Home | History | Annotate | Line # | Download | only in kern
subr_pool.c revision 1.133.4.4
      1  1.133.4.4       mjf /*	$NetBSD: subr_pool.c,v 1.133.4.4 2008/02/18 21:06:47 mjf Exp $	*/
      2        1.1        pk 
      3        1.1        pk /*-
      4  1.133.4.1       mjf  * Copyright (c) 1997, 1999, 2000, 2002, 2007 The NetBSD Foundation, Inc.
      5        1.1        pk  * All rights reserved.
      6        1.1        pk  *
      7        1.1        pk  * This code is derived from software contributed to The NetBSD Foundation
      8       1.20   thorpej  * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
      9  1.133.4.1       mjf  * Simulation Facility, NASA Ames Research Center, and by Andrew Doran.
     10        1.1        pk  *
     11        1.1        pk  * Redistribution and use in source and binary forms, with or without
     12        1.1        pk  * modification, are permitted provided that the following conditions
     13        1.1        pk  * are met:
     14        1.1        pk  * 1. Redistributions of source code must retain the above copyright
     15        1.1        pk  *    notice, this list of conditions and the following disclaimer.
     16        1.1        pk  * 2. Redistributions in binary form must reproduce the above copyright
     17        1.1        pk  *    notice, this list of conditions and the following disclaimer in the
     18        1.1        pk  *    documentation and/or other materials provided with the distribution.
     19        1.1        pk  * 3. All advertising materials mentioning features or use of this software
     20        1.1        pk  *    must display the following acknowledgement:
     21       1.13  christos  *	This product includes software developed by the NetBSD
     22       1.13  christos  *	Foundation, Inc. and its contributors.
     23        1.1        pk  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24        1.1        pk  *    contributors may be used to endorse or promote products derived
     25        1.1        pk  *    from this software without specific prior written permission.
     26        1.1        pk  *
     27        1.1        pk  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28        1.1        pk  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29        1.1        pk  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30        1.1        pk  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31        1.1        pk  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32        1.1        pk  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33        1.1        pk  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34        1.1        pk  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35        1.1        pk  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36        1.1        pk  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37        1.1        pk  * POSSIBILITY OF SUCH DAMAGE.
     38        1.1        pk  */
     39       1.64     lukem 
     40       1.64     lukem #include <sys/cdefs.h>
     41  1.133.4.4       mjf __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.133.4.4 2008/02/18 21:06:47 mjf Exp $");
     42       1.24    scottr 
     43  1.133.4.3       mjf #include "opt_ddb.h"
     44       1.25   thorpej #include "opt_pool.h"
     45       1.24    scottr #include "opt_poollog.h"
     46       1.28   thorpej #include "opt_lockdebug.h"
     47        1.1        pk 
     48        1.1        pk #include <sys/param.h>
     49        1.1        pk #include <sys/systm.h>
     50  1.133.4.1       mjf #include <sys/bitops.h>
     51        1.1        pk #include <sys/proc.h>
     52        1.1        pk #include <sys/errno.h>
     53        1.1        pk #include <sys/kernel.h>
     54        1.1        pk #include <sys/malloc.h>
     55        1.1        pk #include <sys/pool.h>
     56       1.20   thorpej #include <sys/syslog.h>
     57      1.125        ad #include <sys/debug.h>
     58  1.133.4.1       mjf #include <sys/lockdebug.h>
     59  1.133.4.1       mjf #include <sys/xcall.h>
     60  1.133.4.1       mjf #include <sys/cpu.h>
     61  1.133.4.4       mjf #include <sys/atomic.h>
     62        1.3        pk 
     63        1.3        pk #include <uvm/uvm.h>
     64        1.3        pk 
     65        1.1        pk /*
     66        1.1        pk  * Pool resource management utility.
     67        1.3        pk  *
     68       1.88       chs  * Memory is allocated in pages which are split into pieces according to
     69       1.88       chs  * the pool item size. Each page is kept on one of three lists in the
     70       1.88       chs  * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
     71       1.88       chs  * for empty, full and partially-full pages respectively. The individual
     72       1.88       chs  * pool items are on a linked list headed by `ph_itemlist' in each page
     73       1.88       chs  * header. The memory for building the page list is either taken from
     74       1.88       chs  * the allocated pages themselves (for small pool items) or taken from
     75       1.88       chs  * an internal pool of page headers (`phpool').
     76        1.1        pk  */
     77        1.1        pk 
     78        1.3        pk /* List of all pools */
     79  1.133.4.4       mjf TAILQ_HEAD(,pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
     80  1.133.4.1       mjf 
     81        1.3        pk /* Private pool for page header structures */
     82       1.97      yamt #define	PHPOOL_MAX	8
     83       1.97      yamt static struct pool phpool[PHPOOL_MAX];
     84  1.133.4.1       mjf #define	PHPOOL_FREELIST_NELEM(idx) \
     85  1.133.4.1       mjf 	(((idx) == 0) ? 0 : BITMAP_SIZE * (1 << (idx)))
     86        1.3        pk 
     87       1.62     bjh21 #ifdef POOL_SUBPAGE
     88       1.62     bjh21 /* Pool of subpages for use by normal pools. */
     89       1.62     bjh21 static struct pool psppool;
     90       1.62     bjh21 #endif
     91       1.62     bjh21 
     92      1.117      yamt static SLIST_HEAD(, pool_allocator) pa_deferinitq =
     93      1.117      yamt     SLIST_HEAD_INITIALIZER(pa_deferinitq);
     94      1.117      yamt 
     95       1.98      yamt static void *pool_page_alloc_meta(struct pool *, int);
     96       1.98      yamt static void pool_page_free_meta(struct pool *, void *);
     97       1.98      yamt 
     98       1.98      yamt /* allocator for pool metadata */
     99  1.133.4.1       mjf struct pool_allocator pool_allocator_meta = {
    100      1.117      yamt 	pool_page_alloc_meta, pool_page_free_meta,
    101      1.117      yamt 	.pa_backingmapptr = &kmem_map,
    102       1.98      yamt };
    103       1.98      yamt 
    104        1.3        pk /* # of seconds to retain page after last use */
    105        1.3        pk int pool_inactive_time = 10;
    106        1.3        pk 
    107        1.3        pk /* Next candidate for drainage (see pool_drain()) */
    108       1.23   thorpej static struct pool	*drainpp;
    109       1.23   thorpej 
    110  1.133.4.1       mjf /* This lock protects both pool_head and drainpp. */
    111  1.133.4.1       mjf static kmutex_t pool_head_lock;
    112  1.133.4.1       mjf static kcondvar_t pool_busy;
    113  1.133.4.1       mjf 
    114  1.133.4.1       mjf typedef uint32_t pool_item_bitmap_t;
    115  1.133.4.1       mjf #define	BITMAP_SIZE	(CHAR_BIT * sizeof(pool_item_bitmap_t))
    116  1.133.4.1       mjf #define	BITMAP_MASK	(BITMAP_SIZE - 1)
    117       1.99      yamt 
    118        1.3        pk struct pool_item_header {
    119        1.3        pk 	/* Page headers */
    120       1.88       chs 	LIST_ENTRY(pool_item_header)
    121        1.3        pk 				ph_pagelist;	/* pool page list */
    122       1.88       chs 	SPLAY_ENTRY(pool_item_header)
    123       1.88       chs 				ph_node;	/* Off-page page headers */
    124      1.128  christos 	void *			ph_page;	/* this page's address */
    125  1.133.4.4       mjf 	uint32_t		ph_time;	/* last referenced */
    126  1.133.4.1       mjf 	uint16_t		ph_nmissing;	/* # of chunks in use */
    127  1.133.4.3       mjf 	uint16_t		ph_off;		/* start offset in page */
    128       1.97      yamt 	union {
    129       1.97      yamt 		/* !PR_NOTOUCH */
    130       1.97      yamt 		struct {
    131      1.102       chs 			LIST_HEAD(, pool_item)
    132       1.97      yamt 				phu_itemlist;	/* chunk list for this page */
    133       1.97      yamt 		} phu_normal;
    134       1.97      yamt 		/* PR_NOTOUCH */
    135       1.97      yamt 		struct {
    136  1.133.4.3       mjf 			pool_item_bitmap_t phu_bitmap[1];
    137       1.97      yamt 		} phu_notouch;
    138       1.97      yamt 	} ph_u;
    139        1.3        pk };
    140       1.97      yamt #define	ph_itemlist	ph_u.phu_normal.phu_itemlist
    141  1.133.4.1       mjf #define	ph_bitmap	ph_u.phu_notouch.phu_bitmap
    142        1.3        pk 
    143        1.1        pk struct pool_item {
    144        1.3        pk #ifdef DIAGNOSTIC
    145       1.82   thorpej 	u_int pi_magic;
    146       1.33       chs #endif
    147  1.133.4.1       mjf #define	PI_MAGIC 0xdeaddeadU
    148        1.3        pk 	/* Other entries use only this list entry */
    149      1.102       chs 	LIST_ENTRY(pool_item)	pi_list;
    150        1.3        pk };
    151        1.3        pk 
    152       1.53   thorpej #define	POOL_NEEDS_CATCHUP(pp)						\
    153       1.53   thorpej 	((pp)->pr_nitems < (pp)->pr_minitems)
    154       1.53   thorpej 
    155       1.43   thorpej /*
    156       1.43   thorpej  * Pool cache management.
    157       1.43   thorpej  *
    158       1.43   thorpej  * Pool caches provide a way for constructed objects to be cached by the
    159       1.43   thorpej  * pool subsystem.  This can lead to performance improvements by avoiding
    160       1.43   thorpej  * needless object construction/destruction; it is deferred until absolutely
    161       1.43   thorpej  * necessary.
    162       1.43   thorpej  *
    163  1.133.4.1       mjf  * Caches are grouped into cache groups.  Each cache group references up
    164  1.133.4.1       mjf  * to PCG_NUMOBJECTS constructed objects.  When a cache allocates an
    165  1.133.4.1       mjf  * object from the pool, it calls the object's constructor and places it
    166  1.133.4.1       mjf  * into a cache group.  When a cache group frees an object back to the
    167  1.133.4.1       mjf  * pool, it first calls the object's destructor.  This allows the object
    168  1.133.4.1       mjf  * to persist in constructed form while freed to the cache.
    169  1.133.4.1       mjf  *
    170  1.133.4.1       mjf  * The pool references each cache, so that when a pool is drained by the
    171  1.133.4.1       mjf  * pagedaemon, it can drain each individual cache as well.  Each time a
    172  1.133.4.1       mjf  * cache is drained, the most idle cache group is freed to the pool in
    173  1.133.4.1       mjf  * its entirety.
    174       1.43   thorpej  *
    175       1.43   thorpej  * Pool caches are layed on top of pools.  By layering them, we can avoid
    176       1.43   thorpej  * the complexity of cache management for pools which would not benefit
    177       1.43   thorpej  * from it.
    178       1.43   thorpej  */
    179       1.43   thorpej 
    180  1.133.4.3       mjf static struct pool pcg_normal_pool;
    181  1.133.4.3       mjf static struct pool pcg_large_pool;
    182  1.133.4.1       mjf static struct pool cache_pool;
    183  1.133.4.1       mjf static struct pool cache_cpu_pool;
    184        1.3        pk 
    185  1.133.4.4       mjf /* List of all caches. */
    186  1.133.4.4       mjf TAILQ_HEAD(,pool_cache) pool_cache_head =
    187  1.133.4.4       mjf     TAILQ_HEAD_INITIALIZER(pool_cache_head);
    188  1.133.4.4       mjf 
    189  1.133.4.4       mjf int pool_cache_disable;
    190  1.133.4.4       mjf 
    191  1.133.4.4       mjf 
    192  1.133.4.1       mjf static pool_cache_cpu_t *pool_cache_put_slow(pool_cache_cpu_t *, int *,
    193  1.133.4.1       mjf 					     void *, paddr_t);
    194  1.133.4.1       mjf static pool_cache_cpu_t *pool_cache_get_slow(pool_cache_cpu_t *, int *,
    195  1.133.4.1       mjf 					     void **, paddr_t *, int);
    196  1.133.4.1       mjf static void	pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
    197  1.133.4.1       mjf static void	pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
    198  1.133.4.1       mjf static void	pool_cache_xcall(pool_cache_t);
    199        1.3        pk 
    200       1.42   thorpej static int	pool_catchup(struct pool *);
    201      1.128  christos static void	pool_prime_page(struct pool *, void *,
    202       1.55   thorpej 		    struct pool_item_header *);
    203       1.88       chs static void	pool_update_curpage(struct pool *);
    204       1.66   thorpej 
    205      1.113      yamt static int	pool_grow(struct pool *, int);
    206      1.117      yamt static void	*pool_allocator_alloc(struct pool *, int);
    207      1.117      yamt static void	pool_allocator_free(struct pool *, void *);
    208        1.3        pk 
    209       1.97      yamt static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
    210       1.88       chs 	void (*)(const char *, ...));
    211       1.42   thorpej static void pool_print1(struct pool *, const char *,
    212       1.42   thorpej 	void (*)(const char *, ...));
    213        1.3        pk 
    214       1.88       chs static int pool_chk_page(struct pool *, const char *,
    215       1.88       chs 			 struct pool_item_header *);
    216       1.88       chs 
    217        1.3        pk /*
    218       1.52   thorpej  * Pool log entry. An array of these is allocated in pool_init().
    219        1.3        pk  */
    220        1.3        pk struct pool_log {
    221        1.3        pk 	const char	*pl_file;
    222        1.3        pk 	long		pl_line;
    223        1.3        pk 	int		pl_action;
    224       1.25   thorpej #define	PRLOG_GET	1
    225       1.25   thorpej #define	PRLOG_PUT	2
    226        1.3        pk 	void		*pl_addr;
    227        1.1        pk };
    228        1.1        pk 
    229       1.86      matt #ifdef POOL_DIAGNOSTIC
    230        1.3        pk /* Number of entries in pool log buffers */
    231       1.17   thorpej #ifndef POOL_LOGSIZE
    232       1.17   thorpej #define	POOL_LOGSIZE	10
    233       1.17   thorpej #endif
    234       1.17   thorpej 
    235       1.17   thorpej int pool_logsize = POOL_LOGSIZE;
    236        1.1        pk 
    237      1.110     perry static inline void
    238       1.42   thorpej pr_log(struct pool *pp, void *v, int action, const char *file, long line)
    239        1.3        pk {
    240        1.3        pk 	int n = pp->pr_curlogentry;
    241        1.3        pk 	struct pool_log *pl;
    242        1.3        pk 
    243       1.20   thorpej 	if ((pp->pr_roflags & PR_LOGGING) == 0)
    244        1.3        pk 		return;
    245        1.3        pk 
    246        1.3        pk 	/*
    247        1.3        pk 	 * Fill in the current entry. Wrap around and overwrite
    248        1.3        pk 	 * the oldest entry if necessary.
    249        1.3        pk 	 */
    250        1.3        pk 	pl = &pp->pr_log[n];
    251        1.3        pk 	pl->pl_file = file;
    252        1.3        pk 	pl->pl_line = line;
    253        1.3        pk 	pl->pl_action = action;
    254        1.3        pk 	pl->pl_addr = v;
    255        1.3        pk 	if (++n >= pp->pr_logsize)
    256        1.3        pk 		n = 0;
    257        1.3        pk 	pp->pr_curlogentry = n;
    258        1.3        pk }
    259        1.3        pk 
    260        1.3        pk static void
    261       1.42   thorpej pr_printlog(struct pool *pp, struct pool_item *pi,
    262       1.42   thorpej     void (*pr)(const char *, ...))
    263        1.3        pk {
    264        1.3        pk 	int i = pp->pr_logsize;
    265        1.3        pk 	int n = pp->pr_curlogentry;
    266        1.3        pk 
    267       1.20   thorpej 	if ((pp->pr_roflags & PR_LOGGING) == 0)
    268        1.3        pk 		return;
    269        1.3        pk 
    270        1.3        pk 	/*
    271        1.3        pk 	 * Print all entries in this pool's log.
    272        1.3        pk 	 */
    273        1.3        pk 	while (i-- > 0) {
    274        1.3        pk 		struct pool_log *pl = &pp->pr_log[n];
    275        1.3        pk 		if (pl->pl_action != 0) {
    276       1.25   thorpej 			if (pi == NULL || pi == pl->pl_addr) {
    277       1.25   thorpej 				(*pr)("\tlog entry %d:\n", i);
    278       1.25   thorpej 				(*pr)("\t\taction = %s, addr = %p\n",
    279       1.25   thorpej 				    pl->pl_action == PRLOG_GET ? "get" : "put",
    280       1.25   thorpej 				    pl->pl_addr);
    281       1.25   thorpej 				(*pr)("\t\tfile: %s at line %lu\n",
    282       1.25   thorpej 				    pl->pl_file, pl->pl_line);
    283       1.25   thorpej 			}
    284        1.3        pk 		}
    285        1.3        pk 		if (++n >= pp->pr_logsize)
    286        1.3        pk 			n = 0;
    287        1.3        pk 	}
    288        1.3        pk }
    289       1.25   thorpej 
    290      1.110     perry static inline void
    291       1.42   thorpej pr_enter(struct pool *pp, const char *file, long line)
    292       1.25   thorpej {
    293       1.25   thorpej 
    294       1.34   thorpej 	if (__predict_false(pp->pr_entered_file != NULL)) {
    295       1.25   thorpej 		printf("pool %s: reentrancy at file %s line %ld\n",
    296       1.25   thorpej 		    pp->pr_wchan, file, line);
    297       1.25   thorpej 		printf("         previous entry at file %s line %ld\n",
    298       1.25   thorpej 		    pp->pr_entered_file, pp->pr_entered_line);
    299       1.25   thorpej 		panic("pr_enter");
    300       1.25   thorpej 	}
    301       1.25   thorpej 
    302       1.25   thorpej 	pp->pr_entered_file = file;
    303       1.25   thorpej 	pp->pr_entered_line = line;
    304       1.25   thorpej }
    305       1.25   thorpej 
    306      1.110     perry static inline void
    307       1.42   thorpej pr_leave(struct pool *pp)
    308       1.25   thorpej {
    309       1.25   thorpej 
    310       1.34   thorpej 	if (__predict_false(pp->pr_entered_file == NULL)) {
    311       1.25   thorpej 		printf("pool %s not entered?\n", pp->pr_wchan);
    312       1.25   thorpej 		panic("pr_leave");
    313       1.25   thorpej 	}
    314       1.25   thorpej 
    315       1.25   thorpej 	pp->pr_entered_file = NULL;
    316       1.25   thorpej 	pp->pr_entered_line = 0;
    317       1.25   thorpej }
    318       1.25   thorpej 
    319      1.110     perry static inline void
    320       1.42   thorpej pr_enter_check(struct pool *pp, void (*pr)(const char *, ...))
    321       1.25   thorpej {
    322       1.25   thorpej 
    323       1.25   thorpej 	if (pp->pr_entered_file != NULL)
    324       1.25   thorpej 		(*pr)("\n\tcurrently entered from file %s line %ld\n",
    325       1.25   thorpej 		    pp->pr_entered_file, pp->pr_entered_line);
    326       1.25   thorpej }
    327        1.3        pk #else
    328       1.25   thorpej #define	pr_log(pp, v, action, file, line)
    329       1.25   thorpej #define	pr_printlog(pp, pi, pr)
    330       1.25   thorpej #define	pr_enter(pp, file, line)
    331       1.25   thorpej #define	pr_leave(pp)
    332       1.25   thorpej #define	pr_enter_check(pp, pr)
    333       1.59   thorpej #endif /* POOL_DIAGNOSTIC */
    334        1.3        pk 
    335  1.133.4.1       mjf static inline unsigned int
    336       1.97      yamt pr_item_notouch_index(const struct pool *pp, const struct pool_item_header *ph,
    337       1.97      yamt     const void *v)
    338       1.97      yamt {
    339       1.97      yamt 	const char *cp = v;
    340  1.133.4.1       mjf 	unsigned int idx;
    341       1.97      yamt 
    342       1.97      yamt 	KASSERT(pp->pr_roflags & PR_NOTOUCH);
    343      1.128  christos 	idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
    344       1.97      yamt 	KASSERT(idx < pp->pr_itemsperpage);
    345       1.97      yamt 	return idx;
    346       1.97      yamt }
    347       1.97      yamt 
    348      1.110     perry static inline void
    349       1.97      yamt pr_item_notouch_put(const struct pool *pp, struct pool_item_header *ph,
    350       1.97      yamt     void *obj)
    351       1.97      yamt {
    352  1.133.4.1       mjf 	unsigned int idx = pr_item_notouch_index(pp, ph, obj);
    353  1.133.4.1       mjf 	pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE);
    354  1.133.4.1       mjf 	pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
    355       1.97      yamt 
    356  1.133.4.1       mjf 	KASSERT((*bitmap & mask) == 0);
    357  1.133.4.1       mjf 	*bitmap |= mask;
    358       1.97      yamt }
    359       1.97      yamt 
    360      1.110     perry static inline void *
    361       1.97      yamt pr_item_notouch_get(const struct pool *pp, struct pool_item_header *ph)
    362       1.97      yamt {
    363  1.133.4.1       mjf 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
    364  1.133.4.1       mjf 	unsigned int idx;
    365  1.133.4.1       mjf 	int i;
    366  1.133.4.1       mjf 
    367  1.133.4.1       mjf 	for (i = 0; ; i++) {
    368  1.133.4.1       mjf 		int bit;
    369  1.133.4.1       mjf 
    370  1.133.4.1       mjf 		KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage);
    371  1.133.4.1       mjf 		bit = ffs32(bitmap[i]);
    372  1.133.4.1       mjf 		if (bit) {
    373  1.133.4.1       mjf 			pool_item_bitmap_t mask;
    374  1.133.4.1       mjf 
    375  1.133.4.1       mjf 			bit--;
    376  1.133.4.1       mjf 			idx = (i * BITMAP_SIZE) + bit;
    377  1.133.4.1       mjf 			mask = 1 << bit;
    378  1.133.4.1       mjf 			KASSERT((bitmap[i] & mask) != 0);
    379  1.133.4.1       mjf 			bitmap[i] &= ~mask;
    380  1.133.4.1       mjf 			break;
    381  1.133.4.1       mjf 		}
    382  1.133.4.1       mjf 	}
    383  1.133.4.1       mjf 	KASSERT(idx < pp->pr_itemsperpage);
    384  1.133.4.1       mjf 	return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
    385  1.133.4.1       mjf }
    386       1.97      yamt 
    387  1.133.4.1       mjf static inline void
    388  1.133.4.1       mjf pr_item_notouch_init(const struct pool *pp, struct pool_item_header *ph)
    389  1.133.4.1       mjf {
    390  1.133.4.1       mjf 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
    391  1.133.4.1       mjf 	const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE);
    392  1.133.4.1       mjf 	int i;
    393       1.97      yamt 
    394  1.133.4.1       mjf 	for (i = 0; i < n; i++) {
    395  1.133.4.1       mjf 		bitmap[i] = (pool_item_bitmap_t)-1;
    396  1.133.4.1       mjf 	}
    397       1.97      yamt }
    398       1.97      yamt 
    399      1.110     perry static inline int
    400       1.88       chs phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
    401       1.88       chs {
    402      1.121      yamt 
    403      1.121      yamt 	/*
    404      1.121      yamt 	 * we consider pool_item_header with smaller ph_page bigger.
