Home | History | Annotate | Line # | Download | only in kern
subr_pool.c revision 1.137
      1  1.137        ad /*	$NetBSD: subr_pool.c,v 1.137 2007/11/18 16:27:43 ad Exp $	*/
      2    1.1        pk 
      3    1.1        pk /*-
      4  1.134        ad  * Copyright (c) 1997, 1999, 2000, 2002, 2007 The NetBSD Foundation, Inc.
      5    1.1        pk  * All rights reserved.
      6    1.1        pk  *
      7    1.1        pk  * This code is derived from software contributed to The NetBSD Foundation
      8   1.20   thorpej  * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
      9  1.134        ad  * Simulation Facility, NASA Ames Research Center, and by Andrew Doran.
     10    1.1        pk  *
     11    1.1        pk  * Redistribution and use in source and binary forms, with or without
     12    1.1        pk  * modification, are permitted provided that the following conditions
     13    1.1        pk  * are met:
     14    1.1        pk  * 1. Redistributions of source code must retain the above copyright
     15    1.1        pk  *    notice, this list of conditions and the following disclaimer.
     16    1.1        pk  * 2. Redistributions in binary form must reproduce the above copyright
     17    1.1        pk  *    notice, this list of conditions and the following disclaimer in the
     18    1.1        pk  *    documentation and/or other materials provided with the distribution.
     19    1.1        pk  * 3. All advertising materials mentioning features or use of this software
     20    1.1        pk  *    must display the following acknowledgement:
     21   1.13  christos  *	This product includes software developed by the NetBSD
     22   1.13  christos  *	Foundation, Inc. and its contributors.
     23    1.1        pk  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24    1.1        pk  *    contributors may be used to endorse or promote products derived
     25    1.1        pk  *    from this software without specific prior written permission.
     26    1.1        pk  *
     27    1.1        pk  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28    1.1        pk  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29    1.1        pk  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30    1.1        pk  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31    1.1        pk  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32    1.1        pk  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33    1.1        pk  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34    1.1        pk  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35    1.1        pk  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36    1.1        pk  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37    1.1        pk  * POSSIBILITY OF SUCH DAMAGE.
     38    1.1        pk  */
     39   1.64     lukem 
     40   1.64     lukem #include <sys/cdefs.h>
     41  1.137        ad __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.137 2007/11/18 16:27:43 ad Exp $");
     42   1.24    scottr 
     43   1.25   thorpej #include "opt_pool.h"
     44   1.24    scottr #include "opt_poollog.h"
     45   1.28   thorpej #include "opt_lockdebug.h"
     46    1.1        pk 
     47    1.1        pk #include <sys/param.h>
     48    1.1        pk #include <sys/systm.h>
     49  1.135      yamt #include <sys/bitops.h>
     50    1.1        pk #include <sys/proc.h>
     51    1.1        pk #include <sys/errno.h>
     52    1.1        pk #include <sys/kernel.h>
     53    1.1        pk #include <sys/malloc.h>
     54    1.1        pk #include <sys/lock.h>
     55    1.1        pk #include <sys/pool.h>
     56   1.20   thorpej #include <sys/syslog.h>
     57  1.125        ad #include <sys/debug.h>
     58  1.134        ad #include <sys/lockdebug.h>
     59  1.134        ad #include <sys/xcall.h>
     60  1.134        ad #include <sys/cpu.h>
     61    1.3        pk 
     62    1.3        pk #include <uvm/uvm.h>
     63    1.3        pk 
     64    1.1        pk /*
     65    1.1        pk  * Pool resource management utility.
     66    1.3        pk  *
     67   1.88       chs  * Memory is allocated in pages which are split into pieces according to
     68   1.88       chs  * the pool item size. Each page is kept on one of three lists in the
     69   1.88       chs  * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
     70   1.88       chs  * for empty, full and partially-full pages respectively. The individual
     71   1.88       chs  * pool items are on a linked list headed by `ph_itemlist' in each page
     72   1.88       chs  * header. The memory for building the page list is either taken from
     73   1.88       chs  * the allocated pages themselves (for small pool items) or taken from
     74   1.88       chs  * an internal pool of page headers (`phpool').
     75    1.1        pk  */
     76    1.1        pk 
     77    1.3        pk /* List of all pools */
     78  1.102       chs LIST_HEAD(,pool) pool_head = LIST_HEAD_INITIALIZER(pool_head);
     79    1.3        pk 
     80  1.134        ad /* List of all caches. */
     81  1.134        ad LIST_HEAD(,pool_cache) pool_cache_head =
     82  1.134        ad     LIST_HEAD_INITIALIZER(pool_cache_head);
     83  1.134        ad 
     84    1.3        pk /* Private pool for page header structures */
     85   1.97      yamt #define	PHPOOL_MAX	8
     86   1.97      yamt static struct pool phpool[PHPOOL_MAX];
     87  1.135      yamt #define	PHPOOL_FREELIST_NELEM(idx) \
     88  1.135      yamt 	(((idx) == 0) ? 0 : BITMAP_SIZE * (1 << (idx)))
     89    1.3        pk 
     90   1.62     bjh21 #ifdef POOL_SUBPAGE
     91   1.62     bjh21 /* Pool of subpages for use by normal pools. */
     92   1.62     bjh21 static struct pool psppool;
     93   1.62     bjh21 #endif
     94   1.62     bjh21 
     95  1.117      yamt static SLIST_HEAD(, pool_allocator) pa_deferinitq =
     96  1.117      yamt     SLIST_HEAD_INITIALIZER(pa_deferinitq);
     97  1.117      yamt 
     98   1.98      yamt static void *pool_page_alloc_meta(struct pool *, int);
     99   1.98      yamt static void pool_page_free_meta(struct pool *, void *);
    100   1.98      yamt 
    101   1.98      yamt /* allocator for pool metadata */
    102  1.134        ad struct pool_allocator pool_allocator_meta = {
    103  1.117      yamt 	pool_page_alloc_meta, pool_page_free_meta,
    104  1.117      yamt 	.pa_backingmapptr = &kmem_map,
    105   1.98      yamt };
    106   1.98      yamt 
    107    1.3        pk /* # of seconds to retain page after last use */
    108    1.3        pk int pool_inactive_time = 10;
    109    1.3        pk 
    110    1.3        pk /* Next candidate for drainage (see pool_drain()) */
    111   1.23   thorpej static struct pool	*drainpp;
    112   1.23   thorpej 
    113  1.134        ad /* This lock protects both pool_head and drainpp. */
    114  1.134        ad static kmutex_t pool_head_lock;
    115  1.134        ad static kcondvar_t pool_busy;
    116    1.3        pk 
    117  1.135      yamt typedef uint32_t pool_item_bitmap_t;
    118  1.135      yamt #define	BITMAP_SIZE	(CHAR_BIT * sizeof(pool_item_bitmap_t))
    119  1.135      yamt #define	BITMAP_MASK	(BITMAP_SIZE - 1)
    120   1.99      yamt 
    121    1.3        pk struct pool_item_header {
    122    1.3        pk 	/* Page headers */
    123   1.88       chs 	LIST_ENTRY(pool_item_header)
    124    1.3        pk 				ph_pagelist;	/* pool page list */
    125   1.88       chs 	SPLAY_ENTRY(pool_item_header)
    126   1.88       chs 				ph_node;	/* Off-page page headers */
    127  1.128  christos 	void *			ph_page;	/* this page's address */
    128    1.3        pk 	struct timeval		ph_time;	/* last referenced */
    129  1.135      yamt 	uint16_t		ph_nmissing;	/* # of chunks in use */
    130   1.97      yamt 	union {
    131   1.97      yamt 		/* !PR_NOTOUCH */
    132   1.97      yamt 		struct {
    133  1.102       chs 			LIST_HEAD(, pool_item)
    134   1.97      yamt 				phu_itemlist;	/* chunk list for this page */
    135   1.97      yamt 		} phu_normal;
    136   1.97      yamt 		/* PR_NOTOUCH */
    137   1.97      yamt 		struct {
    138  1.135      yamt 			uint16_t phu_off;	/* start offset in page */
    139  1.135      yamt 			pool_item_bitmap_t phu_bitmap[];
    140   1.97      yamt 		} phu_notouch;
    141   1.97      yamt 	} ph_u;
    142    1.3        pk };
    143   1.97      yamt #define	ph_itemlist	ph_u.phu_normal.phu_itemlist
    144   1.97      yamt #define	ph_off		ph_u.phu_notouch.phu_off
    145  1.135      yamt #define	ph_bitmap	ph_u.phu_notouch.phu_bitmap
    146    1.3        pk 
    147    1.1        pk struct pool_item {
    148    1.3        pk #ifdef DIAGNOSTIC
    149   1.82   thorpej 	u_int pi_magic;
    150   1.33       chs #endif
    151  1.134        ad #define	PI_MAGIC 0xdeaddeadU
    152    1.3        pk 	/* Other entries use only this list entry */
    153  1.102       chs 	LIST_ENTRY(pool_item)	pi_list;
    154    1.3        pk };
    155    1.3        pk 
    156   1.53   thorpej #define	POOL_NEEDS_CATCHUP(pp)						\
    157   1.53   thorpej 	((pp)->pr_nitems < (pp)->pr_minitems)
    158   1.53   thorpej 
    159   1.43   thorpej /*
    160   1.43   thorpej  * Pool cache management.
    161   1.43   thorpej  *
    162   1.43   thorpej  * Pool caches provide a way for constructed objects to be cached by the
    163   1.43   thorpej  * pool subsystem.  This can lead to performance improvements by avoiding
    164   1.43   thorpej  * needless object construction/destruction; it is deferred until absolutely
    165   1.43   thorpej  * necessary.
    166   1.43   thorpej  *
    167  1.134        ad  * Caches are grouped into cache groups.  Each cache group references up
    168  1.134        ad  * to PCG_NUMOBJECTS constructed objects.  When a cache allocates an
    169  1.134        ad  * object from the pool, it calls the object's constructor and places it
    170  1.134        ad  * into a cache group.  When a cache group frees an object back to the
    171  1.134        ad  * pool, it first calls the object's destructor.  This allows the object
    172  1.134        ad  * to persist in constructed form while freed to the cache.
    173  1.134        ad  *
    174  1.134        ad  * The pool references each cache, so that when a pool is drained by the
    175  1.134        ad  * pagedaemon, it can drain each individual cache as well.  Each time a
    176  1.134        ad  * cache is drained, the most idle cache group is freed to the pool in
    177  1.134        ad  * its entirety.
    178   1.43   thorpej  *
    179   1.43   thorpej  * Pool caches are layed on top of pools.  By layering them, we can avoid
    180   1.43   thorpej  * the complexity of cache management for pools which would not benefit
    181   1.43   thorpej  * from it.
    182   1.43   thorpej  */
    183   1.43   thorpej 
    184   1.43   thorpej static struct pool pcgpool;
    185  1.134        ad static struct pool cache_pool;
    186  1.134        ad static struct pool cache_cpu_pool;
    187    1.3        pk 
    188  1.134        ad static pool_cache_cpu_t *pool_cache_put_slow(pool_cache_cpu_t *, int *,
    189  1.134        ad 					     void *, paddr_t);
    190  1.134        ad static pool_cache_cpu_t *pool_cache_get_slow(pool_cache_cpu_t *, int *,
    191  1.134        ad 					     void **, paddr_t *, int);
    192  1.134        ad static void	pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
    193  1.134        ad static void	pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
    194  1.134        ad static void	pool_cache_xcall(pool_cache_t);
    195    1.3        pk 
    196   1.42   thorpej static int	pool_catchup(struct pool *);
    197  1.128  christos static void	pool_prime_page(struct pool *, void *,
    198   1.55   thorpej 		    struct pool_item_header *);
    199   1.88       chs static void	pool_update_curpage(struct pool *);
    200   1.66   thorpej 
    201  1.113      yamt static int	pool_grow(struct pool *, int);
    202  1.117      yamt static void	*pool_allocator_alloc(struct pool *, int);
    203  1.117      yamt static void	pool_allocator_free(struct pool *, void *);
    204    1.3        pk 
    205   1.97      yamt static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
    206   1.88       chs 	void (*)(const char *, ...));
    207   1.42   thorpej static void pool_print1(struct pool *, const char *,
    208   1.42   thorpej 	void (*)(const char *, ...));
    209    1.3        pk 
    210   1.88       chs static int pool_chk_page(struct pool *, const char *,
    211   1.88       chs 			 struct pool_item_header *);
    212   1.88       chs 
    213    1.3        pk /*
    214   1.52   thorpej  * Pool log entry. An array of these is allocated in pool_init().
    215    1.3        pk  */
    216    1.3        pk struct pool_log {
    217    1.3        pk 	const char	*pl_file;
    218    1.3        pk 	long		pl_line;
    219    1.3        pk 	int		pl_action;
    220   1.25   thorpej #define	PRLOG_GET	1
    221   1.25   thorpej #define	PRLOG_PUT	2
    222    1.3        pk 	void		*pl_addr;
    223    1.1        pk };
    224    1.1        pk 
    225   1.86      matt #ifdef POOL_DIAGNOSTIC
    226    1.3        pk /* Number of entries in pool log buffers */
    227   1.17   thorpej #ifndef POOL_LOGSIZE
    228   1.17   thorpej #define	POOL_LOGSIZE	10
    229   1.17   thorpej #endif
    230   1.17   thorpej 
    231   1.17   thorpej int pool_logsize = POOL_LOGSIZE;
    232    1.1        pk 
    233  1.110     perry static inline void
    234   1.42   thorpej pr_log(struct pool *pp, void *v, int action, const char *file, long line)
    235    1.3        pk {
    236    1.3        pk 	int n = pp->pr_curlogentry;
    237    1.3        pk 	struct pool_log *pl;
    238    1.3        pk 
    239   1.20   thorpej 	if ((pp->pr_roflags & PR_LOGGING) == 0)
    240    1.3        pk 		return;
    241    1.3        pk 
    242    1.3        pk 	/*
    243    1.3        pk 	 * Fill in the current entry. Wrap around and overwrite
    244    1.3        pk 	 * the oldest entry if necessary.
    245    1.3        pk 	 */
    246    1.3        pk 	pl = &pp->pr_log[n];
    247    1.3        pk 	pl->pl_file = file;
    248    1.3        pk 	pl->pl_line = line;
    249    1.3        pk 	pl->pl_action = action;
    250    1.3        pk 	pl->pl_addr = v;
    251    1.3        pk 	if (++n >= pp->pr_logsize)
    252    1.3        pk 		n = 0;
    253    1.3        pk 	pp->pr_curlogentry = n;
    254    1.3        pk }
    255    1.3        pk 
    256    1.3        pk static void
    257   1.42   thorpej pr_printlog(struct pool *pp, struct pool_item *pi,
    258   1.42   thorpej     void (*pr)(const char *, ...))
    259    1.3        pk {
    260    1.3        pk 	int i = pp->pr_logsize;
    261    1.3        pk 	int n = pp->pr_curlogentry;
    262    1.3        pk 
    263   1.20   thorpej 	if ((pp->pr_roflags & PR_LOGGING) == 0)
    264    1.3        pk 		return;
    265    1.3        pk 
    266    1.3        pk 	/*
    267    1.3        pk 	 * Print all entries in this pool's log.
