
     17        1.1        pk  *    notice, this list of conditions and the following disclaimer in the
     18        1.1        pk  *    documentation and/or other materials provided with the distribution.
     19        1.1        pk  * 3. All advertising materials mentioning features or use of this software
     20        1.1        pk  *    must display the following acknowledgement:
     21       1.13  christos  *	This product includes software developed by the NetBSD
     22       1.13  christos  *	Foundation, Inc. and its contributors.
     23        1.1        pk  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24        1.1        pk  *    contributors may be used to endorse or promote products derived
     25        1.1        pk  *    from this software without specific prior written permission.
     26        1.1        pk  *
     27        1.1        pk  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28        1.1        pk  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29        1.1        pk  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30        1.1        pk  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31        1.1        pk  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32        1.1        pk  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33        1.1        pk  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34        1.1        pk  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35        1.1        pk  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36        1.1        pk  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37        1.1        pk  * POSSIBILITY OF SUCH DAMAGE.
     38        1.1        pk  */
     39       1.64     lukem 
     40       1.64     lukem #include <sys/cdefs.h>
     41  1.133.4.3       mjf __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.133.4.3 2007/12/27 00:46:08 mjf Exp $");
     42       1.24    scottr 
     43  1.133.4.3       mjf #include "opt_ddb.h"
     44       1.25   thorpej #include "opt_pool.h"
     45       1.24    scottr #include "opt_poollog.h"
     46       1.28   thorpej #include "opt_lockdebug.h"
     47        1.1        pk 
     48        1.1        pk #include <sys/param.h>
     49        1.1        pk #include <sys/systm.h>
     50  1.133.4.1       mjf #include <sys/bitops.h>
     51        1.1        pk #include <sys/proc.h>
     52        1.1        pk #include <sys/errno.h>
     53        1.1        pk #include <sys/kernel.h>
     54        1.1        pk #include <sys/malloc.h>
     55        1.1        pk #include <sys/lock.h>
     56        1.1        pk #include <sys/pool.h>
     57       1.20   thorpej #include <sys/syslog.h>
     58      1.125        ad #include <sys/debug.h>
     59  1.133.4.1       mjf #include <sys/lockdebug.h>
     60  1.133.4.1       mjf #include <sys/xcall.h>
     61  1.133.4.1       mjf #include <sys/cpu.h>
     62        1.3        pk 
     63        1.3        pk #include <uvm/uvm.h>
     64        1.3        pk 
     65        1.1        pk /*
     66        1.1        pk  * Pool resource management utility.
     67        1.3        pk  *
     68       1.88       chs  * Memory is allocated in pages which are split into pieces according to
     69       1.88       chs  * the pool item size. Each page is kept on one of three lists in the
     70       1.88       chs  * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
     71       1.88       chs  * for empty, full and partially-full pages respectively. The individual
     72       1.88       chs  * pool items are on a linked list headed by `ph_itemlist' in each page
     73       1.88       chs  * header. The memory for building the page list is either taken from
     74       1.88       chs  * the allocated pages themselves (for small pool items) or taken from
     75       1.88       chs  * an internal pool of page headers (`phpool').
     76        1.1        pk  */
     77        1.1        pk 
     78        1.3        pk /* List of all pools */
     79      1.102       chs LIST_HEAD(,pool) pool_head = LIST_HEAD_INITIALIZER(pool_head);
     80        1.3        pk 
     81  1.133.4.1       mjf /* List of all caches. */
     82  1.133.4.1       mjf LIST_HEAD(,pool_cache) pool_cache_head =
     83  1.133.4.1       mjf     LIST_HEAD_INITIALIZER(pool_cache_head);
     84  1.133.4.1       mjf 
     85        1.3        pk /* Private pool for page header structures */
     86       1.97      yamt #define	PHPOOL_MAX	8
     87       1.97      yamt static struct pool phpool[PHPOOL_MAX];
     88  1.133.4.1       mjf #define	PHPOOL_FREELIST_NELEM(idx) \
     89  1.133.4.1       mjf 	(((idx) == 0) ? 0 : BITMAP_SIZE * (1 << (idx)))
     90        1.3        pk 
     91       1.62     bjh21 #ifdef POOL_SUBPAGE
     92       1.62     bjh21 /* Pool of subpages for use by normal pools. */
     93       1.62     bjh21 static struct pool psppool;
     94       1.62     bjh21 #endif
     95       1.62     bjh21 
     96      1.117      yamt static SLIST_HEAD(, pool_allocator) pa_deferinitq =
     97      1.117      yamt     SLIST_HEAD_INITIALIZER(pa_deferinitq);
     98      1.117      yamt 
     99       1.98      yamt static void *pool_page_alloc_meta(struct pool *, int);
    100       1.98      yamt static void pool_page_free_meta(struct pool *, void *);
    101       1.98      yamt 
    102       1.98      yamt /* allocator for pool metadata */
    103  1.133.4.1       mjf struct pool_allocator pool_allocator_meta = {
    104      1.117      yamt 	pool_page_alloc_meta, pool_page_free_meta,
    105      1.117      yamt 	.pa_backingmapptr = &kmem_map,
    106       1.98      yamt };
    107       1.98      yamt 
    108        1.3        pk /* # of seconds to retain page after last use */
    109        1.3        pk int pool_inactive_time = 10;
    110        1.3        pk 
    111        1.3        pk /* Next candidate for drainage (see pool_drain()) */
    112       1.23   thorpej static struct pool	*drainpp;
    113       1.23   thorpej 
    114  1.133.4.1       mjf /* This lock protects both pool_head and drainpp. */
    115  1.133.4.1       mjf static kmutex_t pool_head_lock;
    116  1.133.4.1       mjf static kcondvar_t pool_busy;
    117  1.133.4.1       mjf 
    118  1.133.4.1       mjf typedef uint32_t pool_item_bitmap_t;
    119  1.133.4.1       mjf #define	BITMAP_SIZE	(CHAR_BIT * sizeof(pool_item_bitmap_t))
    120  1.133.4.1       mjf #define	BITMAP_MASK	(BITMAP_SIZE - 1)
    121       1.99      yamt 
    122        1.3        pk struct pool_item_header {
    123        1.3        pk 	/* Page headers */
    124       1.88       chs 	LIST_ENTRY(pool_item_header)
    125        1.3        pk 				ph_pagelist;	/* pool page list */
    126       1.88       chs 	SPLAY_ENTRY(pool_item_header)
    127       1.88       chs 				ph_node;	/* Off-page page headers */
    128      1.128  christos 	void *			ph_page;	/* this page's address */
    129        1.3        pk 	struct timeval		ph_time;	/* last referenced */
    130  1.133.4.1       mjf 	uint16_t		ph_nmissing;	/* # of chunks in use */
    131  1.133.4.3       mjf 	uint16_t		ph_off;		/* start offset in page */
    132       1.97      yamt 	union {
    133       1.97      yamt 		/* !PR_NOTOUCH */
    134       1.97      yamt 		struct {
    135      1.102       chs 			LIST_HEAD(, pool_item)
    136       1.97      yamt 				phu_itemlist;	/* chunk list for this page */
    137       1.97      yamt 		} phu_normal;
    138       1.97      yamt 		/* PR_NOTOUCH */
    139       1.97      yamt 		struct {
    140  1.133.4.3       mjf 			pool_item_bitmap_t phu_bitmap[1];
    141       1.97      yamt 		} phu_notouch;
    142       1.97      yamt 	} ph_u;
    143        1.3        pk };
    144       1.97      yamt #define	ph_itemlist	ph_u.phu_normal.phu_itemlist
    145  1.133.4.1       mjf #define	ph_bitmap	ph_u.phu_notouch.phu_bitmap
    146        1.3        pk 
    147        1.1        pk struct pool_item {
    148        1.3        pk #ifdef DIAGNOSTIC
    149       1.82   thorpej 	u_int pi_magic;
    150       1.33       chs #endif
    151  1.133.4.1       mjf #define	PI_MAGIC 0xdeaddeadU
    152        1.3        pk 	/* Other entries use only this list entry */
    153      1.102       chs 	LIST_ENTRY(pool_item)	pi_list;
    154        1.3        pk };
    155        1.3        pk 
    156       1.53   thorpej #define	POOL_NEEDS_CATCHUP(pp)						\
    157       1.53   thorpej 	((pp)->pr_nitems < (pp)->pr_minitems)
    158       1.53   thorpej 
    159       1.43   thorpej /*
    160       1.43   thorpej  * Pool cache management.
    161       1.43   thorpej  *
    162       1.43   thorpej  * Pool caches provide a way for constructed objects to be cached by the
    163       1.43   thorpej  * pool subsystem.  This can lead to performance improvements by avoiding
    164       1.43   thorpej  * needless object construction/destruction; it is deferred until absolutely
    165       1.43   thorpej  * necessary.
    166       1.43   thorpej  *
    167  1.133.4.1       mjf  * Caches are grouped into cache groups.  Each cache group references up
    168  1.133.4.1       mjf  * to PCG_NUMOBJECTS constructed objects.  When a cache allocates an
    169  1.133.4.1       mjf  * object from the pool, it calls the object's constructor and places it
    170  1.133.4.1       mjf  * into a cache group.  When a cache group frees an object back to the
    171  1.133.4.1       mjf  * pool, it first calls the object's destructor.  This allows the object
    172  1.133.4.1       mjf  * to persist in constructed form while freed to the cache.
    173  1.133.4.1       mjf  *
    174  1.133.4.1       mjf  * The pool references each cache, so that when a pool is drained by the
    175  1.133.4.1       mjf  * pagedaemon, it can drain each individual cache as well.  Each time a
    176  1.133.4.1       mjf  * cache is drained, the most idle cache group is freed to the pool in
    177  1.133.4.1       mjf  * its entirety.
    178       1.43   thorpej  *
    179       1.43   thorpej  * Pool caches are layed on top of pools.  By layering them, we can avoid
    180       1.43   thorpej  * the complexity of cache management for pools which would not benefit
    181       1.43   thorpej  * from it.
    182       1.43   thorpej  */
    183       1.43   thorpej 
    184  1.133.4.3       mjf static struct pool pcg_normal_pool;
    185  1.133.4.3       mjf static struct pool pcg_large_pool;
    186  1.133.4.1       mjf static struct pool cache_pool;
    187  1.133.4.1       mjf static struct pool cache_cpu_pool;
    188        1.3        pk 
    189  1.133.4.1       mjf static pool_cache_cpu_t *pool_cache_put_slow(pool_cache_cpu_t *, int *,
    190  1.133.4.1       mjf 					     void *, paddr_t);
    191  1.133.4.1       mjf static pool_cache_cpu_t *pool_cache_get_slow(pool_cache_cpu_t *, int *,
    192  1.133.4.1       mjf 					     void **, paddr_t *, int);
    193  1.133.4.1       mjf static void	pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
    194  1.133.4.1       mjf static void	pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
    195  1.133.4.1       mjf static void	pool_cache_xcall(pool_cache_t);
    196        1.3        pk 
    197       1.42   thorpej static int	pool_catchup(struct pool *);
    198      1.128  christos static void	pool_prime_page(struct pool *, void *,
    199       1.55   thorpej 		    struct pool_item_header *);
    200       1.88       chs static void	pool_update_curpage(struct pool *);
    201       1.66   thorpej 
    202      1.113      yamt static int	pool_grow(struct pool *, int);
    203      1.117      yamt static void	*pool_allocator_alloc(struct pool *, int);
    204      1.117      yamt static void	pool_allocator_free(struct pool *, void *);
    205        1.3        pk 
    206       1.97      yamt static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
    207       1.88       chs 	void (*)(const char *, ...));
    208       1.42   thorpej static void pool_print1(struct pool *, const char *,
    209       1.42   thorpej 	void (*)(const char *, ...));
    210        1.3        pk 
    211       1.88       chs static int pool_chk_page(struct pool *, const char *,
    212       1.88       chs 			 struct pool_item_header *);
    213       1.88       chs 
    214        1.3        pk /*
    215       1.52   thorpej  * Pool log entry. An array of these is allocated in pool_init().
    216        1.3        pk  */
    217        1.3        pk struct pool_log {
    218        1.3        pk 	const char	*pl_file;
    219        1.3        pk 	long		pl_line;
    220        1.3        pk 	int		pl_action;
    221       1.25   thorpej #define	PRLOG_GET	1
    222       1.25   thorpej #define	PRLOG_PUT	2
    223        1.3        pk 	void		*pl_addr;
    224        1.1        pk };
    225        1.1        pk 
    226       1.86      matt #ifdef POOL_DIAGNOSTIC
    227        1.3        pk /* Number of entries in pool log buffers */
    228       1.17   thorpej #ifndef POOL_LOGSIZE
    229       1.17   thorpej #define	POOL_LOGSIZE	10
    230       1.17   thorpej #endif
    231       1.17   thorpej 
    232       1.17   thorpej int pool_logsize = POOL_LOGSIZE;
    233        1.1        pk 
    234      1.110     perry static inline void
    235       1.42   thorpej pr_log(struct pool *pp, void *v, int action, const char *file, long line)
    236        1.3        pk {
    237        1.3        pk 	int n = pp->pr_curlogentry;
    238        1.3        pk 	struct pool_log *pl;
    239        1.3        pk 
    240       1.20   thorpej 	if ((pp->pr_roflags & PR_LOGGING) == 0)
    241        1.3        pk 		return;
    242        1.3        pk 
    243        1.3        pk 	/*
    244        1.3        pk 	 * Fill in the current entry. Wrap around and overwrite
    245        1.3        pk 	 * the oldest entry if necessary.
    246        1.3        pk 	 */
    247        1.3        pk 	pl = &pp->pr_log[n];
    248        1.3        pk 	pl->pl_file = file;
    249        1.3        pk 	pl->pl_line = line;
    250        1.3        pk 	pl->pl_action = action;
    251        1.3        pk 	pl->pl_addr = v;
    252        1.3        pk 	if (++n >= pp->pr_logsize)
    253        1.3        pk 		n = 0;
    254        1.3        pk 	pp->pr_curlogentry = n;
    255        1.3        pk }
    256        1.3        pk 
    257        1.3        pk static void
    258       1.42   thorpej pr_printlog(struct pool *pp, struct pool_item *pi,
    259       1.42   thorpej     void (*pr)(const char *, ...))
    260        1.3        pk {
    261        1.3        pk 	int i = pp->pr_logsize;
    262        1.3        pk 	int n = pp->pr_curlogentry;
    263        1.3        pk 
    264       1.20   thorpej 	if ((pp->pr_roflags & PR_LOGGING) == 0)
    265        1.3        pk 		return;
    266        1.3        pk 
    267        1.3        pk 	/*
    268        1.3        pk 	 * Print all entries in this pool's log.
    269        1.3        pk 	 */
    270        1.3        pk 	while (i-- > 0) {
    271        1.3        pk 		struct pool_log *pl = &pp->pr_log[n];
    272        1.3        pk 		if (pl->pl_action != 0) {
    273       1.25   thorpej 			if (pi == NULL || pi == pl->pl_addr) {
    274       1.25   thorpej 				(*pr)("\tlog entry %d:\n", i);
    275       1.25   thorpej 				(*pr)("\t\taction = %s, addr = %p\n",
    276       1.25   thorpej 				    pl->pl_action == PRLOG_GET ? "get" : "put",
    277       1.25   thorpej 				    pl->pl_addr);
    278       1.25   thorpej 				(*pr)("\t\tfile: %s at line %lu\n",
    279       1.25   thorpej 				    pl->pl_file, pl->pl_line);
    280       1.25   thorpej 			}
    281        1.3        pk 		}
    282        1.3        pk 		if (++n >= pp->pr_logsize)
    283        1.3        pk 			n = 0;
    284        1.3        pk 	}
    285        1.3        pk }
    286       1.25   thorpej 
    287      1.110     perry static inline void
    288       1.42   thorpej pr_enter(struct pool *pp, const char *file, long line)
    289       1.25   thorpej {
    290       1.25   thorpej 
    291       1.34   thorpej 	if (__predict_false(pp->pr_entered_file != NULL)) {
    292       1.25   thorpej 		printf("pool %s: reentrancy at file %s line %ld\n",
    293       1.25   thorpej 		    pp->pr_wchan, file, line);
    294       1.25   thorpej 		printf("         previous entry at file %s line %ld\n",
    295       1.25   thorpej 		    pp->pr_entered_file, pp->pr_entered_line);
    296       1.25   thorpej 		panic("pr_enter");
    297       1.25   thorpej 	}
    298       1.25   thorpej 
    299       1.25   thorpej 	pp->pr_entered_file = file;
    300       1.25   thorpej 	pp->pr_entered_line = line;
    301       1.25   thorpej }
    302       1.25   thorpej 
    303      1.110     perry static inline void
    304       1.42   thorpej pr_leave(struct pool *pp)
    305       1.25   thorpej {
    306       1.25   thorpej 
    307       1.34   thorpej 	if (__predict_false(pp->pr_entered_file == NULL)) {
    308       1.25   thorpej 		printf("pool %s not entered?\n", pp->pr_wchan);
    309       1.25   thorpej 		panic("pr_leave");
    310       1.25   thorpej 	}
    311       1.25   thorpej 
    312       1.25   thorpej 	pp->pr_entered_file = NULL;
    313       1.25   thorpej 	pp->pr_entered_line = 0;
    314       1.25   thorpej }
    315       1.25   thorpej 
    316      1.110     perry static inline void
    317       1.42   thorpej pr_enter_check(struct pool *pp, void (*pr)(const char *, ...))
    318       1.25   thorpej {
    319       1.25   thorpej 
    320       1.25   thorpej 	if (pp->pr_entered_file != NULL)
    321       1.25   thorpej 		(*pr)("\n\tcurrently entered from file %s line %ld\n",
    322       1.25   thorpej 		    pp->pr_entered_file, pp->pr_entered_line);
    323       1.25   thorpej }
    324        1.3        pk #else
    325       1.25   thorpej #define	pr_log(pp, v, action, file, line)
    326       1.25   thorpej #define	pr_printlog(pp, pi, pr)
    327       1.25   thorpej #define	pr_enter(pp, file, line)
    328       1.25   thorpej #define	pr_leave(pp)
    329       1.25   thorpej #define	pr_enter_check(pp, pr)
    330       1.59   thorpej #endif /* POOL_DIAGNOSTIC */
    331        1.3        pk 
    332  1.133.4.1       mjf static inline unsigned int
    333       1.97      yamt pr_item_notouch_index(const struct pool *pp, const struct pool_item_header *ph,
    334       1.97      yamt     const void *v)
    335       1.97      yamt {
    336       1.97      yamt 	const char *cp = v;
    337  1.133.4.1       mjf 	unsigned int idx;
    338       1.97      yamt 
    339       1.97      yamt 	KASSERT(pp->pr_roflags & PR_NOTOUCH);
    340      1.128  christos 	idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
    341       1.97      yamt 	KASSERT(idx < pp->pr_itemsperpage);
    342       1.97      yamt 	return idx;
    343       1.97      yamt }
    344       1.97      yamt 
    345      1.110     perry static inline void
    346       1.97      yamt pr_item_notouch_put(const struct pool *pp, struct pool_item_header *ph,
    347       1.97      yamt     void *obj)
    348       1.97      yamt {
    349  1.133.4.1       mjf 	unsigned int idx = pr_item_notouch_index(pp, ph, obj);
    350  1.133.4.1       mjf 	pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE);
    351  1.133.4.1       mjf 	pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
    352       1.97      yamt 
    353  1.133.4.1       mjf 	KASSERT((*bitmap & mask) == 0);
    354  1.133.4.1       mjf 	*bitmap |= mask;
    355       1.97      yamt }
    356       1.97      yamt 
    357      1.110     perry static inline void *
    358       1.97      yamt pr_item_notouch_get(const struct pool *pp, struct pool_item_header *ph)
    359       1.97      yamt {
    360  1.133.4.1       mjf 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
    361  1.133.4.1       mjf 	unsigned int idx;
    362  1.133.4.1       mjf 	int i;
    363  1.133.4.1       mjf 
    364  1.133.4.1       mjf 	for (i = 0; ; i++) {
    365  1.133.4.1       mjf 		int bit;
    366  1.133.4.1       mjf 
    367  1.133.4.1       mjf 		KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage);
    368  1.133.4.1       mjf 		bit = ffs32(bitmap[i]);
    369  1.133.4.1       mjf 		if (bit) {
    370  1.133.4.1       mjf 			pool_item_bitmap_t mask;
    371  1.133.4.1       mjf 
    372  1.133.4.1       mjf 			bit--;
    373  1.133.4.1       mjf 			idx = (i * BITMAP_SIZE) + bit;
    374  1.133.4.1       mjf 			mask = 1 << bit;
    375  1.133.4.1       mjf 			KASSERT((bitmap[i] & mask) != 0);
    376  1.133.4.1       mjf 			bitmap[i] &= ~mask;
    377  1.133.4.1       mjf 			break;
    378  1.133.4.1       mjf 		}
    379  1.133.4.1       mjf 	}
    380  1.133.4.1       mjf 	KASSERT(idx < pp->pr_itemsperpage);
    381  1.133.4.1       mjf 	return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
    382  1.133.4.1       mjf }
    383       1.97      yamt 
    384  1.133.4.1       mjf static inline void
    385  1.133.4.1       mjf pr_item_notouch_init(const struct pool *pp, struct pool_item_header *ph)
    386  1.133.4.1       mjf {
    387  1.133.4.1       mjf 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
    388  1.133.4.1       mjf 	const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE);
    389  1.133.4.1       mjf 	int i;
    390       1.97      yamt 
    391  1.133.4.1       mjf 	for (i = 0; i < n; i++) {
    392  1.133.4.1       mjf 		bitmap[i] = (pool_item_bitmap_t)-1;
    393  1.133.4.1       mjf 	}
    394       1.97      yamt }
    395       1.97      yamt 
    396      1.110     perry static inline int
    397       1.88       chs phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
    398       1.88       chs {
    399      1.121      yamt 
    400      1.121      yamt 	/*
    401      1.121      yamt 	 * we consider pool_item_header with smaller ph_page bigger.
    402      1.121      yamt 	 * (this unnatural ordering is for the benefit of pr_find_pagehead.)