    405      1.121      yamt 	 * (this unnatural ordering is for the benefit of pr_find_pagehead.)
    406      1.121      yamt 	 */
    407      1.121      yamt 
    408       1.88       chs 	if (a->ph_page < b->ph_page)
    409      1.121      yamt 		return (1);
    410      1.121      yamt 	else if (a->ph_page > b->ph_page)
    411       1.88       chs 		return (-1);
    412       1.88       chs 	else
    413       1.88       chs 		return (0);
    414       1.88       chs }
    415       1.88       chs 
    416       1.88       chs SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
    417       1.88       chs SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
    418       1.88       chs 
    419  1.133.4.3       mjf static inline struct pool_item_header *
    420  1.133.4.3       mjf pr_find_pagehead_noalign(struct pool *pp, void *v)
    421  1.133.4.3       mjf {
    422  1.133.4.3       mjf 	struct pool_item_header *ph, tmp;
    423  1.133.4.3       mjf 
    424  1.133.4.3       mjf 	tmp.ph_page = (void *)(uintptr_t)v;
    425  1.133.4.3       mjf 	ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
    426  1.133.4.3       mjf 	if (ph == NULL) {
    427  1.133.4.3       mjf 		ph = SPLAY_ROOT(&pp->pr_phtree);
    428  1.133.4.3       mjf 		if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
    429  1.133.4.3       mjf 			ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
    430  1.133.4.3       mjf 		}
    431  1.133.4.3       mjf 		KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
    432  1.133.4.3       mjf 	}
    433  1.133.4.3       mjf 
    434  1.133.4.3       mjf 	return ph;
    435  1.133.4.3       mjf }
    436  1.133.4.3       mjf 
    437        1.3        pk /*
    438      1.121      yamt  * Return the pool page header based on item address.
    439        1.3        pk  */
    440      1.110     perry static inline struct pool_item_header *
    441      1.121      yamt pr_find_pagehead(struct pool *pp, void *v)
    442        1.3        pk {
    443       1.88       chs 	struct pool_item_header *ph, tmp;
    444        1.3        pk 
    445      1.121      yamt 	if ((pp->pr_roflags & PR_NOALIGN) != 0) {
    446  1.133.4.3       mjf 		ph = pr_find_pagehead_noalign(pp, v);
    447      1.121      yamt 	} else {
    448      1.128  christos 		void *page =
    449      1.128  christos 		    (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask);
    450      1.121      yamt 
    451      1.121      yamt 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
    452      1.128  christos 			ph = (struct pool_item_header *)((char *)page + pp->pr_phoffset);
    453      1.121      yamt 		} else {
    454      1.121      yamt 			tmp.ph_page = page;
    455      1.121      yamt 			ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
    456      1.121      yamt 		}
    457      1.121      yamt 	}
    458        1.3        pk 
    459      1.121      yamt 	KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
    460      1.128  christos 	    ((char *)ph->ph_page <= (char *)v &&
    461      1.128  christos 	    (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
    462       1.88       chs 	return ph;
    463        1.3        pk }
    464        1.3        pk 
    465      1.101   thorpej static void
    466      1.101   thorpej pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
    467      1.101   thorpej {
    468      1.101   thorpej 	struct pool_item_header *ph;
    469      1.101   thorpej 
    470      1.101   thorpej 	while ((ph = LIST_FIRST(pq)) != NULL) {
    471      1.101   thorpej 		LIST_REMOVE(ph, ph_pagelist);
    472      1.101   thorpej 		pool_allocator_free(pp, ph->ph_page);
    473  1.133.4.1       mjf 		if ((pp->pr_roflags & PR_PHINPAGE) == 0)
    474      1.101   thorpej 			pool_put(pp->pr_phpool, ph);
    475      1.101   thorpej 	}
    476      1.101   thorpej }
    477      1.101   thorpej 
    478        1.3        pk /*
    479        1.3        pk  * Remove a page from the pool.
    480        1.3        pk  */
    481      1.110     perry static inline void
    482       1.61       chs pr_rmpage(struct pool *pp, struct pool_item_header *ph,
    483       1.61       chs      struct pool_pagelist *pq)
    484        1.3        pk {
    485        1.3        pk 
    486  1.133.4.1       mjf 	KASSERT(mutex_owned(&pp->pr_lock));
    487       1.91      yamt 
    488        1.3        pk 	/*
    489        1.7   thorpej 	 * If the page was idle, decrement the idle page count.
    490        1.3        pk 	 */
    491        1.6   thorpej 	if (ph->ph_nmissing == 0) {
    492        1.6   thorpej #ifdef DIAGNOSTIC
    493        1.6   thorpej 		if (pp->pr_nidle == 0)
    494        1.6   thorpej 			panic("pr_rmpage: nidle inconsistent");
    495       1.20   thorpej 		if (pp->pr_nitems < pp->pr_itemsperpage)
    496       1.20   thorpej 			panic("pr_rmpage: nitems inconsistent");
    497        1.6   thorpej #endif
    498        1.6   thorpej 		pp->pr_nidle--;
    499        1.6   thorpej 	}
    500        1.7   thorpej 
    501       1.20   thorpej 	pp->pr_nitems -= pp->pr_itemsperpage;
    502       1.20   thorpej 
    503        1.7   thorpej 	/*
    504      1.101   thorpej 	 * Unlink the page from the pool and queue it for release.
    505        1.7   thorpej 	 */
    506       1.88       chs 	LIST_REMOVE(ph, ph_pagelist);
    507       1.91      yamt 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
    508       1.91      yamt 		SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
    509      1.101   thorpej 	LIST_INSERT_HEAD(pq, ph, ph_pagelist);
    510      1.101   thorpej 
    511        1.7   thorpej 	pp->pr_npages--;
    512        1.7   thorpej 	pp->pr_npagefree++;
    513        1.6   thorpej 
    514       1.88       chs 	pool_update_curpage(pp);
    515        1.3        pk }
    516        1.3        pk 
    517      1.126   thorpej static bool
    518      1.117      yamt pa_starved_p(struct pool_allocator *pa)
    519      1.117      yamt {
    520      1.117      yamt 
    521      1.117      yamt 	if (pa->pa_backingmap != NULL) {
    522      1.117      yamt 		return vm_map_starved_p(pa->pa_backingmap);
    523      1.117      yamt 	}
    524      1.127   thorpej 	return false;
    525      1.117      yamt }
    526      1.117      yamt 
    527      1.117      yamt static int
    528      1.124      yamt pool_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
    529      1.117      yamt {
    530      1.117      yamt 	struct pool *pp = obj;
    531      1.117      yamt 	struct pool_allocator *pa = pp->pr_alloc;
    532      1.117      yamt 
    533      1.117      yamt 	KASSERT(&pp->pr_reclaimerentry == ce);
    534      1.117      yamt 	pool_reclaim(pp);
    535      1.117      yamt 	if (!pa_starved_p(pa)) {
    536      1.117      yamt 		return CALLBACK_CHAIN_ABORT;
    537      1.117      yamt 	}
    538      1.117      yamt 	return CALLBACK_CHAIN_CONTINUE;
    539      1.117      yamt }
    540      1.117      yamt 
    541      1.117      yamt static void
    542      1.117      yamt pool_reclaim_register(struct pool *pp)
    543      1.117      yamt {
    544      1.117      yamt 	struct vm_map *map = pp->pr_alloc->pa_backingmap;
    545      1.117      yamt 	int s;
    546      1.117      yamt 
    547      1.117      yamt 	if (map == NULL) {
    548      1.117      yamt 		return;
    549      1.117      yamt 	}
    550      1.117      yamt 
    551      1.117      yamt 	s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
    552      1.117      yamt 	callback_register(&vm_map_to_kernel(map)->vmk_reclaim_callback,
    553      1.117      yamt 	    &pp->pr_reclaimerentry, pp, pool_reclaim_callback);
    554      1.117      yamt 	splx(s);
    555      1.117      yamt }
    556      1.117      yamt 
    557      1.117      yamt static void
    558      1.117      yamt pool_reclaim_unregister(struct pool *pp)
    559      1.117      yamt {
    560      1.117      yamt 	struct vm_map *map = pp->pr_alloc->pa_backingmap;
    561      1.117      yamt 	int s;
    562      1.117      yamt 
    563      1.117      yamt 	if (map == NULL) {
    564      1.117      yamt 		return;
    565      1.117      yamt 	}
    566      1.117      yamt 
    567      1.117      yamt 	s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
    568      1.117      yamt 	callback_unregister(&vm_map_to_kernel(map)->vmk_reclaim_callback,
    569      1.117      yamt 	    &pp->pr_reclaimerentry);
    570      1.117      yamt 	splx(s);
    571      1.117      yamt }
    572      1.117      yamt 
    573      1.117      yamt static void
    574      1.117      yamt pa_reclaim_register(struct pool_allocator *pa)
    575      1.117      yamt {
    576      1.117      yamt 	struct vm_map *map = *pa->pa_backingmapptr;
    577      1.117      yamt 	struct pool *pp;
    578      1.117      yamt 
    579      1.117      yamt 	KASSERT(pa->pa_backingmap == NULL);
    580      1.117      yamt 	if (map == NULL) {
    581      1.117      yamt 		SLIST_INSERT_HEAD(&pa_deferinitq, pa, pa_q);
    582      1.117      yamt 		return;
    583      1.117      yamt 	}
    584      1.117      yamt 	pa->pa_backingmap = map;
    585      1.117      yamt 	TAILQ_FOREACH(pp, &pa->pa_list, pr_alloc_list) {
    586      1.117      yamt 		pool_reclaim_register(pp);
    587      1.117      yamt 	}
    588      1.117      yamt }
    589      1.117      yamt 
    590        1.3        pk /*
    591       1.94    simonb  * Initialize all the pools listed in the "pools" link set.
    592       1.94    simonb  */
    593       1.94    simonb void
    594      1.117      yamt pool_subsystem_init(void)
    595       1.94    simonb {
    596      1.117      yamt 	struct pool_allocator *pa;
    597       1.94    simonb 	__link_set_decl(pools, struct link_pool_init);
    598       1.94    simonb 	struct link_pool_init * const *pi;
    599       1.94    simonb 
    600  1.133.4.1       mjf 	mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
    601  1.133.4.1       mjf 	cv_init(&pool_busy, "poolbusy");
    602  1.133.4.1       mjf 
    603       1.94    simonb 	__link_set_foreach(pi, pools)
    604       1.94    simonb 		pool_init((*pi)->pp, (*pi)->size, (*pi)->align,
    605       1.94    simonb 		    (*pi)->align_offset, (*pi)->flags, (*pi)->wchan,
    606      1.129        ad 		    (*pi)->palloc, (*pi)->ipl);
    607      1.117      yamt 
    608      1.117      yamt 	while ((pa = SLIST_FIRST(&pa_deferinitq)) != NULL) {
    609      1.117      yamt 		KASSERT(pa->pa_backingmapptr != NULL);
    610      1.117      yamt 		KASSERT(*pa->pa_backingmapptr != NULL);
    611      1.117      yamt 		SLIST_REMOVE_HEAD(&pa_deferinitq, pa_q);
    612      1.117      yamt 		pa_reclaim_register(pa);
    613      1.117      yamt 	}
    614  1.133.4.1       mjf 
    615  1.133.4.1       mjf 	pool_init(&cache_pool, sizeof(struct pool_cache), CACHE_LINE_SIZE,
    616  1.133.4.1       mjf 	    0, 0, "pcache", &pool_allocator_nointr, IPL_NONE);
    617  1.133.4.1       mjf 
    618  1.133.4.1       mjf 	pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), CACHE_LINE_SIZE,
    619  1.133.4.1       mjf 	    0, 0, "pcachecpu", &pool_allocator_nointr, IPL_NONE);
    620       1.94    simonb }
    621       1.94    simonb 
    622       1.94    simonb /*
    623        1.3        pk  * Initialize the given pool resource structure.
    624        1.3        pk  *
    625        1.3        pk  * We export this routine to allow other kernel parts to declare
    626        1.3        pk  * static pools that must be initialized before malloc() is available.
    627        1.3        pk  */
    628        1.3        pk void
    629       1.42   thorpej pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
    630      1.129        ad     const char *wchan, struct pool_allocator *palloc, int ipl)
    631        1.3        pk {
    632      1.116    simonb 	struct pool *pp1;
    633       1.92     enami 	size_t trysize, phsize;
    634  1.133.4.1       mjf 	int off, slack;
    635       1.99      yamt 
    636      1.116    simonb #ifdef DEBUG
    637      1.116    simonb 	/*
    638      1.116    simonb 	 * Check that the pool hasn't already been initialised and
    639      1.116    simonb 	 * added to the list of all pools.
    640      1.116    simonb 	 */
    641  1.133.4.4       mjf 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
    642      1.116    simonb 		if (pp == pp1)
    643      1.116    simonb 			panic("pool_init: pool %s already initialised",
    644      1.116    simonb 			    wchan);
    645      1.116    simonb 	}
    646      1.116    simonb #endif
    647      1.116    simonb 
    648       1.25   thorpej #ifdef POOL_DIAGNOSTIC
    649       1.25   thorpej 	/*
    650       1.25   thorpej 	 * Always log if POOL_DIAGNOSTIC is defined.
    651       1.25   thorpej 	 */
    652       1.25   thorpej 	if (pool_logsize != 0)
    653       1.25   thorpej 		flags |= PR_LOGGING;
    654       1.25   thorpej #endif
    655       1.25   thorpej 
    656       1.66   thorpej 	if (palloc == NULL)
    657       1.66   thorpej 		palloc = &pool_allocator_kmem;
    658      1.112     bjh21 #ifdef POOL_SUBPAGE
    659      1.112     bjh21 	if (size > palloc->pa_pagesz) {
    660      1.112     bjh21 		if (palloc == &pool_allocator_kmem)
    661      1.112     bjh21 			palloc = &pool_allocator_kmem_fullpage;
    662      1.112     bjh21 		else if (palloc == &pool_allocator_nointr)
    663      1.112     bjh21 			palloc = &pool_allocator_nointr_fullpage;
    664      1.112     bjh21 	}
    665       1.66   thorpej #endif /* POOL_SUBPAGE */
    666       1.66   thorpej 	if ((palloc->pa_flags & PA_INITIALIZED) == 0) {
    667      1.112     bjh21 		if (palloc->pa_pagesz == 0)
    668       1.66   thorpej 			palloc->pa_pagesz = PAGE_SIZE;
    669       1.66   thorpej 
    670       1.66   thorpej 		TAILQ_INIT(&palloc->pa_list);
    671       1.66   thorpej 
    672  1.133.4.1       mjf 		mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
    673       1.66   thorpej 		palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
    674       1.66   thorpej 		palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
    675      1.117      yamt 
    676      1.117      yamt 		if (palloc->pa_backingmapptr != NULL) {
    677      1.117      yamt 			pa_reclaim_register(palloc);
    678      1.117      yamt 		}
    679       1.66   thorpej 		palloc->pa_flags |= PA_INITIALIZED;
    680        1.4   thorpej 	}
    681        1.3        pk 
    682        1.3        pk 	if (align == 0)
    683        1.3        pk 		align = ALIGN(1);
    684       1.14   thorpej 
    685      1.120      yamt 	if ((flags & PR_NOTOUCH) == 0 && size < sizeof(struct pool_item))
    686       1.14   thorpej 		size = sizeof(struct pool_item);
    687        1.3        pk 
    688       1.78   thorpej 	size = roundup(size, align);
    689       1.66   thorpej #ifdef DIAGNOSTIC
    690       1.66   thorpej 	if (size > palloc->pa_pagesz)
    691      1.121      yamt 		panic("pool_init: pool item size (%zu) too large", size);
    692       1.66   thorpej #endif
    693       1.35        pk 
    694        1.3        pk 	/*
    695        1.3        pk 	 * Initialize the pool structure.
    696        1.3        pk 	 */
    697       1.88       chs 	LIST_INIT(&pp->pr_emptypages);
    698       1.88       chs 	LIST_INIT(&pp->pr_fullpages);
    699       1.88       chs 	LIST_INIT(&pp->pr_partpages);
    700  1.133.4.1       mjf 	pp->pr_cache = NULL;
    701        1.3        pk 	pp->pr_curpage = NULL;
    702        1.3        pk 	pp->pr_npages = 0;
    703        1.3        pk 	pp->pr_minitems = 0;
    704        1.3        pk 	pp->pr_minpages = 0;
    705        1.3        pk 	pp->pr_maxpages = UINT_MAX;
    706       1.20   thorpej 	pp->pr_roflags = flags;
    707       1.20   thorpej 	pp->pr_flags = 0;
    708       1.35        pk 	pp->pr_size = size;
    709        1.3        pk 	pp->pr_align = align;
    710        1.3        pk 	pp->pr_wchan = wchan;
    711       1.66   thorpej 	pp->pr_alloc = palloc;
    712       1.20   thorpej 	pp->pr_nitems = 0;
    713       1.20   thorpej 	pp->pr_nout = 0;
    714       1.20   thorpej 	pp->pr_hardlimit = UINT_MAX;
    715       1.20   thorpej 	pp->pr_hardlimit_warning = NULL;
    716       1.31   thorpej 	pp->pr_hardlimit_ratecap.tv_sec = 0;
    717       1.31   thorpej 	pp->pr_hardlimit_ratecap.tv_usec = 0;
    718       1.31   thorpej 	pp->pr_hardlimit_warning_last.tv_sec = 0;
    719       1.31   thorpej 	pp->pr_hardlimit_warning_last.tv_usec = 0;
    720       1.68   thorpej 	pp->pr_drain_hook = NULL;
    721       1.68   thorpej 	pp->pr_drain_hook_arg = NULL;
    722      1.125        ad 	pp->pr_freecheck = NULL;
    723        1.3        pk 
    724        1.3        pk 	/*
    725        1.3        pk 	 * Decide whether to put the page header off page to avoid
    726       1.92     enami 	 * wasting too large a part of the page or too big item.
    727       1.92     enami 	 * Off-page page headers go on a hash table, so we can match
    728       1.92     enami 	 * a returned item with its header based on the page address.
    729       1.92     enami 	 * We use 1/16 of the page size and about 8 times of the item
    730       1.92     enami 	 * size as the threshold (XXX: tune)
    731       1.92     enami 	 *
    732       1.92     enami 	 * However, we'll put the header into the page if we can put
    733       1.92     enami 	 * it without wasting any items.
    734       1.92     enami 	 *
    735       1.92     enami 	 * Silently enforce `0 <= ioff < align'.
    736        1.3        pk 	 */
    737       1.92     enami 	pp->pr_itemoffset = ioff %= align;
    738       1.92     enami 	/* See the comment below about reserved bytes. */
    739       1.92     enami 	trysize = palloc->pa_pagesz - ((align - ioff) % align);
    740       1.92     enami 	phsize = ALIGN(sizeof(struct pool_item_header));
    741      1.121      yamt 	if ((pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) == 0 &&
    742       1.97      yamt 	    (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) ||
    743       1.97      yamt 	    trysize / pp->pr_size == (trysize - phsize) / pp->pr_size)) {
    744        1.3        pk 		/* Use the end of the page for the page header */
    745       1.20   thorpej 		pp->pr_roflags |= PR_PHINPAGE;
    746       1.92     enami 		pp->pr_phoffset = off = palloc->pa_pagesz - phsize;
    747        1.2        pk 	} else {
    748        1.3        pk 		/* The page header will be taken from our page header pool */
    749        1.3        pk 		pp->pr_phoffset = 0;
    750       1.66   thorpej 		off = palloc->pa_pagesz;
    751       1.88       chs 		SPLAY_INIT(&pp->pr_phtree);
    752        1.2        pk 	}
    753        1.1        pk 
    754        1.3        pk 	/*
    755        1.3        pk 	 * Alignment is to take place at `ioff' within the item. This means
    756        1.3        pk 	 * we must reserve up to `align - 1' bytes on the page to allow
    757        1.3        pk 	 * appropriate positioning of each item.
    758        1.3        pk 	 */
    759        1.3        pk 	pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
    760       1.43   thorpej 	KASSERT(pp->pr_itemsperpage != 0);
    761       1.97      yamt 	if ((pp->pr_roflags & PR_NOTOUCH)) {
    762       1.97      yamt 		int idx;
    763       1.97      yamt 
    764       1.97      yamt 		for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
    765       1.97      yamt 		    idx++) {
    766       1.97      yamt 			/* nothing */
    767       1.97      yamt 		}
    768       1.97      yamt 		if (idx >= PHPOOL_MAX) {
    769       1.97      yamt 			/*
    770       1.97      yamt 			 * if you see this panic, consider to tweak
    771       1.97      yamt 			 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
    772       1.97      yamt 			 */
    773       1.97      yamt 			panic("%s: too large itemsperpage(%d) for PR_NOTOUCH",
    774       1.97      yamt 			    pp->pr_wchan, pp->pr_itemsperpage);
    775       1.97      yamt 		}
    776       1.97      yamt 		pp->pr_phpool = &phpool[idx];
    777       1.97      yamt 	} else if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
    778       1.97      yamt 		pp->pr_phpool = &phpool[0];
    779       1.97      yamt 	}
    780       1.97      yamt #if defined(DIAGNOSTIC)
    781       1.97      yamt 	else {
    782       1.97      yamt 		pp->pr_phpool = NULL;
    783       1.97      yamt 	}
    784       1.97      yamt #endif
    785        1.3        pk 
    786        1.3        pk 	/*
    787        1.3        pk 	 * Use the slack between the chunks and the page header
    788        1.3        pk 	 * for "cache coloring".
    789        1.3        pk 	 */
    790        1.3        pk 	slack = off - pp->pr_itemsperpage * pp->pr_size;
    791        1.3        pk 	pp->pr_maxcolor = (slack / align) * align;
    792        1.3        pk 	pp->pr_curcolor = 0;
    793        1.3        pk 
    794        1.3        pk 	pp->pr_nget = 0;
    795        1.3        pk 	pp->pr_nfail = 0;
    796        1.3        pk 	pp->pr_nput = 0;
    797        1.3        pk 	pp->pr_npagealloc = 0;
    798        1.3        pk 	pp->pr_npagefree = 0;
    799        1.1        pk 	pp->pr_hiwat = 0;
    800        1.8   thorpej 	pp->pr_nidle = 0;
    801  1.133.4.1       mjf 	pp->pr_refcnt = 0;
    802        1.3        pk 
    803       1.59   thorpej #ifdef POOL_DIAGNOSTIC
    804       1.25   thorpej 	if (flags & PR_LOGGING) {
    805       1.25   thorpej 		if (kmem_map == NULL ||
    806       1.25   thorpej 		    (pp->pr_log = malloc(pool_logsize * sizeof(struct pool_log),
    807       1.25   thorpej 		     M_TEMP, M_NOWAIT)) == NULL)
    808       1.20   thorpej 			pp->pr_roflags &= ~PR_LOGGING;
    809        1.3        pk 		pp->pr_curlogentry = 0;
    810        1.3        pk 		pp->pr_logsize = pool_logsize;
    811        1.3        pk 	}
    812       1.59   thorpej #endif
    813       1.25   thorpej 
    814       1.25   thorpej 	pp->pr_entered_file = NULL;
    815       1.25   thorpej 	pp->pr_entered_line = 0;
    816        1.3        pk 
    817  1.133.4.2       mjf 	/*
    818  1.133.4.2       mjf 	 * XXXAD hack to prevent IP input processing from blocking.