    268    1.3        pk 	 */
    269    1.3        pk 	while (i-- > 0) {
    270    1.3        pk 		struct pool_log *pl = &pp->pr_log[n];
    271    1.3        pk 		if (pl->pl_action != 0) {
    272   1.25   thorpej 			if (pi == NULL || pi == pl->pl_addr) {
    273   1.25   thorpej 				(*pr)("\tlog entry %d:\n", i);
    274   1.25   thorpej 				(*pr)("\t\taction = %s, addr = %p\n",
    275   1.25   thorpej 				    pl->pl_action == PRLOG_GET ? "get" : "put",
    276   1.25   thorpej 				    pl->pl_addr);
    277   1.25   thorpej 				(*pr)("\t\tfile: %s at line %lu\n",
    278   1.25   thorpej 				    pl->pl_file, pl->pl_line);
    279   1.25   thorpej 			}
    280    1.3        pk 		}
    281    1.3        pk 		if (++n >= pp->pr_logsize)
    282    1.3        pk 			n = 0;
    283    1.3        pk 	}
    284    1.3        pk }
    285   1.25   thorpej 
    286  1.110     perry static inline void
    287   1.42   thorpej pr_enter(struct pool *pp, const char *file, long line)
    288   1.25   thorpej {
    289   1.25   thorpej 
    290   1.34   thorpej 	if (__predict_false(pp->pr_entered_file != NULL)) {
    291   1.25   thorpej 		printf("pool %s: reentrancy at file %s line %ld\n",
    292   1.25   thorpej 		    pp->pr_wchan, file, line);
    293   1.25   thorpej 		printf("         previous entry at file %s line %ld\n",
    294   1.25   thorpej 		    pp->pr_entered_file, pp->pr_entered_line);
    295   1.25   thorpej 		panic("pr_enter");
    296   1.25   thorpej 	}
    297   1.25   thorpej 
    298   1.25   thorpej 	pp->pr_entered_file = file;
    299   1.25   thorpej 	pp->pr_entered_line = line;
    300   1.25   thorpej }
    301   1.25   thorpej 
    302  1.110     perry static inline void
    303   1.42   thorpej pr_leave(struct pool *pp)
    304   1.25   thorpej {
    305   1.25   thorpej 
    306   1.34   thorpej 	if (__predict_false(pp->pr_entered_file == NULL)) {
    307   1.25   thorpej 		printf("pool %s not entered?\n", pp->pr_wchan);
    308   1.25   thorpej 		panic("pr_leave");
    309   1.25   thorpej 	}
    310   1.25   thorpej 
    311   1.25   thorpej 	pp->pr_entered_file = NULL;
    312   1.25   thorpej 	pp->pr_entered_line = 0;
    313   1.25   thorpej }
    314   1.25   thorpej 
    315  1.110     perry static inline void
    316   1.42   thorpej pr_enter_check(struct pool *pp, void (*pr)(const char *, ...))
    317   1.25   thorpej {
    318   1.25   thorpej 
    319   1.25   thorpej 	if (pp->pr_entered_file != NULL)
    320   1.25   thorpej 		(*pr)("\n\tcurrently entered from file %s line %ld\n",
    321   1.25   thorpej 		    pp->pr_entered_file, pp->pr_entered_line);
    322   1.25   thorpej }
    323    1.3        pk #else
    324   1.25   thorpej #define	pr_log(pp, v, action, file, line)
    325   1.25   thorpej #define	pr_printlog(pp, pi, pr)
    326   1.25   thorpej #define	pr_enter(pp, file, line)
    327   1.25   thorpej #define	pr_leave(pp)
    328   1.25   thorpej #define	pr_enter_check(pp, pr)
    329   1.59   thorpej #endif /* POOL_DIAGNOSTIC */
    330    1.3        pk 
    331  1.135      yamt static inline unsigned int
    332   1.97      yamt pr_item_notouch_index(const struct pool *pp, const struct pool_item_header *ph,
    333   1.97      yamt     const void *v)
    334   1.97      yamt {
    335   1.97      yamt 	const char *cp = v;
    336  1.135      yamt 	unsigned int idx;
    337   1.97      yamt 
    338   1.97      yamt 	KASSERT(pp->pr_roflags & PR_NOTOUCH);
    339  1.128  christos 	idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
    340   1.97      yamt 	KASSERT(idx < pp->pr_itemsperpage);
    341   1.97      yamt 	return idx;
    342   1.97      yamt }
    343   1.97      yamt 
    344  1.110     perry static inline void
    345   1.97      yamt pr_item_notouch_put(const struct pool *pp, struct pool_item_header *ph,
    346   1.97      yamt     void *obj)
    347   1.97      yamt {
    348  1.135      yamt 	unsigned int idx = pr_item_notouch_index(pp, ph, obj);
    349  1.135      yamt 	pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE);
    350  1.135      yamt 	pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
    351   1.97      yamt 
    352  1.135      yamt 	KASSERT((*bitmap & mask) == 0);
    353  1.135      yamt 	*bitmap |= mask;
    354   1.97      yamt }
    355   1.97      yamt 
    356  1.110     perry static inline void *
    357   1.97      yamt pr_item_notouch_get(const struct pool *pp, struct pool_item_header *ph)
    358   1.97      yamt {
    359  1.135      yamt 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
    360  1.135      yamt 	unsigned int idx;
    361  1.135      yamt 	int i;
    362   1.97      yamt 
    363  1.135      yamt 	for (i = 0; ; i++) {
    364  1.135      yamt 		int bit;
    365   1.97      yamt 
    366  1.135      yamt 		KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage);
    367  1.135      yamt 		bit = ffs32(bitmap[i]);
    368  1.135      yamt 		if (bit) {
    369  1.135      yamt 			pool_item_bitmap_t mask;
    370  1.135      yamt 
    371  1.135      yamt 			bit--;
    372  1.135      yamt 			idx = (i * BITMAP_SIZE) + bit;
    373  1.135      yamt 			mask = 1 << bit;
    374  1.135      yamt 			KASSERT((bitmap[i] & mask) != 0);
    375  1.135      yamt 			bitmap[i] &= ~mask;
    376  1.135      yamt 			break;
    377  1.135      yamt 		}
    378  1.135      yamt 	}
    379  1.135      yamt 	KASSERT(idx < pp->pr_itemsperpage);
    380  1.128  christos 	return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
    381   1.97      yamt }
    382   1.97      yamt 
    383  1.135      yamt static inline void
    384  1.135      yamt pr_item_notouch_init(const struct pool *pp, struct pool_item_header *ph)
    385  1.135      yamt {
    386  1.135      yamt 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
    387  1.135      yamt 	const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE);
    388  1.135      yamt 	int i;
    389  1.135      yamt 
    390  1.135      yamt 	for (i = 0; i < n; i++) {
    391  1.135      yamt 		bitmap[i] = (pool_item_bitmap_t)-1;
    392  1.135      yamt 	}
    393  1.135      yamt }
    394  1.135      yamt 
    395  1.110     perry static inline int
    396   1.88       chs phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
    397   1.88       chs {
    398  1.121      yamt 
    399  1.121      yamt 	/*
    400  1.121      yamt 	 * we consider pool_item_header with smaller ph_page bigger.
    401  1.121      yamt 	 * (this unnatural ordering is for the benefit of pr_find_pagehead.)
    402  1.121      yamt 	 */
    403  1.121      yamt 
    404   1.88       chs 	if (a->ph_page < b->ph_page)
    405  1.121      yamt 		return (1);
    406  1.121      yamt 	else if (a->ph_page > b->ph_page)
    407   1.88       chs 		return (-1);
    408   1.88       chs 	else
    409   1.88       chs 		return (0);
    410   1.88       chs }
    411   1.88       chs 
    412   1.88       chs SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
    413   1.88       chs SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
    414   1.88       chs 
    415    1.3        pk /*
    416  1.121      yamt  * Return the pool page header based on item address.
    417    1.3        pk  */
    418  1.110     perry static inline struct pool_item_header *
    419  1.121      yamt pr_find_pagehead(struct pool *pp, void *v)
    420    1.3        pk {
    421   1.88       chs 	struct pool_item_header *ph, tmp;
    422    1.3        pk 
    423  1.121      yamt 	if ((pp->pr_roflags & PR_NOALIGN) != 0) {
    424  1.128  christos 		tmp.ph_page = (void *)(uintptr_t)v;
    425  1.121      yamt 		ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
    426  1.121      yamt 		if (ph == NULL) {
    427  1.121      yamt 			ph = SPLAY_ROOT(&pp->pr_phtree);
    428  1.121      yamt 			if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
    429  1.121      yamt 				ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
    430  1.121      yamt 			}
    431  1.121      yamt 			KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
    432  1.121      yamt 		}
    433  1.121      yamt 	} else {
    434  1.128  christos 		void *page =
    435  1.128  christos 		    (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask);
    436  1.121      yamt 
    437  1.121      yamt 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
    438  1.128  christos 			ph = (struct pool_item_header *)((char *)page + pp->pr_phoffset);
    439  1.121      yamt 		} else {
    440  1.121      yamt 			tmp.ph_page = page;
    441  1.121      yamt 			ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
    442  1.121      yamt 		}
    443  1.121      yamt 	}
    444    1.3        pk 
    445  1.121      yamt 	KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
    446  1.128  christos 	    ((char *)ph->ph_page <= (char *)v &&
    447  1.128  christos 	    (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
    448   1.88       chs 	return ph;
    449    1.3        pk }
    450    1.3        pk 
    451  1.101   thorpej static void
    452  1.101   thorpej pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
    453  1.101   thorpej {
    454  1.101   thorpej 	struct pool_item_header *ph;
    455  1.101   thorpej 
    456  1.101   thorpej 	while ((ph = LIST_FIRST(pq)) != NULL) {
    457  1.101   thorpej 		LIST_REMOVE(ph, ph_pagelist);
    458  1.101   thorpej 		pool_allocator_free(pp, ph->ph_page);
    459  1.134        ad 		if ((pp->pr_roflags & PR_PHINPAGE) == 0)
    460  1.101   thorpej 			pool_put(pp->pr_phpool, ph);
    461  1.101   thorpej 	}
    462  1.101   thorpej }
    463  1.101   thorpej 
    464    1.3        pk /*
    465    1.3        pk  * Remove a page from the pool.
    466    1.3        pk  */
    467  1.110     perry static inline void
    468   1.61       chs pr_rmpage(struct pool *pp, struct pool_item_header *ph,
    469   1.61       chs      struct pool_pagelist *pq)
    470    1.3        pk {
    471    1.3        pk 
    472  1.134        ad 	KASSERT(mutex_owned(&pp->pr_lock));
    473   1.91      yamt 
    474    1.3        pk 	/*
    475    1.7   thorpej 	 * If the page was idle, decrement the idle page count.
    476    1.3        pk 	 */
    477    1.6   thorpej 	if (ph->ph_nmissing == 0) {
    478    1.6   thorpej #ifdef DIAGNOSTIC
    479    1.6   thorpej 		if (pp->pr_nidle == 0)
    480    1.6   thorpej 			panic("pr_rmpage: nidle inconsistent");
    481   1.20   thorpej 		if (pp->pr_nitems < pp->pr_itemsperpage)
    482   1.20   thorpej 			panic("pr_rmpage: nitems inconsistent");
    483    1.6   thorpej #endif
    484    1.6   thorpej 		pp->pr_nidle--;
    485    1.6   thorpej 	}
    486    1.7   thorpej 
    487   1.20   thorpej 	pp->pr_nitems -= pp->pr_itemsperpage;
    488   1.20   thorpej 
    489    1.7   thorpej 	/*
    490  1.101   thorpej 	 * Unlink the page from the pool and queue it for release.
    491    1.7   thorpej 	 */
    492   1.88       chs 	LIST_REMOVE(ph, ph_pagelist);
    493   1.91      yamt 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
    494   1.91      yamt 		SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
    495  1.101   thorpej 	LIST_INSERT_HEAD(pq, ph, ph_pagelist);
    496  1.101   thorpej 
    497    1.7   thorpej 	pp->pr_npages--;
    498    1.7   thorpej 	pp->pr_npagefree++;
    499    1.6   thorpej 
    500   1.88       chs 	pool_update_curpage(pp);
    501    1.3        pk }
    502    1.3        pk 
    503  1.126   thorpej static bool
    504  1.117      yamt pa_starved_p(struct pool_allocator *pa)
    505  1.117      yamt {
    506  1.117      yamt 
    507  1.117      yamt 	if (pa->pa_backingmap != NULL) {
    508  1.117      yamt 		return vm_map_starved_p(pa->pa_backingmap);
    509  1.117      yamt 	}
    510  1.127   thorpej 	return false;
    511  1.117      yamt }
    512  1.117      yamt 
    513  1.117      yamt static int
    514  1.124      yamt pool_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
    515  1.117      yamt {
    516  1.117      yamt 	struct pool *pp = obj;
    517  1.117      yamt 	struct pool_allocator *pa = pp->pr_alloc;
    518  1.117      yamt 
    519  1.117      yamt 	KASSERT(&pp->pr_reclaimerentry == ce);
    520  1.117      yamt 	pool_reclaim(pp);
    521  1.117      yamt 	if (!pa_starved_p(pa)) {
    522  1.117      yamt 		return CALLBACK_CHAIN_ABORT;
    523  1.117      yamt 	}
    524  1.117      yamt 	return CALLBACK_CHAIN_CONTINUE;
    525  1.117      yamt }
    526  1.117      yamt 
    527  1.117      yamt static void
    528  1.117      yamt pool_reclaim_register(struct pool *pp)
    529  1.117      yamt {
    530  1.117      yamt 	struct vm_map *map = pp->pr_alloc->pa_backingmap;
    531  1.117      yamt 	int s;
    532  1.117      yamt 
    533  1.117      yamt 	if (map == NULL) {
    534  1.117      yamt 		return;
    535  1.117      yamt 	}
    536  1.117      yamt 
    537  1.117      yamt 	s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
    538  1.117      yamt 	callback_register(&vm_map_to_kernel(map)->vmk_reclaim_callback,
    539  1.117      yamt 	    &pp->pr_reclaimerentry, pp, pool_reclaim_callback);
    540  1.117      yamt 	splx(s);
    541  1.117      yamt }
    542  1.117      yamt 
    543  1.117      yamt static void
    544  1.117      yamt pool_reclaim_unregister(struct pool *pp)
    545  1.117      yamt {
    546  1.117      yamt 	struct vm_map *map = pp->pr_alloc->pa_backingmap;
    547  1.117      yamt 	int s;
    548  1.117      yamt 
    549  1.117      yamt 	if (map == NULL) {
    550  1.117      yamt 		return;
    551  1.117      yamt 	}
    552  1.117      yamt 
    553  1.117      yamt 	s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
    554  1.117      yamt 	callback_unregister(&vm_map_to_kernel(map)->vmk_reclaim_callback,
    555  1.117      yamt 	    &pp->pr_reclaimerentry);
    556  1.117      yamt 	splx(s);
    557  1.117      yamt }
    558  1.117      yamt 
    559  1.117      yamt static void
    560  1.117      yamt pa_reclaim_register(struct pool_allocator *pa)
    561  1.117      yamt {
    562  1.117      yamt 	struct vm_map *map = *pa->pa_backingmapptr;
    563  1.117      yamt 	struct pool *pp;
    564  1.117      yamt 
    565  1.117      yamt 	KASSERT(pa->pa_backingmap == NULL);
    566  1.117      yamt 	if (map == NULL) {
    567  1.117      yamt 		SLIST_INSERT_HEAD(&pa_deferinitq, pa, pa_q);
    568  1.117      yamt 		return;
    569  1.117      yamt 	}
    570  1.117      yamt 	pa->pa_backingmap = map;
    571  1.117      yamt 	TAILQ_FOREACH(pp, &pa->pa_list, pr_alloc_list) {
    572  1.117      yamt 		pool_reclaim_register(pp);
    573  1.117      yamt 	}
    574  1.117      yamt }
    575  1.117      yamt 
    576    1.3        pk /*
    577   1.94    simonb  * Initialize all the pools listed in the "pools" link set.