    403      1.121      yamt 	 */
    404      1.121      yamt 
    405       1.88       chs 	if (a->ph_page < b->ph_page)
    406      1.121      yamt 		return (1);
    407      1.121      yamt 	else if (a->ph_page > b->ph_page)
    408       1.88       chs 		return (-1);
    409       1.88       chs 	else
    410       1.88       chs 		return (0);
    411       1.88       chs }
    412       1.88       chs 
    413       1.88       chs SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
    414       1.88       chs SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
    415       1.88       chs 
    416  1.133.4.3       mjf static inline struct pool_item_header *
    417  1.133.4.3       mjf pr_find_pagehead_noalign(struct pool *pp, void *v)
    418  1.133.4.3       mjf {
    419  1.133.4.3       mjf 	struct pool_item_header *ph, tmp;
    420  1.133.4.3       mjf 
    421  1.133.4.3       mjf 	tmp.ph_page = (void *)(uintptr_t)v;
    422  1.133.4.3       mjf 	ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
    423  1.133.4.3       mjf 	if (ph == NULL) {
    424  1.133.4.3       mjf 		ph = SPLAY_ROOT(&pp->pr_phtree);
    425  1.133.4.3       mjf 		if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
    426  1.133.4.3       mjf 			ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
    427  1.133.4.3       mjf 		}
    428  1.133.4.3       mjf 		KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
    429  1.133.4.3       mjf 	}
    430  1.133.4.3       mjf 
    431  1.133.4.3       mjf 	return ph;
    432  1.133.4.3       mjf }
    433  1.133.4.3       mjf 
    434        1.3        pk /*
    435      1.121      yamt  * Return the pool page header based on item address.
    436        1.3        pk  */
    437      1.110     perry static inline struct pool_item_header *
    438      1.121      yamt pr_find_pagehead(struct pool *pp, void *v)
    439        1.3        pk {
    440       1.88       chs 	struct pool_item_header *ph, tmp;
    441        1.3        pk 
    442      1.121      yamt 	if ((pp->pr_roflags & PR_NOALIGN) != 0) {
    443  1.133.4.3       mjf 		ph = pr_find_pagehead_noalign(pp, v);
    444      1.121      yamt 	} else {
    445      1.128  christos 		void *page =
    446      1.128  christos 		    (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask);
    447      1.121      yamt 
    448      1.121      yamt 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
    449      1.128  christos 			ph = (struct pool_item_header *)((char *)page + pp->pr_phoffset);
    450      1.121      yamt 		} else {
    451      1.121      yamt 			tmp.ph_page = page;
    452      1.121      yamt 			ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
    453      1.121      yamt 		}
    454      1.121      yamt 	}
    455        1.3        pk 
    456      1.121      yamt 	KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
    457      1.128  christos 	    ((char *)ph->ph_page <= (char *)v &&
    458      1.128  christos 	    (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
    459       1.88       chs 	return ph;
    460        1.3        pk }
    461        1.3        pk 
    462      1.101   thorpej static void
    463      1.101   thorpej pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
    464      1.101   thorpej {
    465      1.101   thorpej 	struct pool_item_header *ph;
    466      1.101   thorpej 
    467      1.101   thorpej 	while ((ph = LIST_FIRST(pq)) != NULL) {
    468      1.101   thorpej 		LIST_REMOVE(ph, ph_pagelist);
    469      1.101   thorpej 		pool_allocator_free(pp, ph->ph_page);
    470  1.133.4.1       mjf 		if ((pp->pr_roflags & PR_PHINPAGE) == 0)
    471      1.101   thorpej 			pool_put(pp->pr_phpool, ph);
    472      1.101   thorpej 	}
    473      1.101   thorpej }
    474      1.101   thorpej 
    475        1.3        pk /*
    476        1.3        pk  * Remove a page from the pool.
    477        1.3        pk  */
    478      1.110     perry static inline void
    479       1.61       chs pr_rmpage(struct pool *pp, struct pool_item_header *ph,
    480       1.61       chs      struct pool_pagelist *pq)
    481        1.3        pk {
    482        1.3        pk 
    483  1.133.4.1       mjf 	KASSERT(mutex_owned(&pp->pr_lock));
    484       1.91      yamt 
    485        1.3        pk 	/*
    486        1.7   thorpej 	 * If the page was idle, decrement the idle page count.
    487        1.3        pk 	 */
    488        1.6   thorpej 	if (ph->ph_nmissing == 0) {
    489        1.6   thorpej #ifdef DIAGNOSTIC
    490        1.6   thorpej 		if (pp->pr_nidle == 0)
    491        1.6   thorpej 			panic("pr_rmpage: nidle inconsistent");
    492       1.20   thorpej 		if (pp->pr_nitems < pp->pr_itemsperpage)
    493       1.20   thorpej 			panic("pr_rmpage: nitems inconsistent");
    494        1.6   thorpej #endif
    495        1.6   thorpej 		pp->pr_nidle--;
    496        1.6   thorpej 	}
    497        1.7   thorpej 
    498       1.20   thorpej 	pp->pr_nitems -= pp->pr_itemsperpage;
    499       1.20   thorpej 
    500        1.7   thorpej 	/*
    501      1.101   thorpej 	 * Unlink the page from the pool and queue it for release.
    502        1.7   thorpej 	 */
    503       1.88       chs 	LIST_REMOVE(ph, ph_pagelist);
    504       1.91      yamt 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
    505       1.91      yamt 		SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
    506      1.101   thorpej 	LIST_INSERT_HEAD(pq, ph, ph_pagelist);
    507      1.101   thorpej 
    508        1.7   thorpej 	pp->pr_npages--;
    509        1.7   thorpej 	pp->pr_npagefree++;
    510        1.6   thorpej 
    511       1.88       chs 	pool_update_curpage(pp);
    512        1.3        pk }
    513        1.3        pk 
    514      1.126   thorpej static bool
    515      1.117      yamt pa_starved_p(struct pool_allocator *pa)
    516      1.117      yamt {
    517      1.117      yamt 
    518      1.117      yamt 	if (pa->pa_backingmap != NULL) {
    519      1.117      yamt 		return vm_map_starved_p(pa->pa_backingmap);
    520      1.117      yamt 	}
    521      1.127   thorpej 	return false;
    522      1.117      yamt }
    523      1.117      yamt 
    524      1.117      yamt static int
    525      1.124      yamt pool_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
    526      1.117      yamt {
    527      1.117      yamt 	struct pool *pp = obj;
    528      1.117      yamt 	struct pool_allocator *pa = pp->pr_alloc;
    529      1.117      yamt 
    530      1.117      yamt 	KASSERT(&pp->pr_reclaimerentry == ce);
    531      1.117      yamt 	pool_reclaim(pp);
    532      1.117      yamt 	if (!pa_starved_p(pa)) {
    533      1.117      yamt 		return CALLBACK_CHAIN_ABORT;
    534      1.117      yamt 	}
    535      1.117      yamt 	return CALLBACK_CHAIN_CONTINUE;
    536      1.117      yamt }
    537      1.117      yamt 
    538      1.117      yamt static void
    539      1.117      yamt pool_reclaim_register(struct pool *pp)
    540      1.117      yamt {
    541      1.117      yamt 	struct vm_map *map = pp->pr_alloc->pa_backingmap;
    542      1.117      yamt 	int s;
    543      1.117      yamt 
    544      1.117      yamt 	if (map == NULL) {
    545      1.117      yamt 		return;
    546      1.117      yamt 	}
    547      1.117      yamt 
    548      1.117      yamt 	s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
    549      1.117      yamt 	callback_register(&vm_map_to_kernel(map)->vmk_reclaim_callback,
    550      1.117      yamt 	    &pp->pr_reclaimerentry, pp, pool_reclaim_callback);
    551      1.117      yamt 	splx(s);
    552      1.117      yamt }
    553      1.117      yamt 
    554      1.117      yamt static void
    555      1.117      yamt pool_reclaim_unregister(struct pool *pp)
    556      1.117      yamt {
    557      1.117      yamt 	struct vm_map *map = pp->pr_alloc->pa_backingmap;
    558      1.117      yamt 	int s;
    559      1.117      yamt 
    560      1.117      yamt 	if (map == NULL) {
    561      1.117      yamt 		return;
    562      1.117      yamt 	}
    563      1.117      yamt 
    564      1.117      yamt 	s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
    565      1.117      yamt 	callback_unregister(&vm_map_to_kernel(map)->vmk_reclaim_callback,
    566      1.117      yamt 	    &pp->pr_reclaimerentry);
    567      1.117      yamt 	splx(s);
    568      1.117      yamt }
    569      1.117      yamt 
    570      1.117      yamt static void
    571      1.117      yamt pa_reclaim_register(struct pool_allocator *pa)
    572      1.117      yamt {
    573      1.117      yamt 	struct vm_map *map = *pa->pa_backingmapptr;
    574      1.117      yamt 	struct pool *pp;
    575      1.117      yamt 
    576      1.117      yamt 	KASSERT(pa->pa_backingmap == NULL);
    577      1.117      yamt 	if (map == NULL) {
    578      1.117      yamt 		SLIST_INSERT_HEAD(&pa_deferinitq, pa, pa_q);
    579      1.117      yamt 		return;
    580      1.117      yamt 	}
    581      1.117      yamt 	pa->pa_backingmap = map;
    582      1.117      yamt 	TAILQ_FOREACH(pp, &pa->pa_list, pr_alloc_list) {
    583      1.117      yamt 		pool_reclaim_register(pp);
    584      1.117      yamt 	}
    585      1.117      yamt }
    586      1.117      yamt 
    587        1.3        pk /*
    588       1.94    simonb  * Initialize all the pools listed in the "pools" link set.
    589       1.94    simonb  */
    590       1.94    simonb void
    591      1.117      yamt pool_subsystem_init(void)
    592       1.94    simonb {
    593      1.117      yamt 	struct pool_allocator *pa;
    594       1.94    simonb 	__link_set_decl(pools, struct link_pool_init);
    595       1.94    simonb 	struct link_pool_init * const *pi;
    596       1.94    simonb 
    597  1.133.4.1       mjf 	mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
    598  1.133.4.1       mjf 	cv_init(&pool_busy, "poolbusy");
    599  1.133.4.1       mjf 
    600       1.94    simonb 	__link_set_foreach(pi, pools)
    601       1.94    simonb 		pool_init((*pi)->pp, (*pi)->size, (*pi)->align,
    602       1.94    simonb 		    (*pi)->align_offset, (*pi)->flags, (*pi)->wchan,
    603      1.129        ad 		    (*pi)->palloc, (*pi)->ipl);
    604      1.117      yamt 
    605      1.117      yamt 	while ((pa = SLIST_FIRST(&pa_deferinitq)) != NULL) {
    606      1.117      yamt 		KASSERT(pa->pa_backingmapptr != NULL);
    607      1.117      yamt 		KASSERT(*pa->pa_backingmapptr != NULL);
    608      1.117      yamt 		SLIST_REMOVE_HEAD(&pa_deferinitq, pa_q);
    609      1.117      yamt 		pa_reclaim_register(pa);
    610      1.117      yamt 	}
    611  1.133.4.1       mjf 
    612  1.133.4.1       mjf 	pool_init(&cache_pool, sizeof(struct pool_cache), CACHE_LINE_SIZE,
    613  1.133.4.1       mjf 	    0, 0, "pcache", &pool_allocator_nointr, IPL_NONE);
    614  1.133.4.1       mjf 
    615  1.133.4.1       mjf 	pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), CACHE_LINE_SIZE,
    616  1.133.4.1       mjf 	    0, 0, "pcachecpu", &pool_allocator_nointr, IPL_NONE);
    617       1.94    simonb }
    618       1.94    simonb 
    619       1.94    simonb /*
    620        1.3        pk  * Initialize the given pool resource structure.
    621        1.3        pk  *
    622        1.3        pk  * We export this routine to allow other kernel parts to declare
    623        1.3        pk  * static pools that must be initialized before malloc() is available.
    624        1.3        pk  */
    625        1.3        pk void
    626       1.42   thorpej pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
    627      1.129        ad     const char *wchan, struct pool_allocator *palloc, int ipl)
    628        1.3        pk {
    629      1.116    simonb #ifdef DEBUG
    630      1.116    simonb 	struct pool *pp1;
    631      1.116    simonb #endif
    632       1.92     enami 	size_t trysize, phsize;
    633  1.133.4.1       mjf 	int off, slack;
    634       1.99      yamt 
    635      1.116    simonb #ifdef DEBUG
    636      1.116    simonb 	/*
    637      1.116    simonb 	 * Check that the pool hasn't already been initialised and
    638      1.116    simonb 	 * added to the list of all pools.
    639      1.116    simonb 	 */
    640      1.116    simonb 	LIST_FOREACH(pp1, &pool_head, pr_poollist) {
    641      1.116    simonb 		if (pp == pp1)
    642      1.116    simonb 			panic("pool_init: pool %s already initialised",
    643      1.116    simonb 			    wchan);
    644      1.116    simonb 	}
    645      1.116    simonb #endif
    646      1.116    simonb 
    647       1.25   thorpej #ifdef POOL_DIAGNOSTIC
    648       1.25   thorpej 	/*
    649       1.25   thorpej 	 * Always log if POOL_DIAGNOSTIC is defined.
    650       1.25   thorpej 	 */
    651       1.25   thorpej 	if (pool_logsize != 0)
    652       1.25   thorpej 		flags |= PR_LOGGING;
    653       1.25   thorpej #endif
    654       1.25   thorpej 
    655       1.66   thorpej 	if (palloc == NULL)
    656       1.66   thorpej 		palloc = &pool_allocator_kmem;
    657      1.112     bjh21 #ifdef POOL_SUBPAGE
    658      1.112     bjh21 	if (size > palloc->pa_pagesz) {
    659      1.112     bjh21 		if (palloc == &pool_allocator_kmem)
    660      1.112     bjh21 			palloc = &pool_allocator_kmem_fullpage;
    661      1.112     bjh21 		else if (palloc == &pool_allocator_nointr)
    662      1.112     bjh21 			palloc = &pool_allocator_nointr_fullpage;
    663      1.112     bjh21 	}
    664       1.66   thorpej #endif /* POOL_SUBPAGE */
    665       1.66   thorpej 	if ((palloc->pa_flags & PA_INITIALIZED) == 0) {
    666      1.112     bjh21 		if (palloc->pa_pagesz == 0)
    667       1.66   thorpej 			palloc->pa_pagesz = PAGE_SIZE;
    668       1.66   thorpej 
    669       1.66   thorpej 		TAILQ_INIT(&palloc->pa_list);
    670       1.66   thorpej 
    671  1.133.4.1       mjf 		mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
    672       1.66   thorpej 		palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
    673       1.66   thorpej 		palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
    674      1.117      yamt 
    675      1.117      yamt 		if (palloc->pa_backingmapptr != NULL) {
    676      1.117      yamt 			pa_reclaim_register(palloc);
    677      1.117      yamt 		}
    678       1.66   thorpej 		palloc->pa_flags |= PA_INITIALIZED;
    679        1.4   thorpej 	}
    680        1.3        pk 
    681        1.3        pk 	if (align == 0)
    682        1.3        pk 		align = ALIGN(1);
    683       1.14   thorpej 
    684      1.120      yamt 	if ((flags & PR_NOTOUCH) == 0 && size < sizeof(struct pool_item))
    685       1.14   thorpej 		size = sizeof(struct pool_item);
    686        1.3        pk 
    687       1.78   thorpej 	size = roundup(size, align);
    688       1.66   thorpej #ifdef DIAGNOSTIC
    689       1.66   thorpej 	if (size > palloc->pa_pagesz)
    690      1.121      yamt 		panic("pool_init: pool item size (%zu) too large", size);
    691       1.66   thorpej #endif
    692       1.35        pk 
    693        1.3        pk 	/*
    694        1.3        pk 	 * Initialize the pool structure.
    695        1.3        pk 	 */
    696       1.88       chs 	LIST_INIT(&pp->pr_emptypages);
    697       1.88       chs 	LIST_INIT(&pp->pr_fullpages);
    698       1.88       chs 	LIST_INIT(&pp->pr_partpages);
    699  1.133.4.1       mjf 	pp->pr_cache = NULL;
    700        1.3        pk 	pp->pr_curpage = NULL;
    701        1.3        pk 	pp->pr_npages = 0;
    702        1.3        pk 	pp->pr_minitems = 0;
    703        1.3        pk 	pp->pr_minpages = 0;
    704        1.3        pk 	pp->pr_maxpages = UINT_MAX;
    705       1.20   thorpej 	pp->pr_roflags = flags;
    706       1.20   thorpej 	pp->pr_flags = 0;
    707       1.35        pk 	pp->pr_size = size;
    708        1.3        pk 	pp->pr_align = align;
    709        1.3        pk 	pp->pr_wchan = wchan;
    710       1.66   thorpej 	pp->pr_alloc = palloc;
    711       1.20   thorpej 	pp->pr_nitems = 0;
    712       1.20   thorpej 	pp->pr_nout = 0;
    713       1.20   thorpej 	pp->pr_hardlimit = UINT_MAX;
    714       1.20   thorpej 	pp->pr_hardlimit_warning = NULL;
    715       1.31   thorpej 	pp->pr_hardlimit_ratecap.tv_sec = 0;
    716       1.31   thorpej 	pp->pr_hardlimit_ratecap.tv_usec = 0;
    717       1.31   thorpej 	pp->pr_hardlimit_warning_last.tv_sec = 0;
    718       1.31   thorpej 	pp->pr_hardlimit_warning_last.tv_usec = 0;
    719       1.68   thorpej 	pp->pr_drain_hook = NULL;
    720       1.68   thorpej 	pp->pr_drain_hook_arg = NULL;
    721      1.125        ad 	pp->pr_freecheck = NULL;
    722        1.3        pk 
    723        1.3        pk 	/*
    724        1.3        pk 	 * Decide whether to put the page header off page to avoid
    725       1.92     enami 	 * wasting too large a part of the page or too big item.
    726       1.92     enami 	 * Off-page page headers go on a hash table, so we can match
    727       1.92     enami 	 * a returned item with its header based on the page address.
    728       1.92     enami 	 * We use 1/16 of the page size and about 8 times of the item
    729       1.92     enami 	 * size as the threshold (XXX: tune)
    730       1.92     enami 	 *
    731       1.92     enami 	 * However, we'll put the header into the page if we can put
    732       1.92     enami 	 * it without wasting any items.
    733       1.92     enami 	 *
    734       1.92     enami 	 * Silently enforce `0 <= ioff < align'.
    735        1.3        pk 	 */
    736       1.92     enami 	pp->pr_itemoffset = ioff %= align;
    737       1.92     enami 	/* See the comment below about reserved bytes. */
    738       1.92     enami 	trysize = palloc->pa_pagesz - ((align - ioff) % align);
    739       1.92     enami 	phsize = ALIGN(sizeof(struct pool_item_header));
    740      1.121      yamt 	if ((pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) == 0 &&
    741       1.97      yamt 	    (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) ||
    742       1.97      yamt 	    trysize / pp->pr_size == (trysize - phsize) / pp->pr_size)) {
    743        1.3        pk 		/* Use the end of the page for the page header */
    744       1.20   thorpej 		pp->pr_roflags |= PR_PHINPAGE;
    745       1.92     enami 		pp->pr_phoffset = off = palloc->pa_pagesz - phsize;
    746        1.2        pk 	} else {
    747        1.3        pk 		/* The page header will be taken from our page header pool */
    748        1.3        pk 		pp->pr_phoffset = 0;
    749       1.66   thorpej 		off = palloc->pa_pagesz;
    750       1.88       chs 		SPLAY_INIT(&pp->pr_phtree);
    751        1.2        pk 	}
    752        1.1        pk 
    753        1.3        pk 	/*
    754        1.3        pk 	 * Alignment is to take place at `ioff' within the item. This means
    755        1.3        pk 	 * we must reserve up to `align - 1' bytes on the page to allow
    756        1.3        pk 	 * appropriate positioning of each item.
    757        1.3        pk 	 */
    758        1.3        pk 	pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
    759       1.43   thorpej 	KASSERT(pp->pr_itemsperpage != 0);
    760       1.97      yamt 	if ((pp->pr_roflags & PR_NOTOUCH)) {
    761       1.97      yamt 		int idx;
    762       1.97      yamt 
    763       1.97      yamt 		for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
    764       1.97      yamt 		    idx++) {
    765       1.97      yamt 			/* nothing */
    766       1.97      yamt 		}
    767       1.97      yamt 		if (idx >= PHPOOL_MAX) {
    768       1.97      yamt 			/*
    769       1.97      yamt 			 * if you see this panic, consider to tweak
    770       1.97      yamt 			 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
    771       1.97      yamt 			 */
    772       1.97      yamt 			panic("%s: too large itemsperpage(%d) for PR_NOTOUCH",
    773       1.97      yamt 			    pp->pr_wchan, pp->pr_itemsperpage);
    774       1.97      yamt 		}
    775       1.97      yamt 		pp->pr_phpool = &phpool[idx];
    776       1.97      yamt 	} else if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
    777       1.97      yamt 		pp->pr_phpool = &phpool[0];
    778       1.97      yamt 	}
    779       1.97      yamt #if defined(DIAGNOSTIC)
    780       1.97      yamt 	else {
    781       1.97      yamt 		pp->pr_phpool = NULL;
    782       1.97      yamt 	}
    783       1.97      yamt #endif
    784        1.3        pk 
    785        1.3        pk 	/*
    786        1.3        pk 	 * Use the slack between the chunks and the page header
    787        1.3        pk 	 * for "cache coloring".
    788        1.3        pk 	 */
    789        1.3        pk 	slack = off - pp->pr_itemsperpage * pp->pr_size;
    790        1.3        pk 	pp->pr_maxcolor = (slack / align) * align;
    791        1.3        pk 	pp->pr_curcolor = 0;
    792        1.3        pk 
    793        1.3        pk 	pp->pr_nget = 0;
    794        1.3        pk 	pp->pr_nfail = 0;
    795        1.3        pk 	pp->pr_nput = 0;
    796        1.3        pk 	pp->pr_npagealloc = 0;
    797        1.3        pk 	pp->pr_npagefree = 0;
    798        1.1        pk 	pp->pr_hiwat = 0;
    799        1.8   thorpej 	pp->pr_nidle = 0;
    800  1.133.4.1       mjf 	pp->pr_refcnt = 0;
    801        1.3        pk 
    802       1.59   thorpej #ifdef POOL_DIAGNOSTIC
    803       1.25   thorpej 	if (flags & PR_LOGGING) {
    804       1.25   thorpej 		if (kmem_map == NULL ||
    805       1.25   thorpej 		    (pp->pr_log = malloc(pool_logsize * sizeof(struct pool_log),
    806       1.25   thorpej 		     M_TEMP, M_NOWAIT)) == NULL)
    807       1.20   thorpej 			pp->pr_roflags &= ~PR_LOGGING;
    808        1.3        pk 		pp->pr_curlogentry = 0;
    809        1.3        pk 		pp->pr_logsize = pool_logsize;
    810        1.3        pk 	}
    811       1.59   thorpej #endif
    812       1.25   thorpej 
    813       1.25   thorpej 	pp->pr_entered_file = NULL;
    814       1.25   thorpej 	pp->pr_entered_line = 0;
    815        1.3        pk 
    816  1.133.4.2       mjf 	/*
    817  1.133.4.2       mjf 	 * XXXAD hack to prevent IP input processing from blocking.