    819  1.133.4.2       mjf 	 */
    820  1.133.4.2       mjf 	if (ipl == IPL_SOFTNET) {
    821  1.133.4.2       mjf 		mutex_init(&pp->pr_lock, MUTEX_DEFAULT, IPL_VM);
    822  1.133.4.2       mjf 	} else {
    823  1.133.4.2       mjf 		mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
    824  1.133.4.2       mjf 	}
    825  1.133.4.1       mjf 	cv_init(&pp->pr_cv, wchan);
    826  1.133.4.1       mjf 	pp->pr_ipl = ipl;
    827        1.1        pk 
    828        1.3        pk 	/*
    829       1.43   thorpej 	 * Initialize private page header pool and cache magazine pool if we
    830       1.43   thorpej 	 * haven't done so yet.
    831       1.23   thorpej 	 * XXX LOCKING.
    832        1.3        pk 	 */
    833       1.97      yamt 	if (phpool[0].pr_size == 0) {
    834       1.97      yamt 		int idx;
    835       1.97      yamt 		for (idx = 0; idx < PHPOOL_MAX; idx++) {
    836       1.97      yamt 			static char phpool_names[PHPOOL_MAX][6+1+6+1];
    837       1.97      yamt 			int nelem;
    838       1.97      yamt 			size_t sz;
    839       1.97      yamt 
    840       1.97      yamt 			nelem = PHPOOL_FREELIST_NELEM(idx);
    841       1.97      yamt 			snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
    842       1.97      yamt 			    "phpool-%d", nelem);
    843       1.97      yamt 			sz = sizeof(struct pool_item_header);
    844       1.97      yamt 			if (nelem) {
    845  1.133.4.1       mjf 				sz = offsetof(struct pool_item_header,
    846  1.133.4.1       mjf 				    ph_bitmap[howmany(nelem, BITMAP_SIZE)]);
    847       1.97      yamt 			}
    848       1.97      yamt 			pool_init(&phpool[idx], sz, 0, 0, 0,
    849      1.129        ad 			    phpool_names[idx], &pool_allocator_meta, IPL_VM);
    850       1.97      yamt 		}
    851       1.62     bjh21 #ifdef POOL_SUBPAGE
    852       1.62     bjh21 		pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
    853      1.129        ad 		    PR_RECURSIVE, "psppool", &pool_allocator_meta, IPL_VM);
    854       1.62     bjh21 #endif
    855  1.133.4.3       mjf 
    856  1.133.4.3       mjf 		size = sizeof(pcg_t) +
    857  1.133.4.3       mjf 		    (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t);
    858  1.133.4.3       mjf 		pool_init(&pcg_normal_pool, size, CACHE_LINE_SIZE, 0, 0,
    859  1.133.4.3       mjf 		    "pcgnormal", &pool_allocator_meta, IPL_VM);
    860  1.133.4.3       mjf 
    861  1.133.4.3       mjf 		size = sizeof(pcg_t) +
    862  1.133.4.3       mjf 		    (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t);
    863  1.133.4.3       mjf 		pool_init(&pcg_large_pool, size, CACHE_LINE_SIZE, 0, 0,
    864  1.133.4.3       mjf 		    "pcglarge", &pool_allocator_meta, IPL_VM);
    865        1.1        pk 	}
    866        1.1        pk 
    867  1.133.4.4       mjf 	/* Insert into the list of all pools. */
    868  1.133.4.4       mjf 	if (__predict_true(!cold))
    869  1.133.4.1       mjf 		mutex_enter(&pool_head_lock);
    870  1.133.4.4       mjf 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
    871  1.133.4.4       mjf 		if (strcmp(pp1->pr_wchan, pp->pr_wchan) > 0)
    872  1.133.4.4       mjf 			break;
    873  1.133.4.4       mjf 	}
    874  1.133.4.4       mjf 	if (pp1 == NULL)
    875  1.133.4.4       mjf 		TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
    876  1.133.4.4       mjf 	else
    877  1.133.4.4       mjf 		TAILQ_INSERT_BEFORE(pp1, pp, pr_poollist);
    878  1.133.4.4       mjf 	if (__predict_true(!cold))
    879  1.133.4.1       mjf 		mutex_exit(&pool_head_lock);
    880  1.133.4.1       mjf 
    881  1.133.4.1       mjf 		/* Insert this into the list of pools using this allocator. */
    882  1.133.4.4       mjf 	if (__predict_true(!cold))
    883  1.133.4.1       mjf 		mutex_enter(&palloc->pa_lock);
    884  1.133.4.4       mjf 	TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
    885  1.133.4.4       mjf 	if (__predict_true(!cold))
    886  1.133.4.1       mjf 		mutex_exit(&palloc->pa_lock);
    887       1.66   thorpej 
    888      1.117      yamt 	pool_reclaim_register(pp);
    889        1.1        pk }
    890        1.1        pk 
    891        1.1        pk /*
    892        1.1        pk  * De-commision a pool resource.
    893        1.1        pk  */
    894        1.1        pk void
    895       1.42   thorpej pool_destroy(struct pool *pp)
    896        1.1        pk {
    897      1.101   thorpej 	struct pool_pagelist pq;
    898        1.3        pk 	struct pool_item_header *ph;
    899       1.43   thorpej 
    900      1.101   thorpej 	/* Remove from global pool list */
    901  1.133.4.1       mjf 	mutex_enter(&pool_head_lock);
    902  1.133.4.1       mjf 	while (pp->pr_refcnt != 0)
    903  1.133.4.1       mjf 		cv_wait(&pool_busy, &pool_head_lock);
    904  1.133.4.4       mjf 	TAILQ_REMOVE(&pool_head, pp, pr_poollist);
    905      1.101   thorpej 	if (drainpp == pp)
    906      1.101   thorpej 		drainpp = NULL;
    907  1.133.4.1       mjf 	mutex_exit(&pool_head_lock);
    908      1.101   thorpej 
    909      1.101   thorpej 	/* Remove this pool from its allocator's list of pools. */
    910      1.117      yamt 	pool_reclaim_unregister(pp);
    911  1.133.4.1       mjf 	mutex_enter(&pp->pr_alloc->pa_lock);
    912       1.66   thorpej 	TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
    913  1.133.4.1       mjf 	mutex_exit(&pp->pr_alloc->pa_lock);
    914       1.66   thorpej 
    915  1.133.4.1       mjf 	mutex_enter(&pp->pr_lock);
    916      1.101   thorpej 
    917  1.133.4.1       mjf 	KASSERT(pp->pr_cache == NULL);
    918        1.3        pk 
    919        1.3        pk #ifdef DIAGNOSTIC
    920       1.20   thorpej 	if (pp->pr_nout != 0) {
    921       1.25   thorpej 		pr_printlog(pp, NULL, printf);
    922       1.80    provos 		panic("pool_destroy: pool busy: still out: %u",
    923       1.20   thorpej 		    pp->pr_nout);
    924        1.3        pk 	}
    925        1.3        pk #endif
    926        1.1        pk 
    927      1.101   thorpej 	KASSERT(LIST_EMPTY(&pp->pr_fullpages));
    928      1.101   thorpej 	KASSERT(LIST_EMPTY(&pp->pr_partpages));
    929      1.101   thorpej 
    930        1.3        pk 	/* Remove all pages */
    931      1.101   thorpej 	LIST_INIT(&pq);
    932       1.88       chs 	while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
    933      1.101   thorpej 		pr_rmpage(pp, ph, &pq);
    934      1.101   thorpej 
    935  1.133.4.1       mjf 	mutex_exit(&pp->pr_lock);
    936        1.3        pk 
    937      1.101   thorpej 	pr_pagelist_free(pp, &pq);
    938        1.3        pk 
    939       1.59   thorpej #ifdef POOL_DIAGNOSTIC
    940       1.20   thorpej 	if ((pp->pr_roflags & PR_LOGGING) != 0)
    941        1.3        pk 		free(pp->pr_log, M_TEMP);
    942       1.59   thorpej #endif
    943  1.133.4.1       mjf 
    944  1.133.4.1       mjf 	cv_destroy(&pp->pr_cv);
    945  1.133.4.1       mjf 	mutex_destroy(&pp->pr_lock);
    946        1.1        pk }
    947        1.1        pk 
    948       1.68   thorpej void
    949       1.68   thorpej pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
    950       1.68   thorpej {
    951       1.68   thorpej 
    952       1.68   thorpej 	/* XXX no locking -- must be used just after pool_init() */
    953       1.68   thorpej #ifdef DIAGNOSTIC
    954       1.68   thorpej 	if (pp->pr_drain_hook != NULL)
    955       1.68   thorpej 		panic("pool_set_drain_hook(%s): already set", pp->pr_wchan);
    956       1.68   thorpej #endif
    957       1.68   thorpej 	pp->pr_drain_hook = fn;
    958       1.68   thorpej 	pp->pr_drain_hook_arg = arg;
    959       1.68   thorpej }
    960       1.68   thorpej 
    961       1.88       chs static struct pool_item_header *
    962      1.128  christos pool_alloc_item_header(struct pool *pp, void *storage, int flags)
    963       1.55   thorpej {
    964       1.55   thorpej 	struct pool_item_header *ph;
    965       1.55   thorpej 
    966       1.55   thorpej 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
    967      1.128  christos 		ph = (struct pool_item_header *) ((char *)storage + pp->pr_phoffset);
    968  1.133.4.1       mjf 	else
    969       1.97      yamt 		ph = pool_get(pp->pr_phpool, flags);
    970       1.55   thorpej 
    971       1.55   thorpej 	return (ph);
    972       1.55   thorpej }
    973        1.1        pk 
    974        1.1        pk /*
    975  1.133.4.1       mjf  * Grab an item from the pool.
    976        1.1        pk  */
    977        1.3        pk void *
    978       1.59   thorpej #ifdef POOL_DIAGNOSTIC
    979       1.42   thorpej _pool_get(struct pool *pp, int flags, const char *file, long line)
    980       1.56  sommerfe #else
    981       1.56  sommerfe pool_get(struct pool *pp, int flags)
    982       1.56  sommerfe #endif
    983        1.1        pk {
    984        1.1        pk 	struct pool_item *pi;
    985        1.3        pk 	struct pool_item_header *ph;
    986       1.55   thorpej 	void *v;
    987        1.1        pk 
    988        1.2        pk #ifdef DIAGNOSTIC
    989       1.95    atatat 	if (__predict_false(pp->pr_itemsperpage == 0))
    990       1.95    atatat 		panic("pool_get: pool %p: pr_itemsperpage is zero, "
    991       1.95    atatat 		    "pool not initialized?", pp);
    992       1.84   thorpej 	if (__predict_false(curlwp == NULL && doing_shutdown == 0 &&
    993       1.37  sommerfe 			    (flags & PR_WAITOK) != 0))
    994       1.77      matt 		panic("pool_get: %s: must have NOWAIT", pp->pr_wchan);
    995       1.58   thorpej 
    996      1.102       chs #endif /* DIAGNOSTIC */
    997       1.58   thorpej #ifdef LOCKDEBUG
    998       1.58   thorpej 	if (flags & PR_WAITOK)
    999      1.119      yamt 		ASSERT_SLEEPABLE(NULL, "pool_get(PR_WAITOK)");
   1000       1.56  sommerfe #endif
   1001        1.1        pk 
   1002  1.133.4.1       mjf 	mutex_enter(&pp->pr_lock);
   1003       1.25   thorpej 	pr_enter(pp, file, line);
   1004       1.20   thorpej 
   1005       1.20   thorpej  startover:
   1006       1.20   thorpej 	/*
   1007       1.20   thorpej 	 * Check to see if we've reached the hard limit.  If we have,
   1008       1.20   thorpej 	 * and we can wait, then wait until an item has been returned to
   1009       1.20   thorpej 	 * the pool.
   1010       1.20   thorpej 	 */
   1011       1.20   thorpej #ifdef DIAGNOSTIC
   1012       1.34   thorpej 	if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
   1013       1.25   thorpej 		pr_leave(pp);
   1014  1.133.4.1       mjf 		mutex_exit(&pp->pr_lock);
   1015       1.20   thorpej 		panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
   1016       1.20   thorpej 	}
   1017       1.20   thorpej #endif
   1018       1.34   thorpej 	if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
   1019       1.68   thorpej 		if (pp->pr_drain_hook != NULL) {
   1020       1.68   thorpej 			/*
   1021       1.68   thorpej 			 * Since the drain hook is going to free things
   1022       1.68   thorpej 			 * back to the pool, unlock, call the hook, re-lock,
   1023       1.68   thorpej 			 * and check the hardlimit condition again.
   1024       1.68   thorpej 			 */
   1025       1.68   thorpej 			pr_leave(pp);
   1026  1.133.4.1       mjf 			mutex_exit(&pp->pr_lock);
   1027       1.68   thorpej 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
   1028  1.133.4.1       mjf 			mutex_enter(&pp->pr_lock);
   1029       1.68   thorpej 			pr_enter(pp, file, line);
   1030       1.68   thorpej 			if (pp->pr_nout < pp->pr_hardlimit)
   1031       1.68   thorpej 				goto startover;
   1032       1.68   thorpej 		}
   1033       1.68   thorpej 
   1034       1.29  sommerfe 		if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
   1035       1.20   thorpej 			/*
   1036       1.20   thorpej 			 * XXX: A warning isn't logged in this case.  Should
   1037       1.20   thorpej 			 * it be?
   1038       1.20   thorpej 			 */
   1039       1.20   thorpej 			pp->pr_flags |= PR_WANTED;
   1040       1.25   thorpej 			pr_leave(pp);
   1041  1.133.4.1       mjf 			cv_wait(&pp->pr_cv, &pp->pr_lock);
   1042       1.25   thorpej 			pr_enter(pp, file, line);
   1043       1.20   thorpej 			goto startover;
   1044       1.20   thorpej 		}
   1045       1.31   thorpej 
   1046       1.31   thorpej 		/*
   1047       1.31   thorpej 		 * Log a message that the hard limit has been hit.
   1048       1.31   thorpej 		 */
   1049       1.31   thorpej 		if (pp->pr_hardlimit_warning != NULL &&
   1050       1.31   thorpej 		    ratecheck(&pp->pr_hardlimit_warning_last,
   1051       1.31   thorpej 			      &pp->pr_hardlimit_ratecap))
   1052       1.31   thorpej 			log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
   1053       1.21   thorpej 
   1054       1.21   thorpej 		pp->pr_nfail++;
   1055       1.21   thorpej 
   1056       1.25   thorpej 		pr_leave(pp);
   1057  1.133.4.1       mjf 		mutex_exit(&pp->pr_lock);
   1058       1.20   thorpej 		return (NULL);
   1059       1.20   thorpej 	}
   1060       1.20   thorpej 
   1061        1.3        pk 	/*
   1062        1.3        pk 	 * The convention we use is that if `curpage' is not NULL, then
   1063        1.3        pk 	 * it points at a non-empty bucket. In particular, `curpage'
   1064        1.3        pk 	 * never points at a page header which has PR_PHINPAGE set and
   1065        1.3        pk 	 * has no items in its bucket.
   1066        1.3        pk 	 */
   1067       1.20   thorpej 	if ((ph = pp->pr_curpage) == NULL) {
   1068      1.113      yamt 		int error;
   1069      1.113      yamt 
   1070       1.20   thorpej #ifdef DIAGNOSTIC
   1071       1.20   thorpej 		if (pp->pr_nitems != 0) {
   1072  1.133.4.1       mjf 			mutex_exit(&pp->pr_lock);
   1073       1.20   thorpej 			printf("pool_get: %s: curpage NULL, nitems %u\n",
   1074       1.20   thorpej 			    pp->pr_wchan, pp->pr_nitems);
   1075       1.80    provos 			panic("pool_get: nitems inconsistent");
   1076       1.20   thorpej 		}
   1077       1.20   thorpej #endif
   1078       1.20   thorpej 
   1079       1.21   thorpej 		/*
   1080       1.21   thorpej 		 * Call the back-end page allocator for more memory.
   1081       1.21   thorpej 		 * Release the pool lock, as the back-end page allocator
   1082       1.21   thorpej 		 * may block.
   1083       1.21   thorpej 		 */
   1084       1.25   thorpej 		pr_leave(pp);
   1085      1.113      yamt 		error = pool_grow(pp, flags);
   1086      1.113      yamt 		pr_enter(pp, file, line);
   1087      1.113      yamt 		if (error != 0) {
   1088       1.21   thorpej 			/*
   1089       1.55   thorpej 			 * We were unable to allocate a page or item
   1090       1.55   thorpej 			 * header, but we released the lock during
   1091       1.55   thorpej 			 * allocation, so perhaps items were freed
   1092       1.55   thorpej 			 * back to the pool.  Check for this case.
   1093       1.21   thorpej 			 */
   1094       1.21   thorpej 			if (pp->pr_curpage != NULL)
   1095       1.21   thorpej 				goto startover;
   1096       1.15        pk 
   1097      1.117      yamt 			pp->pr_nfail++;
   1098       1.25   thorpej 			pr_leave(pp);
   1099  1.133.4.1       mjf 			mutex_exit(&pp->pr_lock);
   1100      1.117      yamt 			return (NULL);
   1101        1.1        pk 		}
   1102        1.3        pk 
   1103       1.20   thorpej 		/* Start the allocation process over. */
   1104       1.20   thorpej 		goto startover;
   1105        1.3        pk 	}
   1106       1.97      yamt 	if (pp->pr_roflags & PR_NOTOUCH) {
   1107       1.97      yamt #ifdef DIAGNOSTIC
   1108       1.97      yamt 		if (__predict_false(ph->ph_nmissing == pp->pr_itemsperpage)) {
   1109       1.97      yamt 			pr_leave(pp);
   1110  1.133.4.1       mjf 			mutex_exit(&pp->pr_lock);
   1111       1.97      yamt 			panic("pool_get: %s: page empty", pp->pr_wchan);
   1112       1.97      yamt 		}
   1113       1.97      yamt #endif
   1114       1.97      yamt 		v = pr_item_notouch_get(pp, ph);
   1115       1.97      yamt #ifdef POOL_DIAGNOSTIC
   1116       1.97      yamt 		pr_log(pp, v, PRLOG_GET, file, line);
   1117       1.97      yamt #endif
   1118       1.97      yamt 	} else {
   1119      1.102       chs 		v = pi = LIST_FIRST(&ph->ph_itemlist);
   1120       1.97      yamt 		if (__predict_false(v == NULL)) {
   1121       1.97      yamt 			pr_leave(pp);
   1122  1.133.4.1       mjf 			mutex_exit(&pp->pr_lock);
   1123       1.97      yamt 			panic("pool_get: %s: page empty", pp->pr_wchan);
   1124       1.97      yamt 		}
   1125       1.20   thorpej #ifdef DIAGNOSTIC
   1126       1.97      yamt 		if (__predict_false(pp->pr_nitems == 0)) {
   1127       1.97      yamt 			pr_leave(pp);
   1128  1.133.4.1       mjf 			mutex_exit(&pp->pr_lock);
   1129       1.97      yamt 			printf("pool_get: %s: items on itemlist, nitems %u\n",
   1130       1.97      yamt 			    pp->pr_wchan, pp->pr_nitems);
   1131       1.97      yamt 			panic("pool_get: nitems inconsistent");
   1132       1.97      yamt 		}
   1133       1.65     enami #endif
   1134       1.56  sommerfe 
   1135       1.65     enami #ifdef POOL_DIAGNOSTIC
   1136       1.97      yamt 		pr_log(pp, v, PRLOG_GET, file, line);
   1137       1.65     enami #endif
   1138        1.3        pk 
   1139       1.65     enami #ifdef DIAGNOSTIC
   1140       1.97      yamt 		if (__predict_false(pi->pi_magic != PI_MAGIC)) {
   1141       1.97      yamt 			pr_printlog(pp, pi, printf);
   1142       1.97      yamt 			panic("pool_get(%s): free list modified: "
   1143       1.97      yamt 			    "magic=%x; page %p; item addr %p\n",
   1144       1.97      yamt 			    pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
   1145       1.97      yamt 		}
   1146        1.3        pk #endif
   1147        1.3        pk 
   1148       1.97      yamt 		/*
   1149       1.97      yamt 		 * Remove from item list.
   1150       1.97      yamt 		 */
   1151      1.102       chs 		LIST_REMOVE(pi, pi_list);
   1152       1.97      yamt 	}
   1153       1.20   thorpej 	pp->pr_nitems--;
   1154       1.20   thorpej 	pp->pr_nout++;
   1155        1.6   thorpej 	if (ph->ph_nmissing == 0) {
   1156        1.6   thorpej #ifdef DIAGNOSTIC
   1157       1.34   thorpej 		if (__predict_false(pp->pr_nidle == 0))
   1158        1.6   thorpej 			panic("pool_get: nidle inconsistent");
   1159        1.6   thorpej #endif
   1160        1.6   thorpej 		pp->pr_nidle--;
   1161       1.88       chs 
   1162       1.88       chs 		/*
   1163       1.88       chs 		 * This page was previously empty.  Move it to the list of
   1164       1.88       chs 		 * partially-full pages.  This page is already curpage.
   1165       1.88       chs 		 */
   1166       1.88       chs 		LIST_REMOVE(ph, ph_pagelist);
   1167       1.88       chs 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
   1168        1.6   thorpej 	}
   1169        1.3        pk 	ph->ph_nmissing++;
   1170       1.97      yamt 	if (ph->ph_nmissing == pp->pr_itemsperpage) {
   1171       1.21   thorpej #ifdef DIAGNOSTIC
   1172       1.97      yamt 		if (__predict_false((pp->pr_roflags & PR_NOTOUCH) == 0 &&
   1173      1.102       chs 		    !LIST_EMPTY(&ph->ph_itemlist))) {
   1174       1.25   thorpej 			pr_leave(pp);
   1175  1.133.4.1       mjf 			mutex_exit(&pp->pr_lock);
   1176       1.21   thorpej 			panic("pool_get: %s: nmissing inconsistent",
   1177       1.21   thorpej 			    pp->pr_wchan);
   1178       1.21   thorpej 		}
   1179       1.21   thorpej #endif
   1180        1.3        pk 		/*
   1181       1.88       chs 		 * This page is now full.  Move it to the full list
   1182       1.88       chs 		 * and select a new current page.