    578   1.94    simonb  */
    579   1.94    simonb void
    580  1.117      yamt pool_subsystem_init(void)
    581   1.94    simonb {
    582  1.117      yamt 	struct pool_allocator *pa;
    583   1.94    simonb 	__link_set_decl(pools, struct link_pool_init);
    584   1.94    simonb 	struct link_pool_init * const *pi;
    585   1.94    simonb 
    586  1.134        ad 	mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
    587  1.134        ad 	cv_init(&pool_busy, "poolbusy");
    588  1.134        ad 
    589   1.94    simonb 	__link_set_foreach(pi, pools)
    590   1.94    simonb 		pool_init((*pi)->pp, (*pi)->size, (*pi)->align,
    591   1.94    simonb 		    (*pi)->align_offset, (*pi)->flags, (*pi)->wchan,
    592  1.129        ad 		    (*pi)->palloc, (*pi)->ipl);
    593  1.117      yamt 
    594  1.117      yamt 	while ((pa = SLIST_FIRST(&pa_deferinitq)) != NULL) {
    595  1.117      yamt 		KASSERT(pa->pa_backingmapptr != NULL);
    596  1.117      yamt 		KASSERT(*pa->pa_backingmapptr != NULL);
    597  1.117      yamt 		SLIST_REMOVE_HEAD(&pa_deferinitq, pa_q);
    598  1.117      yamt 		pa_reclaim_register(pa);
    599  1.117      yamt 	}
    600  1.134        ad 
    601  1.134        ad 	pool_init(&cache_pool, sizeof(struct pool_cache), CACHE_LINE_SIZE,
    602  1.134        ad 	    0, 0, "pcache", &pool_allocator_nointr, IPL_NONE);
    603  1.134        ad 
    604  1.134        ad 	pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), CACHE_LINE_SIZE,
    605  1.134        ad 	    0, 0, "pcachecpu", &pool_allocator_nointr, IPL_NONE);
    606   1.94    simonb }
    607   1.94    simonb 
    608   1.94    simonb /*
    609    1.3        pk  * Initialize the given pool resource structure.
    610    1.3        pk  *
    611    1.3        pk  * We export this routine to allow other kernel parts to declare
    612    1.3        pk  * static pools that must be initialized before malloc() is available.
    613    1.3        pk  */
    614    1.3        pk void
    615   1.42   thorpej pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
    616  1.129        ad     const char *wchan, struct pool_allocator *palloc, int ipl)
    617    1.3        pk {
    618  1.116    simonb #ifdef DEBUG
    619  1.116    simonb 	struct pool *pp1;
    620  1.116    simonb #endif
    621   1.92     enami 	size_t trysize, phsize;
    622  1.134        ad 	int off, slack;
    623    1.3        pk 
    624  1.116    simonb #ifdef DEBUG
    625  1.116    simonb 	/*
    626  1.116    simonb 	 * Check that the pool hasn't already been initialised and
    627  1.116    simonb 	 * added to the list of all pools.
    628  1.116    simonb 	 */
    629  1.116    simonb 	LIST_FOREACH(pp1, &pool_head, pr_poollist) {
    630  1.116    simonb 		if (pp == pp1)
    631  1.116    simonb 			panic("pool_init: pool %s already initialised",
    632  1.116    simonb 			    wchan);
    633  1.116    simonb 	}
    634  1.116    simonb #endif
    635  1.116    simonb 
    636   1.25   thorpej #ifdef POOL_DIAGNOSTIC
    637   1.25   thorpej 	/*
    638   1.25   thorpej 	 * Always log if POOL_DIAGNOSTIC is defined.
    639   1.25   thorpej 	 */
    640   1.25   thorpej 	if (pool_logsize != 0)
    641   1.25   thorpej 		flags |= PR_LOGGING;
    642   1.25   thorpej #endif
    643   1.25   thorpej 
    644   1.66   thorpej 	if (palloc == NULL)
    645   1.66   thorpej 		palloc = &pool_allocator_kmem;
    646  1.112     bjh21 #ifdef POOL_SUBPAGE
    647  1.112     bjh21 	if (size > palloc->pa_pagesz) {
    648  1.112     bjh21 		if (palloc == &pool_allocator_kmem)
    649  1.112     bjh21 			palloc = &pool_allocator_kmem_fullpage;
    650  1.112     bjh21 		else if (palloc == &pool_allocator_nointr)
    651  1.112     bjh21 			palloc = &pool_allocator_nointr_fullpage;
    652  1.112     bjh21 	}
    653   1.66   thorpej #endif /* POOL_SUBPAGE */
    654   1.66   thorpej 	if ((palloc->pa_flags & PA_INITIALIZED) == 0) {
    655  1.112     bjh21 		if (palloc->pa_pagesz == 0)
    656   1.66   thorpej 			palloc->pa_pagesz = PAGE_SIZE;
    657   1.66   thorpej 
    658   1.66   thorpej 		TAILQ_INIT(&palloc->pa_list);
    659   1.66   thorpej 
    660  1.134        ad 		mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
    661   1.66   thorpej 		palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
    662   1.66   thorpej 		palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
    663  1.117      yamt 
    664  1.117      yamt 		if (palloc->pa_backingmapptr != NULL) {
    665  1.117      yamt 			pa_reclaim_register(palloc);
    666  1.117      yamt 		}
    667   1.66   thorpej 		palloc->pa_flags |= PA_INITIALIZED;
    668    1.4   thorpej 	}
    669    1.3        pk 
    670    1.3        pk 	if (align == 0)
    671    1.3        pk 		align = ALIGN(1);
    672   1.14   thorpej 
    673  1.120      yamt 	if ((flags & PR_NOTOUCH) == 0 && size < sizeof(struct pool_item))
    674   1.14   thorpej 		size = sizeof(struct pool_item);
    675    1.3        pk 
    676   1.78   thorpej 	size = roundup(size, align);
    677   1.66   thorpej #ifdef DIAGNOSTIC
    678   1.66   thorpej 	if (size > palloc->pa_pagesz)
    679  1.121      yamt 		panic("pool_init: pool item size (%zu) too large", size);
    680   1.66   thorpej #endif
    681   1.35        pk 
    682    1.3        pk 	/*
    683    1.3        pk 	 * Initialize the pool structure.
    684    1.3        pk 	 */
    685   1.88       chs 	LIST_INIT(&pp->pr_emptypages);
    686   1.88       chs 	LIST_INIT(&pp->pr_fullpages);
    687   1.88       chs 	LIST_INIT(&pp->pr_partpages);
    688  1.134        ad 	pp->pr_cache = NULL;
    689    1.3        pk 	pp->pr_curpage = NULL;
    690    1.3        pk 	pp->pr_npages = 0;
    691    1.3        pk 	pp->pr_minitems = 0;
    692    1.3        pk 	pp->pr_minpages = 0;
    693    1.3        pk 	pp->pr_maxpages = UINT_MAX;
    694   1.20   thorpej 	pp->pr_roflags = flags;
    695   1.20   thorpej 	pp->pr_flags = 0;
    696   1.35        pk 	pp->pr_size = size;
    697    1.3        pk 	pp->pr_align = align;
    698    1.3        pk 	pp->pr_wchan = wchan;
    699   1.66   thorpej 	pp->pr_alloc = palloc;
    700   1.20   thorpej 	pp->pr_nitems = 0;
    701   1.20   thorpej 	pp->pr_nout = 0;
    702   1.20   thorpej 	pp->pr_hardlimit = UINT_MAX;
    703   1.20   thorpej 	pp->pr_hardlimit_warning = NULL;
    704   1.31   thorpej 	pp->pr_hardlimit_ratecap.tv_sec = 0;
    705   1.31   thorpej 	pp->pr_hardlimit_ratecap.tv_usec = 0;
    706   1.31   thorpej 	pp->pr_hardlimit_warning_last.tv_sec = 0;
    707   1.31   thorpej 	pp->pr_hardlimit_warning_last.tv_usec = 0;
    708   1.68   thorpej 	pp->pr_drain_hook = NULL;
    709   1.68   thorpej 	pp->pr_drain_hook_arg = NULL;
    710  1.125        ad 	pp->pr_freecheck = NULL;
    711    1.3        pk 
    712    1.3        pk 	/*
    713    1.3        pk 	 * Decide whether to put the page header off page to avoid
    714   1.92     enami 	 * wasting too large a part of the page or too big item.
    715   1.92     enami 	 * Off-page page headers go on a hash table, so we can match
    716   1.92     enami 	 * a returned item with its header based on the page address.
    717   1.92     enami 	 * We use 1/16 of the page size and about 8 times of the item
    718   1.92     enami 	 * size as the threshold (XXX: tune)
    719   1.92     enami 	 *
    720   1.92     enami 	 * However, we'll put the header into the page if we can put
    721   1.92     enami 	 * it without wasting any items.
    722   1.92     enami 	 *
    723   1.92     enami 	 * Silently enforce `0 <= ioff < align'.
    724    1.3        pk 	 */
    725   1.92     enami 	pp->pr_itemoffset = ioff %= align;
    726   1.92     enami 	/* See the comment below about reserved bytes. */
    727   1.92     enami 	trysize = palloc->pa_pagesz - ((align - ioff) % align);
    728   1.92     enami 	phsize = ALIGN(sizeof(struct pool_item_header));
    729  1.121      yamt 	if ((pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) == 0 &&
    730   1.97      yamt 	    (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) ||
    731   1.97      yamt 	    trysize / pp->pr_size == (trysize - phsize) / pp->pr_size)) {
    732    1.3        pk 		/* Use the end of the page for the page header */
    733   1.20   thorpej 		pp->pr_roflags |= PR_PHINPAGE;
    734   1.92     enami 		pp->pr_phoffset = off = palloc->pa_pagesz - phsize;
    735    1.2        pk 	} else {
    736    1.3        pk 		/* The page header will be taken from our page header pool */
    737    1.3        pk 		pp->pr_phoffset = 0;
    738   1.66   thorpej 		off = palloc->pa_pagesz;
    739   1.88       chs 		SPLAY_INIT(&pp->pr_phtree);
    740    1.2        pk 	}
    741    1.1        pk 
    742    1.3        pk 	/*
    743    1.3        pk 	 * Alignment is to take place at `ioff' within the item. This means
    744    1.3        pk 	 * we must reserve up to `align - 1' bytes on the page to allow
    745    1.3        pk 	 * appropriate positioning of each item.
    746    1.3        pk 	 */
    747    1.3        pk 	pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
    748   1.43   thorpej 	KASSERT(pp->pr_itemsperpage != 0);
    749   1.97      yamt 	if ((pp->pr_roflags & PR_NOTOUCH)) {
    750   1.97      yamt 		int idx;
    751   1.97      yamt 
    752   1.97      yamt 		for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
    753   1.97      yamt 		    idx++) {
    754   1.97      yamt 			/* nothing */
    755   1.97      yamt 		}
    756   1.97      yamt 		if (idx >= PHPOOL_MAX) {
    757   1.97      yamt 			/*
    758   1.97      yamt 			 * if you see this panic, consider to tweak
    759   1.97      yamt 			 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
    760   1.97      yamt 			 */
    761   1.97      yamt 			panic("%s: too large itemsperpage(%d) for PR_NOTOUCH",
    762   1.97      yamt 			    pp->pr_wchan, pp->pr_itemsperpage);
    763   1.97      yamt 		}
    764   1.97      yamt 		pp->pr_phpool = &phpool[idx];
    765   1.97      yamt 	} else if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
    766   1.97      yamt 		pp->pr_phpool = &phpool[0];
    767   1.97      yamt 	}
    768   1.97      yamt #if defined(DIAGNOSTIC)
    769   1.97      yamt 	else {
    770   1.97      yamt 		pp->pr_phpool = NULL;
    771   1.97      yamt 	}
    772   1.97      yamt #endif
    773    1.3        pk 
    774    1.3        pk 	/*
    775    1.3        pk 	 * Use the slack between the chunks and the page header
    776    1.3        pk 	 * for "cache coloring".
    777    1.3        pk 	 */
    778    1.3        pk 	slack = off - pp->pr_itemsperpage * pp->pr_size;
    779    1.3        pk 	pp->pr_maxcolor = (slack / align) * align;
    780    1.3        pk 	pp->pr_curcolor = 0;
    781    1.3        pk 
    782    1.3        pk 	pp->pr_nget = 0;
    783    1.3        pk 	pp->pr_nfail = 0;
    784    1.3        pk 	pp->pr_nput = 0;
    785    1.3        pk 	pp->pr_npagealloc = 0;
    786    1.3        pk 	pp->pr_npagefree = 0;
    787    1.1        pk 	pp->pr_hiwat = 0;
    788    1.8   thorpej 	pp->pr_nidle = 0;
    789  1.134        ad 	pp->pr_refcnt = 0;
    790    1.3        pk 
    791   1.59   thorpej #ifdef POOL_DIAGNOSTIC
    792   1.25   thorpej 	if (flags & PR_LOGGING) {
    793   1.25   thorpej 		if (kmem_map == NULL ||
    794   1.25   thorpej 		    (pp->pr_log = malloc(pool_logsize * sizeof(struct pool_log),
    795   1.25   thorpej 		     M_TEMP, M_NOWAIT)) == NULL)
    796   1.20   thorpej 			pp->pr_roflags &= ~PR_LOGGING;
    797    1.3        pk 		pp->pr_curlogentry = 0;
    798    1.3        pk 		pp->pr_logsize = pool_logsize;
    799    1.3        pk 	}
    800   1.59   thorpej #endif
    801   1.25   thorpej 
    802   1.25   thorpej 	pp->pr_entered_file = NULL;
    803   1.25   thorpej 	pp->pr_entered_line = 0;
    804    1.3        pk 
    805  1.134        ad 	mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
    806  1.134        ad 	cv_init(&pp->pr_cv, wchan);
    807  1.134        ad 	pp->pr_ipl = ipl;
    808    1.1        pk 
    809    1.3        pk 	/*
    810   1.43   thorpej 	 * Initialize private page header pool and cache magazine pool if we
    811   1.43   thorpej 	 * haven't done so yet.
    812   1.23   thorpej 	 * XXX LOCKING.
    813    1.3        pk 	 */
    814   1.97      yamt 	if (phpool[0].pr_size == 0) {
    815   1.97      yamt 		int idx;
    816   1.97      yamt 		for (idx = 0; idx < PHPOOL_MAX; idx++) {
    817   1.97      yamt 			static char phpool_names[PHPOOL_MAX][6+1+6+1];
    818   1.97      yamt 			int nelem;
    819   1.97      yamt 			size_t sz;
    820   1.97      yamt 
    821   1.97      yamt 			nelem = PHPOOL_FREELIST_NELEM(idx);
    822   1.97      yamt 			snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
    823   1.97      yamt 			    "phpool-%d", nelem);
    824   1.97      yamt 			sz = sizeof(struct pool_item_header);
    825   1.97      yamt 			if (nelem) {
    826  1.135      yamt 				sz = offsetof(struct pool_item_header,
    827  1.135      yamt 				    ph_bitmap[howmany(nelem, BITMAP_SIZE)]);
    828   1.97      yamt 			}
    829   1.97      yamt 			pool_init(&phpool[idx], sz, 0, 0, 0,
    830  1.129        ad 			    phpool_names[idx], &pool_allocator_meta, IPL_VM);
    831   1.97      yamt 		}
    832   1.62     bjh21 #ifdef POOL_SUBPAGE
    833   1.62     bjh21 		pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
    834  1.129        ad 		    PR_RECURSIVE, "psppool", &pool_allocator_meta, IPL_VM);
    835   1.62     bjh21 #endif
    836  1.134        ad 		pool_init(&pcgpool, sizeof(pcg_t), CACHE_LINE_SIZE, 0, 0,
    837  1.134        ad 		    "cachegrp", &pool_allocator_meta, IPL_VM);
    838    1.1        pk 	}
    839    1.1        pk 
    840  1.134        ad 	if (__predict_true(!cold)) {
    841  1.134        ad 		/* Insert into the list of all pools. */
    842  1.134        ad 		mutex_enter(&pool_head_lock);
    843  1.134        ad 		LIST_INSERT_HEAD(&pool_head, pp, pr_poollist);
    844  1.134        ad 		mutex_exit(&pool_head_lock);
    845  1.134        ad 
    846  1.134        ad 		/* Insert this into the list of pools using this allocator. */
    847  1.134        ad 		mutex_enter(&palloc->pa_lock);
    848  1.134        ad 		TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
    849  1.134        ad 		mutex_exit(&palloc->pa_lock);
    850  1.134        ad 	} else {
    851  1.134        ad 		LIST_INSERT_HEAD(&pool_head, pp, pr_poollist);
    852  1.134        ad 		TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
    853  1.134        ad 	}
    854   1.66   thorpej 
    855  1.117      yamt 	pool_reclaim_register(pp);
    856    1.1        pk }
    857    1.1        pk 
    858    1.1        pk /*
    859    1.1        pk  * De-commision a pool resource.