    818  1.133.4.2       mjf 	 */
    819  1.133.4.2       mjf 	if (ipl == IPL_SOFTNET) {
    820  1.133.4.2       mjf 		mutex_init(&pp->pr_lock, MUTEX_DEFAULT, IPL_VM);
    821  1.133.4.2       mjf 	} else {
    822  1.133.4.2       mjf 		mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
    823  1.133.4.2       mjf 	}
    824  1.133.4.1       mjf 	cv_init(&pp->pr_cv, wchan);
    825  1.133.4.1       mjf 	pp->pr_ipl = ipl;
    826        1.1        pk 
    827        1.3        pk 	/*
    828       1.43   thorpej 	 * Initialize private page header pool and cache magazine pool if we
    829       1.43   thorpej 	 * haven't done so yet.
    830       1.23   thorpej 	 * XXX LOCKING.
    831        1.3        pk 	 */
    832       1.97      yamt 	if (phpool[0].pr_size == 0) {
    833       1.97      yamt 		int idx;
    834       1.97      yamt 		for (idx = 0; idx < PHPOOL_MAX; idx++) {
    835       1.97      yamt 			static char phpool_names[PHPOOL_MAX][6+1+6+1];
    836       1.97      yamt 			int nelem;
    837       1.97      yamt 			size_t sz;
    838       1.97      yamt 
    839       1.97      yamt 			nelem = PHPOOL_FREELIST_NELEM(idx);
    840       1.97      yamt 			snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
    841       1.97      yamt 			    "phpool-%d", nelem);
    842       1.97      yamt 			sz = sizeof(struct pool_item_header);
    843       1.97      yamt 			if (nelem) {
    844  1.133.4.1       mjf 				sz = offsetof(struct pool_item_header,
    845  1.133.4.1       mjf 				    ph_bitmap[howmany(nelem, BITMAP_SIZE)]);
    846       1.97      yamt 			}
    847       1.97      yamt 			pool_init(&phpool[idx], sz, 0, 0, 0,
    848      1.129        ad 			    phpool_names[idx], &pool_allocator_meta, IPL_VM);
    849       1.97      yamt 		}
    850       1.62     bjh21 #ifdef POOL_SUBPAGE
    851       1.62     bjh21 		pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
    852      1.129        ad 		    PR_RECURSIVE, "psppool", &pool_allocator_meta, IPL_VM);
    853       1.62     bjh21 #endif
    854  1.133.4.3       mjf 
    855  1.133.4.3       mjf 		size = sizeof(pcg_t) +
    856  1.133.4.3       mjf 		    (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t);
    857  1.133.4.3       mjf 		pool_init(&pcg_normal_pool, size, CACHE_LINE_SIZE, 0, 0,
    858  1.133.4.3       mjf 		    "pcgnormal", &pool_allocator_meta, IPL_VM);
    859  1.133.4.3       mjf 
    860  1.133.4.3       mjf 		size = sizeof(pcg_t) +
    861  1.133.4.3       mjf 		    (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t);
    862  1.133.4.3       mjf 		pool_init(&pcg_large_pool, size, CACHE_LINE_SIZE, 0, 0,
    863  1.133.4.3       mjf 		    "pcglarge", &pool_allocator_meta, IPL_VM);
    864        1.1        pk 	}
    865        1.1        pk 
    866  1.133.4.1       mjf 	if (__predict_true(!cold)) {
    867  1.133.4.1       mjf 		/* Insert into the list of all pools. */
    868  1.133.4.1       mjf 		mutex_enter(&pool_head_lock);
    869  1.133.4.1       mjf 		LIST_INSERT_HEAD(&pool_head, pp, pr_poollist);
    870  1.133.4.1       mjf 		mutex_exit(&pool_head_lock);
    871  1.133.4.1       mjf 
    872  1.133.4.1       mjf 		/* Insert this into the list of pools using this allocator. */
    873  1.133.4.1       mjf 		mutex_enter(&palloc->pa_lock);
    874  1.133.4.1       mjf 		TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
    875  1.133.4.1       mjf 		mutex_exit(&palloc->pa_lock);
    876  1.133.4.1       mjf 	} else {
    877  1.133.4.1       mjf 		LIST_INSERT_HEAD(&pool_head, pp, pr_poollist);
    878  1.133.4.1       mjf 		TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
    879  1.133.4.1       mjf 	}
    880       1.66   thorpej 
    881      1.117      yamt 	pool_reclaim_register(pp);
    882        1.1        pk }
    883        1.1        pk 
    884        1.1        pk /*
    885        1.1        pk  * De-commision a pool resource.
    886        1.1        pk  */
    887        1.1        pk void
    888       1.42   thorpej pool_destroy(struct pool *pp)
    889        1.1        pk {
    890      1.101   thorpej 	struct pool_pagelist pq;
    891        1.3        pk 	struct pool_item_header *ph;
    892       1.43   thorpej 
    893      1.101   thorpej 	/* Remove from global pool list */
    894  1.133.4.1       mjf 	mutex_enter(&pool_head_lock);
    895  1.133.4.1       mjf 	while (pp->pr_refcnt != 0)
    896  1.133.4.1       mjf 		cv_wait(&pool_busy, &pool_head_lock);
    897      1.102       chs 	LIST_REMOVE(pp, pr_poollist);
    898      1.101   thorpej 	if (drainpp == pp)
    899      1.101   thorpej 		drainpp = NULL;
    900  1.133.4.1       mjf 	mutex_exit(&pool_head_lock);
    901      1.101   thorpej 
    902      1.101   thorpej 	/* Remove this pool from its allocator's list of pools. */
    903      1.117      yamt 	pool_reclaim_unregister(pp);
    904  1.133.4.1       mjf 	mutex_enter(&pp->pr_alloc->pa_lock);
    905       1.66   thorpej 	TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
    906  1.133.4.1       mjf 	mutex_exit(&pp->pr_alloc->pa_lock);
    907       1.66   thorpej 
    908  1.133.4.1       mjf 	mutex_enter(&pp->pr_lock);
    909      1.101   thorpej 
    910  1.133.4.1       mjf 	KASSERT(pp->pr_cache == NULL);
    911        1.3        pk 
    912        1.3        pk #ifdef DIAGNOSTIC
    913       1.20   thorpej 	if (pp->pr_nout != 0) {
    914       1.25   thorpej 		pr_printlog(pp, NULL, printf);
    915       1.80    provos 		panic("pool_destroy: pool busy: still out: %u",
    916       1.20   thorpej 		    pp->pr_nout);
    917        1.3        pk 	}
    918        1.3        pk #endif
    919        1.1        pk 
    920      1.101   thorpej 	KASSERT(LIST_EMPTY(&pp->pr_fullpages));
    921      1.101   thorpej 	KASSERT(LIST_EMPTY(&pp->pr_partpages));
    922      1.101   thorpej 
    923        1.3        pk 	/* Remove all pages */
    924      1.101   thorpej 	LIST_INIT(&pq);
    925       1.88       chs 	while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
    926      1.101   thorpej 		pr_rmpage(pp, ph, &pq);
    927      1.101   thorpej 
    928  1.133.4.1       mjf 	mutex_exit(&pp->pr_lock);
    929        1.3        pk 
    930      1.101   thorpej 	pr_pagelist_free(pp, &pq);
    931        1.3        pk 
    932       1.59   thorpej #ifdef POOL_DIAGNOSTIC
    933       1.20   thorpej 	if ((pp->pr_roflags & PR_LOGGING) != 0)
    934        1.3        pk 		free(pp->pr_log, M_TEMP);
    935       1.59   thorpej #endif
    936  1.133.4.1       mjf 
    937  1.133.4.1       mjf 	cv_destroy(&pp->pr_cv);
    938  1.133.4.1       mjf 	mutex_destroy(&pp->pr_lock);
    939        1.1        pk }
    940        1.1        pk 
    941       1.68   thorpej void
    942       1.68   thorpej pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
    943       1.68   thorpej {
    944       1.68   thorpej 
    945       1.68   thorpej 	/* XXX no locking -- must be used just after pool_init() */
    946       1.68   thorpej #ifdef DIAGNOSTIC
    947       1.68   thorpej 	if (pp->pr_drain_hook != NULL)
    948       1.68   thorpej 		panic("pool_set_drain_hook(%s): already set", pp->pr_wchan);
    949       1.68   thorpej #endif
    950       1.68   thorpej 	pp->pr_drain_hook = fn;
    951       1.68   thorpej 	pp->pr_drain_hook_arg = arg;
    952       1.68   thorpej }
    953       1.68   thorpej 
    954       1.88       chs static struct pool_item_header *
    955      1.128  christos pool_alloc_item_header(struct pool *pp, void *storage, int flags)
    956       1.55   thorpej {
    957       1.55   thorpej 	struct pool_item_header *ph;
    958       1.55   thorpej 
    959       1.55   thorpej 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
    960      1.128  christos 		ph = (struct pool_item_header *) ((char *)storage + pp->pr_phoffset);
    961  1.133.4.1       mjf 	else
    962       1.97      yamt 		ph = pool_get(pp->pr_phpool, flags);
    963       1.55   thorpej 
    964       1.55   thorpej 	return (ph);
    965       1.55   thorpej }
    966        1.1        pk 
    967        1.1        pk /*
    968  1.133.4.1       mjf  * Grab an item from the pool.
    969        1.1        pk  */
    970        1.3        pk void *
    971       1.59   thorpej #ifdef POOL_DIAGNOSTIC
    972       1.42   thorpej _pool_get(struct pool *pp, int flags, const char *file, long line)
    973       1.56  sommerfe #else
    974       1.56  sommerfe pool_get(struct pool *pp, int flags)
    975       1.56  sommerfe #endif
    976        1.1        pk {
    977        1.1        pk 	struct pool_item *pi;
    978        1.3        pk 	struct pool_item_header *ph;
    979       1.55   thorpej 	void *v;
    980        1.1        pk 
    981        1.2        pk #ifdef DIAGNOSTIC
    982       1.95    atatat 	if (__predict_false(pp->pr_itemsperpage == 0))
    983       1.95    atatat 		panic("pool_get: pool %p: pr_itemsperpage is zero, "
    984       1.95    atatat 		    "pool not initialized?", pp);
    985       1.84   thorpej 	if (__predict_false(curlwp == NULL && doing_shutdown == 0 &&
    986       1.37  sommerfe 			    (flags & PR_WAITOK) != 0))
    987       1.77      matt 		panic("pool_get: %s: must have NOWAIT", pp->pr_wchan);
    988       1.58   thorpej 
    989      1.102       chs #endif /* DIAGNOSTIC */
    990       1.58   thorpej #ifdef LOCKDEBUG
    991       1.58   thorpej 	if (flags & PR_WAITOK)
    992      1.119      yamt 		ASSERT_SLEEPABLE(NULL, "pool_get(PR_WAITOK)");
    993       1.56  sommerfe #endif
    994        1.1        pk 
    995  1.133.4.1       mjf 	mutex_enter(&pp->pr_lock);
    996       1.25   thorpej 	pr_enter(pp, file, line);
    997       1.20   thorpej 
    998       1.20   thorpej  startover:
    999       1.20   thorpej 	/*
   1000       1.20   thorpej 	 * Check to see if we've reached the hard limit.  If we have,
   1001       1.20   thorpej 	 * and we can wait, then wait until an item has been returned to
   1002       1.20   thorpej 	 * the pool.
   1003       1.20   thorpej 	 */
   1004       1.20   thorpej #ifdef DIAGNOSTIC
   1005       1.34   thorpej 	if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
   1006       1.25   thorpej 		pr_leave(pp);
   1007  1.133.4.1       mjf 		mutex_exit(&pp->pr_lock);
   1008       1.20   thorpej 		panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
   1009       1.20   thorpej 	}
   1010       1.20   thorpej #endif
   1011       1.34   thorpej 	if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
   1012       1.68   thorpej 		if (pp->pr_drain_hook != NULL) {
   1013       1.68   thorpej 			/*
   1014       1.68   thorpej 			 * Since the drain hook is going to free things
   1015       1.68   thorpej 			 * back to the pool, unlock, call the hook, re-lock,
   1016       1.68   thorpej 			 * and check the hardlimit condition again.
   1017       1.68   thorpej 			 */
   1018       1.68   thorpej 			pr_leave(pp);
   1019  1.133.4.1       mjf 			mutex_exit(&pp->pr_lock);
   1020       1.68   thorpej 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
   1021  1.133.4.1       mjf 			mutex_enter(&pp->pr_lock);
   1022       1.68   thorpej 			pr_enter(pp, file, line);
   1023       1.68   thorpej 			if (pp->pr_nout < pp->pr_hardlimit)
   1024       1.68   thorpej 				goto startover;
   1025       1.68   thorpej 		}
   1026       1.68   thorpej 
   1027       1.29  sommerfe 		if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
   1028       1.20   thorpej 			/*
   1029       1.20   thorpej 			 * XXX: A warning isn't logged in this case.  Should
   1030       1.20   thorpej 			 * it be?
   1031       1.20   thorpej 			 */
   1032       1.20   thorpej 			pp->pr_flags |= PR_WANTED;
   1033       1.25   thorpej 			pr_leave(pp);
   1034  1.133.4.1       mjf 			cv_wait(&pp->pr_cv, &pp->pr_lock);
   1035       1.25   thorpej 			pr_enter(pp, file, line);
   1036       1.20   thorpej 			goto startover;
   1037       1.20   thorpej 		}
   1038       1.31   thorpej 
   1039       1.31   thorpej 		/*
   1040       1.31   thorpej 		 * Log a message that the hard limit has been hit.
   1041       1.31   thorpej 		 */
   1042       1.31   thorpej 		if (pp->pr_hardlimit_warning != NULL &&
   1043       1.31   thorpej 		    ratecheck(&pp->pr_hardlimit_warning_last,
   1044       1.31   thorpej 			      &pp->pr_hardlimit_ratecap))
   1045       1.31   thorpej 			log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
   1046       1.21   thorpej 
   1047       1.21   thorpej 		pp->pr_nfail++;
   1048       1.21   thorpej 
   1049       1.25   thorpej 		pr_leave(pp);
   1050  1.133.4.1       mjf 		mutex_exit(&pp->pr_lock);
   1051       1.20   thorpej 		return (NULL);
   1052       1.20   thorpej 	}
   1053       1.20   thorpej 
   1054        1.3        pk 	/*
   1055        1.3        pk 	 * The convention we use is that if `curpage' is not NULL, then
   1056        1.3        pk 	 * it points at a non-empty bucket. In particular, `curpage'
   1057        1.3        pk 	 * never points at a page header which has PR_PHINPAGE set and
   1058        1.3        pk 	 * has no items in its bucket.
   1059        1.3        pk 	 */
   1060       1.20   thorpej 	if ((ph = pp->pr_curpage) == NULL) {
   1061      1.113      yamt 		int error;
   1062      1.113      yamt 
   1063       1.20   thorpej #ifdef DIAGNOSTIC
   1064       1.20   thorpej 		if (pp->pr_nitems != 0) {
   1065  1.133.4.1       mjf 			mutex_exit(&pp->pr_lock);
   1066       1.20   thorpej 			printf("pool_get: %s: curpage NULL, nitems %u\n",
   1067       1.20   thorpej 			    pp->pr_wchan, pp->pr_nitems);
   1068       1.80    provos 			panic("pool_get: nitems inconsistent");
   1069       1.20   thorpej 		}
   1070       1.20   thorpej #endif
   1071       1.20   thorpej 
   1072       1.21   thorpej 		/*
   1073       1.21   thorpej 		 * Call the back-end page allocator for more memory.
   1074       1.21   thorpej 		 * Release the pool lock, as the back-end page allocator
   1075       1.21   thorpej 		 * may block.
   1076       1.21   thorpej 		 */
   1077       1.25   thorpej 		pr_leave(pp);
   1078      1.113      yamt 		error = pool_grow(pp, flags);
   1079      1.113      yamt 		pr_enter(pp, file, line);
   1080      1.113      yamt 		if (error != 0) {
   1081       1.21   thorpej 			/*
   1082       1.55   thorpej 			 * We were unable to allocate a page or item
   1083       1.55   thorpej 			 * header, but we released the lock during
   1084       1.55   thorpej 			 * allocation, so perhaps items were freed
   1085       1.55   thorpej 			 * back to the pool.  Check for this case.
   1086       1.21   thorpej 			 */
   1087       1.21   thorpej 			if (pp->pr_curpage != NULL)
   1088       1.21   thorpej 				goto startover;
   1089       1.15        pk 
   1090      1.117      yamt 			pp->pr_nfail++;
   1091       1.25   thorpej 			pr_leave(pp);
   1092  1.133.4.1       mjf 			mutex_exit(&pp->pr_lock);
   1093      1.117      yamt 			return (NULL);
   1094        1.1        pk 		}
   1095        1.3        pk 
   1096       1.20   thorpej 		/* Start the allocation process over. */
   1097       1.20   thorpej 		goto startover;
   1098        1.3        pk 	}
   1099       1.97      yamt 	if (pp->pr_roflags & PR_NOTOUCH) {
   1100       1.97      yamt #ifdef DIAGNOSTIC
   1101       1.97      yamt 		if (__predict_false(ph->ph_nmissing == pp->pr_itemsperpage)) {
   1102       1.97      yamt 			pr_leave(pp);
   1103  1.133.4.1       mjf 			mutex_exit(&pp->pr_lock);
   1104       1.97      yamt 			panic("pool_get: %s: page empty", pp->pr_wchan);
   1105       1.97      yamt 		}
   1106       1.97      yamt #endif
   1107       1.97      yamt 		v = pr_item_notouch_get(pp, ph);
   1108       1.97      yamt #ifdef POOL_DIAGNOSTIC
   1109       1.97      yamt 		pr_log(pp, v, PRLOG_GET, file, line);
   1110       1.97      yamt #endif
   1111       1.97      yamt 	} else {
   1112      1.102       chs 		v = pi = LIST_FIRST(&ph->ph_itemlist);
   1113       1.97      yamt 		if (__predict_false(v == NULL)) {
   1114       1.97      yamt 			pr_leave(pp);
   1115  1.133.4.1       mjf 			mutex_exit(&pp->pr_lock);
   1116       1.97      yamt 			panic("pool_get: %s: page empty", pp->pr_wchan);
   1117       1.97      yamt 		}
   1118       1.20   thorpej #ifdef DIAGNOSTIC
   1119       1.97      yamt 		if (__predict_false(pp->pr_nitems == 0)) {
   1120       1.97      yamt 			pr_leave(pp);
   1121  1.133.4.1       mjf 			mutex_exit(&pp->pr_lock);
   1122       1.97      yamt 			printf("pool_get: %s: items on itemlist, nitems %u\n",
   1123       1.97      yamt 			    pp->pr_wchan, pp->pr_nitems);
   1124       1.97      yamt 			panic("pool_get: nitems inconsistent");
   1125       1.97      yamt 		}
   1126       1.65     enami #endif
   1127       1.56  sommerfe 
   1128       1.65     enami #ifdef POOL_DIAGNOSTIC
   1129       1.97      yamt 		pr_log(pp, v, PRLOG_GET, file, line);
   1130       1.65     enami #endif
   1131        1.3        pk 
   1132       1.65     enami #ifdef DIAGNOSTIC
   1133       1.97      yamt 		if (__predict_false(pi->pi_magic != PI_MAGIC)) {
   1134       1.97      yamt 			pr_printlog(pp, pi, printf);
   1135       1.97      yamt 			panic("pool_get(%s): free list modified: "
   1136       1.97      yamt 			    "magic=%x; page %p; item addr %p\n",
   1137       1.97      yamt 			    pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
   1138       1.97      yamt 		}
   1139        1.3        pk #endif
   1140        1.3        pk 
   1141       1.97      yamt 		/*
   1142       1.97      yamt 		 * Remove from item list.
   1143       1.97      yamt 		 */
   1144      1.102       chs 		LIST_REMOVE(pi, pi_list);
   1145       1.97      yamt 	}
   1146       1.20   thorpej 	pp->pr_nitems--;
   1147       1.20   thorpej 	pp->pr_nout++;
   1148        1.6   thorpej 	if (ph->ph_nmissing == 0) {
   1149        1.6   thorpej #ifdef DIAGNOSTIC
   1150       1.34   thorpej 		if (__predict_false(pp->pr_nidle == 0))
   1151        1.6   thorpej 			panic("pool_get: nidle inconsistent");
   1152        1.6   thorpej #endif
   1153        1.6   thorpej 		pp->pr_nidle--;
   1154       1.88       chs 
   1155       1.88       chs 		/*
   1156       1.88       chs 		 * This page was previously empty.  Move it to the list of
   1157       1.88       chs 		 * partially-full pages.  This page is already curpage.
   1158       1.88       chs 		 */
   1159       1.88       chs 		LIST_REMOVE(ph, ph_pagelist);
   1160       1.88       chs 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
   1161        1.6   thorpej 	}
   1162        1.3        pk 	ph->ph_nmissing++;
   1163       1.97      yamt 	if (ph->ph_nmissing == pp->pr_itemsperpage) {
   1164       1.21   thorpej #ifdef DIAGNOSTIC
   1165       1.97      yamt 		if (__predict_false((pp->pr_roflags & PR_NOTOUCH) == 0 &&
   1166      1.102       chs 		    !LIST_EMPTY(&ph->ph_itemlist))) {
   1167       1.25   thorpej 			pr_leave(pp);
   1168  1.133.4.1       mjf 			mutex_exit(&pp->pr_lock);
   1169       1.21   thorpej 			panic("pool_get: %s: nmissing inconsistent",
   1170       1.21   thorpej 			    pp->pr_wchan);
   1171       1.21   thorpej 		}
   1172       1.21   thorpej #endif
   1173        1.3        pk 		/*
   1174       1.88       chs 		 * This page is now full.  Move it to the full list
   1175       1.88       chs 		 * and select a new current page.
   1176        1.3        pk 		 */
   1177       1.88       chs 		LIST_REMOVE(ph, ph_pagelist);
   1178       1.88       chs 		LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
   1179       1.88       chs 		pool_update_curpage(pp);
   1180        1.1        pk 	}
   1181        1.3        pk 
   1182        1.3        pk 	pp->pr_nget++;
   1183      1.111  christos 	pr_leave(pp);
   1184       1.20   thorpej 
   1185       1.20   thorpej 	/*
   1186       1.20   thorpej 	 * If we have a low water mark and we are now below that low
   1187       1.20   thorpej 	 * water mark, add more items to the pool.