   1183        1.3        pk 		 */
   1184       1.88       chs 		LIST_REMOVE(ph, ph_pagelist);
   1185       1.88       chs 		LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
   1186       1.88       chs 		pool_update_curpage(pp);
   1187        1.1        pk 	}
   1188        1.3        pk 
   1189        1.3        pk 	pp->pr_nget++;
   1190      1.111  christos 	pr_leave(pp);
   1191       1.20   thorpej 
   1192       1.20   thorpej 	/*
   1193       1.20   thorpej 	 * If we have a low water mark and we are now below that low
   1194       1.20   thorpej 	 * water mark, add more items to the pool.
   1195       1.20   thorpej 	 */
   1196       1.53   thorpej 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
   1197       1.20   thorpej 		/*
   1198       1.20   thorpej 		 * XXX: Should we log a warning?  Should we set up a timeout
   1199       1.20   thorpej 		 * to try again in a second or so?  The latter could break
   1200       1.20   thorpej 		 * a caller's assumptions about interrupt protection, etc.
   1201       1.20   thorpej 		 */
   1202       1.20   thorpej 	}
   1203       1.20   thorpej 
   1204  1.133.4.1       mjf 	mutex_exit(&pp->pr_lock);
   1205      1.125        ad 	KASSERT((((vaddr_t)v + pp->pr_itemoffset) & (pp->pr_align - 1)) == 0);
   1206      1.125        ad 	FREECHECK_OUT(&pp->pr_freecheck, v);
   1207        1.1        pk 	return (v);
   1208        1.1        pk }
   1209        1.1        pk 
   1210        1.1        pk /*
   1211       1.43   thorpej  * Internal version of pool_put().  Pool is already locked/entered.
   1212        1.1        pk  */
   1213       1.43   thorpej static void
   1214      1.101   thorpej pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
   1215        1.1        pk {
   1216        1.1        pk 	struct pool_item *pi = v;
   1217        1.3        pk 	struct pool_item_header *ph;
   1218        1.3        pk 
   1219  1.133.4.1       mjf 	KASSERT(mutex_owned(&pp->pr_lock));
   1220      1.125        ad 	FREECHECK_IN(&pp->pr_freecheck, v);
   1221  1.133.4.1       mjf 	LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
   1222       1.61       chs 
   1223       1.30   thorpej #ifdef DIAGNOSTIC
   1224       1.34   thorpej 	if (__predict_false(pp->pr_nout == 0)) {
   1225       1.30   thorpej 		printf("pool %s: putting with none out\n",
   1226       1.30   thorpej 		    pp->pr_wchan);
   1227       1.30   thorpej 		panic("pool_put");
   1228       1.30   thorpej 	}
   1229       1.30   thorpej #endif
   1230        1.3        pk 
   1231      1.121      yamt 	if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
   1232       1.25   thorpej 		pr_printlog(pp, NULL, printf);
   1233        1.3        pk 		panic("pool_put: %s: page header missing", pp->pr_wchan);
   1234        1.3        pk 	}
   1235       1.28   thorpej 
   1236        1.3        pk 	/*
   1237        1.3        pk 	 * Return to item list.
   1238        1.3        pk 	 */
   1239       1.97      yamt 	if (pp->pr_roflags & PR_NOTOUCH) {
   1240       1.97      yamt 		pr_item_notouch_put(pp, ph, v);
   1241       1.97      yamt 	} else {
   1242        1.2        pk #ifdef DIAGNOSTIC
   1243       1.97      yamt 		pi->pi_magic = PI_MAGIC;
   1244        1.3        pk #endif
   1245       1.32       chs #ifdef DEBUG
   1246       1.97      yamt 		{
   1247       1.97      yamt 			int i, *ip = v;
   1248       1.32       chs 
   1249       1.97      yamt 			for (i = 0; i < pp->pr_size / sizeof(int); i++) {
   1250       1.97      yamt 				*ip++ = PI_MAGIC;
   1251       1.97      yamt 			}
   1252       1.32       chs 		}
   1253       1.32       chs #endif
   1254       1.32       chs 
   1255      1.102       chs 		LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
   1256       1.97      yamt 	}
   1257       1.79   thorpej 	KDASSERT(ph->ph_nmissing != 0);
   1258        1.3        pk 	ph->ph_nmissing--;
   1259        1.3        pk 	pp->pr_nput++;
   1260       1.20   thorpej 	pp->pr_nitems++;
   1261       1.20   thorpej 	pp->pr_nout--;
   1262        1.3        pk 
   1263        1.3        pk 	/* Cancel "pool empty" condition if it exists */
   1264        1.3        pk 	if (pp->pr_curpage == NULL)
   1265        1.3        pk 		pp->pr_curpage = ph;
   1266        1.3        pk 
   1267        1.3        pk 	if (pp->pr_flags & PR_WANTED) {
   1268        1.3        pk 		pp->pr_flags &= ~PR_WANTED;
   1269       1.15        pk 		if (ph->ph_nmissing == 0)
   1270       1.15        pk 			pp->pr_nidle++;
   1271  1.133.4.1       mjf 		cv_broadcast(&pp->pr_cv);
   1272        1.3        pk 		return;
   1273        1.3        pk 	}
   1274        1.3        pk 
   1275        1.3        pk 	/*
   1276       1.88       chs 	 * If this page is now empty, do one of two things:
   1277       1.21   thorpej 	 *
   1278       1.88       chs 	 *	(1) If we have more pages than the page high water mark,
   1279       1.96   thorpej 	 *	    free the page back to the system.  ONLY CONSIDER
   1280       1.90   thorpej 	 *	    FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
   1281       1.90   thorpej 	 *	    CLAIM.
   1282       1.21   thorpej 	 *
   1283       1.88       chs 	 *	(2) Otherwise, move the page to the empty page list.
   1284       1.88       chs 	 *
   1285       1.88       chs 	 * Either way, select a new current page (so we use a partially-full
   1286       1.88       chs 	 * page if one is available).
   1287        1.3        pk 	 */
   1288        1.3        pk 	if (ph->ph_nmissing == 0) {
   1289        1.6   thorpej 		pp->pr_nidle++;
   1290       1.90   thorpej 		if (pp->pr_npages > pp->pr_minpages &&
   1291       1.90   thorpej 		    (pp->pr_npages > pp->pr_maxpages ||
   1292      1.117      yamt 		     pa_starved_p(pp->pr_alloc))) {
   1293      1.101   thorpej 			pr_rmpage(pp, ph, pq);
   1294        1.3        pk 		} else {
   1295       1.88       chs 			LIST_REMOVE(ph, ph_pagelist);
   1296       1.88       chs 			LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
   1297        1.3        pk 
   1298       1.21   thorpej 			/*
   1299       1.21   thorpej 			 * Update the timestamp on the page.  A page must
   1300       1.21   thorpej 			 * be idle for some period of time before it can
   1301       1.21   thorpej 			 * be reclaimed by the pagedaemon.  This minimizes
   1302       1.21   thorpej 			 * ping-pong'ing for memory.
   1303  1.133.4.4       mjf 			 *
   1304  1.133.4.4       mjf 			 * note for 64-bit time_t: truncating to 32-bit is not
   1305  1.133.4.4       mjf 			 * a problem for our usage.
   1306       1.21   thorpej 			 */
   1307  1.133.4.4       mjf 			ph->ph_time = time_uptime;
   1308        1.1        pk 		}
   1309       1.88       chs 		pool_update_curpage(pp);
   1310        1.1        pk 	}
   1311       1.88       chs 
   1312       1.21   thorpej 	/*
   1313       1.88       chs 	 * If the page was previously completely full, move it to the
   1314       1.88       chs 	 * partially-full list and make it the current page.  The next
   1315       1.88       chs 	 * allocation will get the item from this page, instead of
   1316       1.88       chs 	 * further fragmenting the pool.
   1317       1.21   thorpej 	 */
   1318       1.21   thorpej 	else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
   1319       1.88       chs 		LIST_REMOVE(ph, ph_pagelist);
   1320       1.88       chs 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
   1321       1.21   thorpej 		pp->pr_curpage = ph;
   1322       1.21   thorpej 	}
   1323       1.43   thorpej }
   1324       1.43   thorpej 
   1325       1.43   thorpej /*
   1326  1.133.4.1       mjf  * Return resource to the pool.
   1327       1.43   thorpej  */
   1328       1.59   thorpej #ifdef POOL_DIAGNOSTIC
   1329       1.43   thorpej void
   1330       1.43   thorpej _pool_put(struct pool *pp, void *v, const char *file, long line)
   1331       1.43   thorpej {
   1332      1.101   thorpej 	struct pool_pagelist pq;
   1333      1.101   thorpej 
   1334      1.101   thorpej 	LIST_INIT(&pq);
   1335       1.43   thorpej 
   1336  1.133.4.1       mjf 	mutex_enter(&pp->pr_lock);
   1337       1.43   thorpej 	pr_enter(pp, file, line);
   1338       1.43   thorpej 
   1339       1.56  sommerfe 	pr_log(pp, v, PRLOG_PUT, file, line);
   1340       1.56  sommerfe 
   1341      1.101   thorpej 	pool_do_put(pp, v, &pq);
   1342       1.21   thorpej 
   1343       1.25   thorpej 	pr_leave(pp);
   1344  1.133.4.1       mjf 	mutex_exit(&pp->pr_lock);
   1345      1.101   thorpej 
   1346      1.102       chs 	pr_pagelist_free(pp, &pq);
   1347        1.1        pk }
   1348       1.57  sommerfe #undef pool_put
   1349       1.59   thorpej #endif /* POOL_DIAGNOSTIC */
   1350        1.1        pk 
   1351       1.56  sommerfe void
   1352       1.56  sommerfe pool_put(struct pool *pp, void *v)
   1353       1.56  sommerfe {
   1354      1.101   thorpej 	struct pool_pagelist pq;
   1355      1.101   thorpej 
   1356      1.101   thorpej 	LIST_INIT(&pq);
   1357       1.56  sommerfe 
   1358  1.133.4.1       mjf 	mutex_enter(&pp->pr_lock);
   1359      1.101   thorpej 	pool_do_put(pp, v, &pq);
   1360  1.133.4.1       mjf 	mutex_exit(&pp->pr_lock);
   1361       1.56  sommerfe 
   1362      1.102       chs 	pr_pagelist_free(pp, &pq);
   1363       1.56  sommerfe }
   1364       1.57  sommerfe 
   1365       1.59   thorpej #ifdef POOL_DIAGNOSTIC
   1366       1.57  sommerfe #define		pool_put(h, v)	_pool_put((h), (v), __FILE__, __LINE__)
   1367       1.56  sommerfe #endif
   1368       1.74   thorpej 
   1369       1.74   thorpej /*
   1370      1.113      yamt  * pool_grow: grow a pool by a page.
   1371      1.113      yamt  *
   1372      1.113      yamt  * => called with pool locked.
   1373      1.113      yamt  * => unlock and relock the pool.
   1374      1.113      yamt  * => return with pool locked.
   1375      1.113      yamt  */
   1376      1.113      yamt 
   1377      1.113      yamt static int
   1378      1.113      yamt pool_grow(struct pool *pp, int flags)
   1379      1.113      yamt {
   1380      1.113      yamt 	struct pool_item_header *ph = NULL;
   1381      1.113      yamt 	char *cp;
   1382      1.113      yamt 
   1383  1.133.4.1       mjf 	mutex_exit(&pp->pr_lock);
   1384      1.113      yamt 	cp = pool_allocator_alloc(pp, flags);
   1385      1.113      yamt 	if (__predict_true(cp != NULL)) {
   1386      1.113      yamt 		ph = pool_alloc_item_header(pp, cp, flags);
   1387      1.113      yamt 	}
   1388      1.113      yamt 	if (__predict_false(cp == NULL || ph == NULL)) {
   1389      1.113      yamt 		if (cp != NULL) {
   1390      1.113      yamt 			pool_allocator_free(pp, cp);
   1391      1.113      yamt 		}
   1392  1.133.4.1       mjf 		mutex_enter(&pp->pr_lock);
   1393      1.113      yamt 		return ENOMEM;
   1394      1.113      yamt 	}
   1395      1.113      yamt 
   1396  1.133.4.1       mjf 	mutex_enter(&pp->pr_lock);
   1397      1.113      yamt 	pool_prime_page(pp, cp, ph);
   1398      1.113      yamt 	pp->pr_npagealloc++;
   1399      1.113      yamt 	return 0;
   1400      1.113      yamt }
   1401      1.113      yamt 
   1402      1.113      yamt /*
   1403       1.74   thorpej  * Add N items to the pool.
   1404       1.74   thorpej  */
   1405       1.74   thorpej int
   1406       1.74   thorpej pool_prime(struct pool *pp, int n)
   1407       1.74   thorpej {
   1408       1.75    simonb 	int newpages;
   1409      1.113      yamt 	int error = 0;
   1410       1.74   thorpej 
   1411  1.133.4.1       mjf 	mutex_enter(&pp->pr_lock);
   1412       1.74   thorpej 
   1413       1.74   thorpej 	newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1414       1.74   thorpej 
   1415       1.74   thorpej 	while (newpages-- > 0) {
   1416      1.113      yamt 		error = pool_grow(pp, PR_NOWAIT);
   1417      1.113      yamt 		if (error) {
   1418       1.74   thorpej 			break;
   1419       1.74   thorpej 		}
   1420       1.74   thorpej 		pp->pr_minpages++;
   1421       1.74   thorpej 	}
   1422       1.74   thorpej 
   1423       1.74   thorpej 	if (pp->pr_minpages >= pp->pr_maxpages)
   1424       1.74   thorpej 		pp->pr_maxpages = pp->pr_minpages + 1;	/* XXX */
   1425       1.74   thorpej 
   1426  1.133.4.1       mjf 	mutex_exit(&pp->pr_lock);
   1427      1.113      yamt 	return error;
   1428       1.74   thorpej }
   1429       1.55   thorpej 
   1430       1.55   thorpej /*
   1431        1.3        pk  * Add a page worth of items to the pool.
   1432       1.21   thorpej  *
   1433       1.21   thorpej  * Note, we must be called with the pool descriptor LOCKED.
   1434        1.3        pk  */
   1435       1.55   thorpej static void
   1436      1.128  christos pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
   1437        1.3        pk {
   1438        1.3        pk 	struct pool_item *pi;
   1439      1.128  christos 	void *cp = storage;
   1440      1.125        ad 	const unsigned int align = pp->pr_align;
   1441      1.125        ad 	const unsigned int ioff = pp->pr_itemoffset;
   1442       1.55   thorpej 	int n;
   1443       1.36        pk 
   1444  1.133.4.1       mjf 	KASSERT(mutex_owned(&pp->pr_lock));
   1445       1.91      yamt 
   1446       1.66   thorpej #ifdef DIAGNOSTIC
   1447      1.121      yamt 	if ((pp->pr_roflags & PR_NOALIGN) == 0 &&
   1448      1.121      yamt 	    ((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) != 0)
   1449       1.36        pk 		panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
   1450       1.66   thorpej #endif
   1451        1.3        pk 
   1452        1.3        pk 	/*
   1453        1.3        pk 	 * Insert page header.
   1454        1.3        pk 	 */
   1455       1.88       chs 	LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
   1456      1.102       chs 	LIST_INIT(&ph->ph_itemlist);
   1457        1.3        pk 	ph->ph_page = storage;
   1458        1.3        pk 	ph->ph_nmissing = 0;
   1459  1.133.4.4       mjf 	ph->ph_time = time_uptime;
   1460       1.88       chs 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
   1461       1.88       chs 		SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
   1462        1.3        pk 
   1463        1.6   thorpej 	pp->pr_nidle++;
   1464        1.6   thorpej 
   1465        1.3        pk 	/*
   1466        1.3        pk 	 * Color this page.
   1467        1.3        pk 	 */
   1468  1.133.4.3       mjf 	ph->ph_off = pp->pr_curcolor;
   1469  1.133.4.3       mjf 	cp = (char *)cp + ph->ph_off;
   1470        1.3        pk 	if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
   1471        1.3        pk 		pp->pr_curcolor = 0;
   1472        1.3        pk 
   1473        1.3        pk 	/*
   1474        1.3        pk 	 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
   1475        1.3        pk 	 */
   1476        1.3        pk 	if (ioff != 0)
   1477      1.128  christos 		cp = (char *)cp + align - ioff;
   1478        1.3        pk 
   1479      1.125        ad 	KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
   1480      1.125        ad 
   1481        1.3        pk 	/*
   1482        1.3        pk 	 * Insert remaining chunks on the bucket list.
   1483        1.3        pk 	 */
   1484        1.3        pk 	n = pp->pr_itemsperpage;
   1485       1.20   thorpej 	pp->pr_nitems += n;
   1486        1.3        pk 
   1487       1.97      yamt 	if (pp->pr_roflags & PR_NOTOUCH) {
   1488  1.133.4.1       mjf 		pr_item_notouch_init(pp, ph);
   1489       1.97      yamt 	} else {
   1490       1.97      yamt 		while (n--) {
   1491       1.97      yamt 			pi = (struct pool_item *)cp;
   1492       1.78   thorpej 
   1493       1.97      yamt 			KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0);
   1494        1.3        pk 
   1495       1.97      yamt 			/* Insert on page list */
   1496      1.102       chs 			LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
   1497        1.3        pk #ifdef DIAGNOSTIC
   1498       1.97      yamt 			pi->pi_magic = PI_MAGIC;
   1499        1.3        pk #endif
   1500      1.128  christos 			cp = (char *)cp + pp->pr_size;
   1501      1.125        ad 
   1502      1.125        ad 			KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
   1503       1.97      yamt 		}
   1504        1.3        pk 	}
   1505        1.3        pk 
   1506        1.3        pk 	/*
   1507        1.3        pk 	 * If the pool was depleted, point at the new page.
   1508        1.3        pk 	 */
   1509        1.3        pk 	if (pp->pr_curpage == NULL)
   1510        1.3        pk 		pp->pr_curpage = ph;
   1511        1.3        pk 
   1512        1.3        pk 	if (++pp->pr_npages > pp->pr_hiwat)
   1513        1.3        pk 		pp->pr_hiwat = pp->pr_npages;
   1514        1.3        pk }
   1515        1.3        pk 
   1516       1.20   thorpej /*
   1517       1.52   thorpej  * Used by pool_get() when nitems drops below the low water mark.  This
   1518       1.88       chs  * is used to catch up pr_nitems with the low water mark.
   1519       1.20   thorpej  *
   1520       1.21   thorpej  * Note 1, we never wait for memory here, we let the caller decide what to do.
   1521       1.20   thorpej  *
   1522       1.73   thorpej  * Note 2, we must be called with the pool already locked, and we return
   1523       1.20   thorpej  * with it locked.
   1524       1.20   thorpej  */
   1525       1.20   thorpej static int
   1526       1.42   thorpej pool_catchup(struct pool *pp)
   1527       1.20   thorpej {
   1528       1.20   thorpej 	int error = 0;
   1529       1.20   thorpej 
   1530       1.54   thorpej 	while (POOL_NEEDS_CATCHUP(pp)) {
   1531      1.113      yamt 		error = pool_grow(pp, PR_NOWAIT);
   1532      1.113      yamt 		if (error) {
   1533       1.20   thorpej 			break;
   1534       1.20   thorpej 		}
   1535       1.20   thorpej 	}
   1536      1.113      yamt 	return error;
   1537       1.20   thorpej }
   1538       1.20   thorpej 
   1539       1.88       chs static void
   1540       1.88       chs pool_update_curpage(struct pool *pp)
   1541       1.88       chs {
   1542       1.88       chs 
   1543       1.88       chs 	pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
   1544       1.88       chs 	if (pp->pr_curpage == NULL) {
   1545       1.88       chs 		pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
   1546       1.88       chs 	}
   1547       1.88       chs }
   1548       1.88       chs 
   1549        1.3        pk void
   1550       1.42   thorpej pool_setlowat(struct pool *pp, int n)
   1551        1.3        pk {
   1552       1.15        pk 
   1553  1.133.4.1       mjf 	mutex_enter(&pp->pr_lock);
   1554       1.21   thorpej 
   1555        1.3        pk 	pp->pr_minitems = n;
   1556       1.15        pk 	pp->pr_minpages = (n == 0)
   1557       1.15        pk 		? 0
   1558       1.18   thorpej 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1559       1.20   thorpej 
   1560       1.20   thorpej 	/* Make sure we're caught up with the newly-set low water mark. */
   1561       1.75    simonb 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
   1562       1.20   thorpej 		/*
   1563       1.20   thorpej 		 * XXX: Should we log a warning?  Should we set up a timeout
   1564       1.20   thorpej 		 * to try again in a second or so?  The latter could break
   1565       1.20   thorpej 		 * a caller's assumptions about interrupt protection, etc.
   1566       1.20   thorpej 		 */
   1567       1.20   thorpej 	}
   1568       1.21   thorpej 
   1569  1.133.4.1       mjf 	mutex_exit(&pp->pr_lock);
   1570        1.3        pk }
   1571        1.3        pk 
   1572        1.3        pk void
   1573       1.42   thorpej pool_sethiwat(struct pool *pp, int n)
   1574        1.3        pk {
   1575       1.15        pk 
   1576  1.133.4.1       mjf 	mutex_enter(&pp->pr_lock);
   1577       1.21   thorpej 
   1578       1.15        pk 	pp->pr_maxpages = (n == 0)
   1579       1.15        pk 		? 0
   1580       1.18   thorpej 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1581       1.21   thorpej 
   1582  1.133.4.1       mjf 	mutex_exit(&pp->pr_lock);
   1583        1.3        pk }
   1584        1.3        pk 
   1585       1.20   thorpej void
   1586       1.42   thorpej pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
   1587       1.20   thorpej {
   1588       1.20   thorpej 
   1589  1.133.4.1       mjf 	mutex_enter(&pp->pr_lock);
   1590       1.20   thorpej 
   1591       1.20   thorpej 	pp->pr_hardlimit = n;
   1592       1.20   thorpej 	pp->pr_hardlimit_warning = warnmess;
   1593       1.31   thorpej 	pp->pr_hardlimit_ratecap.tv_sec = ratecap;
   1594       1.31   thorpej 	pp->pr_hardlimit_warning_last.tv_sec = 0;
   1595       1.31   thorpej 	pp->pr_hardlimit_warning_last.tv_usec = 0;
   1596       1.20   thorpej 
   1597       1.20   thorpej 	/*
   1598       1.21   thorpej 	 * In-line version of pool_sethiwat(), because we don't want to
   1599       1.21   thorpej 	 * release the lock.
   1600       1.20   thorpej 	 */
   1601       1.20   thorpej 	pp->pr_maxpages = (n == 0)
   1602       1.20   thorpej 		? 0
   1603       1.20   thorpej 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1604       1.21   thorpej 
   1605  1.133.4.1       mjf 	mutex_exit(&pp->pr_lock);
   1606       1.20   thorpej }
   1607        1.3        pk 
   1608        1.3        pk /*
   1609        1.3        pk  * Release all complete pages that have not been used recently.