    860    1.1        pk  */
    861    1.1        pk void
    862   1.42   thorpej pool_destroy(struct pool *pp)
    863    1.1        pk {
    864  1.101   thorpej 	struct pool_pagelist pq;
    865    1.3        pk 	struct pool_item_header *ph;
    866   1.43   thorpej 
    867  1.101   thorpej 	/* Remove from global pool list */
    868  1.134        ad 	mutex_enter(&pool_head_lock);
    869  1.134        ad 	while (pp->pr_refcnt != 0)
    870  1.134        ad 		cv_wait(&pool_busy, &pool_head_lock);
    871  1.102       chs 	LIST_REMOVE(pp, pr_poollist);
    872  1.101   thorpej 	if (drainpp == pp)
    873  1.101   thorpej 		drainpp = NULL;
    874  1.134        ad 	mutex_exit(&pool_head_lock);
    875  1.101   thorpej 
    876  1.101   thorpej 	/* Remove this pool from its allocator's list of pools. */
    877  1.117      yamt 	pool_reclaim_unregister(pp);
    878  1.134        ad 	mutex_enter(&pp->pr_alloc->pa_lock);
    879   1.66   thorpej 	TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
    880  1.134        ad 	mutex_exit(&pp->pr_alloc->pa_lock);
    881   1.66   thorpej 
    882  1.134        ad 	mutex_enter(&pp->pr_lock);
    883  1.101   thorpej 
    884  1.134        ad 	KASSERT(pp->pr_cache == NULL);
    885    1.3        pk 
    886    1.3        pk #ifdef DIAGNOSTIC
    887   1.20   thorpej 	if (pp->pr_nout != 0) {
    888   1.25   thorpej 		pr_printlog(pp, NULL, printf);
    889   1.80    provos 		panic("pool_destroy: pool busy: still out: %u",
    890   1.20   thorpej 		    pp->pr_nout);
    891    1.3        pk 	}
    892    1.3        pk #endif
    893    1.1        pk 
    894  1.101   thorpej 	KASSERT(LIST_EMPTY(&pp->pr_fullpages));
    895  1.101   thorpej 	KASSERT(LIST_EMPTY(&pp->pr_partpages));
    896  1.101   thorpej 
    897    1.3        pk 	/* Remove all pages */
    898  1.101   thorpej 	LIST_INIT(&pq);
    899   1.88       chs 	while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
    900  1.101   thorpej 		pr_rmpage(pp, ph, &pq);
    901  1.101   thorpej 
    902  1.134        ad 	mutex_exit(&pp->pr_lock);
    903    1.3        pk 
    904  1.101   thorpej 	pr_pagelist_free(pp, &pq);
    905    1.3        pk 
    906   1.59   thorpej #ifdef POOL_DIAGNOSTIC
    907   1.20   thorpej 	if ((pp->pr_roflags & PR_LOGGING) != 0)
    908    1.3        pk 		free(pp->pr_log, M_TEMP);
    909   1.59   thorpej #endif
    910  1.134        ad 
    911  1.134        ad 	cv_destroy(&pp->pr_cv);
    912  1.134        ad 	mutex_destroy(&pp->pr_lock);
    913    1.1        pk }
    914    1.1        pk 
    915   1.68   thorpej void
    916   1.68   thorpej pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
    917   1.68   thorpej {
    918   1.68   thorpej 
    919   1.68   thorpej 	/* XXX no locking -- must be used just after pool_init() */
    920   1.68   thorpej #ifdef DIAGNOSTIC
    921   1.68   thorpej 	if (pp->pr_drain_hook != NULL)
    922   1.68   thorpej 		panic("pool_set_drain_hook(%s): already set", pp->pr_wchan);
    923   1.68   thorpej #endif
    924   1.68   thorpej 	pp->pr_drain_hook = fn;
    925   1.68   thorpej 	pp->pr_drain_hook_arg = arg;
    926   1.68   thorpej }
    927   1.68   thorpej 
    928   1.88       chs static struct pool_item_header *
    929  1.128  christos pool_alloc_item_header(struct pool *pp, void *storage, int flags)
    930   1.55   thorpej {
    931   1.55   thorpej 	struct pool_item_header *ph;
    932   1.55   thorpej 
    933   1.55   thorpej 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
    934  1.128  christos 		ph = (struct pool_item_header *) ((char *)storage + pp->pr_phoffset);
    935  1.134        ad 	else
    936   1.97      yamt 		ph = pool_get(pp->pr_phpool, flags);
    937   1.55   thorpej 
    938   1.55   thorpej 	return (ph);
    939   1.55   thorpej }
    940    1.1        pk 
    941    1.1        pk /*
    942  1.134        ad  * Grab an item from the pool.
    943    1.1        pk  */
    944    1.3        pk void *
    945   1.59   thorpej #ifdef POOL_DIAGNOSTIC
    946   1.42   thorpej _pool_get(struct pool *pp, int flags, const char *file, long line)
    947   1.56  sommerfe #else
    948   1.56  sommerfe pool_get(struct pool *pp, int flags)
    949   1.56  sommerfe #endif
    950    1.1        pk {
    951    1.1        pk 	struct pool_item *pi;
    952    1.3        pk 	struct pool_item_header *ph;
    953   1.55   thorpej 	void *v;
    954    1.1        pk 
    955    1.2        pk #ifdef DIAGNOSTIC
    956   1.95    atatat 	if (__predict_false(pp->pr_itemsperpage == 0))
    957   1.95    atatat 		panic("pool_get: pool %p: pr_itemsperpage is zero, "
    958   1.95    atatat 		    "pool not initialized?", pp);
    959   1.84   thorpej 	if (__predict_false(curlwp == NULL && doing_shutdown == 0 &&
    960   1.37  sommerfe 			    (flags & PR_WAITOK) != 0))
    961   1.77      matt 		panic("pool_get: %s: must have NOWAIT", pp->pr_wchan);
    962   1.58   thorpej 
    963  1.102       chs #endif /* DIAGNOSTIC */
    964   1.58   thorpej #ifdef LOCKDEBUG
    965   1.58   thorpej 	if (flags & PR_WAITOK)
    966  1.119      yamt 		ASSERT_SLEEPABLE(NULL, "pool_get(PR_WAITOK)");
    967   1.56  sommerfe #endif
    968    1.1        pk 
    969  1.134        ad 	mutex_enter(&pp->pr_lock);
    970   1.25   thorpej 	pr_enter(pp, file, line);
    971   1.20   thorpej 
    972   1.20   thorpej  startover:
    973   1.20   thorpej 	/*
    974   1.20   thorpej 	 * Check to see if we've reached the hard limit.  If we have,
    975   1.20   thorpej 	 * and we can wait, then wait until an item has been returned to
    976   1.20   thorpej 	 * the pool.
    977   1.20   thorpej 	 */
    978   1.20   thorpej #ifdef DIAGNOSTIC
    979   1.34   thorpej 	if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
    980   1.25   thorpej 		pr_leave(pp);
    981  1.134        ad 		mutex_exit(&pp->pr_lock);
    982   1.20   thorpej 		panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
    983   1.20   thorpej 	}
    984   1.20   thorpej #endif
    985   1.34   thorpej 	if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
    986   1.68   thorpej 		if (pp->pr_drain_hook != NULL) {
    987   1.68   thorpej 			/*
    988   1.68   thorpej 			 * Since the drain hook is going to free things
    989   1.68   thorpej 			 * back to the pool, unlock, call the hook, re-lock,
    990   1.68   thorpej 			 * and check the hardlimit condition again.
    991   1.68   thorpej 			 */
    992   1.68   thorpej 			pr_leave(pp);
    993  1.134        ad 			mutex_exit(&pp->pr_lock);
    994   1.68   thorpej 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
    995  1.134        ad 			mutex_enter(&pp->pr_lock);
    996   1.68   thorpej 			pr_enter(pp, file, line);
    997   1.68   thorpej 			if (pp->pr_nout < pp->pr_hardlimit)
    998   1.68   thorpej 				goto startover;
    999   1.68   thorpej 		}
   1000   1.68   thorpej 
   1001   1.29  sommerfe 		if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
   1002   1.20   thorpej 			/*
   1003   1.20   thorpej 			 * XXX: A warning isn't logged in this case.  Should
   1004   1.20   thorpej 			 * it be?
   1005   1.20   thorpej 			 */
   1006   1.20   thorpej 			pp->pr_flags |= PR_WANTED;
   1007   1.25   thorpej 			pr_leave(pp);
   1008  1.134        ad 			cv_wait(&pp->pr_cv, &pp->pr_lock);
   1009   1.25   thorpej 			pr_enter(pp, file, line);
   1010   1.20   thorpej 			goto startover;
   1011   1.20   thorpej 		}
   1012   1.31   thorpej 
   1013   1.31   thorpej 		/*
   1014   1.31   thorpej 		 * Log a message that the hard limit has been hit.
   1015   1.31   thorpej 		 */
   1016   1.31   thorpej 		if (pp->pr_hardlimit_warning != NULL &&
   1017   1.31   thorpej 		    ratecheck(&pp->pr_hardlimit_warning_last,
   1018   1.31   thorpej 			      &pp->pr_hardlimit_ratecap))
   1019   1.31   thorpej 			log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
   1020   1.21   thorpej 
   1021   1.21   thorpej 		pp->pr_nfail++;
   1022   1.21   thorpej 
   1023   1.25   thorpej 		pr_leave(pp);
   1024  1.134        ad 		mutex_exit(&pp->pr_lock);
   1025   1.20   thorpej 		return (NULL);
   1026   1.20   thorpej 	}
   1027   1.20   thorpej 
   1028    1.3        pk 	/*
   1029    1.3        pk 	 * The convention we use is that if `curpage' is not NULL, then
   1030    1.3        pk 	 * it points at a non-empty bucket. In particular, `curpage'
   1031    1.3        pk 	 * never points at a page header which has PR_PHINPAGE set and
   1032    1.3        pk 	 * has no items in its bucket.
   1033    1.3        pk 	 */
   1034   1.20   thorpej 	if ((ph = pp->pr_curpage) == NULL) {
   1035  1.113      yamt 		int error;
   1036  1.113      yamt 
   1037   1.20   thorpej #ifdef DIAGNOSTIC
   1038   1.20   thorpej 		if (pp->pr_nitems != 0) {
   1039  1.134        ad 			mutex_exit(&pp->pr_lock);
   1040   1.20   thorpej 			printf("pool_get: %s: curpage NULL, nitems %u\n",
   1041   1.20   thorpej 			    pp->pr_wchan, pp->pr_nitems);
   1042   1.80    provos 			panic("pool_get: nitems inconsistent");
   1043   1.20   thorpej 		}
   1044   1.20   thorpej #endif
   1045   1.20   thorpej 
   1046   1.21   thorpej 		/*
   1047   1.21   thorpej 		 * Call the back-end page allocator for more memory.
   1048   1.21   thorpej 		 * Release the pool lock, as the back-end page allocator
   1049   1.21   thorpej 		 * may block.
   1050   1.21   thorpej 		 */
   1051   1.25   thorpej 		pr_leave(pp);
   1052  1.113      yamt 		error = pool_grow(pp, flags);
   1053  1.113      yamt 		pr_enter(pp, file, line);
   1054  1.113      yamt 		if (error != 0) {
   1055   1.21   thorpej 			/*
   1056   1.55   thorpej 			 * We were unable to allocate a page or item
   1057   1.55   thorpej 			 * header, but we released the lock during
   1058   1.55   thorpej 			 * allocation, so perhaps items were freed
   1059   1.55   thorpej 			 * back to the pool.  Check for this case.
   1060   1.21   thorpej 			 */
   1061   1.21   thorpej 			if (pp->pr_curpage != NULL)
   1062   1.21   thorpej 				goto startover;
   1063   1.15        pk 
   1064  1.117      yamt 			pp->pr_nfail++;
   1065   1.25   thorpej 			pr_leave(pp);
   1066  1.134        ad 			mutex_exit(&pp->pr_lock);
   1067  1.117      yamt 			return (NULL);
   1068    1.1        pk 		}
   1069    1.3        pk 
   1070   1.20   thorpej 		/* Start the allocation process over. */
   1071   1.20   thorpej 		goto startover;
   1072    1.3        pk 	}
   1073   1.97      yamt 	if (pp->pr_roflags & PR_NOTOUCH) {
   1074   1.97      yamt #ifdef DIAGNOSTIC
   1075   1.97      yamt 		if (__predict_false(ph->ph_nmissing == pp->pr_itemsperpage)) {
   1076   1.97      yamt 			pr_leave(pp);
   1077  1.134        ad 			mutex_exit(&pp->pr_lock);
   1078   1.97      yamt 			panic("pool_get: %s: page empty", pp->pr_wchan);
   1079   1.97      yamt 		}
   1080   1.97      yamt #endif
   1081   1.97      yamt 		v = pr_item_notouch_get(pp, ph);
   1082   1.97      yamt #ifdef POOL_DIAGNOSTIC
   1083   1.97      yamt 		pr_log(pp, v, PRLOG_GET, file, line);
   1084   1.97      yamt #endif
   1085   1.97      yamt 	} else {
   1086  1.102       chs 		v = pi = LIST_FIRST(&ph->ph_itemlist);
   1087   1.97      yamt 		if (__predict_false(v == NULL)) {
   1088   1.97      yamt 			pr_leave(pp);
   1089  1.134        ad 			mutex_exit(&pp->pr_lock);
   1090   1.97      yamt 			panic("pool_get: %s: page empty", pp->pr_wchan);
   1091   1.97      yamt 		}
   1092   1.20   thorpej #ifdef DIAGNOSTIC
   1093   1.97      yamt 		if (__predict_false(pp->pr_nitems == 0)) {
   1094   1.97      yamt 			pr_leave(pp);
   1095  1.134        ad 			mutex_exit(&pp->pr_lock);
   1096   1.97      yamt 			printf("pool_get: %s: items on itemlist, nitems %u\n",
   1097   1.97      yamt 			    pp->pr_wchan, pp->pr_nitems);
   1098   1.97      yamt 			panic("pool_get: nitems inconsistent");
   1099   1.97      yamt 		}
   1100   1.65     enami #endif
   1101   1.56  sommerfe 
   1102   1.65     enami #ifdef POOL_DIAGNOSTIC
   1103   1.97      yamt 		pr_log(pp, v, PRLOG_GET, file, line);
   1104   1.65     enami #endif
   1105    1.3        pk 
   1106   1.65     enami #ifdef DIAGNOSTIC
   1107   1.97      yamt 		if (__predict_false(pi->pi_magic != PI_MAGIC)) {
   1108   1.97      yamt 			pr_printlog(pp, pi, printf);
   1109   1.97      yamt 			panic("pool_get(%s): free list modified: "
   1110   1.97      yamt 			    "magic=%x; page %p; item addr %p\n",
   1111   1.97      yamt 			    pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
   1112   1.97      yamt 		}
   1113    1.3        pk #endif
   1114    1.3        pk 
   1115   1.97      yamt 		/*
   1116   1.97      yamt 		 * Remove from item list.