   1188       1.20   thorpej 	 */
   1189       1.53   thorpej 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
   1190       1.20   thorpej 		/*
   1191       1.20   thorpej 		 * XXX: Should we log a warning?  Should we set up a timeout
   1192       1.20   thorpej 		 * to try again in a second or so?  The latter could break
   1193       1.20   thorpej 		 * a caller's assumptions about interrupt protection, etc.
   1194       1.20   thorpej 		 */
   1195       1.20   thorpej 	}
   1196       1.20   thorpej 
   1197  1.133.4.1       mjf 	mutex_exit(&pp->pr_lock);
   1198      1.125        ad 	KASSERT((((vaddr_t)v + pp->pr_itemoffset) & (pp->pr_align - 1)) == 0);
   1199      1.125        ad 	FREECHECK_OUT(&pp->pr_freecheck, v);
   1200        1.1        pk 	return (v);
   1201        1.1        pk }
   1202        1.1        pk 
   1203        1.1        pk /*
   1204       1.43   thorpej  * Internal version of pool_put().  Pool is already locked/entered.
   1205        1.1        pk  */
   1206       1.43   thorpej static void
   1207      1.101   thorpej pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
   1208        1.1        pk {
   1209        1.1        pk 	struct pool_item *pi = v;
   1210        1.3        pk 	struct pool_item_header *ph;
   1211        1.3        pk 
   1212  1.133.4.1       mjf 	KASSERT(mutex_owned(&pp->pr_lock));
   1213      1.125        ad 	FREECHECK_IN(&pp->pr_freecheck, v);
   1214  1.133.4.1       mjf 	LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
   1215       1.61       chs 
   1216       1.30   thorpej #ifdef DIAGNOSTIC
   1217       1.34   thorpej 	if (__predict_false(pp->pr_nout == 0)) {
   1218       1.30   thorpej 		printf("pool %s: putting with none out\n",
   1219       1.30   thorpej 		    pp->pr_wchan);
   1220       1.30   thorpej 		panic("pool_put");
   1221       1.30   thorpej 	}
   1222       1.30   thorpej #endif
   1223        1.3        pk 
   1224      1.121      yamt 	if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
   1225       1.25   thorpej 		pr_printlog(pp, NULL, printf);
   1226        1.3        pk 		panic("pool_put: %s: page header missing", pp->pr_wchan);
   1227        1.3        pk 	}
   1228       1.28   thorpej 
   1229        1.3        pk 	/*
   1230        1.3        pk 	 * Return to item list.
   1231        1.3        pk 	 */
   1232       1.97      yamt 	if (pp->pr_roflags & PR_NOTOUCH) {
   1233       1.97      yamt 		pr_item_notouch_put(pp, ph, v);
   1234       1.97      yamt 	} else {
   1235        1.2        pk #ifdef DIAGNOSTIC
   1236       1.97      yamt 		pi->pi_magic = PI_MAGIC;
   1237        1.3        pk #endif
   1238       1.32       chs #ifdef DEBUG
   1239       1.97      yamt 		{
   1240       1.97      yamt 			int i, *ip = v;
   1241       1.32       chs 
   1242       1.97      yamt 			for (i = 0; i < pp->pr_size / sizeof(int); i++) {
   1243       1.97      yamt 				*ip++ = PI_MAGIC;
   1244       1.97      yamt 			}
   1245       1.32       chs 		}
   1246       1.32       chs #endif
   1247       1.32       chs 
   1248      1.102       chs 		LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
   1249       1.97      yamt 	}
   1250       1.79   thorpej 	KDASSERT(ph->ph_nmissing != 0);
   1251        1.3        pk 	ph->ph_nmissing--;
   1252        1.3        pk 	pp->pr_nput++;
   1253       1.20   thorpej 	pp->pr_nitems++;
   1254       1.20   thorpej 	pp->pr_nout--;
   1255        1.3        pk 
   1256        1.3        pk 	/* Cancel "pool empty" condition if it exists */
   1257        1.3        pk 	if (pp->pr_curpage == NULL)
   1258        1.3        pk 		pp->pr_curpage = ph;
   1259        1.3        pk 
   1260        1.3        pk 	if (pp->pr_flags & PR_WANTED) {
   1261        1.3        pk 		pp->pr_flags &= ~PR_WANTED;
   1262       1.15        pk 		if (ph->ph_nmissing == 0)
   1263       1.15        pk 			pp->pr_nidle++;
   1264  1.133.4.1       mjf 		cv_broadcast(&pp->pr_cv);
   1265        1.3        pk 		return;
   1266        1.3        pk 	}
   1267        1.3        pk 
   1268        1.3        pk 	/*
   1269       1.88       chs 	 * If this page is now empty, do one of two things:
   1270       1.21   thorpej 	 *
   1271       1.88       chs 	 *	(1) If we have more pages than the page high water mark,
   1272       1.96   thorpej 	 *	    free the page back to the system.  ONLY CONSIDER
   1273       1.90   thorpej 	 *	    FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
   1274       1.90   thorpej 	 *	    CLAIM.
   1275       1.21   thorpej 	 *
   1276       1.88       chs 	 *	(2) Otherwise, move the page to the empty page list.
   1277       1.88       chs 	 *
   1278       1.88       chs 	 * Either way, select a new current page (so we use a partially-full
   1279       1.88       chs 	 * page if one is available).
   1280        1.3        pk 	 */
   1281        1.3        pk 	if (ph->ph_nmissing == 0) {
   1282        1.6   thorpej 		pp->pr_nidle++;
   1283       1.90   thorpej 		if (pp->pr_npages > pp->pr_minpages &&
   1284       1.90   thorpej 		    (pp->pr_npages > pp->pr_maxpages ||
   1285      1.117      yamt 		     pa_starved_p(pp->pr_alloc))) {
   1286      1.101   thorpej 			pr_rmpage(pp, ph, pq);
   1287        1.3        pk 		} else {
   1288       1.88       chs 			LIST_REMOVE(ph, ph_pagelist);
   1289       1.88       chs 			LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
   1290        1.3        pk 
   1291       1.21   thorpej 			/*
   1292       1.21   thorpej 			 * Update the timestamp on the page.  A page must
   1293       1.21   thorpej 			 * be idle for some period of time before it can
   1294       1.21   thorpej 			 * be reclaimed by the pagedaemon.  This minimizes
   1295       1.21   thorpej 			 * ping-pong'ing for memory.
   1296       1.21   thorpej 			 */
   1297      1.118    kardel 			getmicrotime(&ph->ph_time);
   1298        1.1        pk 		}
   1299       1.88       chs 		pool_update_curpage(pp);
   1300        1.1        pk 	}
   1301       1.88       chs 
   1302       1.21   thorpej 	/*
   1303       1.88       chs 	 * If the page was previously completely full, move it to the
   1304       1.88       chs 	 * partially-full list and make it the current page.  The next
   1305       1.88       chs 	 * allocation will get the item from this page, instead of
   1306       1.88       chs 	 * further fragmenting the pool.
   1307       1.21   thorpej 	 */
   1308       1.21   thorpej 	else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
   1309       1.88       chs 		LIST_REMOVE(ph, ph_pagelist);
   1310       1.88       chs 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
   1311       1.21   thorpej 		pp->pr_curpage = ph;
   1312       1.21   thorpej 	}
   1313       1.43   thorpej }
   1314       1.43   thorpej 
   1315       1.43   thorpej /*
   1316  1.133.4.1       mjf  * Return resource to the pool.
   1317       1.43   thorpej  */
   1318       1.59   thorpej #ifdef POOL_DIAGNOSTIC
   1319       1.43   thorpej void
   1320       1.43   thorpej _pool_put(struct pool *pp, void *v, const char *file, long line)
   1321       1.43   thorpej {
   1322      1.101   thorpej 	struct pool_pagelist pq;
   1323      1.101   thorpej 
   1324      1.101   thorpej 	LIST_INIT(&pq);
   1325       1.43   thorpej 
   1326  1.133.4.1       mjf 	mutex_enter(&pp->pr_lock);
   1327       1.43   thorpej 	pr_enter(pp, file, line);
   1328       1.43   thorpej 
   1329       1.56  sommerfe 	pr_log(pp, v, PRLOG_PUT, file, line);
   1330       1.56  sommerfe 
   1331      1.101   thorpej 	pool_do_put(pp, v, &pq);
   1332       1.21   thorpej 
   1333       1.25   thorpej 	pr_leave(pp);
   1334  1.133.4.1       mjf 	mutex_exit(&pp->pr_lock);
   1335      1.101   thorpej 
   1336      1.102       chs 	pr_pagelist_free(pp, &pq);
   1337        1.1        pk }
   1338       1.57  sommerfe #undef pool_put
   1339       1.59   thorpej #endif /* POOL_DIAGNOSTIC */
   1340        1.1        pk 
   1341       1.56  sommerfe void
   1342       1.56  sommerfe pool_put(struct pool *pp, void *v)
   1343       1.56  sommerfe {
   1344      1.101   thorpej 	struct pool_pagelist pq;
   1345      1.101   thorpej 
   1346      1.101   thorpej 	LIST_INIT(&pq);
   1347       1.56  sommerfe 
   1348  1.133.4.1       mjf 	mutex_enter(&pp->pr_lock);
   1349      1.101   thorpej 	pool_do_put(pp, v, &pq);
   1350  1.133.4.1       mjf 	mutex_exit(&pp->pr_lock);
   1351       1.56  sommerfe 
   1352      1.102       chs 	pr_pagelist_free(pp, &pq);
   1353       1.56  sommerfe }
   1354       1.57  sommerfe 
   1355       1.59   thorpej #ifdef POOL_DIAGNOSTIC
   1356       1.57  sommerfe #define		pool_put(h, v)	_pool_put((h), (v), __FILE__, __LINE__)
   1357       1.56  sommerfe #endif
   1358       1.74   thorpej 
   1359       1.74   thorpej /*
   1360      1.113      yamt  * pool_grow: grow a pool by a page.
   1361      1.113      yamt  *
   1362      1.113      yamt  * => called with pool locked.
   1363      1.113      yamt  * => unlock and relock the pool.
   1364      1.113      yamt  * => return with pool locked.
   1365      1.113      yamt  */
   1366      1.113      yamt 
   1367      1.113      yamt static int
   1368      1.113      yamt pool_grow(struct pool *pp, int flags)
   1369      1.113      yamt {
   1370      1.113      yamt 	struct pool_item_header *ph = NULL;
   1371      1.113      yamt 	char *cp;
   1372      1.113      yamt 
   1373  1.133.4.1       mjf 	mutex_exit(&pp->pr_lock);
   1374      1.113      yamt 	cp = pool_allocator_alloc(pp, flags);
   1375      1.113      yamt 	if (__predict_true(cp != NULL)) {
   1376      1.113      yamt 		ph = pool_alloc_item_header(pp, cp, flags);
   1377      1.113      yamt 	}
   1378      1.113      yamt 	if (__predict_false(cp == NULL || ph == NULL)) {
   1379      1.113      yamt 		if (cp != NULL) {
   1380      1.113      yamt 			pool_allocator_free(pp, cp);
   1381      1.113      yamt 		}
   1382  1.133.4.1       mjf 		mutex_enter(&pp->pr_lock);
   1383      1.113      yamt 		return ENOMEM;
   1384      1.113      yamt 	}
   1385      1.113      yamt 
   1386  1.133.4.1       mjf 	mutex_enter(&pp->pr_lock);
   1387      1.113      yamt 	pool_prime_page(pp, cp, ph);
   1388      1.113      yamt 	pp->pr_npagealloc++;
   1389      1.113      yamt 	return 0;
   1390      1.113      yamt }
   1391      1.113      yamt 
   1392      1.113      yamt /*
   1393       1.74   thorpej  * Add N items to the pool.
   1394       1.74   thorpej  */
   1395       1.74   thorpej int
   1396       1.74   thorpej pool_prime(struct pool *pp, int n)
   1397       1.74   thorpej {
   1398       1.75    simonb 	int newpages;
   1399      1.113      yamt 	int error = 0;
   1400       1.74   thorpej 
   1401  1.133.4.1       mjf 	mutex_enter(&pp->pr_lock);
   1402       1.74   thorpej 
   1403       1.74   thorpej 	newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1404       1.74   thorpej 
   1405       1.74   thorpej 	while (newpages-- > 0) {
   1406      1.113      yamt 		error = pool_grow(pp, PR_NOWAIT);
   1407      1.113      yamt 		if (error) {
   1408       1.74   thorpej 			break;
   1409       1.74   thorpej 		}
   1410       1.74   thorpej 		pp->pr_minpages++;
   1411       1.74   thorpej 	}
   1412       1.74   thorpej 
   1413       1.74   thorpej 	if (pp->pr_minpages >= pp->pr_maxpages)
   1414       1.74   thorpej 		pp->pr_maxpages = pp->pr_minpages + 1;	/* XXX */
   1415       1.74   thorpej 
   1416  1.133.4.1       mjf 	mutex_exit(&pp->pr_lock);
   1417      1.113      yamt 	return error;
   1418       1.74   thorpej }
   1419       1.55   thorpej 
   1420       1.55   thorpej /*
   1421        1.3        pk  * Add a page worth of items to the pool.
   1422       1.21   thorpej  *
   1423       1.21   thorpej  * Note, we must be called with the pool descriptor LOCKED.
   1424        1.3        pk  */
   1425       1.55   thorpej static void
   1426      1.128  christos pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
   1427        1.3        pk {
   1428        1.3        pk 	struct pool_item *pi;
   1429      1.128  christos 	void *cp = storage;
   1430      1.125        ad 	const unsigned int align = pp->pr_align;
   1431      1.125        ad 	const unsigned int ioff = pp->pr_itemoffset;
   1432       1.55   thorpej 	int n;
   1433       1.36        pk 
   1434  1.133.4.1       mjf 	KASSERT(mutex_owned(&pp->pr_lock));
   1435       1.91      yamt 
   1436       1.66   thorpej #ifdef DIAGNOSTIC
   1437      1.121      yamt 	if ((pp->pr_roflags & PR_NOALIGN) == 0 &&
   1438      1.121      yamt 	    ((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) != 0)
   1439       1.36        pk 		panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
   1440       1.66   thorpej #endif
   1441        1.3        pk 
   1442        1.3        pk 	/*
   1443        1.3        pk 	 * Insert page header.
   1444        1.3        pk 	 */
   1445       1.88       chs 	LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
   1446      1.102       chs 	LIST_INIT(&ph->ph_itemlist);
   1447        1.3        pk 	ph->ph_page = storage;
   1448        1.3        pk 	ph->ph_nmissing = 0;
   1449      1.118    kardel 	getmicrotime(&ph->ph_time);
   1450       1.88       chs 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
   1451       1.88       chs 		SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
   1452        1.3        pk 
   1453        1.6   thorpej 	pp->pr_nidle++;
   1454        1.6   thorpej 
   1455        1.3        pk 	/*
   1456        1.3        pk 	 * Color this page.
   1457        1.3        pk 	 */
   1458  1.133.4.3       mjf 	ph->ph_off = pp->pr_curcolor;
   1459  1.133.4.3       mjf 	cp = (char *)cp + ph->ph_off;
   1460        1.3        pk 	if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
   1461        1.3        pk 		pp->pr_curcolor = 0;
   1462        1.3        pk 
   1463        1.3        pk 	/*
   1464        1.3        pk 	 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
   1465        1.3        pk 	 */
   1466        1.3        pk 	if (ioff != 0)
   1467      1.128  christos 		cp = (char *)cp + align - ioff;
   1468        1.3        pk 
   1469      1.125        ad 	KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
   1470      1.125        ad 
   1471        1.3        pk 	/*
   1472        1.3        pk 	 * Insert remaining chunks on the bucket list.
   1473        1.3        pk 	 */
   1474        1.3        pk 	n = pp->pr_itemsperpage;
   1475       1.20   thorpej 	pp->pr_nitems += n;
   1476        1.3        pk 
   1477       1.97      yamt 	if (pp->pr_roflags & PR_NOTOUCH) {
   1478  1.133.4.1       mjf 		pr_item_notouch_init(pp, ph);
   1479       1.97      yamt 	} else {
   1480       1.97      yamt 		while (n--) {
   1481       1.97      yamt 			pi = (struct pool_item *)cp;
   1482       1.78   thorpej 
   1483       1.97      yamt 			KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0);
   1484        1.3        pk 
   1485       1.97      yamt 			/* Insert on page list */
   1486      1.102       chs 			LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
   1487        1.3        pk #ifdef DIAGNOSTIC
   1488       1.97      yamt 			pi->pi_magic = PI_MAGIC;
   1489        1.3        pk #endif
   1490      1.128  christos 			cp = (char *)cp + pp->pr_size;
   1491      1.125        ad 
   1492      1.125        ad 			KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
   1493       1.97      yamt 		}
   1494        1.3        pk 	}
   1495        1.3        pk 
   1496        1.3        pk 	/*
   1497        1.3        pk 	 * If the pool was depleted, point at the new page.
   1498        1.3        pk 	 */
   1499        1.3        pk 	if (pp->pr_curpage == NULL)
   1500        1.3        pk 		pp->pr_curpage = ph;
   1501        1.3        pk 
   1502        1.3        pk 	if (++pp->pr_npages > pp->pr_hiwat)
   1503        1.3        pk 		pp->pr_hiwat = pp->pr_npages;
   1504        1.3        pk }
   1505        1.3        pk 
   1506       1.20   thorpej /*
   1507       1.52   thorpej  * Used by pool_get() when nitems drops below the low water mark.  This
   1508       1.88       chs  * is used to catch up pr_nitems with the low water mark.
   1509       1.20   thorpej  *
   1510       1.21   thorpej  * Note 1, we never wait for memory here, we let the caller decide what to do.
   1511       1.20   thorpej  *
   1512       1.73   thorpej  * Note 2, we must be called with the pool already locked, and we return
   1513       1.20   thorpej  * with it locked.
   1514       1.20   thorpej  */
   1515       1.20   thorpej static int
   1516       1.42   thorpej pool_catchup(struct pool *pp)
   1517       1.20   thorpej {
   1518       1.20   thorpej 	int error = 0;
   1519       1.20   thorpej 
   1520       1.54   thorpej 	while (POOL_NEEDS_CATCHUP(pp)) {
   1521      1.113      yamt 		error = pool_grow(pp, PR_NOWAIT);
   1522      1.113      yamt 		if (error) {
   1523       1.20   thorpej 			break;
   1524       1.20   thorpej 		}
   1525       1.20   thorpej 	}
   1526      1.113      yamt 	return error;
   1527       1.20   thorpej }
   1528       1.20   thorpej 
   1529       1.88       chs static void
   1530       1.88       chs pool_update_curpage(struct pool *pp)
   1531       1.88       chs {
   1532       1.88       chs 
   1533       1.88       chs 	pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
   1534       1.88       chs 	if (pp->pr_curpage == NULL) {
   1535       1.88       chs 		pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
   1536       1.88       chs 	}
   1537       1.88       chs }
   1538       1.88       chs 
   1539        1.3        pk void
   1540       1.42   thorpej pool_setlowat(struct pool *pp, int n)
   1541        1.3        pk {
   1542       1.15        pk 
   1543  1.133.4.1       mjf 	mutex_enter(&pp->pr_lock);
   1544       1.21   thorpej 
   1545        1.3        pk 	pp->pr_minitems = n;
   1546       1.15        pk 	pp->pr_minpages = (n == 0)
   1547       1.15        pk 		? 0
   1548       1.18   thorpej 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1549       1.20   thorpej 
   1550       1.20   thorpej 	/* Make sure we're caught up with the newly-set low water mark. */
   1551       1.75    simonb 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
   1552       1.20   thorpej 		/*
   1553       1.20   thorpej 		 * XXX: Should we log a warning?  Should we set up a timeout
   1554       1.20   thorpej 		 * to try again in a second or so?  The latter could break
   1555       1.20   thorpej 		 * a caller's assumptions about interrupt protection, etc.
   1556       1.20   thorpej 		 */
   1557       1.20   thorpej 	}
   1558       1.21   thorpej 
   1559  1.133.4.1       mjf 	mutex_exit(&pp->pr_lock);
   1560        1.3        pk }
   1561        1.3        pk 
   1562        1.3        pk void
   1563       1.42   thorpej pool_sethiwat(struct pool *pp, int n)
   1564        1.3        pk {
   1565       1.15        pk 
   1566  1.133.4.1       mjf 	mutex_enter(&pp->pr_lock);
   1567       1.21   thorpej 
   1568       1.15        pk 	pp->pr_maxpages = (n == 0)
   1569       1.15        pk 		? 0
   1570       1.18   thorpej 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1571       1.21   thorpej 
   1572  1.133.4.1       mjf 	mutex_exit(&pp->pr_lock);
   1573        1.3        pk }
   1574        1.3        pk 
   1575       1.20   thorpej void
   1576       1.42   thorpej pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
   1577       1.20   thorpej {
   1578       1.20   thorpej 
   1579  1.133.4.1       mjf 	mutex_enter(&pp->pr_lock);
   1580       1.20   thorpej 
   1581       1.20   thorpej 	pp->pr_hardlimit = n;
   1582       1.20   thorpej 	pp->pr_hardlimit_warning = warnmess;
   1583       1.31   thorpej 	pp->pr_hardlimit_ratecap.tv_sec = ratecap;
   1584       1.31   thorpej 	pp->pr_hardlimit_warning_last.tv_sec = 0;
   1585       1.31   thorpej 	pp->pr_hardlimit_warning_last.tv_usec = 0;
   1586       1.20   thorpej 
   1587       1.20   thorpej 	/*
   1588       1.21   thorpej 	 * In-line version of pool_sethiwat(), because we don't want to
   1589       1.21   thorpej 	 * release the lock.
   1590       1.20   thorpej 	 */
   1591       1.20   thorpej 	pp->pr_maxpages = (n == 0)
   1592       1.20   thorpej 		? 0
   1593       1.20   thorpej 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1594       1.21   thorpej 
   1595  1.133.4.1       mjf 	mutex_exit(&pp->pr_lock);
   1596       1.20   thorpej }
   1597        1.3        pk 
   1598        1.3        pk /*
   1599        1.3        pk  * Release all complete pages that have not been used recently.
   1600        1.3        pk  */
   1601       1.66   thorpej int
   1602       1.59   thorpej #ifdef POOL_DIAGNOSTIC
   1603       1.42   thorpej _pool_reclaim(struct pool *pp, const char *file, long line)
   1604       1.56  sommerfe #else
   1605       1.56  sommerfe pool_reclaim(struct pool *pp)
   1606       1.56  sommerfe #endif
   1607        1.3        pk {
   1608        1.3        pk 	struct pool_item_header *ph, *phnext;
   1609       1.61       chs 	struct pool_pagelist pq;
   1610      1.102       chs 	struct timeval curtime, diff;
   1611  1.133.4.1       mjf 	bool klock;
   1612  1.133.4.1       mjf 	int rv;
   1613        1.3        pk 
   1614       1.68   thorpej 	if (pp->pr_drain_hook != NULL) {
   1615       1.68   thorpej 		/*
   1616       1.68   thorpej 		 * The drain hook must be called with the pool unlocked.