   1610        1.3        pk  */
   1611       1.66   thorpej int
   1612       1.59   thorpej #ifdef POOL_DIAGNOSTIC
   1613       1.42   thorpej _pool_reclaim(struct pool *pp, const char *file, long line)
   1614       1.56  sommerfe #else
   1615       1.56  sommerfe pool_reclaim(struct pool *pp)
   1616       1.56  sommerfe #endif
   1617        1.3        pk {
   1618        1.3        pk 	struct pool_item_header *ph, *phnext;
   1619       1.61       chs 	struct pool_pagelist pq;
   1620  1.133.4.4       mjf 	uint32_t curtime;
   1621  1.133.4.1       mjf 	bool klock;
   1622  1.133.4.1       mjf 	int rv;
   1623        1.3        pk 
   1624       1.68   thorpej 	if (pp->pr_drain_hook != NULL) {
   1625       1.68   thorpej 		/*
   1626       1.68   thorpej 		 * The drain hook must be called with the pool unlocked.
   1627       1.68   thorpej 		 */
   1628       1.68   thorpej 		(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
   1629       1.68   thorpej 	}
   1630       1.68   thorpej 
   1631  1.133.4.1       mjf 	/*
   1632  1.133.4.1       mjf 	 * XXXSMP Because mutexes at IPL_SOFTXXX are still spinlocks,
   1633  1.133.4.1       mjf 	 * and we are called from the pagedaemon without kernel_lock.
   1634  1.133.4.1       mjf 	 * Does not apply to IPL_SOFTBIO.
   1635  1.133.4.1       mjf 	 */
   1636  1.133.4.1       mjf 	if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK ||
   1637  1.133.4.1       mjf 	    pp->pr_ipl == IPL_SOFTSERIAL) {
   1638  1.133.4.1       mjf 		KERNEL_LOCK(1, NULL);
   1639  1.133.4.1       mjf 		klock = true;
   1640  1.133.4.1       mjf 	} else
   1641  1.133.4.1       mjf 		klock = false;
   1642  1.133.4.1       mjf 
   1643  1.133.4.1       mjf 	/* Reclaim items from the pool's cache (if any). */
   1644  1.133.4.1       mjf 	if (pp->pr_cache != NULL)
   1645  1.133.4.1       mjf 		pool_cache_invalidate(pp->pr_cache);
   1646  1.133.4.1       mjf 
   1647  1.133.4.1       mjf 	if (mutex_tryenter(&pp->pr_lock) == 0) {
   1648  1.133.4.1       mjf 		if (klock) {
   1649  1.133.4.1       mjf 			KERNEL_UNLOCK_ONE(NULL);
   1650  1.133.4.1       mjf 		}
   1651       1.66   thorpej 		return (0);
   1652  1.133.4.1       mjf 	}
   1653       1.25   thorpej 	pr_enter(pp, file, line);
   1654       1.68   thorpej 
   1655       1.88       chs 	LIST_INIT(&pq);
   1656       1.43   thorpej 
   1657  1.133.4.4       mjf 	curtime = time_uptime;
   1658       1.21   thorpej 
   1659       1.88       chs 	for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
   1660       1.88       chs 		phnext = LIST_NEXT(ph, ph_pagelist);
   1661        1.3        pk 
   1662        1.3        pk 		/* Check our minimum page claim */
   1663        1.3        pk 		if (pp->pr_npages <= pp->pr_minpages)
   1664        1.3        pk 			break;
   1665        1.3        pk 
   1666       1.88       chs 		KASSERT(ph->ph_nmissing == 0);
   1667  1.133.4.4       mjf 		if (curtime - ph->ph_time < pool_inactive_time
   1668      1.117      yamt 		    && !pa_starved_p(pp->pr_alloc))
   1669       1.88       chs 			continue;
   1670       1.21   thorpej 
   1671       1.88       chs 		/*
   1672       1.88       chs 		 * If freeing this page would put us below
   1673       1.88       chs 		 * the low water mark, stop now.
   1674       1.88       chs 		 */
   1675       1.88       chs 		if ((pp->pr_nitems - pp->pr_itemsperpage) <
   1676       1.88       chs 		    pp->pr_minitems)
   1677       1.88       chs 			break;
   1678       1.21   thorpej 
   1679       1.88       chs 		pr_rmpage(pp, ph, &pq);
   1680        1.3        pk 	}
   1681        1.3        pk 
   1682       1.25   thorpej 	pr_leave(pp);
   1683  1.133.4.1       mjf 	mutex_exit(&pp->pr_lock);
   1684       1.66   thorpej 
   1685  1.133.4.1       mjf 	if (LIST_EMPTY(&pq))
   1686  1.133.4.1       mjf 		rv = 0;
   1687  1.133.4.1       mjf 	else {
   1688  1.133.4.1       mjf 		pr_pagelist_free(pp, &pq);
   1689  1.133.4.1       mjf 		rv = 1;
   1690  1.133.4.1       mjf 	}
   1691  1.133.4.1       mjf 
   1692  1.133.4.1       mjf 	if (klock) {
   1693  1.133.4.1       mjf 		KERNEL_UNLOCK_ONE(NULL);
   1694  1.133.4.1       mjf 	}
   1695  1.133.4.1       mjf 
   1696  1.133.4.1       mjf 	return (rv);
   1697        1.3        pk }
   1698        1.3        pk 
   1699        1.3        pk /*
   1700  1.133.4.1       mjf  * Drain pools, one at a time.  This is a two stage process;
   1701  1.133.4.1       mjf  * drain_start kicks off a cross call to drain CPU-level caches
   1702  1.133.4.1       mjf  * if the pool has an associated pool_cache.  drain_end waits
   1703  1.133.4.1       mjf  * for those cross calls to finish, and then drains the cache
   1704  1.133.4.1       mjf  * (if any) and pool.
   1705      1.131        ad  *
   1706  1.133.4.1       mjf  * Note, must never be called from interrupt context.
   1707        1.3        pk  */
   1708        1.3        pk void
   1709  1.133.4.1       mjf pool_drain_start(struct pool **ppp, uint64_t *wp)
   1710        1.3        pk {
   1711        1.3        pk 	struct pool *pp;
   1712  1.133.4.1       mjf 
   1713  1.133.4.4       mjf 	KASSERT(!TAILQ_EMPTY(&pool_head));
   1714        1.3        pk 
   1715       1.61       chs 	pp = NULL;
   1716  1.133.4.1       mjf 
   1717  1.133.4.1       mjf 	/* Find next pool to drain, and add a reference. */
   1718  1.133.4.1       mjf 	mutex_enter(&pool_head_lock);
   1719  1.133.4.1       mjf 	do {
   1720  1.133.4.1       mjf 		if (drainpp == NULL) {
   1721  1.133.4.4       mjf 			drainpp = TAILQ_FIRST(&pool_head);
   1722  1.133.4.1       mjf 		}
   1723  1.133.4.1       mjf 		if (drainpp != NULL) {
   1724  1.133.4.1       mjf 			pp = drainpp;
   1725  1.133.4.4       mjf 			drainpp = TAILQ_NEXT(pp, pr_poollist);
   1726  1.133.4.1       mjf 		}
   1727  1.133.4.1       mjf 		/*
   1728  1.133.4.1       mjf 		 * Skip completely idle pools.  We depend on at least
   1729  1.133.4.1       mjf 		 * one pool in the system being active.
   1730  1.133.4.1       mjf 		 */
   1731  1.133.4.1       mjf 	} while (pp == NULL || pp->pr_npages == 0);
   1732  1.133.4.1       mjf 	pp->pr_refcnt++;
   1733  1.133.4.1       mjf 	mutex_exit(&pool_head_lock);
   1734  1.133.4.1       mjf 
   1735  1.133.4.1       mjf 	/* If there is a pool_cache, drain CPU level caches. */
   1736  1.133.4.1       mjf 	*ppp = pp;
   1737  1.133.4.1       mjf 	if (pp->pr_cache != NULL) {
   1738  1.133.4.1       mjf 		*wp = xc_broadcast(0, (xcfunc_t)pool_cache_xcall,
   1739  1.133.4.1       mjf 		    pp->pr_cache, NULL);
   1740  1.133.4.1       mjf 	}
   1741  1.133.4.1       mjf }
   1742  1.133.4.1       mjf 
   1743  1.133.4.1       mjf void
   1744  1.133.4.1       mjf pool_drain_end(struct pool *pp, uint64_t where)
   1745  1.133.4.1       mjf {
   1746  1.133.4.1       mjf 
   1747  1.133.4.1       mjf 	if (pp == NULL)
   1748  1.133.4.1       mjf 		return;
   1749  1.133.4.1       mjf 
   1750  1.133.4.1       mjf 	KASSERT(pp->pr_refcnt > 0);
   1751  1.133.4.1       mjf 
   1752  1.133.4.1       mjf 	/* Wait for remote draining to complete. */
   1753  1.133.4.1       mjf 	if (pp->pr_cache != NULL)
   1754  1.133.4.1       mjf 		xc_wait(where);
   1755  1.133.4.1       mjf 
   1756  1.133.4.1       mjf 	/* Drain the cache (if any) and pool.. */
   1757  1.133.4.1       mjf 	pool_reclaim(pp);
   1758  1.133.4.1       mjf 
   1759  1.133.4.1       mjf 	/* Finally, unlock the pool. */
   1760  1.133.4.1       mjf 	mutex_enter(&pool_head_lock);
   1761  1.133.4.1       mjf 	pp->pr_refcnt--;
   1762  1.133.4.1       mjf 	cv_broadcast(&pool_busy);
   1763  1.133.4.1       mjf 	mutex_exit(&pool_head_lock);
   1764        1.3        pk }
   1765        1.3        pk 
   1766        1.3        pk /*
   1767        1.3        pk  * Diagnostic helpers.
   1768        1.3        pk  */
   1769        1.3        pk void
   1770       1.42   thorpej pool_print(struct pool *pp, const char *modif)
   1771       1.21   thorpej {
   1772       1.21   thorpej 
   1773       1.25   thorpej 	pool_print1(pp, modif, printf);
   1774       1.21   thorpej }
   1775       1.21   thorpej 
   1776       1.25   thorpej void
   1777      1.108      yamt pool_printall(const char *modif, void (*pr)(const char *, ...))
   1778      1.108      yamt {
   1779      1.108      yamt 	struct pool *pp;
   1780      1.108      yamt 
   1781  1.133.4.4       mjf 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   1782      1.108      yamt 		pool_printit(pp, modif, pr);
   1783      1.108      yamt 	}
   1784      1.108      yamt }
   1785      1.108      yamt 
   1786      1.108      yamt void
   1787       1.42   thorpej pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1788       1.25   thorpej {
   1789       1.25   thorpej 
   1790       1.25   thorpej 	if (pp == NULL) {
   1791       1.25   thorpej 		(*pr)("Must specify a pool to print.\n");
   1792       1.25   thorpej 		return;
   1793       1.25   thorpej 	}
   1794       1.25   thorpej 
   1795       1.25   thorpej 	pool_print1(pp, modif, pr);
   1796       1.25   thorpej }
   1797       1.25   thorpej 
   1798       1.21   thorpej static void
   1799      1.124      yamt pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
   1800       1.97      yamt     void (*pr)(const char *, ...))
   1801       1.88       chs {
   1802       1.88       chs 	struct pool_item_header *ph;
   1803       1.88       chs #ifdef DIAGNOSTIC
   1804       1.88       chs 	struct pool_item *pi;
   1805       1.88       chs #endif
   1806       1.88       chs 
   1807       1.88       chs 	LIST_FOREACH(ph, pl, ph_pagelist) {
   1808  1.133.4.4       mjf 		(*pr)("\t\tpage %p, nmissing %d, time %" PRIu32 "\n",
   1809  1.133.4.4       mjf 		    ph->ph_page, ph->ph_nmissing, ph->ph_time);
   1810       1.88       chs #ifdef DIAGNOSTIC
   1811       1.97      yamt 		if (!(pp->pr_roflags & PR_NOTOUCH)) {
   1812      1.102       chs 			LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
   1813       1.97      yamt 				if (pi->pi_magic != PI_MAGIC) {
   1814       1.97      yamt 					(*pr)("\t\t\titem %p, magic 0x%x\n",
   1815       1.97      yamt 					    pi, pi->pi_magic);
   1816       1.97      yamt 				}
   1817       1.88       chs 			}
   1818       1.88       chs 		}
   1819       1.88       chs #endif
   1820       1.88       chs 	}
   1821       1.88       chs }
   1822       1.88       chs 
   1823       1.88       chs static void
   1824       1.42   thorpej pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1825        1.3        pk {
   1826       1.25   thorpej 	struct pool_item_header *ph;
   1827  1.133.4.1       mjf 	pool_cache_t pc;
   1828  1.133.4.1       mjf 	pcg_t *pcg;
   1829  1.133.4.1       mjf 	pool_cache_cpu_t *cc;
   1830  1.133.4.1       mjf 	uint64_t cpuhit, cpumiss;
   1831       1.44   thorpej 	int i, print_log = 0, print_pagelist = 0, print_cache = 0;
   1832       1.25   thorpej 	char c;
   1833       1.25   thorpej 
   1834       1.25   thorpej 	while ((c = *modif++) != '\0') {
   1835       1.25   thorpej 		if (c == 'l')
   1836       1.25   thorpej 			print_log = 1;
   1837       1.25   thorpej 		if (c == 'p')
   1838       1.25   thorpej 			print_pagelist = 1;
   1839       1.44   thorpej 		if (c == 'c')
   1840       1.44   thorpej 			print_cache = 1;
   1841       1.25   thorpej 	}
   1842       1.25   thorpej 
   1843  1.133.4.1       mjf 	if ((pc = pp->pr_cache) != NULL) {
   1844  1.133.4.1       mjf 		(*pr)("POOL CACHE");
   1845  1.133.4.1       mjf 	} else {
   1846  1.133.4.1       mjf 		(*pr)("POOL");
   1847  1.133.4.1       mjf 	}
   1848  1.133.4.1       mjf 
   1849  1.133.4.1       mjf 	(*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
   1850       1.25   thorpej 	    pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
   1851       1.25   thorpej 	    pp->pr_roflags);
   1852       1.66   thorpej 	(*pr)("\talloc %p\n", pp->pr_alloc);
   1853       1.25   thorpej 	(*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
   1854       1.25   thorpej 	    pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
   1855       1.25   thorpej 	(*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
   1856       1.25   thorpej 	    pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
   1857       1.25   thorpej 
   1858  1.133.4.1       mjf 	(*pr)("\tnget %lu, nfail %lu, nput %lu\n",
   1859       1.25   thorpej 	    pp->pr_nget, pp->pr_nfail, pp->pr_nput);
   1860       1.25   thorpej 	(*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
   1861       1.25   thorpej 	    pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
   1862       1.25   thorpej 
   1863       1.25   thorpej 	if (print_pagelist == 0)
   1864       1.25   thorpej 		goto skip_pagelist;
   1865       1.25   thorpej 
   1866       1.88       chs 	if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
   1867       1.88       chs 		(*pr)("\n\tempty page list:\n");
   1868       1.97      yamt 	pool_print_pagelist(pp, &pp->pr_emptypages, pr);
   1869       1.88       chs 	if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
   1870       1.88       chs 		(*pr)("\n\tfull page list:\n");
   1871       1.97      yamt 	pool_print_pagelist(pp, &pp->pr_fullpages, pr);
   1872       1.88       chs 	if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
   1873       1.88       chs 		(*pr)("\n\tpartial-page list:\n");
   1874       1.97      yamt 	pool_print_pagelist(pp, &pp->pr_partpages, pr);
   1875       1.88       chs 
   1876       1.25   thorpej 	if (pp->pr_curpage == NULL)
   1877       1.25   thorpej 		(*pr)("\tno current page\n");
   1878       1.25   thorpej 	else
   1879       1.25   thorpej 		(*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
   1880       1.25   thorpej 
   1881       1.25   thorpej  skip_pagelist:
   1882       1.25   thorpej 	if (print_log == 0)
   1883       1.25   thorpej 		goto skip_log;
   1884       1.25   thorpej 
   1885       1.25   thorpej 	(*pr)("\n");
   1886       1.25   thorpej 	if ((pp->pr_roflags & PR_LOGGING) == 0)
   1887       1.25   thorpej 		(*pr)("\tno log\n");
   1888      1.122  christos 	else {
   1889       1.25   thorpej 		pr_printlog(pp, NULL, pr);
   1890      1.122  christos 	}
   1891        1.3        pk 
   1892       1.25   thorpej  skip_log:
   1893       1.44   thorpej 
   1894      1.102       chs #define PR_GROUPLIST(pcg)						\
   1895      1.102       chs 	(*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail);		\
   1896  1.133.4.3       mjf 	for (i = 0; i < pcg->pcg_size; i++) {				\
   1897      1.102       chs 		if (pcg->pcg_objects[i].pcgo_pa !=			\
   1898      1.102       chs 		    POOL_PADDR_INVALID) {				\
   1899      1.102       chs 			(*pr)("\t\t\t%p, 0x%llx\n",			\
   1900      1.102       chs 			    pcg->pcg_objects[i].pcgo_va,		\
   1901      1.102       chs 			    (unsigned long long)			\
   1902      1.102       chs 			    pcg->pcg_objects[i].pcgo_pa);		\
   1903      1.102       chs 		} else {						\
   1904      1.102       chs 			(*pr)("\t\t\t%p\n",				\
   1905      1.102       chs 			    pcg->pcg_objects[i].pcgo_va);		\
   1906      1.102       chs 		}							\
   1907      1.102       chs 	}
   1908      1.102       chs 
   1909  1.133.4.1       mjf 	if (pc != NULL) {
   1910  1.133.4.1       mjf 		cpuhit = 0;
   1911  1.133.4.1       mjf 		cpumiss = 0;
   1912  1.133.4.1       mjf 		for (i = 0; i < MAXCPUS; i++) {
   1913  1.133.4.1       mjf 			if ((cc = pc->pc_cpus[i]) == NULL)
   1914  1.133.4.1       mjf 				continue;
   1915  1.133.4.1       mjf 			cpuhit += cc->cc_hits;
   1916  1.133.4.1       mjf 			cpumiss += cc->cc_misses;
   1917  1.133.4.1       mjf 		}
   1918  1.133.4.1       mjf 		(*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
   1919  1.133.4.1       mjf 		(*pr)("\tcache layer hits %llu misses %llu\n",
   1920  1.133.4.1       mjf 		    pc->pc_hits, pc->pc_misses);
   1921  1.133.4.1       mjf 		(*pr)("\tcache layer entry uncontended %llu contended %llu\n",
   1922  1.133.4.1       mjf 		    pc->pc_hits + pc->pc_misses - pc->pc_contended,
   1923  1.133.4.1       mjf 		    pc->pc_contended);
   1924  1.133.4.1       mjf 		(*pr)("\tcache layer empty groups %u full groups %u\n",
   1925  1.133.4.1       mjf 		    pc->pc_nempty, pc->pc_nfull);
   1926  1.133.4.1       mjf 		if (print_cache) {
   1927  1.133.4.1       mjf 			(*pr)("\tfull cache groups:\n");
   1928  1.133.4.1       mjf 			for (pcg = pc->pc_fullgroups; pcg != NULL;
   1929  1.133.4.1       mjf 			    pcg = pcg->pcg_next) {
   1930  1.133.4.1       mjf 				PR_GROUPLIST(pcg);
   1931  1.133.4.1       mjf 			}
   1932  1.133.4.1       mjf 			(*pr)("\tempty cache groups:\n");
   1933  1.133.4.1       mjf 			for (pcg = pc->pc_emptygroups; pcg != NULL;
   1934  1.133.4.1       mjf 			    pcg = pcg->pcg_next) {
   1935  1.133.4.1       mjf 				PR_GROUPLIST(pcg);
   1936  1.133.4.1       mjf 			}
   1937      1.103       chs 		}
   1938       1.44   thorpej 	}
   1939      1.102       chs #undef PR_GROUPLIST
   1940       1.44   thorpej 
   1941       1.88       chs 	pr_enter_check(pp, pr);
   1942       1.88       chs }
   1943       1.88       chs 
   1944       1.88       chs static int
   1945       1.88       chs pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
   1946       1.88       chs {
   1947       1.88       chs 	struct pool_item *pi;
   1948      1.128  christos 	void *page;
   1949       1.88       chs 	int n;
   1950       1.88       chs 
   1951      1.121      yamt 	if ((pp->pr_roflags & PR_NOALIGN) == 0) {
   1952      1.128  christos 		page = (void *)((uintptr_t)ph & pp->pr_alloc->pa_pagemask);
   1953      1.121      yamt 		if (page != ph->ph_page &&
   1954      1.121      yamt 		    (pp->pr_roflags & PR_PHINPAGE) != 0) {
   1955      1.121      yamt 			if (label != NULL)
   1956      1.121      yamt 				printf("%s: ", label);
   1957      1.121      yamt 			printf("pool(%p:%s): page inconsistency: page %p;"
   1958      1.121      yamt 			       " at page head addr %p (p %p)\n", pp,
   1959      1.121      yamt 				pp->pr_wchan, ph->ph_page,
   1960      1.121      yamt 				ph, page);
   1961      1.121      yamt 			return 1;
   1962      1.121      yamt 		}
   1963       1.88       chs 	}
   1964        1.3        pk 
   1965       1.97      yamt 	if ((pp->pr_roflags & PR_NOTOUCH) != 0)
   1966       1.97      yamt 		return 0;
   1967       1.97      yamt 
   1968      1.102       chs 	for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
   1969       1.88       chs 	     pi != NULL;
   1970      1.102       chs 	     pi = LIST_NEXT(pi,pi_list), n++) {
   1971       1.88       chs 
   1972       1.88       chs #ifdef DIAGNOSTIC
   1973       1.88       chs 		if (pi->pi_magic != PI_MAGIC) {
   1974       1.88       chs 			if (label != NULL)
   1975       1.88       chs 				printf("%s: ", label);
   1976       1.88       chs 			printf("pool(%s): free list modified: magic=%x;"
   1977      1.121      yamt 			       " page %p; item ordinal %d; addr %p\n",
   1978       1.88       chs 				pp->pr_wchan, pi->pi_magic, ph->ph_page,
   1979      1.121      yamt 				n, pi);
   1980       1.88       chs 			panic("pool");
   1981       1.88       chs 		}
   1982       1.88       chs #endif
   1983      1.121      yamt 		if ((pp->pr_roflags & PR_NOALIGN) != 0) {
   1984      1.121      yamt 			continue;
   1985      1.121      yamt 		}
   1986      1.128  christos 		page = (void *)((uintptr_t)pi & pp->pr_alloc->pa_pagemask);
   1987       1.88       chs 		if (page == ph->ph_page)
   1988       1.88       chs 			continue;
   1989       1.88       chs 
   1990       1.88       chs 		if (label != NULL)
   1991       1.88       chs 			printf("%s: ", label);
   1992       1.88       chs 		printf("pool(%p:%s): page inconsistency: page %p;"
   1993       1.88       chs 		       " item ordinal %d; addr %p (p %p)\n", pp,
   1994       1.88       chs 			pp->pr_wchan, ph->ph_page,
   1995       1.88       chs 			n, pi, page);
   1996       1.88       chs 		return 1;
   1997       1.88       chs 	}
   1998       1.88       chs 	return 0;
   1999        1.3        pk }
   2000        1.3        pk 
   2001       1.88       chs 
   2002        1.3        pk int
   2003       1.42   thorpej pool_chk(struct pool *pp, const char *label)
   2004        1.3        pk {
   2005        1.3        pk 	struct pool_item_header *ph;
   2006        1.3        pk 	int r = 0;
   2007        1.3        pk 
   2008  1.133.4.1       mjf 	mutex_enter(&pp->pr_lock);
   2009       1.88       chs 	LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
   2010       1.88       chs 		r = pool_chk_page(pp, label, ph);
   2011       1.88       chs 		if (r) {
   2012       1.88       chs 			goto out;
   2013       1.88       chs 		}
   2014       1.88       chs 	}
   2015       1.88       chs 	LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
   2016       1.88       chs 		r = pool_chk_page(pp, label, ph);
   2017       1.88       chs 		if (r) {
   2018        1.3        pk 			goto out;
   2019        1.3        pk 		}
   2020       1.88       chs 	}
   2021       1.88       chs 	LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
   2022       1.88       chs 		r = pool_chk_page(pp, label, ph);
   2023       1.88       chs 		if (r) {
   2024        1.3        pk 			goto out;
   2025        1.3        pk 		}
   2026        1.3        pk 	}
   2027       1.88       chs 
   2028        1.3        pk out:
   2029  1.133.4.1       mjf 	mutex_exit(&pp->pr_lock);
   2030        1.3        pk 	return (r);
   2031       1.43   thorpej }
   2032       1.43   thorpej 
   2033       1.43   thorpej /*
   2034       1.43   thorpej  * pool_cache_init:
   2035       1.43   thorpej  *
   2036       1.43   thorpej  *	Initialize a pool cache.