   1117   1.97      yamt 		 */
   1118  1.102       chs 		LIST_REMOVE(pi, pi_list);
   1119   1.97      yamt 	}
   1120   1.20   thorpej 	pp->pr_nitems--;
   1121   1.20   thorpej 	pp->pr_nout++;
   1122    1.6   thorpej 	if (ph->ph_nmissing == 0) {
   1123    1.6   thorpej #ifdef DIAGNOSTIC
   1124   1.34   thorpej 		if (__predict_false(pp->pr_nidle == 0))
   1125    1.6   thorpej 			panic("pool_get: nidle inconsistent");
   1126    1.6   thorpej #endif
   1127    1.6   thorpej 		pp->pr_nidle--;
   1128   1.88       chs 
   1129   1.88       chs 		/*
   1130   1.88       chs 		 * This page was previously empty.  Move it to the list of
   1131   1.88       chs 		 * partially-full pages.  This page is already curpage.
   1132   1.88       chs 		 */
   1133   1.88       chs 		LIST_REMOVE(ph, ph_pagelist);
   1134   1.88       chs 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
   1135    1.6   thorpej 	}
   1136    1.3        pk 	ph->ph_nmissing++;
   1137   1.97      yamt 	if (ph->ph_nmissing == pp->pr_itemsperpage) {
   1138   1.21   thorpej #ifdef DIAGNOSTIC
   1139   1.97      yamt 		if (__predict_false((pp->pr_roflags & PR_NOTOUCH) == 0 &&
   1140  1.102       chs 		    !LIST_EMPTY(&ph->ph_itemlist))) {
   1141   1.25   thorpej 			pr_leave(pp);
   1142  1.134        ad 			mutex_exit(&pp->pr_lock);
   1143   1.21   thorpej 			panic("pool_get: %s: nmissing inconsistent",
   1144   1.21   thorpej 			    pp->pr_wchan);
   1145   1.21   thorpej 		}
   1146   1.21   thorpej #endif
   1147    1.3        pk 		/*
   1148   1.88       chs 		 * This page is now full.  Move it to the full list
   1149   1.88       chs 		 * and select a new current page.
   1150    1.3        pk 		 */
   1151   1.88       chs 		LIST_REMOVE(ph, ph_pagelist);
   1152   1.88       chs 		LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
   1153   1.88       chs 		pool_update_curpage(pp);
   1154    1.1        pk 	}
   1155    1.3        pk 
   1156    1.3        pk 	pp->pr_nget++;
   1157  1.111  christos 	pr_leave(pp);
   1158   1.20   thorpej 
   1159   1.20   thorpej 	/*
   1160   1.20   thorpej 	 * If we have a low water mark and we are now below that low
   1161   1.20   thorpej 	 * water mark, add more items to the pool.
   1162   1.20   thorpej 	 */
   1163   1.53   thorpej 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
   1164   1.20   thorpej 		/*
   1165   1.20   thorpej 		 * XXX: Should we log a warning?  Should we set up a timeout
   1166   1.20   thorpej 		 * to try again in a second or so?  The latter could break
   1167   1.20   thorpej 		 * a caller's assumptions about interrupt protection, etc.
   1168   1.20   thorpej 		 */
   1169   1.20   thorpej 	}
   1170   1.20   thorpej 
   1171  1.134        ad 	mutex_exit(&pp->pr_lock);
   1172  1.125        ad 	KASSERT((((vaddr_t)v + pp->pr_itemoffset) & (pp->pr_align - 1)) == 0);
   1173  1.125        ad 	FREECHECK_OUT(&pp->pr_freecheck, v);
   1174    1.1        pk 	return (v);
   1175    1.1        pk }
   1176    1.1        pk 
   1177    1.1        pk /*
   1178   1.43   thorpej  * Internal version of pool_put().  Pool is already locked/entered.
   1179    1.1        pk  */
   1180   1.43   thorpej static void
   1181  1.101   thorpej pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
   1182    1.1        pk {
   1183    1.1        pk 	struct pool_item *pi = v;
   1184    1.3        pk 	struct pool_item_header *ph;
   1185    1.3        pk 
   1186  1.134        ad 	KASSERT(mutex_owned(&pp->pr_lock));
   1187  1.125        ad 	FREECHECK_IN(&pp->pr_freecheck, v);
   1188  1.134        ad 	LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
   1189   1.61       chs 
   1190   1.30   thorpej #ifdef DIAGNOSTIC
   1191   1.34   thorpej 	if (__predict_false(pp->pr_nout == 0)) {
   1192   1.30   thorpej 		printf("pool %s: putting with none out\n",
   1193   1.30   thorpej 		    pp->pr_wchan);
   1194   1.30   thorpej 		panic("pool_put");
   1195   1.30   thorpej 	}
   1196   1.30   thorpej #endif
   1197    1.3        pk 
   1198  1.121      yamt 	if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
   1199   1.25   thorpej 		pr_printlog(pp, NULL, printf);
   1200    1.3        pk 		panic("pool_put: %s: page header missing", pp->pr_wchan);
   1201    1.3        pk 	}
   1202   1.28   thorpej 
   1203    1.3        pk 	/*
   1204    1.3        pk 	 * Return to item list.
   1205    1.3        pk 	 */
   1206   1.97      yamt 	if (pp->pr_roflags & PR_NOTOUCH) {
   1207   1.97      yamt 		pr_item_notouch_put(pp, ph, v);
   1208   1.97      yamt 	} else {
   1209    1.2        pk #ifdef DIAGNOSTIC
   1210   1.97      yamt 		pi->pi_magic = PI_MAGIC;
   1211    1.3        pk #endif
   1212   1.32       chs #ifdef DEBUG
   1213   1.97      yamt 		{
   1214   1.97      yamt 			int i, *ip = v;
   1215   1.32       chs 
   1216   1.97      yamt 			for (i = 0; i < pp->pr_size / sizeof(int); i++) {
   1217   1.97      yamt 				*ip++ = PI_MAGIC;
   1218   1.97      yamt 			}
   1219   1.32       chs 		}
   1220   1.32       chs #endif
   1221   1.32       chs 
   1222  1.102       chs 		LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
   1223   1.97      yamt 	}
   1224   1.79   thorpej 	KDASSERT(ph->ph_nmissing != 0);
   1225    1.3        pk 	ph->ph_nmissing--;
   1226    1.3        pk 	pp->pr_nput++;
   1227   1.20   thorpej 	pp->pr_nitems++;
   1228   1.20   thorpej 	pp->pr_nout--;
   1229    1.3        pk 
   1230    1.3        pk 	/* Cancel "pool empty" condition if it exists */
   1231    1.3        pk 	if (pp->pr_curpage == NULL)
   1232    1.3        pk 		pp->pr_curpage = ph;
   1233    1.3        pk 
   1234    1.3        pk 	if (pp->pr_flags & PR_WANTED) {
   1235    1.3        pk 		pp->pr_flags &= ~PR_WANTED;
   1236   1.15        pk 		if (ph->ph_nmissing == 0)
   1237   1.15        pk 			pp->pr_nidle++;
   1238  1.134        ad 		cv_broadcast(&pp->pr_cv);
   1239    1.3        pk 		return;
   1240    1.3        pk 	}
   1241    1.3        pk 
   1242    1.3        pk 	/*
   1243   1.88       chs 	 * If this page is now empty, do one of two things:
   1244   1.21   thorpej 	 *
   1245   1.88       chs 	 *	(1) If we have more pages than the page high water mark,
   1246   1.96   thorpej 	 *	    free the page back to the system.  ONLY CONSIDER
   1247   1.90   thorpej 	 *	    FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
   1248   1.90   thorpej 	 *	    CLAIM.
   1249   1.21   thorpej 	 *
   1250   1.88       chs 	 *	(2) Otherwise, move the page to the empty page list.
   1251   1.88       chs 	 *
   1252   1.88       chs 	 * Either way, select a new current page (so we use a partially-full
   1253   1.88       chs 	 * page if one is available).
   1254    1.3        pk 	 */
   1255    1.3        pk 	if (ph->ph_nmissing == 0) {
   1256    1.6   thorpej 		pp->pr_nidle++;
   1257   1.90   thorpej 		if (pp->pr_npages > pp->pr_minpages &&
   1258   1.90   thorpej 		    (pp->pr_npages > pp->pr_maxpages ||
   1259  1.117      yamt 		     pa_starved_p(pp->pr_alloc))) {
   1260  1.101   thorpej 			pr_rmpage(pp, ph, pq);
   1261    1.3        pk 		} else {
   1262   1.88       chs 			LIST_REMOVE(ph, ph_pagelist);
   1263   1.88       chs 			LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
   1264    1.3        pk 
   1265   1.21   thorpej 			/*
   1266   1.21   thorpej 			 * Update the timestamp on the page.  A page must
   1267   1.21   thorpej 			 * be idle for some period of time before it can
   1268   1.21   thorpej 			 * be reclaimed by the pagedaemon.  This minimizes
   1269   1.21   thorpej 			 * ping-pong'ing for memory.
   1270   1.21   thorpej 			 */
   1271  1.118    kardel 			getmicrotime(&ph->ph_time);
   1272    1.1        pk 		}
   1273   1.88       chs 		pool_update_curpage(pp);
   1274    1.1        pk 	}
   1275   1.88       chs 
   1276   1.21   thorpej 	/*
   1277   1.88       chs 	 * If the page was previously completely full, move it to the
   1278   1.88       chs 	 * partially-full list and make it the current page.  The next
   1279   1.88       chs 	 * allocation will get the item from this page, instead of
   1280   1.88       chs 	 * further fragmenting the pool.
   1281   1.21   thorpej 	 */
   1282   1.21   thorpej 	else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
   1283   1.88       chs 		LIST_REMOVE(ph, ph_pagelist);
   1284   1.88       chs 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
   1285   1.21   thorpej 		pp->pr_curpage = ph;
   1286   1.21   thorpej 	}
   1287   1.43   thorpej }
   1288   1.43   thorpej 
   1289   1.43   thorpej /*
   1290  1.134        ad  * Return resource to the pool.
   1291   1.43   thorpej  */
   1292   1.59   thorpej #ifdef POOL_DIAGNOSTIC
   1293   1.43   thorpej void
   1294   1.43   thorpej _pool_put(struct pool *pp, void *v, const char *file, long line)
   1295   1.43   thorpej {
   1296  1.101   thorpej 	struct pool_pagelist pq;
   1297  1.101   thorpej 
   1298  1.101   thorpej 	LIST_INIT(&pq);
   1299   1.43   thorpej 
   1300  1.134        ad 	mutex_enter(&pp->pr_lock);
   1301   1.43   thorpej 	pr_enter(pp, file, line);
   1302   1.43   thorpej 
   1303   1.56  sommerfe 	pr_log(pp, v, PRLOG_PUT, file, line);
   1304   1.56  sommerfe 
   1305  1.101   thorpej 	pool_do_put(pp, v, &pq);
   1306   1.21   thorpej 
   1307   1.25   thorpej 	pr_leave(pp);
   1308  1.134        ad 	mutex_exit(&pp->pr_lock);
   1309  1.101   thorpej 
   1310  1.102       chs 	pr_pagelist_free(pp, &pq);
   1311    1.1        pk }
   1312   1.57  sommerfe #undef pool_put
   1313   1.59   thorpej #endif /* POOL_DIAGNOSTIC */
   1314    1.1        pk 
   1315   1.56  sommerfe void
   1316   1.56  sommerfe pool_put(struct pool *pp, void *v)
   1317   1.56  sommerfe {
   1318  1.101   thorpej 	struct pool_pagelist pq;
   1319  1.101   thorpej 
   1320  1.101   thorpej 	LIST_INIT(&pq);
   1321   1.56  sommerfe 
   1322  1.134        ad 	mutex_enter(&pp->pr_lock);
   1323  1.101   thorpej 	pool_do_put(pp, v, &pq);
   1324  1.134        ad 	mutex_exit(&pp->pr_lock);
   1325   1.56  sommerfe 
   1326  1.102       chs 	pr_pagelist_free(pp, &pq);
   1327   1.56  sommerfe }
   1328   1.57  sommerfe 
   1329   1.59   thorpej #ifdef POOL_DIAGNOSTIC
   1330   1.57  sommerfe #define		pool_put(h, v)	_pool_put((h), (v), __FILE__, __LINE__)
   1331   1.56  sommerfe #endif
   1332   1.74   thorpej 
   1333   1.74   thorpej /*
   1334  1.113      yamt  * pool_grow: grow a pool by a page.
   1335  1.113      yamt  *
   1336  1.113      yamt  * => called with pool locked.
   1337  1.113      yamt  * => unlock and relock the pool.
   1338  1.113      yamt  * => return with pool locked.
   1339  1.113      yamt  */
   1340  1.113      yamt 
   1341  1.113      yamt static int
   1342  1.113      yamt pool_grow(struct pool *pp, int flags)
   1343  1.113      yamt {
   1344  1.113      yamt 	struct pool_item_header *ph = NULL;
   1345  1.113      yamt 	char *cp;
   1346  1.113      yamt 
   1347  1.134        ad 	mutex_exit(&pp->pr_lock);
   1348  1.113      yamt 	cp = pool_allocator_alloc(pp, flags);
   1349  1.113      yamt 	if (__predict_true(cp != NULL)) {
   1350  1.113      yamt 		ph = pool_alloc_item_header(pp, cp, flags);
   1351  1.113      yamt 	}
   1352  1.113      yamt 	if (__predict_false(cp == NULL || ph == NULL)) {
   1353  1.113      yamt 		if (cp != NULL) {
   1354  1.113      yamt 			pool_allocator_free(pp, cp);
   1355  1.113      yamt 		}
   1356  1.134        ad 		mutex_enter(&pp->pr_lock);
   1357  1.113      yamt 		return ENOMEM;
   1358  1.113      yamt 	}
   1359  1.113      yamt 
   1360  1.134        ad 	mutex_enter(&pp->pr_lock);
   1361  1.113      yamt 	pool_prime_page(pp, cp, ph);
   1362  1.113      yamt 	pp->pr_npagealloc++;
   1363  1.113      yamt 	return 0;
   1364  1.113      yamt }
   1365  1.113      yamt 
   1366  1.113      yamt /*
   1367   1.74   thorpej  * Add N items to the pool.
   1368   1.74   thorpej  */
   1369   1.74   thorpej int
   1370   1.74   thorpej pool_prime(struct pool *pp, int n)
   1371   1.74   thorpej {
   1372   1.75    simonb 	int newpages;
   1373  1.113      yamt 	int error = 0;
   1374   1.74   thorpej 
   1375  1.134        ad 	mutex_enter(&pp->pr_lock);
   1376   1.74   thorpej 
   1377   1.74   thorpej 	newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1378   1.74   thorpej 
   1379   1.74   thorpej 	while (newpages-- > 0) {
   1380  1.113      yamt 		error = pool_grow(pp, PR_NOWAIT);
   1381  1.113      yamt 		if (error) {
   1382   1.74   thorpej 			break;
   1383   1.74   thorpej 		}
   1384   1.74   thorpej 		pp->pr_minpages++;
   1385   1.74   thorpej 	}
   1386   1.74   thorpej 
   1387   1.74   thorpej 	if (pp->pr_minpages >= pp->pr_maxpages)
   1388   1.74   thorpej 		pp->pr_maxpages = pp->pr_minpages + 1;	/* XXX */
   1389   1.74   thorpej 
   1390  1.134        ad 	mutex_exit(&pp->pr_lock);
   1391  1.113      yamt 	return error;
   1392   1.74   thorpej }
   1393   1.55   thorpej 
   1394   1.55   thorpej /*
   1395    1.3        pk  * Add a page worth of items to the pool.
   1396   1.21   thorpej  *
   1397   1.21   thorpej  * Note, we must be called with the pool descriptor LOCKED.