   1617       1.68   thorpej 		 */
   1618       1.68   thorpej 		(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
   1619       1.68   thorpej 	}
   1620       1.68   thorpej 
   1621  1.133.4.1       mjf 	/*
   1622  1.133.4.1       mjf 	 * XXXSMP Because mutexes at IPL_SOFTXXX are still spinlocks,
   1623  1.133.4.1       mjf 	 * and we are called from the pagedaemon without kernel_lock.
   1624  1.133.4.1       mjf 	 * Does not apply to IPL_SOFTBIO.
   1625  1.133.4.1       mjf 	 */
   1626  1.133.4.1       mjf 	if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK ||
   1627  1.133.4.1       mjf 	    pp->pr_ipl == IPL_SOFTSERIAL) {
   1628  1.133.4.1       mjf 		KERNEL_LOCK(1, NULL);
   1629  1.133.4.1       mjf 		klock = true;
   1630  1.133.4.1       mjf 	} else
   1631  1.133.4.1       mjf 		klock = false;
   1632  1.133.4.1       mjf 
   1633  1.133.4.1       mjf 	/* Reclaim items from the pool's cache (if any). */
   1634  1.133.4.1       mjf 	if (pp->pr_cache != NULL)
   1635  1.133.4.1       mjf 		pool_cache_invalidate(pp->pr_cache);
   1636  1.133.4.1       mjf 
   1637  1.133.4.1       mjf 	if (mutex_tryenter(&pp->pr_lock) == 0) {
   1638  1.133.4.1       mjf 		if (klock) {
   1639  1.133.4.1       mjf 			KERNEL_UNLOCK_ONE(NULL);
   1640  1.133.4.1       mjf 		}
   1641       1.66   thorpej 		return (0);
   1642  1.133.4.1       mjf 	}
   1643       1.25   thorpej 	pr_enter(pp, file, line);
   1644       1.68   thorpej 
   1645       1.88       chs 	LIST_INIT(&pq);
   1646       1.43   thorpej 
   1647      1.118    kardel 	getmicrotime(&curtime);
   1648       1.21   thorpej 
   1649       1.88       chs 	for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
   1650       1.88       chs 		phnext = LIST_NEXT(ph, ph_pagelist);
   1651        1.3        pk 
   1652        1.3        pk 		/* Check our minimum page claim */
   1653        1.3        pk 		if (pp->pr_npages <= pp->pr_minpages)
   1654        1.3        pk 			break;
   1655        1.3        pk 
   1656       1.88       chs 		KASSERT(ph->ph_nmissing == 0);
   1657       1.88       chs 		timersub(&curtime, &ph->ph_time, &diff);
   1658      1.117      yamt 		if (diff.tv_sec < pool_inactive_time
   1659      1.117      yamt 		    && !pa_starved_p(pp->pr_alloc))
   1660       1.88       chs 			continue;
   1661       1.21   thorpej 
   1662       1.88       chs 		/*
   1663       1.88       chs 		 * If freeing this page would put us below
   1664       1.88       chs 		 * the low water mark, stop now.
   1665       1.88       chs 		 */
   1666       1.88       chs 		if ((pp->pr_nitems - pp->pr_itemsperpage) <
   1667       1.88       chs 		    pp->pr_minitems)
   1668       1.88       chs 			break;
   1669       1.21   thorpej 
   1670       1.88       chs 		pr_rmpage(pp, ph, &pq);
   1671        1.3        pk 	}
   1672        1.3        pk 
   1673       1.25   thorpej 	pr_leave(pp);
   1674  1.133.4.1       mjf 	mutex_exit(&pp->pr_lock);
   1675       1.66   thorpej 
   1676  1.133.4.1       mjf 	if (LIST_EMPTY(&pq))
   1677  1.133.4.1       mjf 		rv = 0;
   1678  1.133.4.1       mjf 	else {
   1679  1.133.4.1       mjf 		pr_pagelist_free(pp, &pq);
   1680  1.133.4.1       mjf 		rv = 1;
   1681  1.133.4.1       mjf 	}
   1682  1.133.4.1       mjf 
   1683  1.133.4.1       mjf 	if (klock) {
   1684  1.133.4.1       mjf 		KERNEL_UNLOCK_ONE(NULL);
   1685  1.133.4.1       mjf 	}
   1686  1.133.4.1       mjf 
   1687  1.133.4.1       mjf 	return (rv);
   1688        1.3        pk }
   1689        1.3        pk 
   1690        1.3        pk /*
   1691  1.133.4.1       mjf  * Drain pools, one at a time.  This is a two stage process;
   1692  1.133.4.1       mjf  * drain_start kicks off a cross call to drain CPU-level caches
   1693  1.133.4.1       mjf  * if the pool has an associated pool_cache.  drain_end waits
   1694  1.133.4.1       mjf  * for those cross calls to finish, and then drains the cache
   1695  1.133.4.1       mjf  * (if any) and pool.
   1696      1.131        ad  *
   1697  1.133.4.1       mjf  * Note, must never be called from interrupt context.
   1698        1.3        pk  */
   1699        1.3        pk void
   1700  1.133.4.1       mjf pool_drain_start(struct pool **ppp, uint64_t *wp)
   1701        1.3        pk {
   1702        1.3        pk 	struct pool *pp;
   1703  1.133.4.1       mjf 
   1704  1.133.4.1       mjf 	KASSERT(!LIST_EMPTY(&pool_head));
   1705        1.3        pk 
   1706       1.61       chs 	pp = NULL;
   1707  1.133.4.1       mjf 
   1708  1.133.4.1       mjf 	/* Find next pool to drain, and add a reference. */
   1709  1.133.4.1       mjf 	mutex_enter(&pool_head_lock);
   1710  1.133.4.1       mjf 	do {
   1711  1.133.4.1       mjf 		if (drainpp == NULL) {
   1712  1.133.4.1       mjf 			drainpp = LIST_FIRST(&pool_head);
   1713  1.133.4.1       mjf 		}
   1714  1.133.4.1       mjf 		if (drainpp != NULL) {
   1715  1.133.4.1       mjf 			pp = drainpp;
   1716  1.133.4.1       mjf 			drainpp = LIST_NEXT(pp, pr_poollist);
   1717  1.133.4.1       mjf 		}
   1718  1.133.4.1       mjf 		/*
   1719  1.133.4.1       mjf 		 * Skip completely idle pools.  We depend on at least
   1720  1.133.4.1       mjf 		 * one pool in the system being active.
   1721  1.133.4.1       mjf 		 */
   1722  1.133.4.1       mjf 	} while (pp == NULL || pp->pr_npages == 0);
   1723  1.133.4.1       mjf 	pp->pr_refcnt++;
   1724  1.133.4.1       mjf 	mutex_exit(&pool_head_lock);
   1725  1.133.4.1       mjf 
   1726  1.133.4.1       mjf 	/* If there is a pool_cache, drain CPU level caches. */
   1727  1.133.4.1       mjf 	*ppp = pp;
   1728  1.133.4.1       mjf 	if (pp->pr_cache != NULL) {
   1729  1.133.4.1       mjf 		*wp = xc_broadcast(0, (xcfunc_t)pool_cache_xcall,
   1730  1.133.4.1       mjf 		    pp->pr_cache, NULL);
   1731  1.133.4.1       mjf 	}
   1732  1.133.4.1       mjf }
   1733  1.133.4.1       mjf 
   1734  1.133.4.1       mjf void
   1735  1.133.4.1       mjf pool_drain_end(struct pool *pp, uint64_t where)
   1736  1.133.4.1       mjf {
   1737  1.133.4.1       mjf 
   1738  1.133.4.1       mjf 	if (pp == NULL)
   1739  1.133.4.1       mjf 		return;
   1740  1.133.4.1       mjf 
   1741  1.133.4.1       mjf 	KASSERT(pp->pr_refcnt > 0);
   1742  1.133.4.1       mjf 
   1743  1.133.4.1       mjf 	/* Wait for remote draining to complete. */
   1744  1.133.4.1       mjf 	if (pp->pr_cache != NULL)
   1745  1.133.4.1       mjf 		xc_wait(where);
   1746  1.133.4.1       mjf 
   1747  1.133.4.1       mjf 	/* Drain the cache (if any) and pool.. */
   1748  1.133.4.1       mjf 	pool_reclaim(pp);
   1749  1.133.4.1       mjf 
   1750  1.133.4.1       mjf 	/* Finally, unlock the pool. */
   1751  1.133.4.1       mjf 	mutex_enter(&pool_head_lock);
   1752  1.133.4.1       mjf 	pp->pr_refcnt--;
   1753  1.133.4.1       mjf 	cv_broadcast(&pool_busy);
   1754  1.133.4.1       mjf 	mutex_exit(&pool_head_lock);
   1755        1.3        pk }
   1756        1.3        pk 
   1757        1.3        pk /*
   1758        1.3        pk  * Diagnostic helpers.
   1759        1.3        pk  */
   1760        1.3        pk void
   1761       1.42   thorpej pool_print(struct pool *pp, const char *modif)
   1762       1.21   thorpej {
   1763       1.21   thorpej 
   1764       1.25   thorpej 	pool_print1(pp, modif, printf);
   1765       1.21   thorpej }
   1766       1.21   thorpej 
   1767       1.25   thorpej void
   1768      1.108      yamt pool_printall(const char *modif, void (*pr)(const char *, ...))
   1769      1.108      yamt {
   1770      1.108      yamt 	struct pool *pp;
   1771      1.108      yamt 
   1772      1.108      yamt 	LIST_FOREACH(pp, &pool_head, pr_poollist) {
   1773      1.108      yamt 		pool_printit(pp, modif, pr);
   1774      1.108      yamt 	}
   1775      1.108      yamt }
   1776      1.108      yamt 
   1777      1.108      yamt void
   1778       1.42   thorpej pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1779       1.25   thorpej {
   1780       1.25   thorpej 
   1781       1.25   thorpej 	if (pp == NULL) {
   1782       1.25   thorpej 		(*pr)("Must specify a pool to print.\n");
   1783       1.25   thorpej 		return;
   1784       1.25   thorpej 	}
   1785       1.25   thorpej 
   1786       1.25   thorpej 	pool_print1(pp, modif, pr);
   1787       1.25   thorpej }
   1788       1.25   thorpej 
   1789       1.21   thorpej static void
   1790      1.124      yamt pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
   1791       1.97      yamt     void (*pr)(const char *, ...))
   1792       1.88       chs {
   1793       1.88       chs 	struct pool_item_header *ph;
   1794       1.88       chs #ifdef DIAGNOSTIC
   1795       1.88       chs 	struct pool_item *pi;
   1796       1.88       chs #endif
   1797       1.88       chs 
   1798       1.88       chs 	LIST_FOREACH(ph, pl, ph_pagelist) {
   1799       1.88       chs 		(*pr)("\t\tpage %p, nmissing %d, time %lu,%lu\n",
   1800       1.88       chs 		    ph->ph_page, ph->ph_nmissing,
   1801       1.88       chs 		    (u_long)ph->ph_time.tv_sec,
   1802       1.88       chs 		    (u_long)ph->ph_time.tv_usec);
   1803       1.88       chs #ifdef DIAGNOSTIC
   1804       1.97      yamt 		if (!(pp->pr_roflags & PR_NOTOUCH)) {
   1805      1.102       chs 			LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
   1806       1.97      yamt 				if (pi->pi_magic != PI_MAGIC) {
   1807       1.97      yamt 					(*pr)("\t\t\titem %p, magic 0x%x\n",
   1808       1.97      yamt 					    pi, pi->pi_magic);
   1809       1.97      yamt 				}
   1810       1.88       chs 			}
   1811       1.88       chs 		}
   1812       1.88       chs #endif
   1813       1.88       chs 	}
   1814       1.88       chs }
   1815       1.88       chs 
   1816       1.88       chs static void
   1817       1.42   thorpej pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1818        1.3        pk {
   1819       1.25   thorpej 	struct pool_item_header *ph;
   1820  1.133.4.1       mjf 	pool_cache_t pc;
   1821  1.133.4.1       mjf 	pcg_t *pcg;
   1822  1.133.4.1       mjf 	pool_cache_cpu_t *cc;
   1823  1.133.4.1       mjf 	uint64_t cpuhit, cpumiss;
   1824       1.44   thorpej 	int i, print_log = 0, print_pagelist = 0, print_cache = 0;
   1825       1.25   thorpej 	char c;
   1826       1.25   thorpej 
   1827       1.25   thorpej 	while ((c = *modif++) != '\0') {
   1828       1.25   thorpej 		if (c == 'l')
   1829       1.25   thorpej 			print_log = 1;
   1830       1.25   thorpej 		if (c == 'p')
   1831       1.25   thorpej 			print_pagelist = 1;
   1832       1.44   thorpej 		if (c == 'c')
   1833       1.44   thorpej 			print_cache = 1;
   1834       1.25   thorpej 	}
   1835       1.25   thorpej 
   1836  1.133.4.1       mjf 	if ((pc = pp->pr_cache) != NULL) {
   1837  1.133.4.1       mjf 		(*pr)("POOL CACHE");
   1838  1.133.4.1       mjf 	} else {
   1839  1.133.4.1       mjf 		(*pr)("POOL");
   1840  1.133.4.1       mjf 	}
   1841  1.133.4.1       mjf 
   1842  1.133.4.1       mjf 	(*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
   1843       1.25   thorpej 	    pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
   1844       1.25   thorpej 	    pp->pr_roflags);
   1845       1.66   thorpej 	(*pr)("\talloc %p\n", pp->pr_alloc);
   1846       1.25   thorpej 	(*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
   1847       1.25   thorpej 	    pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
   1848       1.25   thorpej 	(*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
   1849       1.25   thorpej 	    pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
   1850       1.25   thorpej 
   1851  1.133.4.1       mjf 	(*pr)("\tnget %lu, nfail %lu, nput %lu\n",
   1852       1.25   thorpej 	    pp->pr_nget, pp->pr_nfail, pp->pr_nput);
   1853       1.25   thorpej 	(*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
   1854       1.25   thorpej 	    pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
   1855       1.25   thorpej 
   1856       1.25   thorpej 	if (print_pagelist == 0)
   1857       1.25   thorpej 		goto skip_pagelist;
   1858       1.25   thorpej 
   1859       1.88       chs 	if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
   1860       1.88       chs 		(*pr)("\n\tempty page list:\n");
   1861       1.97      yamt 	pool_print_pagelist(pp, &pp->pr_emptypages, pr);
   1862       1.88       chs 	if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
   1863       1.88       chs 		(*pr)("\n\tfull page list:\n");
   1864       1.97      yamt 	pool_print_pagelist(pp, &pp->pr_fullpages, pr);
   1865       1.88       chs 	if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
   1866       1.88       chs 		(*pr)("\n\tpartial-page list:\n");
   1867       1.97      yamt 	pool_print_pagelist(pp, &pp->pr_partpages, pr);
   1868       1.88       chs 
   1869       1.25   thorpej 	if (pp->pr_curpage == NULL)
   1870       1.25   thorpej 		(*pr)("\tno current page\n");
   1871       1.25   thorpej 	else
   1872       1.25   thorpej 		(*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
   1873       1.25   thorpej 
   1874       1.25   thorpej  skip_pagelist:
   1875       1.25   thorpej 	if (print_log == 0)
   1876       1.25   thorpej 		goto skip_log;
   1877       1.25   thorpej 
   1878       1.25   thorpej 	(*pr)("\n");
   1879       1.25   thorpej 	if ((pp->pr_roflags & PR_LOGGING) == 0)
   1880       1.25   thorpej 		(*pr)("\tno log\n");
   1881      1.122  christos 	else {
   1882       1.25   thorpej 		pr_printlog(pp, NULL, pr);
   1883      1.122  christos 	}
   1884        1.3        pk 
   1885       1.25   thorpej  skip_log:
   1886       1.44   thorpej 
   1887      1.102       chs #define PR_GROUPLIST(pcg)						\
   1888      1.102       chs 	(*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail);		\
   1889  1.133.4.3       mjf 	for (i = 0; i < pcg->pcg_size; i++) {				\
   1890      1.102       chs 		if (pcg->pcg_objects[i].pcgo_pa !=			\
   1891      1.102       chs 		    POOL_PADDR_INVALID) {				\
   1892      1.102       chs 			(*pr)("\t\t\t%p, 0x%llx\n",			\
   1893      1.102       chs 			    pcg->pcg_objects[i].pcgo_va,		\
   1894      1.102       chs 			    (unsigned long long)			\
   1895      1.102       chs 			    pcg->pcg_objects[i].pcgo_pa);		\
   1896      1.102       chs 		} else {						\
   1897      1.102       chs 			(*pr)("\t\t\t%p\n",				\
   1898      1.102       chs 			    pcg->pcg_objects[i].pcgo_va);		\
   1899      1.102       chs 		}							\
   1900      1.102       chs 	}
   1901      1.102       chs 
   1902  1.133.4.1       mjf 	if (pc != NULL) {
   1903  1.133.4.1       mjf 		cpuhit = 0;
   1904  1.133.4.1       mjf 		cpumiss = 0;
   1905  1.133.4.1       mjf 		for (i = 0; i < MAXCPUS; i++) {
   1906  1.133.4.1       mjf 			if ((cc = pc->pc_cpus[i]) == NULL)
   1907  1.133.4.1       mjf 				continue;
   1908  1.133.4.1       mjf 			cpuhit += cc->cc_hits;
   1909  1.133.4.1       mjf 			cpumiss += cc->cc_misses;
   1910  1.133.4.1       mjf 		}
   1911  1.133.4.1       mjf 		(*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
   1912  1.133.4.1       mjf 		(*pr)("\tcache layer hits %llu misses %llu\n",
   1913  1.133.4.1       mjf 		    pc->pc_hits, pc->pc_misses);
   1914  1.133.4.1       mjf 		(*pr)("\tcache layer entry uncontended %llu contended %llu\n",
   1915  1.133.4.1       mjf 		    pc->pc_hits + pc->pc_misses - pc->pc_contended,
   1916  1.133.4.1       mjf 		    pc->pc_contended);
   1917  1.133.4.1       mjf 		(*pr)("\tcache layer empty groups %u full groups %u\n",
   1918  1.133.4.1       mjf 		    pc->pc_nempty, pc->pc_nfull);
   1919  1.133.4.1       mjf 		if (print_cache) {
   1920  1.133.4.1       mjf 			(*pr)("\tfull cache groups:\n");
   1921  1.133.4.1       mjf 			for (pcg = pc->pc_fullgroups; pcg != NULL;
   1922  1.133.4.1       mjf 			    pcg = pcg->pcg_next) {
   1923  1.133.4.1       mjf 				PR_GROUPLIST(pcg);
   1924  1.133.4.1       mjf 			}
   1925  1.133.4.1       mjf 			(*pr)("\tempty cache groups:\n");
   1926  1.133.4.1       mjf 			for (pcg = pc->pc_emptygroups; pcg != NULL;
   1927  1.133.4.1       mjf 			    pcg = pcg->pcg_next) {
   1928  1.133.4.1       mjf 				PR_GROUPLIST(pcg);
   1929  1.133.4.1       mjf 			}
   1930      1.103       chs 		}
   1931       1.44   thorpej 	}
   1932      1.102       chs #undef PR_GROUPLIST
   1933       1.44   thorpej 
   1934       1.88       chs 	pr_enter_check(pp, pr);
   1935       1.88       chs }
   1936       1.88       chs 
   1937       1.88       chs static int
   1938       1.88       chs pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
   1939       1.88       chs {
   1940       1.88       chs 	struct pool_item *pi;
   1941      1.128  christos 	void *page;
   1942       1.88       chs 	int n;
   1943       1.88       chs 
   1944      1.121      yamt 	if ((pp->pr_roflags & PR_NOALIGN) == 0) {
   1945      1.128  christos 		page = (void *)((uintptr_t)ph & pp->pr_alloc->pa_pagemask);
   1946      1.121      yamt 		if (page != ph->ph_page &&
   1947      1.121      yamt 		    (pp->pr_roflags & PR_PHINPAGE) != 0) {
   1948      1.121      yamt 			if (label != NULL)
   1949      1.121      yamt 				printf("%s: ", label);
   1950      1.121      yamt 			printf("pool(%p:%s): page inconsistency: page %p;"
   1951      1.121      yamt 			       " at page head addr %p (p %p)\n", pp,
   1952      1.121      yamt 				pp->pr_wchan, ph->ph_page,
   1953      1.121      yamt 				ph, page);
   1954      1.121      yamt 			return 1;
   1955      1.121      yamt 		}
   1956       1.88       chs 	}
   1957        1.3        pk 
   1958       1.97      yamt 	if ((pp->pr_roflags & PR_NOTOUCH) != 0)
   1959       1.97      yamt 		return 0;
   1960       1.97      yamt 
   1961      1.102       chs 	for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
   1962       1.88       chs 	     pi != NULL;
   1963      1.102       chs 	     pi = LIST_NEXT(pi,pi_list), n++) {
   1964       1.88       chs 
   1965       1.88       chs #ifdef DIAGNOSTIC
   1966       1.88       chs 		if (pi->pi_magic != PI_MAGIC) {
   1967       1.88       chs 			if (label != NULL)
   1968       1.88       chs 				printf("%s: ", label);
   1969       1.88       chs 			printf("pool(%s): free list modified: magic=%x;"
   1970      1.121      yamt 			       " page %p; item ordinal %d; addr %p\n",
   1971       1.88       chs 				pp->pr_wchan, pi->pi_magic, ph->ph_page,
   1972      1.121      yamt 				n, pi);
   1973       1.88       chs 			panic("pool");
   1974       1.88       chs 		}
   1975       1.88       chs #endif
   1976      1.121      yamt 		if ((pp->pr_roflags & PR_NOALIGN) != 0) {
   1977      1.121      yamt 			continue;
   1978      1.121      yamt 		}
   1979      1.128  christos 		page = (void *)((uintptr_t)pi & pp->pr_alloc->pa_pagemask);
   1980       1.88       chs 		if (page == ph->ph_page)
   1981       1.88       chs 			continue;
   1982       1.88       chs 
   1983       1.88       chs 		if (label != NULL)
   1984       1.88       chs 			printf("%s: ", label);
   1985       1.88       chs 		printf("pool(%p:%s): page inconsistency: page %p;"
   1986       1.88       chs 		       " item ordinal %d; addr %p (p %p)\n", pp,
   1987       1.88       chs 			pp->pr_wchan, ph->ph_page,
   1988       1.88       chs 			n, pi, page);
   1989       1.88       chs 		return 1;
   1990       1.88       chs 	}
   1991       1.88       chs 	return 0;
   1992        1.3        pk }
   1993        1.3        pk 
   1994       1.88       chs 
   1995        1.3        pk int
   1996       1.42   thorpej pool_chk(struct pool *pp, const char *label)
   1997        1.3        pk {
   1998        1.3        pk 	struct pool_item_header *ph;
   1999        1.3        pk 	int r = 0;
   2000        1.3        pk 
   2001  1.133.4.1       mjf 	mutex_enter(&pp->pr_lock);
   2002       1.88       chs 	LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
   2003       1.88       chs 		r = pool_chk_page(pp, label, ph);
   2004       1.88       chs 		if (r) {
   2005       1.88       chs 			goto out;
   2006       1.88       chs 		}
   2007       1.88       chs 	}
   2008       1.88       chs 	LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
   2009       1.88       chs 		r = pool_chk_page(pp, label, ph);
   2010       1.88       chs 		if (r) {
   2011        1.3        pk 			goto out;
   2012        1.3        pk 		}
   2013       1.88       chs 	}
   2014       1.88       chs 	LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
   2015       1.88       chs 		r = pool_chk_page(pp, label, ph);
   2016       1.88       chs 		if (r) {
   2017        1.3        pk 			goto out;
   2018        1.3        pk 		}
   2019        1.3        pk 	}
   2020       1.88       chs 
   2021        1.3        pk out:
   2022  1.133.4.1       mjf 	mutex_exit(&pp->pr_lock);
   2023        1.3        pk 	return (r);
   2024       1.43   thorpej }
   2025       1.43   thorpej 
   2026       1.43   thorpej /*
   2027       1.43   thorpej  * pool_cache_init:
   2028       1.43   thorpej  *
   2029       1.43   thorpej  *	Initialize a pool cache.