   2037  1.133.4.1       mjf  */
   2038  1.133.4.1       mjf pool_cache_t
   2039  1.133.4.1       mjf pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
   2040  1.133.4.1       mjf     const char *wchan, struct pool_allocator *palloc, int ipl,
   2041  1.133.4.1       mjf     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
   2042  1.133.4.1       mjf {
   2043  1.133.4.1       mjf 	pool_cache_t pc;
   2044  1.133.4.1       mjf 
   2045  1.133.4.1       mjf 	pc = pool_get(&cache_pool, PR_WAITOK);
   2046  1.133.4.1       mjf 	if (pc == NULL)
   2047  1.133.4.1       mjf 		return NULL;
   2048  1.133.4.1       mjf 
   2049  1.133.4.1       mjf 	pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
   2050  1.133.4.1       mjf 	   palloc, ipl, ctor, dtor, arg);
   2051  1.133.4.1       mjf 
   2052  1.133.4.1       mjf 	return pc;
   2053  1.133.4.1       mjf }
   2054  1.133.4.1       mjf 
   2055  1.133.4.1       mjf /*
   2056  1.133.4.1       mjf  * pool_cache_bootstrap:
   2057       1.43   thorpej  *
   2058  1.133.4.1       mjf  *	Kernel-private version of pool_cache_init().  The caller
   2059  1.133.4.1       mjf  *	provides initial storage.
   2060       1.43   thorpej  */
   2061       1.43   thorpej void
   2062  1.133.4.1       mjf pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
   2063  1.133.4.1       mjf     u_int align_offset, u_int flags, const char *wchan,
   2064  1.133.4.1       mjf     struct pool_allocator *palloc, int ipl,
   2065  1.133.4.1       mjf     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
   2066       1.43   thorpej     void *arg)
   2067       1.43   thorpej {
   2068  1.133.4.1       mjf 	CPU_INFO_ITERATOR cii;
   2069  1.133.4.4       mjf 	pool_cache_t pc1;
   2070  1.133.4.1       mjf 	struct cpu_info *ci;
   2071  1.133.4.1       mjf 	struct pool *pp;
   2072  1.133.4.1       mjf 
   2073  1.133.4.1       mjf 	pp = &pc->pc_pool;
   2074  1.133.4.1       mjf 	if (palloc == NULL && ipl == IPL_NONE)
   2075  1.133.4.1       mjf 		palloc = &pool_allocator_nointr;
   2076  1.133.4.1       mjf 	pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl);
   2077       1.43   thorpej 
   2078  1.133.4.2       mjf 	/*
   2079  1.133.4.2       mjf 	 * XXXAD hack to prevent IP input processing from blocking.
   2080  1.133.4.2       mjf 	 */
   2081  1.133.4.2       mjf 	if (ipl == IPL_SOFTNET) {
   2082  1.133.4.2       mjf 		mutex_init(&pc->pc_lock, MUTEX_DEFAULT, IPL_VM);
   2083  1.133.4.2       mjf 	} else {
   2084  1.133.4.2       mjf 		mutex_init(&pc->pc_lock, MUTEX_DEFAULT, ipl);
   2085  1.133.4.2       mjf 	}
   2086       1.43   thorpej 
   2087  1.133.4.1       mjf 	if (ctor == NULL) {
   2088  1.133.4.1       mjf 		ctor = (int (*)(void *, void *, int))nullop;
   2089  1.133.4.1       mjf 	}
   2090  1.133.4.1       mjf 	if (dtor == NULL) {
   2091  1.133.4.1       mjf 		dtor = (void (*)(void *, void *))nullop;
   2092  1.133.4.1       mjf 	}
   2093       1.43   thorpej 
   2094  1.133.4.1       mjf 	pc->pc_emptygroups = NULL;
   2095  1.133.4.1       mjf 	pc->pc_fullgroups = NULL;
   2096  1.133.4.1       mjf 	pc->pc_partgroups = NULL;
   2097       1.43   thorpej 	pc->pc_ctor = ctor;
   2098       1.43   thorpej 	pc->pc_dtor = dtor;
   2099       1.43   thorpej 	pc->pc_arg  = arg;
   2100  1.133.4.1       mjf 	pc->pc_hits  = 0;
   2101       1.48   thorpej 	pc->pc_misses = 0;
   2102  1.133.4.1       mjf 	pc->pc_nempty = 0;
   2103  1.133.4.1       mjf 	pc->pc_npart = 0;
   2104  1.133.4.1       mjf 	pc->pc_nfull = 0;
   2105  1.133.4.1       mjf 	pc->pc_contended = 0;
   2106  1.133.4.1       mjf 	pc->pc_refcnt = 0;
   2107  1.133.4.1       mjf 	pc->pc_freecheck = NULL;
   2108  1.133.4.1       mjf 
   2109  1.133.4.3       mjf 	if ((flags & PR_LARGECACHE) != 0) {
   2110  1.133.4.3       mjf 		pc->pc_pcgsize = PCG_NOBJECTS_LARGE;
   2111  1.133.4.3       mjf 	} else {
   2112  1.133.4.3       mjf 		pc->pc_pcgsize = PCG_NOBJECTS_NORMAL;
   2113  1.133.4.3       mjf 	}
   2114  1.133.4.3       mjf 
   2115  1.133.4.1       mjf 	/* Allocate per-CPU caches. */
   2116  1.133.4.1       mjf 	memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
   2117  1.133.4.1       mjf 	pc->pc_ncpu = 0;
   2118  1.133.4.3       mjf 	if (ncpu < 2) {
   2119  1.133.4.1       mjf 		/* XXX For sparc: boot CPU is not attached yet. */
   2120  1.133.4.1       mjf 		pool_cache_cpu_init1(curcpu(), pc);
   2121  1.133.4.1       mjf 	} else {
   2122  1.133.4.1       mjf 		for (CPU_INFO_FOREACH(cii, ci)) {
   2123  1.133.4.1       mjf 			pool_cache_cpu_init1(ci, pc);
   2124  1.133.4.1       mjf 		}
   2125  1.133.4.1       mjf 	}
   2126  1.133.4.4       mjf 
   2127  1.133.4.4       mjf 	/* Add to list of all pools. */
   2128  1.133.4.4       mjf 	if (__predict_true(!cold))
   2129  1.133.4.1       mjf 		mutex_enter(&pool_head_lock);
   2130  1.133.4.4       mjf 	TAILQ_FOREACH(pc1, &pool_cache_head, pc_cachelist) {
   2131  1.133.4.4       mjf 		if (strcmp(pc1->pc_pool.pr_wchan, pc->pc_pool.pr_wchan) > 0)
   2132  1.133.4.4       mjf 			break;
   2133  1.133.4.1       mjf 	}
   2134  1.133.4.4       mjf 	if (pc1 == NULL)
   2135  1.133.4.4       mjf 		TAILQ_INSERT_TAIL(&pool_cache_head, pc, pc_cachelist);
   2136  1.133.4.4       mjf 	else
   2137  1.133.4.4       mjf 		TAILQ_INSERT_BEFORE(pc1, pc, pc_cachelist);
   2138  1.133.4.4       mjf 	if (__predict_true(!cold))
   2139  1.133.4.4       mjf 		mutex_exit(&pool_head_lock);
   2140  1.133.4.4       mjf 
   2141  1.133.4.4       mjf 	membar_sync();
   2142  1.133.4.4       mjf 	pp->pr_cache = pc;
   2143       1.43   thorpej }
   2144       1.43   thorpej 
   2145       1.43   thorpej /*
   2146       1.43   thorpej  * pool_cache_destroy:
   2147       1.43   thorpej  *
   2148       1.43   thorpej  *	Destroy a pool cache.
   2149       1.43   thorpej  */
   2150       1.43   thorpej void
   2151  1.133.4.1       mjf pool_cache_destroy(pool_cache_t pc)
   2152       1.43   thorpej {
   2153  1.133.4.1       mjf 	struct pool *pp = &pc->pc_pool;
   2154  1.133.4.1       mjf 	pool_cache_cpu_t *cc;
   2155  1.133.4.1       mjf 	pcg_t *pcg;
   2156  1.133.4.1       mjf 	int i;
   2157  1.133.4.1       mjf 
   2158  1.133.4.1       mjf 	/* Remove it from the global list. */
   2159  1.133.4.1       mjf 	mutex_enter(&pool_head_lock);
   2160  1.133.4.1       mjf 	while (pc->pc_refcnt != 0)
   2161  1.133.4.1       mjf 		cv_wait(&pool_busy, &pool_head_lock);
   2162  1.133.4.4       mjf 	TAILQ_REMOVE(&pool_cache_head, pc, pc_cachelist);
   2163  1.133.4.1       mjf 	mutex_exit(&pool_head_lock);
   2164       1.43   thorpej 
   2165       1.43   thorpej 	/* First, invalidate the entire cache. */
   2166       1.43   thorpej 	pool_cache_invalidate(pc);
   2167       1.43   thorpej 
   2168  1.133.4.1       mjf 	/* Disassociate it from the pool. */
   2169  1.133.4.1       mjf 	mutex_enter(&pp->pr_lock);
   2170  1.133.4.1       mjf 	pp->pr_cache = NULL;
   2171  1.133.4.1       mjf 	mutex_exit(&pp->pr_lock);
   2172  1.133.4.1       mjf 
   2173  1.133.4.1       mjf 	/* Destroy per-CPU data */
   2174  1.133.4.1       mjf 	for (i = 0; i < MAXCPUS; i++) {
   2175  1.133.4.1       mjf 		if ((cc = pc->pc_cpus[i]) == NULL)
   2176  1.133.4.1       mjf 			continue;
   2177  1.133.4.1       mjf 		if ((pcg = cc->cc_current) != NULL) {
   2178  1.133.4.1       mjf 			pcg->pcg_next = NULL;
   2179  1.133.4.1       mjf 			pool_cache_invalidate_groups(pc, pcg);
   2180  1.133.4.1       mjf 		}
   2181  1.133.4.1       mjf 		if ((pcg = cc->cc_previous) != NULL) {
   2182  1.133.4.1       mjf 			pcg->pcg_next = NULL;
   2183  1.133.4.1       mjf 			pool_cache_invalidate_groups(pc, pcg);
   2184  1.133.4.1       mjf 		}
   2185  1.133.4.1       mjf 		if (cc != &pc->pc_cpu0)
   2186  1.133.4.1       mjf 			pool_put(&cache_cpu_pool, cc);
   2187  1.133.4.1       mjf 	}
   2188  1.133.4.1       mjf 
   2189  1.133.4.1       mjf 	/* Finally, destroy it. */
   2190  1.133.4.1       mjf 	mutex_destroy(&pc->pc_lock);
   2191  1.133.4.1       mjf 	pool_destroy(pp);
   2192  1.133.4.1       mjf 	pool_put(&cache_pool, pc);
   2193       1.43   thorpej }
   2194       1.43   thorpej 
   2195  1.133.4.1       mjf /*
   2196  1.133.4.1       mjf  * pool_cache_cpu_init1:
   2197  1.133.4.1       mjf  *
   2198  1.133.4.1       mjf  *	Called for each pool_cache whenever a new CPU is attached.
   2199  1.133.4.1       mjf  */
   2200  1.133.4.1       mjf static void
   2201  1.133.4.1       mjf pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
   2202       1.43   thorpej {
   2203  1.133.4.1       mjf 	pool_cache_cpu_t *cc;
   2204  1.133.4.1       mjf 	int index;
   2205       1.43   thorpej 
   2206  1.133.4.1       mjf 	index = ci->ci_index;
   2207       1.43   thorpej 
   2208  1.133.4.1       mjf 	KASSERT(index < MAXCPUS);
   2209  1.133.4.1       mjf 	KASSERT(((uintptr_t)pc->pc_cpus & (CACHE_LINE_SIZE - 1)) == 0);
   2210  1.133.4.1       mjf 
   2211  1.133.4.1       mjf 	if ((cc = pc->pc_cpus[index]) != NULL) {
   2212  1.133.4.1       mjf 		KASSERT(cc->cc_cpuindex == index);
   2213  1.133.4.1       mjf 		return;
   2214  1.133.4.1       mjf 	}
   2215  1.133.4.1       mjf 
   2216  1.133.4.1       mjf 	/*
   2217  1.133.4.1       mjf 	 * The first CPU is 'free'.  This needs to be the case for
   2218  1.133.4.1       mjf 	 * bootstrap - we may not be able to allocate yet.
   2219  1.133.4.1       mjf 	 */
   2220  1.133.4.1       mjf 	if (pc->pc_ncpu == 0) {
   2221  1.133.4.1       mjf 		cc = &pc->pc_cpu0;
   2222  1.133.4.1       mjf 		pc->pc_ncpu = 1;
   2223  1.133.4.1       mjf 	} else {
   2224  1.133.4.1       mjf 		mutex_enter(&pc->pc_lock);
   2225  1.133.4.1       mjf 		pc->pc_ncpu++;
   2226  1.133.4.1       mjf 		mutex_exit(&pc->pc_lock);
   2227  1.133.4.1       mjf 		cc = pool_get(&cache_cpu_pool, PR_WAITOK);
   2228  1.133.4.1       mjf 	}
   2229  1.133.4.1       mjf 
   2230  1.133.4.1       mjf 	cc->cc_ipl = pc->pc_pool.pr_ipl;
   2231  1.133.4.1       mjf 	cc->cc_iplcookie = makeiplcookie(cc->cc_ipl);
   2232  1.133.4.1       mjf 	cc->cc_cache = pc;
   2233  1.133.4.1       mjf 	cc->cc_cpuindex = index;
   2234  1.133.4.1       mjf 	cc->cc_hits = 0;
   2235  1.133.4.1       mjf 	cc->cc_misses = 0;
   2236  1.133.4.1       mjf 	cc->cc_current = NULL;
   2237  1.133.4.1       mjf 	cc->cc_previous = NULL;
   2238  1.133.4.1       mjf 
   2239  1.133.4.1       mjf 	pc->pc_cpus[index] = cc;
   2240       1.43   thorpej }
   2241       1.43   thorpej 
   2242  1.133.4.1       mjf /*
   2243  1.133.4.1       mjf  * pool_cache_cpu_init:
   2244  1.133.4.1       mjf  *
   2245  1.133.4.1       mjf  *	Called whenever a new CPU is attached.
   2246  1.133.4.1       mjf  */
   2247  1.133.4.1       mjf void
   2248  1.133.4.1       mjf pool_cache_cpu_init(struct cpu_info *ci)
   2249       1.43   thorpej {
   2250  1.133.4.1       mjf 	pool_cache_t pc;
   2251  1.133.4.1       mjf 
   2252  1.133.4.1       mjf 	mutex_enter(&pool_head_lock);
   2253  1.133.4.4       mjf 	TAILQ_FOREACH(pc, &pool_cache_head, pc_cachelist) {
   2254  1.133.4.1       mjf 		pc->pc_refcnt++;
   2255  1.133.4.1       mjf 		mutex_exit(&pool_head_lock);
   2256  1.133.4.1       mjf 
   2257  1.133.4.1       mjf 		pool_cache_cpu_init1(ci, pc);
   2258  1.133.4.1       mjf 
   2259  1.133.4.1       mjf 		mutex_enter(&pool_head_lock);
   2260  1.133.4.1       mjf 		pc->pc_refcnt--;
   2261  1.133.4.1       mjf 		cv_broadcast(&pool_busy);
   2262  1.133.4.1       mjf 	}
   2263  1.133.4.1       mjf 	mutex_exit(&pool_head_lock);
   2264  1.133.4.1       mjf }
   2265       1.43   thorpej 
   2266  1.133.4.1       mjf /*
   2267  1.133.4.1       mjf  * pool_cache_reclaim:
   2268  1.133.4.1       mjf  *
   2269  1.133.4.1       mjf  *	Reclaim memory from a pool cache.
   2270  1.133.4.1       mjf  */
   2271  1.133.4.1       mjf bool
   2272  1.133.4.1       mjf pool_cache_reclaim(pool_cache_t pc)
   2273  1.133.4.1       mjf {
   2274       1.43   thorpej 
   2275  1.133.4.1       mjf 	return pool_reclaim(&pc->pc_pool);
   2276       1.43   thorpej }
   2277       1.43   thorpej 
   2278      1.102       chs static void
   2279  1.133.4.1       mjf pool_cache_destruct_object1(pool_cache_t pc, void *object)
   2280      1.102       chs {
   2281      1.102       chs 
   2282  1.133.4.1       mjf 	(*pc->pc_dtor)(pc->pc_arg, object);
   2283  1.133.4.1       mjf 	pool_put(&pc->pc_pool, object);
   2284      1.102       chs }
   2285      1.102       chs 
   2286       1.43   thorpej /*
   2287  1.133.4.1       mjf  * pool_cache_destruct_object:
   2288       1.43   thorpej  *
   2289  1.133.4.1       mjf  *	Force destruction of an object and its release back into
   2290  1.133.4.1       mjf  *	the pool.
   2291       1.43   thorpej  */
   2292  1.133.4.1       mjf void
   2293  1.133.4.1       mjf pool_cache_destruct_object(pool_cache_t pc, void *object)
   2294       1.43   thorpej {
   2295       1.43   thorpej 
   2296  1.133.4.1       mjf 	FREECHECK_IN(&pc->pc_freecheck, object);
   2297       1.43   thorpej 
   2298  1.133.4.1       mjf 	pool_cache_destruct_object1(pc, object);
   2299  1.133.4.1       mjf }
   2300       1.43   thorpej 
   2301  1.133.4.1       mjf /*
   2302  1.133.4.1       mjf  * pool_cache_invalidate_groups:
   2303  1.133.4.1       mjf  *
   2304  1.133.4.1       mjf  *	Invalidate a chain of groups and destruct all objects.
   2305  1.133.4.1       mjf  */
   2306  1.133.4.1       mjf static void
   2307  1.133.4.1       mjf pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
   2308  1.133.4.1       mjf {
   2309  1.133.4.1       mjf 	void *object;
   2310  1.133.4.1       mjf 	pcg_t *next;
   2311  1.133.4.1       mjf 	int i;
   2312      1.125        ad 
   2313  1.133.4.1       mjf 	for (; pcg != NULL; pcg = next) {
   2314  1.133.4.1       mjf 		next = pcg->pcg_next;
   2315       1.43   thorpej 
   2316  1.133.4.1       mjf 		for (i = 0; i < pcg->pcg_avail; i++) {
   2317  1.133.4.1       mjf 			object = pcg->pcg_objects[i].pcgo_va;
   2318  1.133.4.1       mjf 			pool_cache_destruct_object1(pc, object);
   2319  1.133.4.1       mjf 		}
   2320       1.43   thorpej 
   2321  1.133.4.3       mjf 		if (pcg->pcg_size == PCG_NOBJECTS_LARGE) {
   2322  1.133.4.3       mjf 			pool_put(&pcg_large_pool, pcg);
   2323  1.133.4.3       mjf 		} else {
   2324  1.133.4.3       mjf 			KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL);
   2325  1.133.4.3       mjf 			pool_put(&pcg_normal_pool, pcg);
   2326  1.133.4.3       mjf 		}
   2327      1.102       chs 	}
   2328       1.43   thorpej }
   2329       1.43   thorpej 
   2330       1.43   thorpej /*
   2331  1.133.4.1       mjf  * pool_cache_invalidate:
   2332       1.43   thorpej  *
   2333  1.133.4.1       mjf  *	Invalidate a pool cache (destruct and release all of the
   2334  1.133.4.1       mjf  *	cached objects).  Does not reclaim objects from the pool.