   1398    1.3        pk  */
   1399   1.55   thorpej static void
   1400  1.128  christos pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
   1401    1.3        pk {
   1402    1.3        pk 	struct pool_item *pi;
   1403  1.128  christos 	void *cp = storage;
   1404  1.125        ad 	const unsigned int align = pp->pr_align;
   1405  1.125        ad 	const unsigned int ioff = pp->pr_itemoffset;
   1406   1.55   thorpej 	int n;
   1407   1.36        pk 
   1408  1.134        ad 	KASSERT(mutex_owned(&pp->pr_lock));
   1409   1.91      yamt 
   1410   1.66   thorpej #ifdef DIAGNOSTIC
   1411  1.121      yamt 	if ((pp->pr_roflags & PR_NOALIGN) == 0 &&
   1412  1.121      yamt 	    ((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) != 0)
   1413   1.36        pk 		panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
   1414   1.66   thorpej #endif
   1415    1.3        pk 
   1416    1.3        pk 	/*
   1417    1.3        pk 	 * Insert page header.
   1418    1.3        pk 	 */
   1419   1.88       chs 	LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
   1420  1.102       chs 	LIST_INIT(&ph->ph_itemlist);
   1421    1.3        pk 	ph->ph_page = storage;
   1422    1.3        pk 	ph->ph_nmissing = 0;
   1423  1.118    kardel 	getmicrotime(&ph->ph_time);
   1424   1.88       chs 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
   1425   1.88       chs 		SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
   1426    1.3        pk 
   1427    1.6   thorpej 	pp->pr_nidle++;
   1428    1.6   thorpej 
   1429    1.3        pk 	/*
   1430    1.3        pk 	 * Color this page.
   1431    1.3        pk 	 */
   1432  1.128  christos 	cp = (char *)cp + pp->pr_curcolor;
   1433    1.3        pk 	if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
   1434    1.3        pk 		pp->pr_curcolor = 0;
   1435    1.3        pk 
   1436    1.3        pk 	/*
   1437    1.3        pk 	 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
   1438    1.3        pk 	 */
   1439    1.3        pk 	if (ioff != 0)
   1440  1.128  christos 		cp = (char *)cp + align - ioff;
   1441    1.3        pk 
   1442  1.125        ad 	KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
   1443  1.125        ad 
   1444    1.3        pk 	/*
   1445    1.3        pk 	 * Insert remaining chunks on the bucket list.
   1446    1.3        pk 	 */
   1447    1.3        pk 	n = pp->pr_itemsperpage;
   1448   1.20   thorpej 	pp->pr_nitems += n;
   1449    1.3        pk 
   1450   1.97      yamt 	if (pp->pr_roflags & PR_NOTOUCH) {
   1451  1.135      yamt 		pr_item_notouch_init(pp, ph);
   1452   1.97      yamt 	} else {
   1453   1.97      yamt 		while (n--) {
   1454   1.97      yamt 			pi = (struct pool_item *)cp;
   1455   1.78   thorpej 
   1456   1.97      yamt 			KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0);
   1457    1.3        pk 
   1458   1.97      yamt 			/* Insert on page list */
   1459  1.102       chs 			LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
   1460    1.3        pk #ifdef DIAGNOSTIC
   1461   1.97      yamt 			pi->pi_magic = PI_MAGIC;
   1462    1.3        pk #endif
   1463  1.128  christos 			cp = (char *)cp + pp->pr_size;
   1464  1.125        ad 
   1465  1.125        ad 			KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
   1466   1.97      yamt 		}
   1467    1.3        pk 	}
   1468    1.3        pk 
   1469    1.3        pk 	/*
   1470    1.3        pk 	 * If the pool was depleted, point at the new page.
   1471    1.3        pk 	 */
   1472    1.3        pk 	if (pp->pr_curpage == NULL)
   1473    1.3        pk 		pp->pr_curpage = ph;
   1474    1.3        pk 
   1475    1.3        pk 	if (++pp->pr_npages > pp->pr_hiwat)
   1476    1.3        pk 		pp->pr_hiwat = pp->pr_npages;
   1477    1.3        pk }
   1478    1.3        pk 
   1479   1.20   thorpej /*
   1480   1.52   thorpej  * Used by pool_get() when nitems drops below the low water mark.  This
   1481   1.88       chs  * is used to catch up pr_nitems with the low water mark.
   1482   1.20   thorpej  *
   1483   1.21   thorpej  * Note 1, we never wait for memory here, we let the caller decide what to do.
   1484   1.20   thorpej  *
   1485   1.73   thorpej  * Note 2, we must be called with the pool already locked, and we return
   1486   1.20   thorpej  * with it locked.
   1487   1.20   thorpej  */
   1488   1.20   thorpej static int
   1489   1.42   thorpej pool_catchup(struct pool *pp)
   1490   1.20   thorpej {
   1491   1.20   thorpej 	int error = 0;
   1492   1.20   thorpej 
   1493   1.54   thorpej 	while (POOL_NEEDS_CATCHUP(pp)) {
   1494  1.113      yamt 		error = pool_grow(pp, PR_NOWAIT);
   1495  1.113      yamt 		if (error) {
   1496   1.20   thorpej 			break;
   1497   1.20   thorpej 		}
   1498   1.20   thorpej 	}
   1499  1.113      yamt 	return error;
   1500   1.20   thorpej }
   1501   1.20   thorpej 
   1502   1.88       chs static void
   1503   1.88       chs pool_update_curpage(struct pool *pp)
   1504   1.88       chs {
   1505   1.88       chs 
   1506   1.88       chs 	pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
   1507   1.88       chs 	if (pp->pr_curpage == NULL) {
   1508   1.88       chs 		pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
   1509   1.88       chs 	}
   1510   1.88       chs }
   1511   1.88       chs 
   1512    1.3        pk void
   1513   1.42   thorpej pool_setlowat(struct pool *pp, int n)
   1514    1.3        pk {
   1515   1.15        pk 
   1516  1.134        ad 	mutex_enter(&pp->pr_lock);
   1517   1.21   thorpej 
   1518    1.3        pk 	pp->pr_minitems = n;
   1519   1.15        pk 	pp->pr_minpages = (n == 0)
   1520   1.15        pk 		? 0
   1521   1.18   thorpej 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1522   1.20   thorpej 
   1523   1.20   thorpej 	/* Make sure we're caught up with the newly-set low water mark. */
   1524   1.75    simonb 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
   1525   1.20   thorpej 		/*
   1526   1.20   thorpej 		 * XXX: Should we log a warning?  Should we set up a timeout
   1527   1.20   thorpej 		 * to try again in a second or so?  The latter could break
   1528   1.20   thorpej 		 * a caller's assumptions about interrupt protection, etc.
   1529   1.20   thorpej 		 */
   1530   1.20   thorpej 	}
   1531   1.21   thorpej 
   1532  1.134        ad 	mutex_exit(&pp->pr_lock);
   1533    1.3        pk }
   1534    1.3        pk 
   1535    1.3        pk void
   1536   1.42   thorpej pool_sethiwat(struct pool *pp, int n)
   1537    1.3        pk {
   1538   1.15        pk 
   1539  1.134        ad 	mutex_enter(&pp->pr_lock);
   1540   1.21   thorpej 
   1541   1.15        pk 	pp->pr_maxpages = (n == 0)
   1542   1.15        pk 		? 0
   1543   1.18   thorpej 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1544   1.21   thorpej 
   1545  1.134        ad 	mutex_exit(&pp->pr_lock);
   1546    1.3        pk }
   1547    1.3        pk 
   1548   1.20   thorpej void
   1549   1.42   thorpej pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
   1550   1.20   thorpej {
   1551   1.20   thorpej 
   1552  1.134        ad 	mutex_enter(&pp->pr_lock);
   1553   1.20   thorpej 
   1554   1.20   thorpej 	pp->pr_hardlimit = n;
   1555   1.20   thorpej 	pp->pr_hardlimit_warning = warnmess;
   1556   1.31   thorpej 	pp->pr_hardlimit_ratecap.tv_sec = ratecap;
   1557   1.31   thorpej 	pp->pr_hardlimit_warning_last.tv_sec = 0;
   1558   1.31   thorpej 	pp->pr_hardlimit_warning_last.tv_usec = 0;
   1559   1.20   thorpej 
   1560   1.20   thorpej 	/*
   1561   1.21   thorpej 	 * In-line version of pool_sethiwat(), because we don't want to
   1562   1.21   thorpej 	 * release the lock.
   1563   1.20   thorpej 	 */
   1564   1.20   thorpej 	pp->pr_maxpages = (n == 0)
   1565   1.20   thorpej 		? 0
   1566   1.20   thorpej 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1567   1.21   thorpej 
   1568  1.134        ad 	mutex_exit(&pp->pr_lock);
   1569   1.20   thorpej }
   1570    1.3        pk 
   1571    1.3        pk /*
   1572    1.3        pk  * Release all complete pages that have not been used recently.
   1573    1.3        pk  */
   1574   1.66   thorpej int
   1575   1.59   thorpej #ifdef POOL_DIAGNOSTIC
   1576   1.42   thorpej _pool_reclaim(struct pool *pp, const char *file, long line)
   1577   1.56  sommerfe #else
   1578   1.56  sommerfe pool_reclaim(struct pool *pp)
   1579   1.56  sommerfe #endif
   1580    1.3        pk {
   1581    1.3        pk 	struct pool_item_header *ph, *phnext;
   1582   1.61       chs 	struct pool_pagelist pq;
   1583  1.102       chs 	struct timeval curtime, diff;
   1584  1.134        ad 	bool klock;
   1585  1.134        ad 	int rv;
   1586    1.3        pk 
   1587   1.68   thorpej 	if (pp->pr_drain_hook != NULL) {
   1588   1.68   thorpej 		/*
   1589   1.68   thorpej 		 * The drain hook must be called with the pool unlocked.
   1590   1.68   thorpej 		 */
   1591   1.68   thorpej 		(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
   1592   1.68   thorpej 	}
   1593   1.68   thorpej 
   1594  1.134        ad 	/*
   1595  1.134        ad 	 * XXXSMP Because mutexes at IPL_SOFTXXX are still spinlocks,
   1596  1.134        ad 	 * and we are called from the pagedaemon without kernel_lock.
   1597  1.134        ad 	 * Does not apply to IPL_SOFTBIO.
   1598  1.134        ad 	 */
   1599  1.134        ad 	if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK ||
   1600  1.134        ad 	    pp->pr_ipl == IPL_SOFTSERIAL) {
   1601  1.134        ad 		KERNEL_LOCK(1, NULL);
   1602  1.134        ad 		klock = true;
   1603  1.134        ad 	} else
   1604  1.134        ad 		klock = false;
   1605  1.134        ad 
   1606  1.134        ad 	/* Reclaim items from the pool's cache (if any). */
   1607  1.134        ad 	if (pp->pr_cache != NULL)
   1608  1.134        ad 		pool_cache_invalidate(pp->pr_cache);
   1609  1.134        ad 
   1610  1.134        ad 	if (mutex_tryenter(&pp->pr_lock) == 0) {
   1611  1.134        ad 		if (klock) {
   1612  1.134        ad 			KERNEL_UNLOCK_ONE(NULL);
   1613  1.134        ad 		}
   1614   1.66   thorpej 		return (0);
   1615  1.134        ad 	}
   1616   1.25   thorpej 	pr_enter(pp, file, line);
   1617   1.68   thorpej 
   1618   1.88       chs 	LIST_INIT(&pq);
   1619   1.43   thorpej 
   1620  1.118    kardel 	getmicrotime(&curtime);
   1621   1.21   thorpej 
   1622   1.88       chs 	for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
   1623   1.88       chs 		phnext = LIST_NEXT(ph, ph_pagelist);
   1624    1.3        pk 
   1625    1.3        pk 		/* Check our minimum page claim */
   1626    1.3        pk 		if (pp->pr_npages <= pp->pr_minpages)
   1627    1.3        pk 			break;
   1628    1.3        pk 
   1629   1.88       chs 		KASSERT(ph->ph_nmissing == 0);
   1630   1.88       chs 		timersub(&curtime, &ph->ph_time, &diff);
   1631  1.117      yamt 		if (diff.tv_sec < pool_inactive_time
   1632  1.117      yamt 		    && !pa_starved_p(pp->pr_alloc))
   1633   1.88       chs 			continue;
   1634   1.21   thorpej 
   1635   1.88       chs 		/*
   1636   1.88       chs 		 * If freeing this page would put us below
   1637   1.88       chs 		 * the low water mark, stop now.
   1638   1.88       chs 		 */
   1639   1.88       chs 		if ((pp->pr_nitems - pp->pr_itemsperpage) <
   1640   1.88       chs 		    pp->pr_minitems)
   1641   1.88       chs 			break;
   1642   1.21   thorpej 
   1643   1.88       chs 		pr_rmpage(pp, ph, &pq);
   1644    1.3        pk 	}
   1645    1.3        pk 
   1646   1.25   thorpej 	pr_leave(pp);
   1647  1.134        ad 	mutex_exit(&pp->pr_lock);
   1648  1.134        ad 
   1649  1.134        ad 	if (LIST_EMPTY(&pq))
   1650  1.134        ad 		rv = 0;
   1651  1.134        ad 	else {
   1652  1.134        ad 		pr_pagelist_free(pp, &pq);
   1653  1.134        ad 		rv = 1;
   1654  1.134        ad 	}
   1655  1.134        ad 
   1656  1.134        ad 	if (klock) {
   1657  1.134        ad 		KERNEL_UNLOCK_ONE(NULL);
   1658  1.134        ad 	}
   1659   1.66   thorpej 
   1660  1.134        ad 	return (rv);
   1661    1.3        pk }
   1662    1.3        pk 
   1663    1.3        pk /*
   1664  1.134        ad  * Drain pools, one at a time.  This is a two stage process;
   1665  1.134        ad  * drain_start kicks off a cross call to drain CPU-level caches
   1666  1.134        ad  * if the pool has an associated pool_cache.  drain_end waits
   1667  1.134        ad  * for those cross calls to finish, and then drains the cache
   1668  1.134        ad  * (if any) and pool.
   1669  1.131        ad  *
   1670  1.134        ad  * Note, must never be called from interrupt context.
   1671    1.3        pk  */
   1672    1.3        pk void
   1673  1.134        ad pool_drain_start(struct pool **ppp, uint64_t *wp)
   1674    1.3        pk {
   1675    1.3        pk 	struct pool *pp;
   1676  1.134        ad 
   1677  1.134        ad 	KASSERT(!LIST_EMPTY(&pool_head));
   1678    1.3        pk 
   1679   1.61       chs 	pp = NULL;
   1680  1.134        ad 
   1681  1.134        ad 	/* Find next pool to drain, and add a reference. */
   1682  1.134        ad 	mutex_enter(&pool_head_lock);
   1683  1.134        ad 	do {
   1684  1.134        ad 		if (drainpp == NULL) {
   1685  1.134        ad 			drainpp = LIST_FIRST(&pool_head);
   1686  1.134        ad 		}
   1687  1.134        ad 		if (drainpp != NULL) {
   1688  1.134        ad 			pp = drainpp;
   1689  1.134        ad 			drainpp = LIST_NEXT(pp, pr_poollist);
   1690  1.134        ad 		}
   1691  1.134        ad 		/*
   1692  1.134        ad 		 * Skip completely idle pools.  We depend on at least
   1693  1.134        ad 		 * one pool in the system being active.