   2030  1.133.4.1       mjf  */
   2031  1.133.4.1       mjf pool_cache_t
   2032  1.133.4.1       mjf pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
   2033  1.133.4.1       mjf     const char *wchan, struct pool_allocator *palloc, int ipl,
   2034  1.133.4.1       mjf     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
   2035  1.133.4.1       mjf {
   2036  1.133.4.1       mjf 	pool_cache_t pc;
   2037  1.133.4.1       mjf 
   2038  1.133.4.1       mjf 	pc = pool_get(&cache_pool, PR_WAITOK);
   2039  1.133.4.1       mjf 	if (pc == NULL)
   2040  1.133.4.1       mjf 		return NULL;
   2041  1.133.4.1       mjf 
   2042  1.133.4.1       mjf 	pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
   2043  1.133.4.1       mjf 	   palloc, ipl, ctor, dtor, arg);
   2044  1.133.4.1       mjf 
   2045  1.133.4.1       mjf 	return pc;
   2046  1.133.4.1       mjf }
   2047  1.133.4.1       mjf 
   2048  1.133.4.1       mjf /*
   2049  1.133.4.1       mjf  * pool_cache_bootstrap:
   2050       1.43   thorpej  *
   2051  1.133.4.1       mjf  *	Kernel-private version of pool_cache_init().  The caller
   2052  1.133.4.1       mjf  *	provides initial storage.
   2053       1.43   thorpej  */
   2054       1.43   thorpej void
   2055  1.133.4.1       mjf pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
   2056  1.133.4.1       mjf     u_int align_offset, u_int flags, const char *wchan,
   2057  1.133.4.1       mjf     struct pool_allocator *palloc, int ipl,
   2058  1.133.4.1       mjf     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
   2059       1.43   thorpej     void *arg)
   2060       1.43   thorpej {
   2061  1.133.4.1       mjf 	CPU_INFO_ITERATOR cii;
   2062  1.133.4.1       mjf 	struct cpu_info *ci;
   2063  1.133.4.1       mjf 	struct pool *pp;
   2064  1.133.4.1       mjf 
   2065  1.133.4.1       mjf 	pp = &pc->pc_pool;
   2066  1.133.4.1       mjf 	if (palloc == NULL && ipl == IPL_NONE)
   2067  1.133.4.1       mjf 		palloc = &pool_allocator_nointr;
   2068  1.133.4.1       mjf 	pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl);
   2069       1.43   thorpej 
   2070  1.133.4.2       mjf 	/*
   2071  1.133.4.2       mjf 	 * XXXAD hack to prevent IP input processing from blocking.
   2072  1.133.4.2       mjf 	 */
   2073  1.133.4.2       mjf 	if (ipl == IPL_SOFTNET) {
   2074  1.133.4.2       mjf 		mutex_init(&pc->pc_lock, MUTEX_DEFAULT, IPL_VM);
   2075  1.133.4.2       mjf 	} else {
   2076  1.133.4.2       mjf 		mutex_init(&pc->pc_lock, MUTEX_DEFAULT, ipl);
   2077  1.133.4.2       mjf 	}
   2078       1.43   thorpej 
   2079  1.133.4.1       mjf 	if (ctor == NULL) {
   2080  1.133.4.1       mjf 		ctor = (int (*)(void *, void *, int))nullop;
   2081  1.133.4.1       mjf 	}
   2082  1.133.4.1       mjf 	if (dtor == NULL) {
   2083  1.133.4.1       mjf 		dtor = (void (*)(void *, void *))nullop;
   2084  1.133.4.1       mjf 	}
   2085       1.43   thorpej 
   2086  1.133.4.1       mjf 	pc->pc_emptygroups = NULL;
   2087  1.133.4.1       mjf 	pc->pc_fullgroups = NULL;
   2088  1.133.4.1       mjf 	pc->pc_partgroups = NULL;
   2089       1.43   thorpej 	pc->pc_ctor = ctor;
   2090       1.43   thorpej 	pc->pc_dtor = dtor;
   2091       1.43   thorpej 	pc->pc_arg  = arg;
   2092  1.133.4.1       mjf 	pc->pc_hits  = 0;
   2093       1.48   thorpej 	pc->pc_misses = 0;
   2094  1.133.4.1       mjf 	pc->pc_nempty = 0;
   2095  1.133.4.1       mjf 	pc->pc_npart = 0;
   2096  1.133.4.1       mjf 	pc->pc_nfull = 0;
   2097  1.133.4.1       mjf 	pc->pc_contended = 0;
   2098  1.133.4.1       mjf 	pc->pc_refcnt = 0;
   2099  1.133.4.1       mjf 	pc->pc_freecheck = NULL;
   2100  1.133.4.1       mjf 
   2101  1.133.4.3       mjf 	if ((flags & PR_LARGECACHE) != 0) {
   2102  1.133.4.3       mjf 		pc->pc_pcgsize = PCG_NOBJECTS_LARGE;
   2103  1.133.4.3       mjf 	} else {
   2104  1.133.4.3       mjf 		pc->pc_pcgsize = PCG_NOBJECTS_NORMAL;
   2105  1.133.4.3       mjf 	}
   2106  1.133.4.3       mjf 
   2107  1.133.4.1       mjf 	/* Allocate per-CPU caches. */
   2108  1.133.4.1       mjf 	memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
   2109  1.133.4.1       mjf 	pc->pc_ncpu = 0;
   2110  1.133.4.3       mjf 	if (ncpu < 2) {
   2111  1.133.4.1       mjf 		/* XXX For sparc: boot CPU is not attached yet. */
   2112  1.133.4.1       mjf 		pool_cache_cpu_init1(curcpu(), pc);
   2113  1.133.4.1       mjf 	} else {
   2114  1.133.4.1       mjf 		for (CPU_INFO_FOREACH(cii, ci)) {
   2115  1.133.4.1       mjf 			pool_cache_cpu_init1(ci, pc);
   2116  1.133.4.1       mjf 		}
   2117  1.133.4.1       mjf 	}
   2118  1.133.4.1       mjf 
   2119  1.133.4.1       mjf 	if (__predict_true(!cold)) {
   2120  1.133.4.1       mjf 		mutex_enter(&pp->pr_lock);
   2121  1.133.4.1       mjf 		pp->pr_cache = pc;
   2122  1.133.4.1       mjf 		mutex_exit(&pp->pr_lock);
   2123  1.133.4.1       mjf 		mutex_enter(&pool_head_lock);
   2124  1.133.4.1       mjf 		LIST_INSERT_HEAD(&pool_cache_head, pc, pc_cachelist);
   2125  1.133.4.1       mjf 		mutex_exit(&pool_head_lock);
   2126  1.133.4.1       mjf 	} else {
   2127  1.133.4.1       mjf 		pp->pr_cache = pc;
   2128  1.133.4.1       mjf 		LIST_INSERT_HEAD(&pool_cache_head, pc, pc_cachelist);
   2129  1.133.4.1       mjf 	}
   2130       1.43   thorpej }
   2131       1.43   thorpej 
   2132       1.43   thorpej /*
   2133       1.43   thorpej  * pool_cache_destroy:
   2134       1.43   thorpej  *
   2135       1.43   thorpej  *	Destroy a pool cache.
   2136       1.43   thorpej  */
   2137       1.43   thorpej void
   2138  1.133.4.1       mjf pool_cache_destroy(pool_cache_t pc)
   2139       1.43   thorpej {
   2140  1.133.4.1       mjf 	struct pool *pp = &pc->pc_pool;
   2141  1.133.4.1       mjf 	pool_cache_cpu_t *cc;
   2142  1.133.4.1       mjf 	pcg_t *pcg;
   2143  1.133.4.1       mjf 	int i;
   2144  1.133.4.1       mjf 
   2145  1.133.4.1       mjf 	/* Remove it from the global list. */
   2146  1.133.4.1       mjf 	mutex_enter(&pool_head_lock);
   2147  1.133.4.1       mjf 	while (pc->pc_refcnt != 0)
   2148  1.133.4.1       mjf 		cv_wait(&pool_busy, &pool_head_lock);
   2149  1.133.4.1       mjf 	LIST_REMOVE(pc, pc_cachelist);
   2150  1.133.4.1       mjf 	mutex_exit(&pool_head_lock);
   2151       1.43   thorpej 
   2152       1.43   thorpej 	/* First, invalidate the entire cache. */
   2153       1.43   thorpej 	pool_cache_invalidate(pc);
   2154       1.43   thorpej 
   2155  1.133.4.1       mjf 	/* Disassociate it from the pool. */
   2156  1.133.4.1       mjf 	mutex_enter(&pp->pr_lock);
   2157  1.133.4.1       mjf 	pp->pr_cache = NULL;
   2158  1.133.4.1       mjf 	mutex_exit(&pp->pr_lock);
   2159  1.133.4.1       mjf 
   2160  1.133.4.1       mjf 	/* Destroy per-CPU data */
   2161  1.133.4.1       mjf 	for (i = 0; i < MAXCPUS; i++) {
   2162  1.133.4.1       mjf 		if ((cc = pc->pc_cpus[i]) == NULL)
   2163  1.133.4.1       mjf 			continue;
   2164  1.133.4.1       mjf 		if ((pcg = cc->cc_current) != NULL) {
   2165  1.133.4.1       mjf 			pcg->pcg_next = NULL;
   2166  1.133.4.1       mjf 			pool_cache_invalidate_groups(pc, pcg);
   2167  1.133.4.1       mjf 		}
   2168  1.133.4.1       mjf 		if ((pcg = cc->cc_previous) != NULL) {
   2169  1.133.4.1       mjf 			pcg->pcg_next = NULL;
   2170  1.133.4.1       mjf 			pool_cache_invalidate_groups(pc, pcg);
   2171  1.133.4.1       mjf 		}
   2172  1.133.4.1       mjf 		if (cc != &pc->pc_cpu0)
   2173  1.133.4.1       mjf 			pool_put(&cache_cpu_pool, cc);
   2174  1.133.4.1       mjf 	}
   2175  1.133.4.1       mjf 
   2176  1.133.4.1       mjf 	/* Finally, destroy it. */
   2177  1.133.4.1       mjf 	mutex_destroy(&pc->pc_lock);
   2178  1.133.4.1       mjf 	pool_destroy(pp);
   2179  1.133.4.1       mjf 	pool_put(&cache_pool, pc);
   2180       1.43   thorpej }
   2181       1.43   thorpej 
   2182  1.133.4.1       mjf /*
   2183  1.133.4.1       mjf  * pool_cache_cpu_init1:
   2184  1.133.4.1       mjf  *
   2185  1.133.4.1       mjf  *	Called for each pool_cache whenever a new CPU is attached.
   2186  1.133.4.1       mjf  */
   2187  1.133.4.1       mjf static void
   2188  1.133.4.1       mjf pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
   2189       1.43   thorpej {
   2190  1.133.4.1       mjf 	pool_cache_cpu_t *cc;
   2191  1.133.4.1       mjf 	int index;
   2192       1.43   thorpej 
   2193  1.133.4.1       mjf 	index = ci->ci_index;
   2194       1.43   thorpej 
   2195  1.133.4.1       mjf 	KASSERT(index < MAXCPUS);
   2196  1.133.4.1       mjf 	KASSERT(((uintptr_t)pc->pc_cpus & (CACHE_LINE_SIZE - 1)) == 0);
   2197  1.133.4.1       mjf 
   2198  1.133.4.1       mjf 	if ((cc = pc->pc_cpus[index]) != NULL) {
   2199  1.133.4.1       mjf 		KASSERT(cc->cc_cpuindex == index);
   2200  1.133.4.1       mjf 		return;
   2201  1.133.4.1       mjf 	}
   2202  1.133.4.1       mjf 
   2203  1.133.4.1       mjf 	/*
   2204  1.133.4.1       mjf 	 * The first CPU is 'free'.  This needs to be the case for
   2205  1.133.4.1       mjf 	 * bootstrap - we may not be able to allocate yet.
   2206  1.133.4.1       mjf 	 */
   2207  1.133.4.1       mjf 	if (pc->pc_ncpu == 0) {
   2208  1.133.4.1       mjf 		cc = &pc->pc_cpu0;
   2209  1.133.4.1       mjf 		pc->pc_ncpu = 1;
   2210  1.133.4.1       mjf 	} else {
   2211  1.133.4.1       mjf 		mutex_enter(&pc->pc_lock);
   2212  1.133.4.1       mjf 		pc->pc_ncpu++;
   2213  1.133.4.1       mjf 		mutex_exit(&pc->pc_lock);
   2214  1.133.4.1       mjf 		cc = pool_get(&cache_cpu_pool, PR_WAITOK);
   2215  1.133.4.1       mjf 	}
   2216  1.133.4.1       mjf 
   2217  1.133.4.1       mjf 	cc->cc_ipl = pc->pc_pool.pr_ipl;
   2218  1.133.4.1       mjf 	cc->cc_iplcookie = makeiplcookie(cc->cc_ipl);
   2219  1.133.4.1       mjf 	cc->cc_cache = pc;
   2220  1.133.4.1       mjf 	cc->cc_cpuindex = index;
   2221  1.133.4.1       mjf 	cc->cc_hits = 0;
   2222  1.133.4.1       mjf 	cc->cc_misses = 0;
   2223  1.133.4.1       mjf 	cc->cc_current = NULL;
   2224  1.133.4.1       mjf 	cc->cc_previous = NULL;
   2225  1.133.4.1       mjf 
   2226  1.133.4.1       mjf 	pc->pc_cpus[index] = cc;
   2227       1.43   thorpej }
   2228       1.43   thorpej 
   2229  1.133.4.1       mjf /*
   2230  1.133.4.1       mjf  * pool_cache_cpu_init:
   2231  1.133.4.1       mjf  *
   2232  1.133.4.1       mjf  *	Called whenever a new CPU is attached.
   2233  1.133.4.1       mjf  */
   2234  1.133.4.1       mjf void
   2235  1.133.4.1       mjf pool_cache_cpu_init(struct cpu_info *ci)
   2236       1.43   thorpej {
   2237  1.133.4.1       mjf 	pool_cache_t pc;
   2238  1.133.4.1       mjf 
   2239  1.133.4.1       mjf 	mutex_enter(&pool_head_lock);
   2240  1.133.4.1       mjf 	LIST_FOREACH(pc, &pool_cache_head, pc_cachelist) {
   2241  1.133.4.1       mjf 		pc->pc_refcnt++;
   2242  1.133.4.1       mjf 		mutex_exit(&pool_head_lock);
   2243  1.133.4.1       mjf 
   2244  1.133.4.1       mjf 		pool_cache_cpu_init1(ci, pc);
   2245  1.133.4.1       mjf 
   2246  1.133.4.1       mjf 		mutex_enter(&pool_head_lock);
   2247  1.133.4.1       mjf 		pc->pc_refcnt--;
   2248  1.133.4.1       mjf 		cv_broadcast(&pool_busy);
   2249  1.133.4.1       mjf 	}
   2250  1.133.4.1       mjf 	mutex_exit(&pool_head_lock);
   2251  1.133.4.1       mjf }
   2252       1.43   thorpej 
   2253  1.133.4.1       mjf /*
   2254  1.133.4.1       mjf  * pool_cache_reclaim:
   2255  1.133.4.1       mjf  *
   2256  1.133.4.1       mjf  *	Reclaim memory from a pool cache.
   2257  1.133.4.1       mjf  */
   2258  1.133.4.1       mjf bool
   2259  1.133.4.1       mjf pool_cache_reclaim(pool_cache_t pc)
   2260  1.133.4.1       mjf {
   2261       1.43   thorpej 
   2262  1.133.4.1       mjf 	return pool_reclaim(&pc->pc_pool);
   2263       1.43   thorpej }
   2264       1.43   thorpej 
   2265      1.102       chs static void
   2266  1.133.4.1       mjf pool_cache_destruct_object1(pool_cache_t pc, void *object)
   2267      1.102       chs {
   2268      1.102       chs 
   2269  1.133.4.1       mjf 	(*pc->pc_dtor)(pc->pc_arg, object);
   2270  1.133.4.1       mjf 	pool_put(&pc->pc_pool, object);
   2271      1.102       chs }
   2272      1.102       chs 
   2273       1.43   thorpej /*
   2274  1.133.4.1       mjf  * pool_cache_destruct_object:
   2275       1.43   thorpej  *
   2276  1.133.4.1       mjf  *	Force destruction of an object and its release back into
   2277  1.133.4.1       mjf  *	the pool.
   2278       1.43   thorpej  */
   2279  1.133.4.1       mjf void
   2280  1.133.4.1       mjf pool_cache_destruct_object(pool_cache_t pc, void *object)
   2281       1.43   thorpej {
   2282       1.43   thorpej 
   2283  1.133.4.1       mjf 	FREECHECK_IN(&pc->pc_freecheck, object);
   2284       1.43   thorpej 
   2285  1.133.4.1       mjf 	pool_cache_destruct_object1(pc, object);
   2286  1.133.4.1       mjf }
   2287       1.43   thorpej 
   2288  1.133.4.1       mjf /*
   2289  1.133.4.1       mjf  * pool_cache_invalidate_groups:
   2290  1.133.4.1       mjf  *
   2291  1.133.4.1       mjf  *	Invalidate a chain of groups and destruct all objects.
   2292  1.133.4.1       mjf  */
   2293  1.133.4.1       mjf static void
   2294  1.133.4.1       mjf pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
   2295  1.133.4.1       mjf {
   2296  1.133.4.1       mjf 	void *object;
   2297  1.133.4.1       mjf 	pcg_t *next;
   2298  1.133.4.1       mjf 	int i;
   2299      1.125        ad 
   2300  1.133.4.1       mjf 	for (; pcg != NULL; pcg = next) {
   2301  1.133.4.1       mjf 		next = pcg->pcg_next;
   2302       1.43   thorpej 
   2303  1.133.4.1       mjf 		for (i = 0; i < pcg->pcg_avail; i++) {
   2304  1.133.4.1       mjf 			object = pcg->pcg_objects[i].pcgo_va;
   2305  1.133.4.1       mjf 			pool_cache_destruct_object1(pc, object);
   2306  1.133.4.1       mjf 		}
   2307       1.43   thorpej 
   2308  1.133.4.3       mjf 		if (pcg->pcg_size == PCG_NOBJECTS_LARGE) {
   2309  1.133.4.3       mjf 			pool_put(&pcg_large_pool, pcg);
   2310  1.133.4.3       mjf 		} else {
   2311  1.133.4.3       mjf 			KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL);
   2312  1.133.4.3       mjf 			pool_put(&pcg_normal_pool, pcg);
   2313  1.133.4.3       mjf 		}
   2314      1.102       chs 	}
   2315       1.43   thorpej }
   2316       1.43   thorpej 
   2317       1.43   thorpej /*
   2318  1.133.4.1       mjf  * pool_cache_invalidate:
   2319       1.43   thorpej  *
   2320  1.133.4.1       mjf  *	Invalidate a pool cache (destruct and release all of the
   2321  1.133.4.1       mjf  *	cached objects).  Does not reclaim objects from the pool.