   2335       1.43   thorpej  */
   2336       1.43   thorpej void
   2337  1.133.4.1       mjf pool_cache_invalidate(pool_cache_t pc)
   2338       1.43   thorpej {
   2339  1.133.4.1       mjf 	pcg_t *full, *empty, *part;
   2340       1.43   thorpej 
   2341  1.133.4.1       mjf 	mutex_enter(&pc->pc_lock);
   2342  1.133.4.1       mjf 	full = pc->pc_fullgroups;
   2343  1.133.4.1       mjf 	empty = pc->pc_emptygroups;
   2344  1.133.4.1       mjf 	part = pc->pc_partgroups;
   2345  1.133.4.1       mjf 	pc->pc_fullgroups = NULL;
   2346  1.133.4.1       mjf 	pc->pc_emptygroups = NULL;
   2347  1.133.4.1       mjf 	pc->pc_partgroups = NULL;
   2348  1.133.4.1       mjf 	pc->pc_nfull = 0;
   2349  1.133.4.1       mjf 	pc->pc_nempty = 0;
   2350  1.133.4.1       mjf 	pc->pc_npart = 0;
   2351  1.133.4.1       mjf 	mutex_exit(&pc->pc_lock);
   2352  1.133.4.1       mjf 
   2353  1.133.4.1       mjf 	pool_cache_invalidate_groups(pc, full);
   2354  1.133.4.1       mjf 	pool_cache_invalidate_groups(pc, empty);
   2355  1.133.4.1       mjf 	pool_cache_invalidate_groups(pc, part);
   2356  1.133.4.1       mjf }
   2357  1.133.4.1       mjf 
   2358  1.133.4.1       mjf void
   2359  1.133.4.1       mjf pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
   2360  1.133.4.1       mjf {
   2361  1.133.4.1       mjf 
   2362  1.133.4.1       mjf 	pool_set_drain_hook(&pc->pc_pool, fn, arg);
   2363  1.133.4.1       mjf }
   2364  1.133.4.1       mjf 
   2365  1.133.4.1       mjf void
   2366  1.133.4.1       mjf pool_cache_setlowat(pool_cache_t pc, int n)
   2367  1.133.4.1       mjf {
   2368      1.125        ad 
   2369  1.133.4.1       mjf 	pool_setlowat(&pc->pc_pool, n);
   2370  1.133.4.1       mjf }
   2371  1.133.4.1       mjf 
   2372  1.133.4.1       mjf void
   2373  1.133.4.1       mjf pool_cache_sethiwat(pool_cache_t pc, int n)
   2374  1.133.4.1       mjf {
   2375  1.133.4.1       mjf 
   2376  1.133.4.1       mjf 	pool_sethiwat(&pc->pc_pool, n);
   2377  1.133.4.1       mjf }
   2378  1.133.4.1       mjf 
   2379  1.133.4.1       mjf void
   2380  1.133.4.1       mjf pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
   2381  1.133.4.1       mjf {
   2382  1.133.4.1       mjf 
   2383  1.133.4.1       mjf 	pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
   2384  1.133.4.1       mjf }
   2385  1.133.4.1       mjf 
   2386  1.133.4.1       mjf static inline pool_cache_cpu_t *
   2387  1.133.4.1       mjf pool_cache_cpu_enter(pool_cache_t pc, int *s)
   2388  1.133.4.1       mjf {
   2389  1.133.4.1       mjf 	pool_cache_cpu_t *cc;
   2390  1.133.4.1       mjf 
   2391  1.133.4.1       mjf 	/*
   2392  1.133.4.1       mjf 	 * Prevent other users of the cache from accessing our
   2393  1.133.4.1       mjf 	 * CPU-local data.  To avoid touching shared state, we
   2394  1.133.4.1       mjf 	 * pull the neccessary information from CPU local data.
   2395  1.133.4.1       mjf 	 */
   2396  1.133.4.1       mjf 	crit_enter();
   2397  1.133.4.1       mjf 	cc = pc->pc_cpus[curcpu()->ci_index];
   2398  1.133.4.1       mjf 	KASSERT(cc->cc_cache == pc);
   2399  1.133.4.1       mjf 	if (cc->cc_ipl != IPL_NONE) {
   2400  1.133.4.1       mjf 		*s = splraiseipl(cc->cc_iplcookie);
   2401      1.109  christos 	}
   2402  1.133.4.1       mjf 	KASSERT(((uintptr_t)cc & (CACHE_LINE_SIZE - 1)) == 0);
   2403      1.109  christos 
   2404  1.133.4.1       mjf 	return cc;
   2405  1.133.4.1       mjf }
   2406       1.43   thorpej 
   2407  1.133.4.1       mjf static inline void
   2408  1.133.4.1       mjf pool_cache_cpu_exit(pool_cache_cpu_t *cc, int *s)
   2409  1.133.4.1       mjf {
   2410  1.133.4.1       mjf 
   2411  1.133.4.1       mjf 	/* No longer need exclusive access to the per-CPU data. */
   2412  1.133.4.1       mjf 	if (cc->cc_ipl != IPL_NONE) {
   2413  1.133.4.1       mjf 		splx(*s);
   2414      1.102       chs 	}
   2415  1.133.4.1       mjf 	crit_exit();
   2416  1.133.4.1       mjf }
   2417  1.133.4.1       mjf 
   2418  1.133.4.1       mjf #if __GNUC_PREREQ__(3, 0)
   2419  1.133.4.1       mjf __attribute ((noinline))
   2420  1.133.4.1       mjf #endif
   2421  1.133.4.1       mjf pool_cache_cpu_t *
   2422  1.133.4.1       mjf pool_cache_get_slow(pool_cache_cpu_t *cc, int *s, void **objectp,
   2423  1.133.4.1       mjf 		    paddr_t *pap, int flags)
   2424  1.133.4.1       mjf {
   2425  1.133.4.1       mjf 	pcg_t *pcg, *cur;
   2426  1.133.4.1       mjf 	uint64_t ncsw;
   2427  1.133.4.1       mjf 	pool_cache_t pc;
   2428  1.133.4.1       mjf 	void *object;
   2429  1.133.4.1       mjf 
   2430  1.133.4.1       mjf 	pc = cc->cc_cache;
   2431  1.133.4.1       mjf 	cc->cc_misses++;
   2432  1.133.4.1       mjf 
   2433  1.133.4.1       mjf 	/*
   2434  1.133.4.1       mjf 	 * Nothing was available locally.  Try and grab a group
   2435  1.133.4.1       mjf 	 * from the cache.
   2436  1.133.4.1       mjf 	 */
   2437  1.133.4.1       mjf 	if (!mutex_tryenter(&pc->pc_lock)) {
   2438  1.133.4.1       mjf 		ncsw = curlwp->l_ncsw;
   2439  1.133.4.1       mjf 		mutex_enter(&pc->pc_lock);
   2440  1.133.4.1       mjf 		pc->pc_contended++;
   2441       1.43   thorpej 
   2442       1.43   thorpej 		/*
   2443  1.133.4.1       mjf 		 * If we context switched while locking, then
   2444  1.133.4.1       mjf 		 * our view of the per-CPU data is invalid:
   2445  1.133.4.1       mjf 		 * retry.
   2446       1.43   thorpej 		 */
   2447  1.133.4.1       mjf 		if (curlwp->l_ncsw != ncsw) {
   2448  1.133.4.1       mjf 			mutex_exit(&pc->pc_lock);
   2449  1.133.4.1       mjf 			pool_cache_cpu_exit(cc, s);
   2450  1.133.4.1       mjf 			return pool_cache_cpu_enter(pc, s);
   2451  1.133.4.1       mjf 		}
   2452  1.133.4.1       mjf 	}
   2453      1.102       chs 
   2454  1.133.4.1       mjf 	if ((pcg = pc->pc_fullgroups) != NULL) {
   2455  1.133.4.1       mjf 		/*
   2456  1.133.4.1       mjf 		 * If there's a full group, release our empty
   2457  1.133.4.1       mjf 		 * group back to the cache.  Install the full
   2458  1.133.4.1       mjf 		 * group as cc_current and return.
   2459  1.133.4.1       mjf 		 */
   2460  1.133.4.1       mjf 		if ((cur = cc->cc_current) != NULL) {
   2461  1.133.4.1       mjf 			KASSERT(cur->pcg_avail == 0);
   2462  1.133.4.1       mjf 			cur->pcg_next = pc->pc_emptygroups;
   2463  1.133.4.1       mjf 			pc->pc_emptygroups = cur;
   2464  1.133.4.1       mjf 			pc->pc_nempty++;
   2465       1.43   thorpej 		}
   2466  1.133.4.3       mjf 		KASSERT(pcg->pcg_avail == pcg->pcg_size);
   2467  1.133.4.1       mjf 		cc->cc_current = pcg;
   2468  1.133.4.1       mjf 		pc->pc_fullgroups = pcg->pcg_next;
   2469  1.133.4.1       mjf 		pc->pc_hits++;
   2470  1.133.4.1       mjf 		pc->pc_nfull--;
   2471  1.133.4.1       mjf 		mutex_exit(&pc->pc_lock);
   2472  1.133.4.1       mjf 		return cc;
   2473       1.43   thorpej 	}
   2474       1.43   thorpej 
   2475  1.133.4.1       mjf 	/*
   2476  1.133.4.1       mjf 	 * Nothing available locally or in cache.  Take the slow
   2477  1.133.4.1       mjf 	 * path: fetch a new object from the pool and construct
   2478  1.133.4.1       mjf 	 * it.
   2479  1.133.4.1       mjf 	 */
   2480  1.133.4.1       mjf 	pc->pc_misses++;
   2481  1.133.4.1       mjf 	mutex_exit(&pc->pc_lock);
   2482  1.133.4.1       mjf 	pool_cache_cpu_exit(cc, s);
   2483  1.133.4.1       mjf 
   2484  1.133.4.1       mjf 	object = pool_get(&pc->pc_pool, flags);
   2485  1.133.4.1       mjf 	*objectp = object;
   2486  1.133.4.1       mjf 	if (object == NULL)
   2487  1.133.4.1       mjf 		return NULL;
   2488       1.43   thorpej 
   2489  1.133.4.1       mjf 	if ((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0) {
   2490  1.133.4.1       mjf 		pool_put(&pc->pc_pool, object);
   2491  1.133.4.1       mjf 		*objectp = NULL;
   2492  1.133.4.1       mjf 		return NULL;
   2493      1.102       chs 	}
   2494       1.51   thorpej 
   2495  1.133.4.1       mjf 	KASSERT((((vaddr_t)object + pc->pc_pool.pr_itemoffset) &
   2496  1.133.4.1       mjf 	    (pc->pc_pool.pr_align - 1)) == 0);
   2497  1.133.4.1       mjf 
   2498  1.133.4.1       mjf 	if (pap != NULL) {
   2499  1.133.4.1       mjf #ifdef POOL_VTOPHYS
   2500  1.133.4.1       mjf 		*pap = POOL_VTOPHYS(object);
   2501  1.133.4.1       mjf #else
   2502  1.133.4.1       mjf 		*pap = POOL_PADDR_INVALID;
   2503  1.133.4.1       mjf #endif
   2504  1.133.4.1       mjf 	}
   2505       1.51   thorpej 
   2506  1.133.4.1       mjf 	FREECHECK_OUT(&pc->pc_freecheck, object);
   2507  1.133.4.1       mjf 	return NULL;
   2508       1.43   thorpej }
   2509       1.43   thorpej 
   2510      1.130        ad /*
   2511  1.133.4.1       mjf  * pool_cache_get{,_paddr}:
   2512      1.130        ad  *
   2513  1.133.4.1       mjf  *	Get an object from a pool cache (optionally returning
   2514  1.133.4.1       mjf  *	the physical address of the object).
   2515      1.130        ad  */
   2516  1.133.4.1       mjf void *
   2517  1.133.4.1       mjf pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
   2518      1.102       chs {
   2519  1.133.4.1       mjf 	pool_cache_cpu_t *cc;
   2520  1.133.4.1       mjf 	pcg_t *pcg;
   2521      1.102       chs 	void *object;
   2522  1.133.4.1       mjf 	int s;
   2523      1.102       chs 
   2524  1.133.4.1       mjf #ifdef LOCKDEBUG
   2525  1.133.4.1       mjf 	if (flags & PR_WAITOK)
   2526  1.133.4.1       mjf 		ASSERT_SLEEPABLE(NULL, "pool_cache_get(PR_WAITOK)");
   2527  1.133.4.1       mjf #endif
   2528      1.130        ad 
   2529  1.133.4.1       mjf 	cc = pool_cache_cpu_enter(pc, &s);
   2530  1.133.4.1       mjf 	do {
   2531  1.133.4.1       mjf 		/* Try and allocate an object from the current group. */
   2532  1.133.4.1       mjf 	 	pcg = cc->cc_current;
   2533  1.133.4.1       mjf 		if (pcg != NULL && pcg->pcg_avail > 0) {
   2534  1.133.4.1       mjf 			object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;
   2535  1.133.4.1       mjf 			if (pap != NULL)
   2536  1.133.4.1       mjf 				*pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa;
   2537  1.133.4.4       mjf #if defined(DIAGNOSTIC)
   2538  1.133.4.1       mjf 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL;
   2539  1.133.4.4       mjf #endif /* defined(DIAGNOSTIC) */
   2540  1.133.4.3       mjf 			KASSERT(pcg->pcg_avail <= pcg->pcg_size);
   2541  1.133.4.1       mjf 			KASSERT(object != NULL);
   2542  1.133.4.1       mjf 			cc->cc_hits++;
   2543  1.133.4.1       mjf 			pool_cache_cpu_exit(cc, &s);
   2544  1.133.4.1       mjf 			FREECHECK_OUT(&pc->pc_freecheck, object);
   2545  1.133.4.1       mjf 			return object;
   2546      1.102       chs 		}
   2547      1.130        ad 
   2548  1.133.4.1       mjf 		/*
   2549  1.133.4.1       mjf 		 * That failed.  If the previous group isn't empty, swap
   2550  1.133.4.1       mjf 		 * it with the current group and allocate from there.
   2551  1.133.4.1       mjf 		 */
   2552  1.133.4.1       mjf 		pcg = cc->cc_previous;
   2553  1.133.4.1       mjf 		if (pcg != NULL && pcg->pcg_avail > 0) {
   2554  1.133.4.1       mjf 			cc->cc_previous = cc->cc_current;
   2555  1.133.4.1       mjf 			cc->cc_current = pcg;
   2556  1.133.4.1       mjf 			continue;
   2557  1.133.4.1       mjf 		}
   2558  1.133.4.1       mjf 
   2559  1.133.4.1       mjf 		/*
   2560  1.133.4.1       mjf 		 * Can't allocate from either group: try the slow path.
   2561  1.133.4.1       mjf 		 * If get_slow() allocated an object for us, or if
   2562  1.133.4.1       mjf 		 * no more objects are available, it will return NULL.
   2563  1.133.4.1       mjf 		 * Otherwise, we need to retry.
   2564  1.133.4.1       mjf 		 */
   2565  1.133.4.1       mjf 		cc = pool_cache_get_slow(cc, &s, &object, pap, flags);
   2566  1.133.4.1       mjf 	} while (cc != NULL);
   2567  1.133.4.1       mjf 
   2568  1.133.4.1       mjf 	return object;
   2569      1.105  christos }
   2570      1.105  christos 
   2571  1.133.4.1       mjf #if __GNUC_PREREQ__(3, 0)
   2572  1.133.4.1       mjf __attribute ((noinline))
   2573  1.133.4.1       mjf #endif
   2574  1.133.4.1       mjf pool_cache_cpu_t *
   2575  1.133.4.1       mjf pool_cache_put_slow(pool_cache_cpu_t *cc, int *s, void *object, paddr_t pa)
   2576      1.105  christos {
   2577  1.133.4.1       mjf 	pcg_t *pcg, *cur;
   2578  1.133.4.1       mjf 	uint64_t ncsw;
   2579  1.133.4.1       mjf 	pool_cache_t pc;
   2580  1.133.4.3       mjf 	u_int nobj;
   2581      1.105  christos 
   2582  1.133.4.1       mjf 	pc = cc->cc_cache;
   2583  1.133.4.1       mjf 	cc->cc_misses++;
   2584      1.105  christos 
   2585  1.133.4.1       mjf 	/*
   2586  1.133.4.1       mjf 	 * No free slots locally.  Try to grab an empty, unused
   2587  1.133.4.1       mjf 	 * group from the cache.
   2588  1.133.4.1       mjf 	 */
   2589  1.133.4.1       mjf 	if (!mutex_tryenter(&pc->pc_lock)) {
   2590  1.133.4.1       mjf 		ncsw = curlwp->l_ncsw;
   2591  1.133.4.1       mjf 		mutex_enter(&pc->pc_lock);
   2592  1.133.4.1       mjf 		pc->pc_contended++;
   2593      1.103       chs 
   2594  1.133.4.1       mjf 		/*
   2595  1.133.4.1       mjf 		 * If we context switched while locking, then
   2596  1.133.4.1       mjf 		 * our view of the per-CPU data is invalid:
   2597  1.133.4.1       mjf 		 * retry.
   2598  1.133.4.1       mjf 		 */
   2599  1.133.4.1       mjf 		if (curlwp->l_ncsw != ncsw) {
   2600  1.133.4.1       mjf 			mutex_exit(&pc->pc_lock);
   2601  1.133.4.1       mjf 			pool_cache_cpu_exit(cc, s);
   2602  1.133.4.1       mjf 			return pool_cache_cpu_enter(pc, s);
   2603  1.133.4.1       mjf 		}
   2604  1.133.4.1       mjf 	}
   2605  1.133.4.1       mjf 
   2606  1.133.4.1       mjf 	if ((pcg = pc->pc_emptygroups) != NULL) {
   2607  1.133.4.1       mjf 		/*
   2608  1.133.4.1       mjf 		 * If there's a empty group, release our full
   2609  1.133.4.1       mjf 		 * group back to the cache.  Install the empty
   2610  1.133.4.4       mjf 		 * group and return.
   2611  1.133.4.1       mjf 		 */
   2612  1.133.4.1       mjf 		KASSERT(pcg->pcg_avail == 0);
   2613  1.133.4.1       mjf 		pc->pc_emptygroups = pcg->pcg_next;
   2614  1.133.4.4       mjf 		if (cc->cc_previous == NULL) {
   2615  1.133.4.4       mjf 			cc->cc_previous = pcg;
   2616  1.133.4.4       mjf 		} else {
   2617  1.133.4.4       mjf 			if ((cur = cc->cc_current) != NULL) {
   2618  1.133.4.4       mjf 				KASSERT(cur->pcg_avail == pcg->pcg_size);
   2619  1.133.4.4       mjf 				cur->pcg_next = pc->pc_fullgroups;
   2620  1.133.4.4       mjf 				pc->pc_fullgroups = cur;
   2621  1.133.4.4       mjf 				pc->pc_nfull++;
   2622  1.133.4.4       mjf 			}
   2623  1.133.4.4       mjf 			cc->cc_current = pcg;
   2624  1.133.4.4       mjf 		}
   2625  1.133.4.1       mjf 		pc->pc_hits++;
   2626  1.133.4.1       mjf 		pc->pc_nempty--;
   2627  1.133.4.1       mjf 		mutex_exit(&pc->pc_lock);
   2628  1.133.4.1       mjf 		return cc;
   2629  1.133.4.1       mjf 	}
   2630  1.133.4.1       mjf 
   2631  1.133.4.1       mjf 	/*
   2632  1.133.4.1       mjf 	 * Nothing available locally or in cache.  Take the
   2633  1.133.4.1       mjf 	 * slow path and try to allocate a new group that we
   2634  1.133.4.1       mjf 	 * can release to.
   2635  1.133.4.1       mjf 	 */
   2636  1.133.4.1       mjf 	pc->pc_misses++;
   2637  1.133.4.1       mjf 	mutex_exit(&pc->pc_lock);
   2638  1.133.4.1       mjf 	pool_cache_cpu_exit(cc, s);
   2639  1.133.4.1       mjf 
   2640  1.133.4.1       mjf 	/*
   2641  1.133.4.1       mjf 	 * If we can't allocate a new group, just throw the
   2642  1.133.4.1       mjf 	 * object away.
   2643  1.133.4.1       mjf 	 */
   2644  1.133.4.3       mjf 	nobj = pc->pc_pcgsize;
   2645  1.133.4.4       mjf 	if (pool_cache_disable) {
   2646  1.133.4.4       mjf 		pcg = NULL;
   2647  1.133.4.4       mjf 	} else if (nobj == PCG_NOBJECTS_LARGE) {
   2648  1.133.4.3       mjf 		pcg = pool_get(&pcg_large_pool, PR_NOWAIT);
   2649  1.133.4.3       mjf 	} else {
   2650  1.133.4.3       mjf 		pcg = pool_get(&pcg_normal_pool, PR_NOWAIT);
   2651  1.133.4.3       mjf 	}
   2652  1.133.4.1       mjf 	if (pcg == NULL) {
   2653  1.133.4.1       mjf 		pool_cache_destruct_object(pc, object);
   2654  1.133.4.1       mjf 		return NULL;
   2655  1.133.4.1       mjf 	}
   2656  1.133.4.1       mjf 	pcg->pcg_avail = 0;
   2657  1.133.4.3       mjf 	pcg->pcg_size = nobj;
   2658  1.133.4.1       mjf 
   2659  1.133.4.1       mjf 	/*
   2660  1.133.4.1       mjf 	 * Add the empty group to the cache and try again.
   2661  1.133.4.1       mjf 	 */
   2662  1.133.4.1       mjf 	mutex_enter(&pc->pc_lock);
   2663  1.133.4.1       mjf 	pcg->pcg_next = pc->pc_emptygroups;
   2664  1.133.4.1       mjf 	pc->pc_emptygroups = pcg;
   2665  1.133.4.1       mjf 	pc->pc_nempty++;
   2666  1.133.4.1       mjf 	mutex_exit(&pc->pc_lock);
   2667  1.133.4.1       mjf 
   2668  1.133.4.1       mjf 	return pool_cache_cpu_enter(pc, s);
   2669  1.133.4.1       mjf }
   2670      1.102       chs 
   2671       1.43   thorpej /*
   2672  1.133.4.1       mjf  * pool_cache_put{,_paddr}:
   2673       1.43   thorpej  *
   2674  1.133.4.1       mjf  *	Put an object back to the pool cache (optionally caching the
   2675  1.133.4.1       mjf  *	physical address of the object).
   2676       1.43   thorpej  */
   2677      1.101   thorpej void
   2678  1.133.4.1       mjf pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
   2679       1.43   thorpej {
   2680  1.133.4.1       mjf 	pool_cache_cpu_t *cc;
   2681  1.133.4.1       mjf 	pcg_t *pcg;
   2682  1.133.4.1       mjf 	int s;
   2683      1.101   thorpej 
   2684  1.133.4.1       mjf 	FREECHECK_IN(&pc->pc_freecheck, object);
   2685       1.43   thorpej 
   2686  1.133.4.1       mjf 	cc = pool_cache_cpu_enter(pc, &s);
   2687  1.133.4.1       mjf 	do {
   2688  1.133.4.1       mjf 		/* If the current group isn't full, release it there. */
   2689  1.133.4.1       mjf 	 	pcg = cc->cc_current;
   2690  1.133.4.3       mjf 		if (pcg != NULL && pcg->pcg_avail < pcg->pcg_size) {
   2691  1.133.4.1       mjf 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object;
   2692  1.133.4.1       mjf 			pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa;
   2693  1.133.4.1       mjf 			pcg->pcg_avail++;
   2694  1.133.4.1       mjf 			cc->cc_hits++;
   2695  1.133.4.1       mjf 			pool_cache_cpu_exit(cc, &s);
   2696  1.133.4.1       mjf 			return;
   2697  1.133.4.1       mjf 		}
   2698       1.43   thorpej 
   2699  1.133.4.1       mjf 		/*
   2700  1.133.4.1       mjf 		 * That failed.  If the previous group is empty, swap
   2701  1.133.4.1       mjf 		 * it with the current group and try again.
   2702  1.133.4.1       mjf 		 */
   2703  1.133.4.1       mjf 		pcg = cc->cc_previous;
   2704  1.133.4.1       mjf 		if (pcg != NULL && pcg->pcg_avail == 0) {
   2705  1.133.4.1       mjf 			cc->cc_previous = cc->cc_current;
   2706  1.133.4.1       mjf 			cc->cc_current = pcg;
   2707  1.133.4.1       mjf 			continue;
   2708  1.133.4.1       mjf 		}
   2709       1.43   thorpej 
   2710  1.133.4.1       mjf 		/*
   2711  1.133.4.1       mjf 		 * Can't free to either group: try the slow path.