   1694  1.134        ad 		 */
   1695  1.134        ad 	} while (pp == NULL || pp->pr_npages == 0);
   1696  1.134        ad 	pp->pr_refcnt++;
   1697  1.134        ad 	mutex_exit(&pool_head_lock);
   1698  1.134        ad 
   1699  1.134        ad 	/* If there is a pool_cache, drain CPU level caches. */
   1700  1.134        ad 	*ppp = pp;
   1701  1.134        ad 	if (pp->pr_cache != NULL) {
   1702  1.134        ad 		*wp = xc_broadcast(0, (xcfunc_t)pool_cache_xcall,
   1703  1.134        ad 		    pp->pr_cache, NULL);
   1704  1.134        ad 	}
   1705  1.134        ad }
   1706  1.134        ad 
   1707  1.134        ad void
   1708  1.134        ad pool_drain_end(struct pool *pp, uint64_t where)
   1709  1.134        ad {
   1710  1.134        ad 
   1711  1.134        ad 	if (pp == NULL)
   1712  1.134        ad 		return;
   1713  1.134        ad 
   1714  1.134        ad 	KASSERT(pp->pr_refcnt > 0);
   1715  1.134        ad 
   1716  1.134        ad 	/* Wait for remote draining to complete. */
   1717  1.134        ad 	if (pp->pr_cache != NULL)
   1718  1.134        ad 		xc_wait(where);
   1719  1.134        ad 
   1720  1.134        ad 	/* Drain the cache (if any) and pool.. */
   1721  1.134        ad 	pool_reclaim(pp);
   1722  1.134        ad 
   1723  1.134        ad 	/* Finally, unlock the pool. */
   1724  1.134        ad 	mutex_enter(&pool_head_lock);
   1725  1.134        ad 	pp->pr_refcnt--;
   1726  1.134        ad 	cv_broadcast(&pool_busy);
   1727  1.134        ad 	mutex_exit(&pool_head_lock);
   1728    1.3        pk }
   1729    1.3        pk 
   1730    1.3        pk /*
   1731    1.3        pk  * Diagnostic helpers.
   1732    1.3        pk  */
   1733    1.3        pk void
   1734   1.42   thorpej pool_print(struct pool *pp, const char *modif)
   1735   1.21   thorpej {
   1736   1.21   thorpej 
   1737   1.25   thorpej 	pool_print1(pp, modif, printf);
   1738   1.21   thorpej }
   1739   1.21   thorpej 
   1740   1.25   thorpej void
   1741  1.108      yamt pool_printall(const char *modif, void (*pr)(const char *, ...))
   1742  1.108      yamt {
   1743  1.108      yamt 	struct pool *pp;
   1744  1.108      yamt 
   1745  1.108      yamt 	LIST_FOREACH(pp, &pool_head, pr_poollist) {
   1746  1.108      yamt 		pool_printit(pp, modif, pr);
   1747  1.108      yamt 	}
   1748  1.108      yamt }
   1749  1.108      yamt 
   1750  1.108      yamt void
   1751   1.42   thorpej pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1752   1.25   thorpej {
   1753   1.25   thorpej 
   1754   1.25   thorpej 	if (pp == NULL) {
   1755   1.25   thorpej 		(*pr)("Must specify a pool to print.\n");
   1756   1.25   thorpej 		return;
   1757   1.25   thorpej 	}
   1758   1.25   thorpej 
   1759   1.25   thorpej 	pool_print1(pp, modif, pr);
   1760   1.25   thorpej }
   1761   1.25   thorpej 
   1762   1.21   thorpej static void
   1763  1.124      yamt pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
   1764   1.97      yamt     void (*pr)(const char *, ...))
   1765   1.88       chs {
   1766   1.88       chs 	struct pool_item_header *ph;
   1767   1.88       chs #ifdef DIAGNOSTIC
   1768   1.88       chs 	struct pool_item *pi;
   1769   1.88       chs #endif
   1770   1.88       chs 
   1771   1.88       chs 	LIST_FOREACH(ph, pl, ph_pagelist) {
   1772   1.88       chs 		(*pr)("\t\tpage %p, nmissing %d, time %lu,%lu\n",
   1773   1.88       chs 		    ph->ph_page, ph->ph_nmissing,
   1774   1.88       chs 		    (u_long)ph->ph_time.tv_sec,
   1775   1.88       chs 		    (u_long)ph->ph_time.tv_usec);
   1776   1.88       chs #ifdef DIAGNOSTIC
   1777   1.97      yamt 		if (!(pp->pr_roflags & PR_NOTOUCH)) {
   1778  1.102       chs 			LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
   1779   1.97      yamt 				if (pi->pi_magic != PI_MAGIC) {
   1780   1.97      yamt 					(*pr)("\t\t\titem %p, magic 0x%x\n",
   1781   1.97      yamt 					    pi, pi->pi_magic);
   1782   1.97      yamt 				}
   1783   1.88       chs 			}
   1784   1.88       chs 		}
   1785   1.88       chs #endif
   1786   1.88       chs 	}
   1787   1.88       chs }
   1788   1.88       chs 
   1789   1.88       chs static void
   1790   1.42   thorpej pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1791    1.3        pk {
   1792   1.25   thorpej 	struct pool_item_header *ph;
   1793  1.134        ad 	pool_cache_t pc;
   1794  1.134        ad 	pcg_t *pcg;
   1795  1.134        ad 	pool_cache_cpu_t *cc;
   1796  1.134        ad 	uint64_t cpuhit, cpumiss;
   1797   1.44   thorpej 	int i, print_log = 0, print_pagelist = 0, print_cache = 0;
   1798   1.25   thorpej 	char c;
   1799   1.25   thorpej 
   1800   1.25   thorpej 	while ((c = *modif++) != '\0') {
   1801   1.25   thorpej 		if (c == 'l')
   1802   1.25   thorpej 			print_log = 1;
   1803   1.25   thorpej 		if (c == 'p')
   1804   1.25   thorpej 			print_pagelist = 1;
   1805   1.44   thorpej 		if (c == 'c')
   1806   1.44   thorpej 			print_cache = 1;
   1807   1.25   thorpej 	}
   1808   1.25   thorpej 
   1809  1.134        ad 	if ((pc = pp->pr_cache) != NULL) {
   1810  1.134        ad 		(*pr)("POOL CACHE");
   1811  1.134        ad 	} else {
   1812  1.134        ad 		(*pr)("POOL");
   1813  1.134        ad 	}
   1814  1.134        ad 
   1815  1.134        ad 	(*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
   1816   1.25   thorpej 	    pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
   1817   1.25   thorpej 	    pp->pr_roflags);
   1818   1.66   thorpej 	(*pr)("\talloc %p\n", pp->pr_alloc);
   1819   1.25   thorpej 	(*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
   1820   1.25   thorpej 	    pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
   1821   1.25   thorpej 	(*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
   1822   1.25   thorpej 	    pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
   1823   1.25   thorpej 
   1824  1.134        ad 	(*pr)("\tnget %lu, nfail %lu, nput %lu\n",
   1825   1.25   thorpej 	    pp->pr_nget, pp->pr_nfail, pp->pr_nput);
   1826   1.25   thorpej 	(*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
   1827   1.25   thorpej 	    pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
   1828   1.25   thorpej 
   1829   1.25   thorpej 	if (print_pagelist == 0)
   1830   1.25   thorpej 		goto skip_pagelist;
   1831   1.25   thorpej 
   1832   1.88       chs 	if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
   1833   1.88       chs 		(*pr)("\n\tempty page list:\n");
   1834   1.97      yamt 	pool_print_pagelist(pp, &pp->pr_emptypages, pr);
   1835   1.88       chs 	if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
   1836   1.88       chs 		(*pr)("\n\tfull page list:\n");
   1837   1.97      yamt 	pool_print_pagelist(pp, &pp->pr_fullpages, pr);
   1838   1.88       chs 	if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
   1839   1.88       chs 		(*pr)("\n\tpartial-page list:\n");
   1840   1.97      yamt 	pool_print_pagelist(pp, &pp->pr_partpages, pr);
   1841   1.88       chs 
   1842   1.25   thorpej 	if (pp->pr_curpage == NULL)
   1843   1.25   thorpej 		(*pr)("\tno current page\n");
   1844   1.25   thorpej 	else
   1845   1.25   thorpej 		(*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
   1846   1.25   thorpej 
   1847   1.25   thorpej  skip_pagelist:
   1848   1.25   thorpej 	if (print_log == 0)
   1849   1.25   thorpej 		goto skip_log;
   1850   1.25   thorpej 
   1851   1.25   thorpej 	(*pr)("\n");
   1852   1.25   thorpej 	if ((pp->pr_roflags & PR_LOGGING) == 0)
   1853   1.25   thorpej 		(*pr)("\tno log\n");
   1854  1.122  christos 	else {
   1855   1.25   thorpej 		pr_printlog(pp, NULL, pr);
   1856  1.122  christos 	}
   1857    1.3        pk 
   1858   1.25   thorpej  skip_log:
   1859   1.44   thorpej 
   1860  1.102       chs #define PR_GROUPLIST(pcg)						\
   1861  1.102       chs 	(*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail);		\
   1862  1.102       chs 	for (i = 0; i < PCG_NOBJECTS; i++) {				\
   1863  1.102       chs 		if (pcg->pcg_objects[i].pcgo_pa !=			\
   1864  1.102       chs 		    POOL_PADDR_INVALID) {				\
   1865  1.102       chs 			(*pr)("\t\t\t%p, 0x%llx\n",			\
   1866  1.102       chs 			    pcg->pcg_objects[i].pcgo_va,		\
   1867  1.102       chs 			    (unsigned long long)			\
   1868  1.102       chs 			    pcg->pcg_objects[i].pcgo_pa);		\
   1869  1.102       chs 		} else {						\
   1870  1.102       chs 			(*pr)("\t\t\t%p\n",				\
   1871  1.102       chs 			    pcg->pcg_objects[i].pcgo_va);		\
   1872  1.102       chs 		}							\
   1873  1.102       chs 	}
   1874  1.102       chs 
   1875  1.134        ad 	if (pc != NULL) {
   1876  1.134        ad 		cpuhit = 0;
   1877  1.134        ad 		cpumiss = 0;
   1878  1.134        ad 		for (i = 0; i < MAXCPUS; i++) {
   1879  1.134        ad 			if ((cc = pc->pc_cpus[i]) == NULL)
   1880  1.134        ad 				continue;
   1881  1.134        ad 			cpuhit += cc->cc_hits;
   1882  1.134        ad 			cpumiss += cc->cc_misses;
   1883  1.134        ad 		}
   1884  1.134        ad 		(*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
   1885  1.134        ad 		(*pr)("\tcache layer hits %llu misses %llu\n",
   1886  1.134        ad 		    pc->pc_hits, pc->pc_misses);
   1887  1.134        ad 		(*pr)("\tcache layer entry uncontended %llu contended %llu\n",
   1888  1.134        ad 		    pc->pc_hits + pc->pc_misses - pc->pc_contended,
   1889  1.134        ad 		    pc->pc_contended);
   1890  1.134        ad 		(*pr)("\tcache layer empty groups %u full groups %u\n",
   1891  1.134        ad 		    pc->pc_nempty, pc->pc_nfull);
   1892  1.134        ad 		if (print_cache) {
   1893  1.134        ad 			(*pr)("\tfull cache groups:\n");
   1894  1.134        ad 			for (pcg = pc->pc_fullgroups; pcg != NULL;
   1895  1.134        ad 			    pcg = pcg->pcg_next) {
   1896  1.134        ad 				PR_GROUPLIST(pcg);
   1897  1.134        ad 			}
   1898  1.134        ad 			(*pr)("\tempty cache groups:\n");
   1899  1.134        ad 			for (pcg = pc->pc_emptygroups; pcg != NULL;
   1900  1.134        ad 			    pcg = pcg->pcg_next) {
   1901  1.134        ad 				PR_GROUPLIST(pcg);
   1902  1.134        ad 			}
   1903  1.103       chs 		}
   1904   1.44   thorpej 	}
   1905  1.102       chs #undef PR_GROUPLIST
   1906   1.44   thorpej 
   1907   1.88       chs 	pr_enter_check(pp, pr);
   1908   1.88       chs }
   1909   1.88       chs 
   1910   1.88       chs static int
   1911   1.88       chs pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
   1912   1.88       chs {
   1913   1.88       chs 	struct pool_item *pi;
   1914  1.128  christos 	void *page;
   1915   1.88       chs 	int n;
   1916   1.88       chs 
   1917  1.121      yamt 	if ((pp->pr_roflags & PR_NOALIGN) == 0) {
   1918  1.128  christos 		page = (void *)((uintptr_t)ph & pp->pr_alloc->pa_pagemask);
   1919  1.121      yamt 		if (page != ph->ph_page &&
   1920  1.121      yamt 		    (pp->pr_roflags & PR_PHINPAGE) != 0) {
   1921  1.121      yamt 			if (label != NULL)
   1922  1.121      yamt 				printf("%s: ", label);
   1923  1.121      yamt 			printf("pool(%p:%s): page inconsistency: page %p;"
   1924  1.121      yamt 			       " at page head addr %p (p %p)\n", pp,
   1925  1.121      yamt 				pp->pr_wchan, ph->ph_page,
   1926  1.121      yamt 				ph, page);
   1927  1.121      yamt 			return 1;
   1928  1.121      yamt 		}
   1929   1.88       chs 	}
   1930    1.3        pk 
   1931   1.97      yamt 	if ((pp->pr_roflags & PR_NOTOUCH) != 0)
   1932   1.97      yamt 		return 0;
   1933   1.97      yamt 
   1934  1.102       chs 	for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
   1935   1.88       chs 	     pi != NULL;
   1936  1.102       chs 	     pi = LIST_NEXT(pi,pi_list), n++) {
   1937   1.88       chs 
   1938   1.88       chs #ifdef DIAGNOSTIC
   1939   1.88       chs 		if (pi->pi_magic != PI_MAGIC) {
   1940   1.88       chs 			if (label != NULL)
   1941   1.88       chs 				printf("%s: ", label);
   1942   1.88       chs 			printf("pool(%s): free list modified: magic=%x;"
   1943  1.121      yamt 			       " page %p; item ordinal %d; addr %p\n",
   1944   1.88       chs 				pp->pr_wchan, pi->pi_magic, ph->ph_page,
   1945  1.121      yamt 				n, pi);
   1946   1.88       chs 			panic("pool");
   1947   1.88       chs 		}
   1948   1.88       chs #endif
   1949  1.121      yamt 		if ((pp->pr_roflags & PR_NOALIGN) != 0) {
   1950  1.121      yamt 			continue;
   1951  1.121      yamt 		}
   1952  1.128  christos 		page = (void *)((uintptr_t)pi & pp->pr_alloc->pa_pagemask);
   1953   1.88       chs 		if (page == ph->ph_page)
   1954   1.88       chs 			continue;
   1955   1.88       chs 
   1956   1.88       chs 		if (label != NULL)
   1957   1.88       chs 			printf("%s: ", label);
   1958   1.88       chs 		printf("pool(%p:%s): page inconsistency: page %p;"
   1959   1.88       chs 		       " item ordinal %d; addr %p (p %p)\n", pp,
   1960   1.88       chs 			pp->pr_wchan, ph->ph_page,
   1961   1.88       chs 			n, pi, page);
   1962   1.88       chs 		return 1;
   1963   1.88       chs 	}
   1964   1.88       chs 	return 0;
   1965    1.3        pk }
   1966    1.3        pk 
   1967   1.88       chs 
   1968    1.3        pk int
   1969   1.42   thorpej pool_chk(struct pool *pp, const char *label)
   1970    1.3        pk {
   1971    1.3        pk 	struct pool_item_header *ph;
   1972    1.3        pk 	int r = 0;
   1973    1.3        pk 
   1974  1.134        ad 	mutex_enter(&pp->pr_lock);
   1975   1.88       chs 	LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
   1976   1.88       chs 		r = pool_chk_page(pp, label, ph);
   1977   1.88       chs 		if (r) {
   1978   1.88       chs 			goto out;
   1979   1.88       chs 		}
   1980   1.88       chs 	}
   1981   1.88       chs 	LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
   1982   1.88       chs 		r = pool_chk_page(pp, label, ph);
   1983   1.88       chs 		if (r) {
   1984    1.3        pk 			goto out;
   1985    1.3        pk 		}
   1986   1.88       chs 	}
   1987   1.88       chs 	LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
   1988   1.88       chs 		r = pool_chk_page(pp, label, ph);
   1989   1.88       chs 		if (r) {
   1990    1.3        pk 			goto out;
   1991    1.3        pk 		}
   1992    1.3        pk 	}
   1993   1.88       chs 
   1994    1.3        pk out:
   1995  1.134        ad 	mutex_exit(&pp->pr_lock);
   1996    1.3        pk 	return (r);
   1997   1.43   thorpej }
   1998   1.43   thorpej 
   1999   1.43   thorpej /*
   2000   1.43   thorpej  * pool_cache_init:
   2001   1.43   thorpej  *
   2002   1.43   thorpej  *	Initialize a pool cache.