   2322       1.43   thorpej  */
   2323       1.43   thorpej void
   2324  1.133.4.1       mjf pool_cache_invalidate(pool_cache_t pc)
   2325       1.43   thorpej {
   2326  1.133.4.1       mjf 	pcg_t *full, *empty, *part;
   2327       1.43   thorpej 
   2328  1.133.4.1       mjf 	mutex_enter(&pc->pc_lock);
   2329  1.133.4.1       mjf 	full = pc->pc_fullgroups;
   2330  1.133.4.1       mjf 	empty = pc->pc_emptygroups;
   2331  1.133.4.1       mjf 	part = pc->pc_partgroups;
   2332  1.133.4.1       mjf 	pc->pc_fullgroups = NULL;
   2333  1.133.4.1       mjf 	pc->pc_emptygroups = NULL;
   2334  1.133.4.1       mjf 	pc->pc_partgroups = NULL;
   2335  1.133.4.1       mjf 	pc->pc_nfull = 0;
   2336  1.133.4.1       mjf 	pc->pc_nempty = 0;
   2337  1.133.4.1       mjf 	pc->pc_npart = 0;
   2338  1.133.4.1       mjf 	mutex_exit(&pc->pc_lock);
   2339  1.133.4.1       mjf 
   2340  1.133.4.1       mjf 	pool_cache_invalidate_groups(pc, full);
   2341  1.133.4.1       mjf 	pool_cache_invalidate_groups(pc, empty);
   2342  1.133.4.1       mjf 	pool_cache_invalidate_groups(pc, part);
   2343  1.133.4.1       mjf }
   2344  1.133.4.1       mjf 
   2345  1.133.4.1       mjf void
   2346  1.133.4.1       mjf pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
   2347  1.133.4.1       mjf {
   2348  1.133.4.1       mjf 
   2349  1.133.4.1       mjf 	pool_set_drain_hook(&pc->pc_pool, fn, arg);
   2350  1.133.4.1       mjf }
   2351  1.133.4.1       mjf 
   2352  1.133.4.1       mjf void
   2353  1.133.4.1       mjf pool_cache_setlowat(pool_cache_t pc, int n)
   2354  1.133.4.1       mjf {
   2355      1.125        ad 
   2356  1.133.4.1       mjf 	pool_setlowat(&pc->pc_pool, n);
   2357  1.133.4.1       mjf }
   2358  1.133.4.1       mjf 
   2359  1.133.4.1       mjf void
   2360  1.133.4.1       mjf pool_cache_sethiwat(pool_cache_t pc, int n)
   2361  1.133.4.1       mjf {
   2362  1.133.4.1       mjf 
   2363  1.133.4.1       mjf 	pool_sethiwat(&pc->pc_pool, n);
   2364  1.133.4.1       mjf }
   2365  1.133.4.1       mjf 
   2366  1.133.4.1       mjf void
   2367  1.133.4.1       mjf pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
   2368  1.133.4.1       mjf {
   2369  1.133.4.1       mjf 
   2370  1.133.4.1       mjf 	pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
   2371  1.133.4.1       mjf }
   2372  1.133.4.1       mjf 
   2373  1.133.4.1       mjf static inline pool_cache_cpu_t *
   2374  1.133.4.1       mjf pool_cache_cpu_enter(pool_cache_t pc, int *s)
   2375  1.133.4.1       mjf {
   2376  1.133.4.1       mjf 	pool_cache_cpu_t *cc;
   2377  1.133.4.1       mjf 
   2378  1.133.4.1       mjf 	/*
   2379  1.133.4.1       mjf 	 * Prevent other users of the cache from accessing our
   2380  1.133.4.1       mjf 	 * CPU-local data.  To avoid touching shared state, we
   2381  1.133.4.1       mjf 	 * pull the neccessary information from CPU local data.
   2382  1.133.4.1       mjf 	 */
   2383  1.133.4.1       mjf 	crit_enter();
   2384  1.133.4.1       mjf 	cc = pc->pc_cpus[curcpu()->ci_index];
   2385  1.133.4.1       mjf 	KASSERT(cc->cc_cache == pc);
   2386  1.133.4.1       mjf 	if (cc->cc_ipl != IPL_NONE) {
   2387  1.133.4.1       mjf 		*s = splraiseipl(cc->cc_iplcookie);
   2388      1.109  christos 	}
   2389  1.133.4.1       mjf 	KASSERT(((uintptr_t)cc & (CACHE_LINE_SIZE - 1)) == 0);
   2390      1.109  christos 
   2391  1.133.4.1       mjf 	return cc;
   2392  1.133.4.1       mjf }
   2393       1.43   thorpej 
   2394  1.133.4.1       mjf static inline void
   2395  1.133.4.1       mjf pool_cache_cpu_exit(pool_cache_cpu_t *cc, int *s)
   2396  1.133.4.1       mjf {
   2397  1.133.4.1       mjf 
   2398  1.133.4.1       mjf 	/* No longer need exclusive access to the per-CPU data. */
   2399  1.133.4.1       mjf 	if (cc->cc_ipl != IPL_NONE) {
   2400  1.133.4.1       mjf 		splx(*s);
   2401      1.102       chs 	}
   2402  1.133.4.1       mjf 	crit_exit();
   2403  1.133.4.1       mjf }
   2404  1.133.4.1       mjf 
   2405  1.133.4.1       mjf #if __GNUC_PREREQ__(3, 0)
   2406  1.133.4.1       mjf __attribute ((noinline))
   2407  1.133.4.1       mjf #endif
   2408  1.133.4.1       mjf pool_cache_cpu_t *
   2409  1.133.4.1       mjf pool_cache_get_slow(pool_cache_cpu_t *cc, int *s, void **objectp,
   2410  1.133.4.1       mjf 		    paddr_t *pap, int flags)
   2411  1.133.4.1       mjf {
   2412  1.133.4.1       mjf 	pcg_t *pcg, *cur;
   2413  1.133.4.1       mjf 	uint64_t ncsw;
   2414  1.133.4.1       mjf 	pool_cache_t pc;
   2415  1.133.4.1       mjf 	void *object;
   2416  1.133.4.1       mjf 
   2417  1.133.4.1       mjf 	pc = cc->cc_cache;
   2418  1.133.4.1       mjf 	cc->cc_misses++;
   2419  1.133.4.1       mjf 
   2420  1.133.4.1       mjf 	/*
   2421  1.133.4.1       mjf 	 * Nothing was available locally.  Try and grab a group
   2422  1.133.4.1       mjf 	 * from the cache.
   2423  1.133.4.1       mjf 	 */
   2424  1.133.4.1       mjf 	if (!mutex_tryenter(&pc->pc_lock)) {
   2425  1.133.4.1       mjf 		ncsw = curlwp->l_ncsw;
   2426  1.133.4.1       mjf 		mutex_enter(&pc->pc_lock);
   2427  1.133.4.1       mjf 		pc->pc_contended++;
   2428       1.43   thorpej 
   2429       1.43   thorpej 		/*
   2430  1.133.4.1       mjf 		 * If we context switched while locking, then
   2431  1.133.4.1       mjf 		 * our view of the per-CPU data is invalid:
   2432  1.133.4.1       mjf 		 * retry.
   2433       1.43   thorpej 		 */
   2434  1.133.4.1       mjf 		if (curlwp->l_ncsw != ncsw) {
   2435  1.133.4.1       mjf 			mutex_exit(&pc->pc_lock);
   2436  1.133.4.1       mjf 			pool_cache_cpu_exit(cc, s);
   2437  1.133.4.1       mjf 			return pool_cache_cpu_enter(pc, s);
   2438  1.133.4.1       mjf 		}
   2439  1.133.4.1       mjf 	}
   2440      1.102       chs 
   2441  1.133.4.1       mjf 	if ((pcg = pc->pc_fullgroups) != NULL) {
   2442  1.133.4.1       mjf 		/*
   2443  1.133.4.1       mjf 		 * If there's a full group, release our empty
   2444  1.133.4.1       mjf 		 * group back to the cache.  Install the full
   2445  1.133.4.1       mjf 		 * group as cc_current and return.
   2446  1.133.4.1       mjf 		 */
   2447  1.133.4.1       mjf 		if ((cur = cc->cc_current) != NULL) {
   2448  1.133.4.1       mjf 			KASSERT(cur->pcg_avail == 0);
   2449  1.133.4.1       mjf 			cur->pcg_next = pc->pc_emptygroups;
   2450  1.133.4.1       mjf 			pc->pc_emptygroups = cur;
   2451  1.133.4.1       mjf 			pc->pc_nempty++;
   2452       1.43   thorpej 		}
   2453  1.133.4.3       mjf 		KASSERT(pcg->pcg_avail == pcg->pcg_size);
   2454  1.133.4.1       mjf 		cc->cc_current = pcg;
   2455  1.133.4.1       mjf 		pc->pc_fullgroups = pcg->pcg_next;
   2456  1.133.4.1       mjf 		pc->pc_hits++;
   2457  1.133.4.1       mjf 		pc->pc_nfull--;
   2458  1.133.4.1       mjf 		mutex_exit(&pc->pc_lock);
   2459  1.133.4.1       mjf 		return cc;
   2460       1.43   thorpej 	}
   2461       1.43   thorpej 
   2462  1.133.4.1       mjf 	/*
   2463  1.133.4.1       mjf 	 * Nothing available locally or in cache.  Take the slow
   2464  1.133.4.1       mjf 	 * path: fetch a new object from the pool and construct
   2465  1.133.4.1       mjf 	 * it.
   2466  1.133.4.1       mjf 	 */
   2467  1.133.4.1       mjf 	pc->pc_misses++;
   2468  1.133.4.1       mjf 	mutex_exit(&pc->pc_lock);
   2469  1.133.4.1       mjf 	pool_cache_cpu_exit(cc, s);
   2470  1.133.4.1       mjf 
   2471  1.133.4.1       mjf 	object = pool_get(&pc->pc_pool, flags);
   2472  1.133.4.1       mjf 	*objectp = object;
   2473  1.133.4.1       mjf 	if (object == NULL)
   2474  1.133.4.1       mjf 		return NULL;
   2475       1.43   thorpej 
   2476  1.133.4.1       mjf 	if ((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0) {
   2477  1.133.4.1       mjf 		pool_put(&pc->pc_pool, object);
   2478  1.133.4.1       mjf 		*objectp = NULL;
   2479  1.133.4.1       mjf 		return NULL;
   2480      1.102       chs 	}
   2481       1.51   thorpej 
   2482  1.133.4.1       mjf 	KASSERT((((vaddr_t)object + pc->pc_pool.pr_itemoffset) &
   2483  1.133.4.1       mjf 	    (pc->pc_pool.pr_align - 1)) == 0);
   2484  1.133.4.1       mjf 
   2485  1.133.4.1       mjf 	if (pap != NULL) {
   2486  1.133.4.1       mjf #ifdef POOL_VTOPHYS
   2487  1.133.4.1       mjf 		*pap = POOL_VTOPHYS(object);
   2488  1.133.4.1       mjf #else
   2489  1.133.4.1       mjf 		*pap = POOL_PADDR_INVALID;
   2490  1.133.4.1       mjf #endif
   2491  1.133.4.1       mjf 	}
   2492       1.51   thorpej 
   2493  1.133.4.1       mjf 	FREECHECK_OUT(&pc->pc_freecheck, object);
   2494  1.133.4.1       mjf 	return NULL;
   2495       1.43   thorpej }
   2496       1.43   thorpej 
   2497      1.130        ad /*
   2498  1.133.4.1       mjf  * pool_cache_get{,_paddr}:
   2499      1.130        ad  *
   2500  1.133.4.1       mjf  *	Get an object from a pool cache (optionally returning
   2501  1.133.4.1       mjf  *	the physical address of the object).
   2502      1.130        ad  */
   2503  1.133.4.1       mjf void *
   2504  1.133.4.1       mjf pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
   2505      1.102       chs {
   2506  1.133.4.1       mjf 	pool_cache_cpu_t *cc;
   2507  1.133.4.1       mjf 	pcg_t *pcg;
   2508      1.102       chs 	void *object;
   2509  1.133.4.1       mjf 	int s;
   2510      1.102       chs 
   2511  1.133.4.1       mjf #ifdef LOCKDEBUG
   2512  1.133.4.1       mjf 	if (flags & PR_WAITOK)
   2513  1.133.4.1       mjf 		ASSERT_SLEEPABLE(NULL, "pool_cache_get(PR_WAITOK)");
   2514  1.133.4.1       mjf #endif
   2515      1.130        ad 
   2516  1.133.4.1       mjf 	cc = pool_cache_cpu_enter(pc, &s);
   2517  1.133.4.1       mjf 	do {
   2518  1.133.4.1       mjf 		/* Try and allocate an object from the current group. */
   2519  1.133.4.1       mjf 	 	pcg = cc->cc_current;
   2520  1.133.4.1       mjf 		if (pcg != NULL && pcg->pcg_avail > 0) {
   2521  1.133.4.1       mjf 			object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;
   2522  1.133.4.1       mjf 			if (pap != NULL)
   2523  1.133.4.1       mjf 				*pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa;
   2524  1.133.4.1       mjf 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL;
   2525  1.133.4.3       mjf 			KASSERT(pcg->pcg_avail <= pcg->pcg_size);
   2526  1.133.4.1       mjf 			KASSERT(object != NULL);
   2527  1.133.4.1       mjf 			cc->cc_hits++;
   2528  1.133.4.1       mjf 			pool_cache_cpu_exit(cc, &s);
   2529  1.133.4.1       mjf 			FREECHECK_OUT(&pc->pc_freecheck, object);
   2530  1.133.4.1       mjf 			return object;
   2531      1.102       chs 		}
   2532      1.130        ad 
   2533  1.133.4.1       mjf 		/*
   2534  1.133.4.1       mjf 		 * That failed.  If the previous group isn't empty, swap
   2535  1.133.4.1       mjf 		 * it with the current group and allocate from there.
   2536  1.133.4.1       mjf 		 */
   2537  1.133.4.1       mjf 		pcg = cc->cc_previous;
   2538  1.133.4.1       mjf 		if (pcg != NULL && pcg->pcg_avail > 0) {
   2539  1.133.4.1       mjf 			cc->cc_previous = cc->cc_current;
   2540  1.133.4.1       mjf 			cc->cc_current = pcg;
   2541  1.133.4.1       mjf 			continue;
   2542  1.133.4.1       mjf 		}
   2543  1.133.4.1       mjf 
   2544  1.133.4.1       mjf 		/*
   2545  1.133.4.1       mjf 		 * Can't allocate from either group: try the slow path.
   2546  1.133.4.1       mjf 		 * If get_slow() allocated an object for us, or if
   2547  1.133.4.1       mjf 		 * no more objects are available, it will return NULL.
   2548  1.133.4.1       mjf 		 * Otherwise, we need to retry.
   2549  1.133.4.1       mjf 		 */
   2550  1.133.4.1       mjf 		cc = pool_cache_get_slow(cc, &s, &object, pap, flags);
   2551  1.133.4.1       mjf 	} while (cc != NULL);
   2552  1.133.4.1       mjf 
   2553  1.133.4.1       mjf 	return object;
   2554      1.105  christos }
   2555      1.105  christos 
   2556  1.133.4.1       mjf #if __GNUC_PREREQ__(3, 0)
   2557  1.133.4.1       mjf __attribute ((noinline))
   2558  1.133.4.1       mjf #endif
   2559  1.133.4.1       mjf pool_cache_cpu_t *
   2560  1.133.4.1       mjf pool_cache_put_slow(pool_cache_cpu_t *cc, int *s, void *object, paddr_t pa)
   2561      1.105  christos {
   2562  1.133.4.1       mjf 	pcg_t *pcg, *cur;
   2563  1.133.4.1       mjf 	uint64_t ncsw;
   2564  1.133.4.1       mjf 	pool_cache_t pc;
   2565  1.133.4.3       mjf 	u_int nobj;
   2566      1.105  christos 
   2567  1.133.4.1       mjf 	pc = cc->cc_cache;
   2568  1.133.4.1       mjf 	cc->cc_misses++;
   2569      1.105  christos 
   2570  1.133.4.1       mjf 	/*
   2571  1.133.4.1       mjf 	 * No free slots locally.  Try to grab an empty, unused
   2572  1.133.4.1       mjf 	 * group from the cache.
   2573  1.133.4.1       mjf 	 */
   2574  1.133.4.1       mjf 	if (!mutex_tryenter(&pc->pc_lock)) {
   2575  1.133.4.1       mjf 		ncsw = curlwp->l_ncsw;
   2576  1.133.4.1       mjf 		mutex_enter(&pc->pc_lock);
   2577  1.133.4.1       mjf 		pc->pc_contended++;
   2578      1.103       chs 
   2579  1.133.4.1       mjf 		/*
   2580  1.133.4.1       mjf 		 * If we context switched while locking, then
   2581  1.133.4.1       mjf 		 * our view of the per-CPU data is invalid:
   2582  1.133.4.1       mjf 		 * retry.
   2583  1.133.4.1       mjf 		 */
   2584  1.133.4.1       mjf 		if (curlwp->l_ncsw != ncsw) {
   2585  1.133.4.1       mjf 			mutex_exit(&pc->pc_lock);
   2586  1.133.4.1       mjf 			pool_cache_cpu_exit(cc, s);
   2587  1.133.4.1       mjf 			return pool_cache_cpu_enter(pc, s);
   2588  1.133.4.1       mjf 		}
   2589  1.133.4.1       mjf 	}
   2590  1.133.4.1       mjf 
   2591  1.133.4.1       mjf 	if ((pcg = pc->pc_emptygroups) != NULL) {
   2592  1.133.4.1       mjf 		/*
   2593  1.133.4.1       mjf 		 * If there's a empty group, release our full
   2594  1.133.4.1       mjf 		 * group back to the cache.  Install the empty
   2595  1.133.4.1       mjf 		 * group as cc_current and return.
   2596  1.133.4.1       mjf 		 */
   2597  1.133.4.1       mjf 		if ((cur = cc->cc_current) != NULL) {
   2598  1.133.4.3       mjf 			KASSERT(cur->pcg_avail == pcg->pcg_size);
   2599  1.133.4.1       mjf 			cur->pcg_next = pc->pc_fullgroups;
   2600  1.133.4.1       mjf 			pc->pc_fullgroups = cur;
   2601  1.133.4.1       mjf 			pc->pc_nfull++;
   2602  1.133.4.1       mjf 		}
   2603  1.133.4.1       mjf 		KASSERT(pcg->pcg_avail == 0);
   2604  1.133.4.1       mjf 		cc->cc_current = pcg;
   2605  1.133.4.1       mjf 		pc->pc_emptygroups = pcg->pcg_next;
   2606  1.133.4.1       mjf 		pc->pc_hits++;
   2607  1.133.4.1       mjf 		pc->pc_nempty--;
   2608  1.133.4.1       mjf 		mutex_exit(&pc->pc_lock);
   2609  1.133.4.1       mjf 		return cc;
   2610  1.133.4.1       mjf 	}
   2611  1.133.4.1       mjf 
   2612  1.133.4.1       mjf 	/*
   2613  1.133.4.1       mjf 	 * Nothing available locally or in cache.  Take the
   2614  1.133.4.1       mjf 	 * slow path and try to allocate a new group that we
   2615  1.133.4.1       mjf 	 * can release to.
   2616  1.133.4.1       mjf 	 */
   2617  1.133.4.1       mjf 	pc->pc_misses++;
   2618  1.133.4.1       mjf 	mutex_exit(&pc->pc_lock);
   2619  1.133.4.1       mjf 	pool_cache_cpu_exit(cc, s);
   2620  1.133.4.1       mjf 
   2621  1.133.4.1       mjf 	/*
   2622  1.133.4.1       mjf 	 * If we can't allocate a new group, just throw the
   2623  1.133.4.1       mjf 	 * object away.
   2624  1.133.4.1       mjf 	 */
   2625  1.133.4.3       mjf 	nobj = pc->pc_pcgsize;
   2626  1.133.4.3       mjf 	if (nobj == PCG_NOBJECTS_LARGE) {
   2627  1.133.4.3       mjf 		pcg = pool_get(&pcg_large_pool, PR_NOWAIT);
   2628  1.133.4.3       mjf 	} else {
   2629  1.133.4.3       mjf 		pcg = pool_get(&pcg_normal_pool, PR_NOWAIT);
   2630  1.133.4.3       mjf 	}
   2631  1.133.4.1       mjf 	if (pcg == NULL) {
   2632  1.133.4.1       mjf 		pool_cache_destruct_object(pc, object);
   2633  1.133.4.1       mjf 		return NULL;
   2634  1.133.4.1       mjf 	}
   2635  1.133.4.1       mjf 	pcg->pcg_avail = 0;
   2636  1.133.4.3       mjf 	pcg->pcg_size = nobj;
   2637  1.133.4.1       mjf 
   2638  1.133.4.1       mjf 	/*
   2639  1.133.4.1       mjf 	 * Add the empty group to the cache and try again.
   2640  1.133.4.1       mjf 	 */
   2641  1.133.4.1       mjf 	mutex_enter(&pc->pc_lock);
   2642  1.133.4.1       mjf 	pcg->pcg_next = pc->pc_emptygroups;
   2643  1.133.4.1       mjf 	pc->pc_emptygroups = pcg;
   2644  1.133.4.1       mjf 	pc->pc_nempty++;
   2645  1.133.4.1       mjf 	mutex_exit(&pc->pc_lock);
   2646  1.133.4.1       mjf 
   2647  1.133.4.1       mjf 	return pool_cache_cpu_enter(pc, s);
   2648  1.133.4.1       mjf }
   2649      1.102       chs 
   2650       1.43   thorpej /*
   2651  1.133.4.1       mjf  * pool_cache_put{,_paddr}:
   2652       1.43   thorpej  *
   2653  1.133.4.1       mjf  *	Put an object back to the pool cache (optionally caching the
   2654  1.133.4.1       mjf  *	physical address of the object).
   2655       1.43   thorpej  */
   2656      1.101   thorpej void
   2657  1.133.4.1       mjf pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
   2658       1.43   thorpej {
   2659  1.133.4.1       mjf 	pool_cache_cpu_t *cc;
   2660  1.133.4.1       mjf 	pcg_t *pcg;
   2661  1.133.4.1       mjf 	int s;
   2662      1.101   thorpej 
   2663  1.133.4.1       mjf 	FREECHECK_IN(&pc->pc_freecheck, object);
   2664       1.43   thorpej 
   2665  1.133.4.1       mjf 	cc = pool_cache_cpu_enter(pc, &s);
   2666  1.133.4.1       mjf 	do {
   2667  1.133.4.1       mjf 		/* If the current group isn't full, release it there. */
   2668  1.133.4.1       mjf 	 	pcg = cc->cc_current;
   2669  1.133.4.3       mjf 		if (pcg != NULL && pcg->pcg_avail < pcg->pcg_size) {
   2670  1.133.4.1       mjf 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object;
   2671  1.133.4.1       mjf 			pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa;
   2672  1.133.4.1       mjf 			pcg->pcg_avail++;
   2673  1.133.4.1       mjf 			cc->cc_hits++;
   2674  1.133.4.1       mjf 			pool_cache_cpu_exit(cc, &s);
   2675  1.133.4.1       mjf 			return;
   2676  1.133.4.1       mjf 		}
   2677       1.43   thorpej 
   2678  1.133.4.1       mjf 		/*
   2679  1.133.4.1       mjf 		 * That failed.  If the previous group is empty, swap
   2680  1.133.4.1       mjf 		 * it with the current group and try again.
   2681  1.133.4.1       mjf 		 */
   2682  1.133.4.1       mjf 		pcg = cc->cc_previous;
   2683  1.133.4.1       mjf 		if (pcg != NULL && pcg->pcg_avail == 0) {
   2684  1.133.4.1       mjf 			cc->cc_previous = cc->cc_current;
   2685  1.133.4.1       mjf 			cc->cc_current = pcg;
   2686  1.133.4.1       mjf 			continue;
   2687  1.133.4.1       mjf 		}
   2688       1.43   thorpej 
   2689  1.133.4.1       mjf 		/*
   2690  1.133.4.1       mjf 		 * Can't free to either group: try the slow path.
   2691  1.133.4.1       mjf 		 * If put_slow() releases the object for us, it
   2692  1.133.4.1       mjf 		 * will return NULL.  Otherwise we need to retry.