   2712  1.133.4.1       mjf 		 * If put_slow() releases the object for us, it
   2713  1.133.4.1       mjf 		 * will return NULL.  Otherwise we need to retry.
   2714  1.133.4.1       mjf 		 */
   2715  1.133.4.1       mjf 		cc = pool_cache_put_slow(cc, &s, object, pa);
   2716  1.133.4.1       mjf 	} while (cc != NULL);
   2717       1.43   thorpej }
   2718       1.43   thorpej 
   2719       1.43   thorpej /*
   2720  1.133.4.1       mjf  * pool_cache_xcall:
   2721       1.43   thorpej  *
   2722  1.133.4.1       mjf  *	Transfer objects from the per-CPU cache to the global cache.
   2723  1.133.4.1       mjf  *	Run within a cross-call thread.
   2724       1.43   thorpej  */
   2725       1.43   thorpej static void
   2726  1.133.4.1       mjf pool_cache_xcall(pool_cache_t pc)
   2727       1.43   thorpej {
   2728  1.133.4.1       mjf 	pool_cache_cpu_t *cc;
   2729  1.133.4.1       mjf 	pcg_t *prev, *cur, **list;
   2730  1.133.4.1       mjf 	int s = 0; /* XXXgcc */
   2731  1.133.4.1       mjf 
   2732  1.133.4.1       mjf 	cc = pool_cache_cpu_enter(pc, &s);
   2733  1.133.4.1       mjf 	cur = cc->cc_current;
   2734  1.133.4.1       mjf 	cc->cc_current = NULL;
   2735  1.133.4.1       mjf 	prev = cc->cc_previous;
   2736  1.133.4.1       mjf 	cc->cc_previous = NULL;
   2737  1.133.4.1       mjf 	pool_cache_cpu_exit(cc, &s);
   2738  1.133.4.1       mjf 
   2739  1.133.4.1       mjf 	/*
   2740  1.133.4.1       mjf 	 * XXXSMP Go to splvm to prevent kernel_lock from being taken,
   2741  1.133.4.1       mjf 	 * because locks at IPL_SOFTXXX are still spinlocks.  Does not
   2742  1.133.4.1       mjf 	 * apply to IPL_SOFTBIO.  Cross-call threads do not take the
   2743  1.133.4.1       mjf 	 * kernel_lock.
   2744      1.101   thorpej 	 */
   2745  1.133.4.1       mjf 	s = splvm();
   2746  1.133.4.1       mjf 	mutex_enter(&pc->pc_lock);
   2747  1.133.4.1       mjf 	if (cur != NULL) {
   2748  1.133.4.3       mjf 		if (cur->pcg_avail == cur->pcg_size) {
   2749  1.133.4.1       mjf 			list = &pc->pc_fullgroups;
   2750  1.133.4.1       mjf 			pc->pc_nfull++;
   2751  1.133.4.1       mjf 		} else if (cur->pcg_avail == 0) {
   2752  1.133.4.1       mjf 			list = &pc->pc_emptygroups;
   2753  1.133.4.1       mjf 			pc->pc_nempty++;
   2754  1.133.4.1       mjf 		} else {
   2755  1.133.4.1       mjf 			list = &pc->pc_partgroups;
   2756  1.133.4.1       mjf 			pc->pc_npart++;
   2757  1.133.4.1       mjf 		}
   2758  1.133.4.1       mjf 		cur->pcg_next = *list;
   2759  1.133.4.1       mjf 		*list = cur;
   2760  1.133.4.1       mjf 	}
   2761  1.133.4.1       mjf 	if (prev != NULL) {
   2762  1.133.4.3       mjf 		if (prev->pcg_avail == prev->pcg_size) {
   2763  1.133.4.1       mjf 			list = &pc->pc_fullgroups;
   2764  1.133.4.1       mjf 			pc->pc_nfull++;
   2765  1.133.4.1       mjf 		} else if (prev->pcg_avail == 0) {
   2766  1.133.4.1       mjf 			list = &pc->pc_emptygroups;
   2767  1.133.4.1       mjf 			pc->pc_nempty++;
   2768  1.133.4.1       mjf 		} else {
   2769  1.133.4.1       mjf 			list = &pc->pc_partgroups;
   2770  1.133.4.1       mjf 			pc->pc_npart++;
   2771  1.133.4.1       mjf 		}
   2772  1.133.4.1       mjf 		prev->pcg_next = *list;
   2773  1.133.4.1       mjf 		*list = prev;
   2774  1.133.4.1       mjf 	}
   2775  1.133.4.1       mjf 	mutex_exit(&pc->pc_lock);
   2776  1.133.4.1       mjf 	splx(s);
   2777        1.3        pk }
   2778       1.66   thorpej 
   2779       1.66   thorpej /*
   2780       1.66   thorpej  * Pool backend allocators.
   2781       1.66   thorpej  *
   2782       1.66   thorpej  * Each pool has a backend allocator that handles allocation, deallocation,
   2783       1.66   thorpej  * and any additional draining that might be needed.
   2784       1.66   thorpej  *
   2785       1.66   thorpej  * We provide two standard allocators:
   2786       1.66   thorpej  *
   2787       1.66   thorpej  *	pool_allocator_kmem - the default when no allocator is specified
   2788       1.66   thorpej  *
   2789       1.66   thorpej  *	pool_allocator_nointr - used for pools that will not be accessed
   2790       1.66   thorpej  *	in interrupt context.
   2791       1.66   thorpej  */
   2792       1.66   thorpej void	*pool_page_alloc(struct pool *, int);
   2793       1.66   thorpej void	pool_page_free(struct pool *, void *);
   2794       1.66   thorpej 
   2795      1.112     bjh21 #ifdef POOL_SUBPAGE
   2796      1.112     bjh21 struct pool_allocator pool_allocator_kmem_fullpage = {
   2797      1.112     bjh21 	pool_page_alloc, pool_page_free, 0,
   2798      1.117      yamt 	.pa_backingmapptr = &kmem_map,
   2799      1.112     bjh21 };
   2800      1.112     bjh21 #else
   2801       1.66   thorpej struct pool_allocator pool_allocator_kmem = {
   2802       1.66   thorpej 	pool_page_alloc, pool_page_free, 0,
   2803      1.117      yamt 	.pa_backingmapptr = &kmem_map,
   2804       1.66   thorpej };
   2805      1.112     bjh21 #endif
   2806       1.66   thorpej 
   2807       1.66   thorpej void	*pool_page_alloc_nointr(struct pool *, int);
   2808       1.66   thorpej void	pool_page_free_nointr(struct pool *, void *);
   2809       1.66   thorpej 
   2810      1.112     bjh21 #ifdef POOL_SUBPAGE
   2811      1.112     bjh21 struct pool_allocator pool_allocator_nointr_fullpage = {
   2812      1.112     bjh21 	pool_page_alloc_nointr, pool_page_free_nointr, 0,
   2813      1.117      yamt 	.pa_backingmapptr = &kernel_map,
   2814      1.112     bjh21 };
   2815      1.112     bjh21 #else
   2816       1.66   thorpej struct pool_allocator pool_allocator_nointr = {
   2817       1.66   thorpej 	pool_page_alloc_nointr, pool_page_free_nointr, 0,
   2818      1.117      yamt 	.pa_backingmapptr = &kernel_map,
   2819       1.66   thorpej };
   2820      1.112     bjh21 #endif
   2821       1.66   thorpej 
   2822       1.66   thorpej #ifdef POOL_SUBPAGE
   2823       1.66   thorpej void	*pool_subpage_alloc(struct pool *, int);
   2824       1.66   thorpej void	pool_subpage_free(struct pool *, void *);
   2825       1.66   thorpej 
   2826      1.112     bjh21 struct pool_allocator pool_allocator_kmem = {
   2827      1.112     bjh21 	pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
   2828      1.117      yamt 	.pa_backingmapptr = &kmem_map,
   2829      1.112     bjh21 };
   2830      1.112     bjh21 
   2831      1.112     bjh21 void	*pool_subpage_alloc_nointr(struct pool *, int);
   2832      1.112     bjh21 void	pool_subpage_free_nointr(struct pool *, void *);
   2833      1.112     bjh21 
   2834      1.112     bjh21 struct pool_allocator pool_allocator_nointr = {
   2835      1.112     bjh21 	pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
   2836      1.117      yamt 	.pa_backingmapptr = &kmem_map,
   2837       1.66   thorpej };
   2838       1.66   thorpej #endif /* POOL_SUBPAGE */
   2839       1.66   thorpej 
   2840      1.117      yamt static void *
   2841      1.117      yamt pool_allocator_alloc(struct pool *pp, int flags)
   2842       1.66   thorpej {
   2843      1.117      yamt 	struct pool_allocator *pa = pp->pr_alloc;
   2844       1.66   thorpej 	void *res;
   2845       1.66   thorpej 
   2846      1.117      yamt 	res = (*pa->pa_alloc)(pp, flags);
   2847      1.117      yamt 	if (res == NULL && (flags & PR_WAITOK) == 0) {
   2848       1.66   thorpej 		/*
   2849      1.117      yamt 		 * We only run the drain hook here if PR_NOWAIT.
   2850      1.117      yamt 		 * In other cases, the hook will be run in
   2851      1.117      yamt 		 * pool_reclaim().
   2852       1.66   thorpej 		 */
   2853      1.117      yamt 		if (pp->pr_drain_hook != NULL) {
   2854      1.117      yamt 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
   2855      1.117      yamt 			res = (*pa->pa_alloc)(pp, flags);
   2856       1.66   thorpej 		}
   2857      1.117      yamt 	}
   2858      1.117      yamt 	return res;
   2859       1.66   thorpej }
   2860       1.66   thorpej 
   2861      1.117      yamt static void
   2862       1.66   thorpej pool_allocator_free(struct pool *pp, void *v)
   2863       1.66   thorpej {
   2864       1.66   thorpej 	struct pool_allocator *pa = pp->pr_alloc;
   2865       1.66   thorpej 
   2866       1.66   thorpej 	(*pa->pa_free)(pp, v);
   2867       1.66   thorpej }
   2868       1.66   thorpej 
   2869       1.66   thorpej void *
   2870      1.124      yamt pool_page_alloc(struct pool *pp, int flags)
   2871       1.66   thorpej {
   2872      1.127   thorpej 	bool waitok = (flags & PR_WAITOK) ? true : false;
   2873       1.66   thorpej 
   2874      1.100      yamt 	return ((void *) uvm_km_alloc_poolpage_cache(kmem_map, waitok));
   2875       1.66   thorpej }
   2876       1.66   thorpej 
   2877       1.66   thorpej void
   2878      1.124      yamt pool_page_free(struct pool *pp, void *v)
   2879       1.66   thorpej {
   2880       1.66   thorpej 
   2881       1.98      yamt 	uvm_km_free_poolpage_cache(kmem_map, (vaddr_t) v);
   2882       1.98      yamt }
   2883       1.98      yamt 
   2884       1.98      yamt static void *
   2885      1.124      yamt pool_page_alloc_meta(struct pool *pp, int flags)
   2886       1.98      yamt {
   2887      1.127   thorpej 	bool waitok = (flags & PR_WAITOK) ? true : false;
   2888       1.98      yamt 
   2889      1.100      yamt 	return ((void *) uvm_km_alloc_poolpage(kmem_map, waitok));
   2890       1.98      yamt }
   2891       1.98      yamt 
   2892       1.98      yamt static void
   2893      1.124      yamt pool_page_free_meta(struct pool *pp, void *v)
   2894       1.98      yamt {
   2895       1.98      yamt 
   2896      1.100      yamt 	uvm_km_free_poolpage(kmem_map, (vaddr_t) v);
   2897       1.66   thorpej }
   2898       1.66   thorpej 
   2899       1.66   thorpej #ifdef POOL_SUBPAGE
   2900       1.66   thorpej /* Sub-page allocator, for machines with large hardware pages. */
   2901       1.66   thorpej void *
   2902       1.66   thorpej pool_subpage_alloc(struct pool *pp, int flags)
   2903       1.66   thorpej {
   2904  1.133.4.1       mjf 	return pool_get(&psppool, flags);
   2905       1.66   thorpej }
   2906       1.66   thorpej 
   2907       1.66   thorpej void
   2908       1.66   thorpej pool_subpage_free(struct pool *pp, void *v)
   2909       1.66   thorpej {
   2910       1.66   thorpej 	pool_put(&psppool, v);
   2911       1.66   thorpej }
   2912       1.66   thorpej 
   2913       1.66   thorpej /* We don't provide a real nointr allocator.  Maybe later. */
   2914       1.66   thorpej void *
   2915      1.112     bjh21 pool_subpage_alloc_nointr(struct pool *pp, int flags)
   2916       1.66   thorpej {
   2917       1.66   thorpej 
   2918       1.66   thorpej 	return (pool_subpage_alloc(pp, flags));
   2919       1.66   thorpej }
   2920       1.66   thorpej 
   2921       1.66   thorpej void
   2922      1.112     bjh21 pool_subpage_free_nointr(struct pool *pp, void *v)
   2923       1.66   thorpej {
   2924       1.66   thorpej 
   2925       1.66   thorpej 	pool_subpage_free(pp, v);
   2926       1.66   thorpej }
   2927      1.112     bjh21 #endif /* POOL_SUBPAGE */
   2928       1.66   thorpej void *
   2929      1.124      yamt pool_page_alloc_nointr(struct pool *pp, int flags)
   2930       1.66   thorpej {
   2931      1.127   thorpej 	bool waitok = (flags & PR_WAITOK) ? true : false;
   2932       1.66   thorpej 
   2933      1.100      yamt 	return ((void *) uvm_km_alloc_poolpage_cache(kernel_map, waitok));
   2934       1.66   thorpej }
   2935       1.66   thorpej 
   2936       1.66   thorpej void
   2937      1.124      yamt pool_page_free_nointr(struct pool *pp, void *v)
   2938       1.66   thorpej {
   2939       1.66   thorpej 
   2940       1.98      yamt 	uvm_km_free_poolpage_cache(kernel_map, (vaddr_t) v);
   2941       1.66   thorpej }
   2942  1.133.4.3       mjf 
   2943  1.133.4.3       mjf #if defined(DDB)
   2944  1.133.4.3       mjf static bool
   2945  1.133.4.3       mjf pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
   2946  1.133.4.3       mjf {
   2947  1.133.4.3       mjf 
   2948  1.133.4.3       mjf 	return (uintptr_t)ph->ph_page <= addr &&
   2949  1.133.4.3       mjf 	    addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz;
   2950  1.133.4.3       mjf }
   2951  1.133.4.3       mjf 
   2952  1.133.4.3       mjf static bool
   2953  1.133.4.3       mjf pool_in_item(struct pool *pp, void *item, uintptr_t addr)
   2954  1.133.4.3       mjf {
   2955  1.133.4.3       mjf 
   2956  1.133.4.3       mjf 	return (uintptr_t)item <= addr && addr < (uintptr_t)item + pp->pr_size;
   2957  1.133.4.3       mjf }
   2958  1.133.4.3       mjf 
   2959  1.133.4.3       mjf static bool
   2960  1.133.4.3       mjf pool_in_cg(struct pool *pp, struct pool_cache_group *pcg, uintptr_t addr)
   2961  1.133.4.3       mjf {
   2962  1.133.4.3       mjf 	int i;
   2963  1.133.4.3       mjf 
   2964  1.133.4.3       mjf 	if (pcg == NULL) {
   2965  1.133.4.3       mjf 		return false;
   2966  1.133.4.3       mjf 	}
   2967  1.133.4.3       mjf 	for (i = 0; i < pcg->pcg_avail; i++) {
   2968  1.133.4.3       mjf 		if (pool_in_item(pp, pcg->pcg_objects[i].pcgo_va, addr)) {
   2969  1.133.4.3       mjf 			return true;
   2970  1.133.4.3       mjf 		}
   2971  1.133.4.3       mjf 	}
   2972  1.133.4.3       mjf 	return false;
   2973  1.133.4.3       mjf }
   2974  1.133.4.3       mjf 
   2975  1.133.4.3       mjf static bool
   2976  1.133.4.3       mjf pool_allocated(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
   2977  1.133.4.3       mjf {
   2978  1.133.4.3       mjf 
   2979  1.133.4.3       mjf 	if ((pp->pr_roflags & PR_NOTOUCH) != 0) {
   2980  1.133.4.3       mjf 		unsigned int idx = pr_item_notouch_index(pp, ph, (void *)addr);
   2981  1.133.4.3       mjf 		pool_item_bitmap_t *bitmap =
   2982  1.133.4.3       mjf 		    ph->ph_bitmap + (idx / BITMAP_SIZE);
   2983  1.133.4.3       mjf 		pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
   2984  1.133.4.3       mjf 
   2985  1.133.4.3       mjf 		return (*bitmap & mask) == 0;
   2986  1.133.4.3       mjf 	} else {
   2987  1.133.4.3       mjf 		struct pool_item *pi;
   2988  1.133.4.3       mjf 
   2989  1.133.4.3       mjf 		LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
   2990  1.133.4.3       mjf 			if (pool_in_item(pp, pi, addr)) {
   2991  1.133.4.3       mjf 				return false;
   2992  1.133.4.3       mjf 			}
   2993  1.133.4.3       mjf 		}
   2994  1.133.4.3       mjf 		return true;
   2995  1.133.4.3       mjf 	}
   2996  1.133.4.3       mjf }
   2997  1.133.4.3       mjf 
   2998  1.133.4.3       mjf void
   2999  1.133.4.3       mjf pool_whatis(uintptr_t addr, void (*pr)(const char *, ...))
   3000  1.133.4.3       mjf {
   3001  1.133.4.3       mjf 	struct pool *pp;
   3002  1.133.4.3       mjf 
   3003  1.133.4.4       mjf 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   3004  1.133.4.3       mjf 		struct pool_item_header *ph;
   3005  1.133.4.3       mjf 		uintptr_t item;
   3006  1.133.4.3       mjf 		bool allocated = true;
   3007  1.133.4.3       mjf 		bool incache = false;
   3008  1.133.4.3       mjf 		bool incpucache = false;
   3009  1.133.4.3       mjf 		char cpucachestr[32];
   3010  1.133.4.3       mjf 
   3011  1.133.4.3       mjf 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
   3012  1.133.4.3       mjf 			LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
   3013  1.133.4.3       mjf 				if (pool_in_page(pp, ph, addr)) {
   3014  1.133.4.3       mjf 					goto found;
   3015  1.133.4.3       mjf 				}
   3016  1.133.4.3       mjf 			}
   3017  1.133.4.3       mjf 			LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
   3018  1.133.4.3       mjf 				if (pool_in_page(pp, ph, addr)) {
   3019  1.133.4.3       mjf 					allocated =
   3020  1.133.4.3       mjf 					    pool_allocated(pp, ph, addr);
   3021  1.133.4.3       mjf 					goto found;
   3022  1.133.4.3       mjf 				}
   3023  1.133.4.3       mjf 			}
   3024  1.133.4.3       mjf 			LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
   3025  1.133.4.3       mjf 				if (pool_in_page(pp, ph, addr)) {
   3026  1.133.4.3       mjf 					allocated = false;
   3027  1.133.4.3       mjf 					goto found;
   3028  1.133.4.3       mjf 				}
   3029  1.133.4.3       mjf 			}
   3030  1.133.4.3       mjf 			continue;
   3031  1.133.4.3       mjf 		} else {
   3032  1.133.4.3       mjf 			ph = pr_find_pagehead_noalign(pp, (void *)addr);
   3033  1.133.4.3       mjf 			if (ph == NULL || !pool_in_page(pp, ph, addr)) {
   3034  1.133.4.3       mjf 				continue;
   3035  1.133.4.3       mjf 			}
   3036  1.133.4.3       mjf 			allocated = pool_allocated(pp, ph, addr);
   3037  1.133.4.3       mjf 		}
   3038  1.133.4.3       mjf found:
   3039  1.133.4.3       mjf 		if (allocated && pp->pr_cache) {
   3040  1.133.4.3       mjf 			pool_cache_t pc = pp->pr_cache;
   3041  1.133.4.3       mjf 			struct pool_cache_group *pcg;
   3042  1.133.4.3       mjf 			int i;
   3043  1.133.4.3       mjf 
   3044  1.133.4.3       mjf 			for (pcg = pc->pc_fullgroups; pcg != NULL;
   3045  1.133.4.3       mjf 			    pcg = pcg->pcg_next) {
   3046  1.133.4.3       mjf 				if (pool_in_cg(pp, pcg, addr)) {
   3047  1.133.4.3       mjf 					incache = true;
   3048  1.133.4.3       mjf 					goto print;
   3049  1.133.4.3       mjf 				}
   3050  1.133.4.3       mjf 			}
   3051  1.133.4.3       mjf 			for (i = 0; i < MAXCPUS; i++) {
   3052  1.133.4.3       mjf 				pool_cache_cpu_t *cc;
   3053  1.133.4.3       mjf 
   3054  1.133.4.3       mjf 				if ((cc = pc->pc_cpus[i]) == NULL) {
   3055  1.133.4.3       mjf 					continue;
   3056  1.133.4.3       mjf 				}
   3057  1.133.4.3       mjf 				if (pool_in_cg(pp, cc->cc_current, addr) ||
   3058  1.133.4.3       mjf 				    pool_in_cg(pp, cc->cc_previous, addr)) {
   3059  1.133.4.3       mjf 					struct cpu_info *ci =
   3060  1.133.4.3       mjf 					    cpu_lookup_byindex(i);
   3061  1.133.4.3       mjf 
   3062  1.133.4.3       mjf 					incpucache = true;
   3063  1.133.4.3       mjf 					snprintf(cpucachestr,
   3064  1.133.4.3       mjf 					    sizeof(cpucachestr),
   3065  1.133.4.3       mjf 					    "cached by CPU %u",
   3066  1.133.4.3       mjf 					    (u_int)ci->ci_cpuid);
   3067  1.133.4.3       mjf 					goto print;
   3068  1.133.4.3       mjf 				}
   3069  1.133.4.3       mjf 			}
   3070  1.133.4.3       mjf 		}
   3071  1.133.4.3       mjf print:
   3072  1.133.4.3       mjf 		item = (uintptr_t)ph->ph_page + ph->ph_off;
   3073  1.133.4.3       mjf 		item = item + rounddown(addr - item, pp->pr_size);
   3074  1.133.4.3       mjf 		(*pr)("%p is %p+%zu in POOL '%s' (%s)\n",
   3075  1.133.4.3       mjf 		    (void *)addr, item, (size_t)(addr - item),
   3076  1.133.4.3       mjf 		    pp->pr_wchan,
   3077  1.133.4.3       mjf 		    incpucache ? cpucachestr :
   3078  1.133.4.3       mjf 		    incache ? "cached" : allocated ? "allocated" : "free");
   3079  1.133.4.3       mjf 	}
   3080  1.133.4.3       mjf }
   3081  1.133.4.3       mjf #endif /* defined(DDB) */
   3082