   2693  1.133.4.1       mjf 		 */
   2694  1.133.4.1       mjf 		cc = pool_cache_put_slow(cc, &s, object, pa);
   2695  1.133.4.1       mjf 	} while (cc != NULL);
   2696       1.43   thorpej }
   2697       1.43   thorpej 
   2698       1.43   thorpej /*
   2699  1.133.4.1       mjf  * pool_cache_xcall:
   2700       1.43   thorpej  *
   2701  1.133.4.1       mjf  *	Transfer objects from the per-CPU cache to the global cache.
   2702  1.133.4.1       mjf  *	Run within a cross-call thread.
   2703       1.43   thorpej  */
   2704       1.43   thorpej static void
   2705  1.133.4.1       mjf pool_cache_xcall(pool_cache_t pc)
   2706       1.43   thorpej {
   2707  1.133.4.1       mjf 	pool_cache_cpu_t *cc;
   2708  1.133.4.1       mjf 	pcg_t *prev, *cur, **list;
   2709  1.133.4.1       mjf 	int s = 0; /* XXXgcc */
   2710  1.133.4.1       mjf 
   2711  1.133.4.1       mjf 	cc = pool_cache_cpu_enter(pc, &s);
   2712  1.133.4.1       mjf 	cur = cc->cc_current;
   2713  1.133.4.1       mjf 	cc->cc_current = NULL;
   2714  1.133.4.1       mjf 	prev = cc->cc_previous;
   2715  1.133.4.1       mjf 	cc->cc_previous = NULL;
   2716  1.133.4.1       mjf 	pool_cache_cpu_exit(cc, &s);
   2717  1.133.4.1       mjf 
   2718  1.133.4.1       mjf 	/*
   2719  1.133.4.1       mjf 	 * XXXSMP Go to splvm to prevent kernel_lock from being taken,
   2720  1.133.4.1       mjf 	 * because locks at IPL_SOFTXXX are still spinlocks.  Does not
   2721  1.133.4.1       mjf 	 * apply to IPL_SOFTBIO.  Cross-call threads do not take the
   2722  1.133.4.1       mjf 	 * kernel_lock.
   2723      1.101   thorpej 	 */
   2724  1.133.4.1       mjf 	s = splvm();
   2725  1.133.4.1       mjf 	mutex_enter(&pc->pc_lock);
   2726  1.133.4.1       mjf 	if (cur != NULL) {
   2727  1.133.4.3       mjf 		if (cur->pcg_avail == cur->pcg_size) {
   2728  1.133.4.1       mjf 			list = &pc->pc_fullgroups;
   2729  1.133.4.1       mjf 			pc->pc_nfull++;
   2730  1.133.4.1       mjf 		} else if (cur->pcg_avail == 0) {
   2731  1.133.4.1       mjf 			list = &pc->pc_emptygroups;
   2732  1.133.4.1       mjf 			pc->pc_nempty++;
   2733  1.133.4.1       mjf 		} else {
   2734  1.133.4.1       mjf 			list = &pc->pc_partgroups;
   2735  1.133.4.1       mjf 			pc->pc_npart++;
   2736  1.133.4.1       mjf 		}
   2737  1.133.4.1       mjf 		cur->pcg_next = *list;
   2738  1.133.4.1       mjf 		*list = cur;
   2739  1.133.4.1       mjf 	}
   2740  1.133.4.1       mjf 	if (prev != NULL) {
   2741  1.133.4.3       mjf 		if (prev->pcg_avail == prev->pcg_size) {
   2742  1.133.4.1       mjf 			list = &pc->pc_fullgroups;
   2743  1.133.4.1       mjf 			pc->pc_nfull++;
   2744  1.133.4.1       mjf 		} else if (prev->pcg_avail == 0) {
   2745  1.133.4.1       mjf 			list = &pc->pc_emptygroups;
   2746  1.133.4.1       mjf 			pc->pc_nempty++;
   2747  1.133.4.1       mjf 		} else {
   2748  1.133.4.1       mjf 			list = &pc->pc_partgroups;
   2749  1.133.4.1       mjf 			pc->pc_npart++;
   2750  1.133.4.1       mjf 		}
   2751  1.133.4.1       mjf 		prev->pcg_next = *list;
   2752  1.133.4.1       mjf 		*list = prev;
   2753  1.133.4.1       mjf 	}
   2754  1.133.4.1       mjf 	mutex_exit(&pc->pc_lock);
   2755  1.133.4.1       mjf 	splx(s);
   2756        1.3        pk }
   2757       1.66   thorpej 
   2758       1.66   thorpej /*
   2759       1.66   thorpej  * Pool backend allocators.
   2760       1.66   thorpej  *
   2761       1.66   thorpej  * Each pool has a backend allocator that handles allocation, deallocation,
   2762       1.66   thorpej  * and any additional draining that might be needed.
   2763       1.66   thorpej  *
   2764       1.66   thorpej  * We provide two standard allocators:
   2765       1.66   thorpej  *
   2766       1.66   thorpej  *	pool_allocator_kmem - the default when no allocator is specified
   2767       1.66   thorpej  *
   2768       1.66   thorpej  *	pool_allocator_nointr - used for pools that will not be accessed
   2769       1.66   thorpej  *	in interrupt context.
   2770       1.66   thorpej  */
   2771       1.66   thorpej void	*pool_page_alloc(struct pool *, int);
   2772       1.66   thorpej void	pool_page_free(struct pool *, void *);
   2773       1.66   thorpej 
   2774      1.112     bjh21 #ifdef POOL_SUBPAGE
   2775      1.112     bjh21 struct pool_allocator pool_allocator_kmem_fullpage = {
   2776      1.112     bjh21 	pool_page_alloc, pool_page_free, 0,
   2777      1.117      yamt 	.pa_backingmapptr = &kmem_map,
   2778      1.112     bjh21 };
   2779      1.112     bjh21 #else
   2780       1.66   thorpej struct pool_allocator pool_allocator_kmem = {
   2781       1.66   thorpej 	pool_page_alloc, pool_page_free, 0,
   2782      1.117      yamt 	.pa_backingmapptr = &kmem_map,
   2783       1.66   thorpej };
   2784      1.112     bjh21 #endif
   2785       1.66   thorpej 
   2786       1.66   thorpej void	*pool_page_alloc_nointr(struct pool *, int);
   2787       1.66   thorpej void	pool_page_free_nointr(struct pool *, void *);
   2788       1.66   thorpej 
   2789      1.112     bjh21 #ifdef POOL_SUBPAGE
   2790      1.112     bjh21 struct pool_allocator pool_allocator_nointr_fullpage = {
   2791      1.112     bjh21 	pool_page_alloc_nointr, pool_page_free_nointr, 0,
   2792      1.117      yamt 	.pa_backingmapptr = &kernel_map,
   2793      1.112     bjh21 };
   2794      1.112     bjh21 #else
   2795       1.66   thorpej struct pool_allocator pool_allocator_nointr = {
   2796       1.66   thorpej 	pool_page_alloc_nointr, pool_page_free_nointr, 0,
   2797      1.117      yamt 	.pa_backingmapptr = &kernel_map,
   2798       1.66   thorpej };
   2799      1.112     bjh21 #endif
   2800       1.66   thorpej 
   2801       1.66   thorpej #ifdef POOL_SUBPAGE
   2802       1.66   thorpej void	*pool_subpage_alloc(struct pool *, int);
   2803       1.66   thorpej void	pool_subpage_free(struct pool *, void *);
   2804       1.66   thorpej 
   2805      1.112     bjh21 struct pool_allocator pool_allocator_kmem = {
   2806      1.112     bjh21 	pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
   2807      1.117      yamt 	.pa_backingmapptr = &kmem_map,
   2808      1.112     bjh21 };
   2809      1.112     bjh21 
   2810      1.112     bjh21 void	*pool_subpage_alloc_nointr(struct pool *, int);
   2811      1.112     bjh21 void	pool_subpage_free_nointr(struct pool *, void *);
   2812      1.112     bjh21 
   2813      1.112     bjh21 struct pool_allocator pool_allocator_nointr = {
   2814      1.112     bjh21 	pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
   2815      1.117      yamt 	.pa_backingmapptr = &kmem_map,
   2816       1.66   thorpej };
   2817       1.66   thorpej #endif /* POOL_SUBPAGE */
   2818       1.66   thorpej 
   2819      1.117      yamt static void *
   2820      1.117      yamt pool_allocator_alloc(struct pool *pp, int flags)
   2821       1.66   thorpej {
   2822      1.117      yamt 	struct pool_allocator *pa = pp->pr_alloc;
   2823       1.66   thorpej 	void *res;
   2824       1.66   thorpej 
   2825      1.117      yamt 	res = (*pa->pa_alloc)(pp, flags);
   2826      1.117      yamt 	if (res == NULL && (flags & PR_WAITOK) == 0) {
   2827       1.66   thorpej 		/*
   2828      1.117      yamt 		 * We only run the drain hook here if PR_NOWAIT.
   2829      1.117      yamt 		 * In other cases, the hook will be run in
   2830      1.117      yamt 		 * pool_reclaim().
   2831       1.66   thorpej 		 */
   2832      1.117      yamt 		if (pp->pr_drain_hook != NULL) {
   2833      1.117      yamt 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
   2834      1.117      yamt 			res = (*pa->pa_alloc)(pp, flags);
   2835       1.66   thorpej 		}
   2836      1.117      yamt 	}
   2837      1.117      yamt 	return res;
   2838       1.66   thorpej }
   2839       1.66   thorpej 
   2840      1.117      yamt static void
   2841       1.66   thorpej pool_allocator_free(struct pool *pp, void *v)
   2842       1.66   thorpej {
   2843       1.66   thorpej 	struct pool_allocator *pa = pp->pr_alloc;
   2844       1.66   thorpej 
   2845       1.66   thorpej 	(*pa->pa_free)(pp, v);
   2846       1.66   thorpej }
   2847       1.66   thorpej 
   2848       1.66   thorpej void *
   2849      1.124      yamt pool_page_alloc(struct pool *pp, int flags)
   2850       1.66   thorpej {
   2851      1.127   thorpej 	bool waitok = (flags & PR_WAITOK) ? true : false;
   2852       1.66   thorpej 
   2853      1.100      yamt 	return ((void *) uvm_km_alloc_poolpage_cache(kmem_map, waitok));
   2854       1.66   thorpej }
   2855       1.66   thorpej 
   2856       1.66   thorpej void
   2857      1.124      yamt pool_page_free(struct pool *pp, void *v)
   2858       1.66   thorpej {
   2859       1.66   thorpej 
   2860       1.98      yamt 	uvm_km_free_poolpage_cache(kmem_map, (vaddr_t) v);
   2861       1.98      yamt }
   2862       1.98      yamt 
   2863       1.98      yamt static void *
   2864      1.124      yamt pool_page_alloc_meta(struct pool *pp, int flags)
   2865       1.98      yamt {
   2866      1.127   thorpej 	bool waitok = (flags & PR_WAITOK) ? true : false;
   2867       1.98      yamt 
   2868      1.100      yamt 	return ((void *) uvm_km_alloc_poolpage(kmem_map, waitok));
   2869       1.98      yamt }
   2870       1.98      yamt 
   2871       1.98      yamt static void
   2872      1.124      yamt pool_page_free_meta(struct pool *pp, void *v)
   2873       1.98      yamt {
   2874       1.98      yamt 
   2875      1.100      yamt 	uvm_km_free_poolpage(kmem_map, (vaddr_t) v);
   2876       1.66   thorpej }
   2877       1.66   thorpej 
   2878       1.66   thorpej #ifdef POOL_SUBPAGE
   2879       1.66   thorpej /* Sub-page allocator, for machines with large hardware pages. */
   2880       1.66   thorpej void *
   2881       1.66   thorpej pool_subpage_alloc(struct pool *pp, int flags)
   2882       1.66   thorpej {
   2883  1.133.4.1       mjf 	return pool_get(&psppool, flags);
   2884       1.66   thorpej }
   2885       1.66   thorpej 
   2886       1.66   thorpej void
   2887       1.66   thorpej pool_subpage_free(struct pool *pp, void *v)
   2888       1.66   thorpej {
   2889       1.66   thorpej 	pool_put(&psppool, v);
   2890       1.66   thorpej }
   2891       1.66   thorpej 
   2892       1.66   thorpej /* We don't provide a real nointr allocator.  Maybe later. */
   2893       1.66   thorpej void *
   2894      1.112     bjh21 pool_subpage_alloc_nointr(struct pool *pp, int flags)
   2895       1.66   thorpej {
   2896       1.66   thorpej 
   2897       1.66   thorpej 	return (pool_subpage_alloc(pp, flags));
   2898       1.66   thorpej }
   2899       1.66   thorpej 
   2900       1.66   thorpej void
   2901      1.112     bjh21 pool_subpage_free_nointr(struct pool *pp, void *v)
   2902       1.66   thorpej {
   2903       1.66   thorpej 
   2904       1.66   thorpej 	pool_subpage_free(pp, v);
   2905       1.66   thorpej }
   2906      1.112     bjh21 #endif /* POOL_SUBPAGE */
   2907       1.66   thorpej void *
   2908      1.124      yamt pool_page_alloc_nointr(struct pool *pp, int flags)
   2909       1.66   thorpej {
   2910      1.127   thorpej 	bool waitok = (flags & PR_WAITOK) ? true : false;
   2911       1.66   thorpej 
   2912      1.100      yamt 	return ((void *) uvm_km_alloc_poolpage_cache(kernel_map, waitok));
   2913       1.66   thorpej }
   2914       1.66   thorpej 
   2915       1.66   thorpej void
   2916      1.124      yamt pool_page_free_nointr(struct pool *pp, void *v)
   2917       1.66   thorpej {
   2918       1.66   thorpej 
   2919       1.98      yamt 	uvm_km_free_poolpage_cache(kernel_map, (vaddr_t) v);
   2920       1.66   thorpej }
   2921  1.133.4.3       mjf 
   2922  1.133.4.3       mjf #if defined(DDB)
   2923  1.133.4.3       mjf static bool
   2924  1.133.4.3       mjf pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
   2925  1.133.4.3       mjf {
   2926  1.133.4.3       mjf 
   2927  1.133.4.3       mjf 	return (uintptr_t)ph->ph_page <= addr &&
   2928  1.133.4.3       mjf 	    addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz;
   2929  1.133.4.3       mjf }
   2930  1.133.4.3       mjf 
   2931  1.133.4.3       mjf static bool
   2932  1.133.4.3       mjf pool_in_item(struct pool *pp, void *item, uintptr_t addr)
   2933  1.133.4.3       mjf {
   2934  1.133.4.3       mjf 
   2935  1.133.4.3       mjf 	return (uintptr_t)item <= addr && addr < (uintptr_t)item + pp->pr_size;
   2936  1.133.4.3       mjf }
   2937  1.133.4.3       mjf 
   2938  1.133.4.3       mjf static bool
   2939  1.133.4.3       mjf pool_in_cg(struct pool *pp, struct pool_cache_group *pcg, uintptr_t addr)
   2940  1.133.4.3       mjf {
   2941  1.133.4.3       mjf 	int i;
   2942  1.133.4.3       mjf 
   2943  1.133.4.3       mjf 	if (pcg == NULL) {
   2944  1.133.4.3       mjf 		return false;
   2945  1.133.4.3       mjf 	}
   2946  1.133.4.3       mjf 	for (i = 0; i < pcg->pcg_avail; i++) {
   2947  1.133.4.3       mjf 		if (pool_in_item(pp, pcg->pcg_objects[i].pcgo_va, addr)) {
   2948  1.133.4.3       mjf 			return true;
   2949  1.133.4.3       mjf 		}
   2950  1.133.4.3       mjf 	}
   2951  1.133.4.3       mjf 	return false;
   2952  1.133.4.3       mjf }
   2953  1.133.4.3       mjf 
   2954  1.133.4.3       mjf static bool
   2955  1.133.4.3       mjf pool_allocated(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
   2956  1.133.4.3       mjf {
   2957  1.133.4.3       mjf 
   2958  1.133.4.3       mjf 	if ((pp->pr_roflags & PR_NOTOUCH) != 0) {
   2959  1.133.4.3       mjf 		unsigned int idx = pr_item_notouch_index(pp, ph, (void *)addr);
   2960  1.133.4.3       mjf 		pool_item_bitmap_t *bitmap =
   2961  1.133.4.3       mjf 		    ph->ph_bitmap + (idx / BITMAP_SIZE);
   2962  1.133.4.3       mjf 		pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
   2963  1.133.4.3       mjf 
   2964  1.133.4.3       mjf 		return (*bitmap & mask) == 0;
   2965  1.133.4.3       mjf 	} else {
   2966  1.133.4.3       mjf 		struct pool_item *pi;
   2967  1.133.4.3       mjf 
   2968  1.133.4.3       mjf 		LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
   2969  1.133.4.3       mjf 			if (pool_in_item(pp, pi, addr)) {
   2970  1.133.4.3       mjf 				return false;
   2971  1.133.4.3       mjf 			}
   2972  1.133.4.3       mjf 		}
   2973  1.133.4.3       mjf 		return true;
   2974  1.133.4.3       mjf 	}
   2975  1.133.4.3       mjf }
   2976  1.133.4.3       mjf 
   2977  1.133.4.3       mjf void
   2978  1.133.4.3       mjf pool_whatis(uintptr_t addr, void (*pr)(const char *, ...))
   2979  1.133.4.3       mjf {
   2980  1.133.4.3       mjf 	struct pool *pp;
   2981  1.133.4.3       mjf 
   2982  1.133.4.3       mjf 	LIST_FOREACH(pp, &pool_head, pr_poollist) {
   2983  1.133.4.3       mjf 		struct pool_item_header *ph;
   2984  1.133.4.3       mjf 		uintptr_t item;
   2985  1.133.4.3       mjf 		bool allocated = true;
   2986  1.133.4.3       mjf 		bool incache = false;
   2987  1.133.4.3       mjf 		bool incpucache = false;
   2988  1.133.4.3       mjf 		char cpucachestr[32];
   2989  1.133.4.3       mjf 
   2990  1.133.4.3       mjf 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
   2991  1.133.4.3       mjf 			LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
   2992  1.133.4.3       mjf 				if (pool_in_page(pp, ph, addr)) {
   2993  1.133.4.3       mjf 					goto found;
   2994  1.133.4.3       mjf 				}
   2995  1.133.4.3       mjf 			}
   2996  1.133.4.3       mjf 			LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
   2997  1.133.4.3       mjf 				if (pool_in_page(pp, ph, addr)) {
   2998  1.133.4.3       mjf 					allocated =
   2999  1.133.4.3       mjf 					    pool_allocated(pp, ph, addr);
   3000  1.133.4.3       mjf 					goto found;
   3001  1.133.4.3       mjf 				}
   3002  1.133.4.3       mjf 			}
   3003  1.133.4.3       mjf 			LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
   3004  1.133.4.3       mjf 				if (pool_in_page(pp, ph, addr)) {
   3005  1.133.4.3       mjf 					allocated = false;
   3006  1.133.4.3       mjf 					goto found;
   3007  1.133.4.3       mjf 				}
   3008  1.133.4.3       mjf 			}
   3009  1.133.4.3       mjf 			continue;
   3010  1.133.4.3       mjf 		} else {
   3011  1.133.4.3       mjf 			ph = pr_find_pagehead_noalign(pp, (void *)addr);
   3012  1.133.4.3       mjf 			if (ph == NULL || !pool_in_page(pp, ph, addr)) {
   3013  1.133.4.3       mjf 				continue;
   3014  1.133.4.3       mjf 			}
   3015  1.133.4.3       mjf 			allocated = pool_allocated(pp, ph, addr);
   3016  1.133.4.3       mjf 		}
   3017  1.133.4.3       mjf found:
   3018  1.133.4.3       mjf 		if (allocated && pp->pr_cache) {
   3019  1.133.4.3       mjf 			pool_cache_t pc = pp->pr_cache;
   3020  1.133.4.3       mjf 			struct pool_cache_group *pcg;
   3021  1.133.4.3       mjf 			int i;
   3022  1.133.4.3       mjf 
   3023  1.133.4.3       mjf 			for (pcg = pc->pc_fullgroups; pcg != NULL;
   3024  1.133.4.3       mjf 			    pcg = pcg->pcg_next) {
   3025  1.133.4.3       mjf 				if (pool_in_cg(pp, pcg, addr)) {
   3026  1.133.4.3       mjf 					incache = true;
   3027  1.133.4.3       mjf 					goto print;
   3028  1.133.4.3       mjf 				}
   3029  1.133.4.3       mjf 			}
   3030  1.133.4.3       mjf 			for (i = 0; i < MAXCPUS; i++) {
   3031  1.133.4.3       mjf 				pool_cache_cpu_t *cc;
   3032  1.133.4.3       mjf 
   3033  1.133.4.3       mjf 				if ((cc = pc->pc_cpus[i]) == NULL) {
   3034  1.133.4.3       mjf 					continue;
   3035  1.133.4.3       mjf 				}
   3036  1.133.4.3       mjf 				if (pool_in_cg(pp, cc->cc_current, addr) ||
   3037  1.133.4.3       mjf 				    pool_in_cg(pp, cc->cc_previous, addr)) {
   3038  1.133.4.3       mjf 					struct cpu_info *ci =
   3039  1.133.4.3       mjf 					    cpu_lookup_byindex(i);
   3040  1.133.4.3       mjf 
   3041  1.133.4.3       mjf 					incpucache = true;
   3042  1.133.4.3       mjf 					snprintf(cpucachestr,
   3043  1.133.4.3       mjf 					    sizeof(cpucachestr),
   3044  1.133.4.3       mjf 					    "cached by CPU %u",
   3045  1.133.4.3       mjf 					    (u_int)ci->ci_cpuid);
   3046  1.133.4.3       mjf 					goto print;
   3047  1.133.4.3       mjf 				}
   3048  1.133.4.3       mjf 			}
   3049  1.133.4.3       mjf 		}
   3050  1.133.4.3       mjf print:
   3051  1.133.4.3       mjf 		item = (uintptr_t)ph->ph_page + ph->ph_off;
   3052  1.133.4.3       mjf 		item = item + rounddown(addr - item, pp->pr_size);
   3053  1.133.4.3       mjf 		(*pr)("%p is %p+%zu in POOL '%s' (%s)\n",
   3054  1.133.4.3       mjf 		    (void *)addr, item, (size_t)(addr - item),
   3055  1.133.4.3       mjf 		    pp->pr_wchan,
   3056  1.133.4.3       mjf 		    incpucache ? cpucachestr :
   3057  1.133.4.3       mjf 		    incache ? "cached" : allocated ? "allocated" : "free");
   3058  1.133.4.3       mjf 	}
   3059  1.133.4.3       mjf }
   3060  1.133.4.3       mjf #endif /* defined(DDB) */
   3061