   2003  1.134        ad  */
   2004  1.134        ad pool_cache_t
   2005  1.134        ad pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
   2006  1.134        ad     const char *wchan, struct pool_allocator *palloc, int ipl,
   2007  1.134        ad     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
   2008  1.134        ad {
   2009  1.134        ad 	pool_cache_t pc;
   2010  1.134        ad 
   2011  1.134        ad 	pc = pool_get(&cache_pool, PR_WAITOK);
   2012  1.134        ad 	if (pc == NULL)
   2013  1.134        ad 		return NULL;
   2014  1.134        ad 
   2015  1.134        ad 	pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
   2016  1.134        ad 	   palloc, ipl, ctor, dtor, arg);
   2017  1.134        ad 
   2018  1.134        ad 	return pc;
   2019  1.134        ad }
   2020  1.134        ad 
   2021  1.134        ad /*
   2022  1.134        ad  * pool_cache_bootstrap:
   2023   1.43   thorpej  *
   2024  1.134        ad  *	Kernel-private version of pool_cache_init().  The caller
   2025  1.134        ad  *	provides initial storage.
   2026   1.43   thorpej  */
   2027   1.43   thorpej void
   2028  1.134        ad pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
   2029  1.134        ad     u_int align_offset, u_int flags, const char *wchan,
   2030  1.134        ad     struct pool_allocator *palloc, int ipl,
   2031  1.134        ad     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
   2032   1.43   thorpej     void *arg)
   2033   1.43   thorpej {
   2034  1.134        ad 	CPU_INFO_ITERATOR cii;
   2035  1.134        ad 	struct cpu_info *ci;
   2036  1.134        ad 	struct pool *pp;
   2037  1.134        ad 
   2038  1.134        ad 	pp = &pc->pc_pool;
   2039  1.134        ad 	if (palloc == NULL && ipl == IPL_NONE)
   2040  1.134        ad 		palloc = &pool_allocator_nointr;
   2041  1.134        ad 	pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl);
   2042   1.43   thorpej 
   2043  1.134        ad 	mutex_init(&pc->pc_lock, MUTEX_DEFAULT, pp->pr_ipl);
   2044   1.43   thorpej 
   2045  1.134        ad 	if (ctor == NULL) {
   2046  1.134        ad 		ctor = (int (*)(void *, void *, int))nullop;
   2047  1.134        ad 	}
   2048  1.134        ad 	if (dtor == NULL) {
   2049  1.134        ad 		dtor = (void (*)(void *, void *))nullop;
   2050  1.134        ad 	}
   2051   1.43   thorpej 
   2052  1.134        ad 	pc->pc_emptygroups = NULL;
   2053  1.134        ad 	pc->pc_fullgroups = NULL;
   2054  1.134        ad 	pc->pc_partgroups = NULL;
   2055   1.43   thorpej 	pc->pc_ctor = ctor;
   2056   1.43   thorpej 	pc->pc_dtor = dtor;
   2057   1.43   thorpej 	pc->pc_arg  = arg;
   2058  1.134        ad 	pc->pc_hits  = 0;
   2059   1.48   thorpej 	pc->pc_misses = 0;
   2060  1.134        ad 	pc->pc_nempty = 0;
   2061  1.134        ad 	pc->pc_npart = 0;
   2062  1.134        ad 	pc->pc_nfull = 0;
   2063  1.134        ad 	pc->pc_contended = 0;
   2064  1.134        ad 	pc->pc_refcnt = 0;
   2065  1.136      yamt 	pc->pc_freecheck = NULL;
   2066  1.134        ad 
   2067  1.134        ad 	/* Allocate per-CPU caches. */
   2068  1.134        ad 	memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
   2069  1.134        ad 	pc->pc_ncpu = 0;
   2070  1.137        ad 	if (ncpu == 0) {
   2071  1.137        ad 		/* XXX For sparc: boot CPU is not attached yet. */
   2072  1.137        ad 		pool_cache_cpu_init1(curcpu(), pc);
   2073  1.137        ad 	} else {
   2074  1.137        ad 		for (CPU_INFO_FOREACH(cii, ci)) {
   2075  1.137        ad 			pool_cache_cpu_init1(ci, pc);
   2076  1.137        ad 		}
   2077  1.134        ad 	}
   2078  1.134        ad 
   2079  1.134        ad 	if (__predict_true(!cold)) {
   2080  1.134        ad 		mutex_enter(&pp->pr_lock);
   2081  1.134        ad 		pp->pr_cache = pc;
   2082  1.134        ad 		mutex_exit(&pp->pr_lock);
   2083  1.134        ad 		mutex_enter(&pool_head_lock);
   2084  1.134        ad 		LIST_INSERT_HEAD(&pool_cache_head, pc, pc_cachelist);
   2085  1.134        ad 		mutex_exit(&pool_head_lock);
   2086  1.134        ad 	} else {
   2087  1.134        ad 		pp->pr_cache = pc;
   2088  1.134        ad 		LIST_INSERT_HEAD(&pool_cache_head, pc, pc_cachelist);
   2089  1.134        ad 	}
   2090   1.43   thorpej }
   2091   1.43   thorpej 
   2092   1.43   thorpej /*
   2093   1.43   thorpej  * pool_cache_destroy:
   2094   1.43   thorpej  *
   2095   1.43   thorpej  *	Destroy a pool cache.
   2096   1.43   thorpej  */
   2097   1.43   thorpej void
   2098  1.134        ad pool_cache_destroy(pool_cache_t pc)
   2099   1.43   thorpej {
   2100  1.134        ad 	struct pool *pp = &pc->pc_pool;
   2101  1.134        ad 	pool_cache_cpu_t *cc;
   2102  1.134        ad 	pcg_t *pcg;
   2103  1.134        ad 	int i;
   2104  1.134        ad 
   2105  1.134        ad 	/* Remove it from the global list. */
   2106  1.134        ad 	mutex_enter(&pool_head_lock);
   2107  1.134        ad 	while (pc->pc_refcnt != 0)
   2108  1.134        ad 		cv_wait(&pool_busy, &pool_head_lock);
   2109  1.134        ad 	LIST_REMOVE(pc, pc_cachelist);
   2110  1.134        ad 	mutex_exit(&pool_head_lock);
   2111   1.43   thorpej 
   2112   1.43   thorpej 	/* First, invalidate the entire cache. */
   2113   1.43   thorpej 	pool_cache_invalidate(pc);
   2114   1.43   thorpej 
   2115  1.134        ad 	/* Disassociate it from the pool. */
   2116  1.134        ad 	mutex_enter(&pp->pr_lock);
   2117  1.134        ad 	pp->pr_cache = NULL;
   2118  1.134        ad 	mutex_exit(&pp->pr_lock);
   2119  1.134        ad 
   2120  1.134        ad 	/* Destroy per-CPU data */
   2121  1.134        ad 	for (i = 0; i < MAXCPUS; i++) {
   2122  1.134        ad 		if ((cc = pc->pc_cpus[i]) == NULL)
   2123  1.134        ad 			continue;
   2124  1.134        ad 		if ((pcg = cc->cc_current) != NULL) {
   2125  1.134        ad 			pcg->pcg_next = NULL;
   2126  1.134        ad 			pool_cache_invalidate_groups(pc, pcg);
   2127  1.134        ad 		}
   2128  1.134        ad 		if ((pcg = cc->cc_previous) != NULL) {
   2129  1.134        ad 			pcg->pcg_next = NULL;
   2130  1.134        ad 			pool_cache_invalidate_groups(pc, pcg);
   2131  1.134        ad 		}
   2132  1.134        ad 		if (cc != &pc->pc_cpu0)
   2133  1.134        ad 			pool_put(&cache_cpu_pool, cc);
   2134  1.134        ad 	}
   2135  1.134        ad 
   2136  1.134        ad 	/* Finally, destroy it. */
   2137  1.134        ad 	mutex_destroy(&pc->pc_lock);
   2138  1.134        ad 	pool_destroy(pp);
   2139  1.134        ad 	pool_put(&cache_pool, pc);
   2140  1.134        ad }
   2141  1.134        ad 
   2142  1.134        ad /*
   2143  1.134        ad  * pool_cache_cpu_init1:
   2144  1.134        ad  *
   2145  1.134        ad  *	Called for each pool_cache whenever a new CPU is attached.
   2146  1.134        ad  */
   2147  1.134        ad static void
   2148  1.134        ad pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
   2149  1.134        ad {
   2150  1.134        ad 	pool_cache_cpu_t *cc;
   2151  1.137        ad 	int index;
   2152  1.134        ad 
   2153  1.137        ad 	index = ci->ci_index;
   2154  1.137        ad 
   2155  1.137        ad 	KASSERT(index < MAXCPUS);
   2156  1.134        ad 	KASSERT(((uintptr_t)pc->pc_cpus & (CACHE_LINE_SIZE - 1)) == 0);
   2157  1.134        ad 
   2158  1.137        ad 	if ((cc = pc->pc_cpus[index]) != NULL) {
   2159  1.137        ad 		KASSERT(cc->cc_cpuindex == index);
   2160  1.134        ad 		return;
   2161  1.134        ad 	}
   2162  1.134        ad 
   2163  1.134        ad 	/*
   2164  1.134        ad 	 * The first CPU is 'free'.  This needs to be the case for
   2165  1.134        ad 	 * bootstrap - we may not be able to allocate yet.
   2166  1.134        ad 	 */
   2167  1.134        ad 	if (pc->pc_ncpu == 0) {
   2168  1.134        ad 		cc = &pc->pc_cpu0;
   2169  1.134        ad 		pc->pc_ncpu = 1;
   2170  1.134        ad 	} else {
   2171  1.134        ad 		mutex_enter(&pc->pc_lock);
   2172  1.134        ad 		pc->pc_ncpu++;
   2173  1.134        ad 		mutex_exit(&pc->pc_lock);
   2174  1.134        ad 		cc = pool_get(&cache_cpu_pool, PR_WAITOK);
   2175  1.134        ad 	}
   2176  1.134        ad 
   2177  1.134        ad 	cc->cc_ipl = pc->pc_pool.pr_ipl;
   2178  1.134        ad 	cc->cc_iplcookie = makeiplcookie(cc->cc_ipl);
   2179  1.134        ad 	cc->cc_cache = pc;
   2180  1.137        ad 	cc->cc_cpuindex = index;
   2181  1.134        ad 	cc->cc_hits = 0;
   2182  1.134        ad 	cc->cc_misses = 0;
   2183  1.134        ad 	cc->cc_current = NULL;
   2184  1.134        ad 	cc->cc_previous = NULL;
   2185  1.134        ad 
   2186  1.137        ad 	pc->pc_cpus[index] = cc;
   2187   1.43   thorpej }
   2188   1.43   thorpej 
   2189  1.134        ad /*
   2190  1.134        ad  * pool_cache_cpu_init:
   2191  1.134        ad  *
   2192  1.134        ad  *	Called whenever a new CPU is attached.
   2193  1.134        ad  */
   2194  1.134        ad void
   2195  1.134        ad pool_cache_cpu_init(struct cpu_info *ci)
   2196   1.43   thorpej {
   2197  1.134        ad 	pool_cache_t pc;
   2198  1.134        ad 
   2199  1.134        ad 	mutex_enter(&pool_head_lock);
   2200  1.134        ad 	LIST_FOREACH(pc, &pool_cache_head, pc_cachelist) {
   2201  1.134        ad 		pc->pc_refcnt++;
   2202  1.134        ad 		mutex_exit(&pool_head_lock);
   2203   1.43   thorpej 
   2204  1.134        ad 		pool_cache_cpu_init1(ci, pc);
   2205   1.43   thorpej 
   2206  1.134        ad 		mutex_enter(&pool_head_lock);
   2207  1.134        ad 		pc->pc_refcnt--;
   2208  1.134        ad 		cv_broadcast(&pool_busy);
   2209  1.134        ad 	}
   2210  1.134        ad 	mutex_exit(&pool_head_lock);
   2211   1.43   thorpej }
   2212   1.43   thorpej 
   2213  1.134        ad /*
   2214  1.134        ad  * pool_cache_reclaim:
   2215  1.134        ad  *
   2216  1.134        ad  *	Reclaim memory from a pool cache.
   2217  1.134        ad  */
   2218  1.134        ad bool
   2219  1.134        ad pool_cache_reclaim(pool_cache_t pc)
   2220   1.43   thorpej {
   2221   1.43   thorpej 
   2222  1.134        ad 	return pool_reclaim(&pc->pc_pool);
   2223  1.134        ad }
   2224   1.43   thorpej 
   2225  1.136      yamt static void
   2226  1.136      yamt pool_cache_destruct_object1(pool_cache_t pc, void *object)
   2227  1.136      yamt {
   2228  1.136      yamt 
   2229  1.136      yamt 	(*pc->pc_dtor)(pc->pc_arg, object);
   2230  1.136      yamt 	pool_put(&pc->pc_pool, object);
   2231  1.136      yamt }
   2232  1.136      yamt 
   2233  1.134        ad /*
   2234  1.134        ad  * pool_cache_destruct_object:
   2235  1.134        ad  *
   2236  1.134        ad  *	Force destruction of an object and its release back into
   2237  1.134        ad  *	the pool.
   2238  1.134        ad  */
   2239  1.134        ad void
   2240  1.134        ad pool_cache_destruct_object(pool_cache_t pc, void *object)
   2241  1.134        ad {
   2242  1.134        ad 
   2243  1.136      yamt 	FREECHECK_IN(&pc->pc_freecheck, object);
   2244  1.136      yamt 
   2245  1.136      yamt 	pool_cache_destruct_object1(pc, object);
   2246   1.43   thorpej }
   2247   1.43   thorpej 
   2248  1.134        ad /*
   2249  1.134        ad  * pool_cache_invalidate_groups:
   2250  1.134        ad  *
   2251  1.134        ad  *	Invalidate a chain of groups and destruct all objects.
   2252  1.134        ad  */
   2253  1.102       chs static void
   2254  1.134        ad pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
   2255  1.102       chs {
   2256  1.134        ad 	void *object;
   2257  1.134        ad 	pcg_t *next;
   2258  1.134        ad 	int i;
   2259  1.134        ad 
   2260  1.134        ad 	for (; pcg != NULL; pcg = next) {
   2261  1.134        ad 		next = pcg->pcg_next;
   2262  1.134        ad 
   2263  1.134        ad 		for (i = 0; i < pcg->pcg_avail; i++) {
   2264  1.134        ad 			object = pcg->pcg_objects[i].pcgo_va;
   2265  1.136      yamt 			pool_cache_destruct_object1(pc, object);
   2266  1.134        ad 		}
   2267  1.102       chs 
   2268  1.102       chs 		pool_put(&pcgpool, pcg);
   2269  1.102       chs 	}
   2270  1.102       chs }
   2271  1.102       chs 
   2272   1.43   thorpej /*
   2273  1.134        ad  * pool_cache_invalidate:
   2274   1.43   thorpej  *
   2275  1.134        ad  *	Invalidate a pool cache (destruct and release all of the
   2276  1.134        ad  *	cached objects).  Does not reclaim objects from the pool.
   2277   1.43   thorpej  */
   2278  1.134        ad void
   2279  1.134        ad pool_cache_invalidate(pool_cache_t pc)
   2280  1.134        ad {
   2281  1.134        ad 	pcg_t *full, *empty, *part;
   2282  1.134        ad 
   2283  1.134        ad 	mutex_enter(&pc->pc_lock);
   2284  1.134        ad 	full = pc->pc_fullgroups;
   2285  1.134        ad 	empty = pc->pc_emptygroups;
   2286  1.134        ad 	part = pc->pc_partgroups;
   2287  1.134        ad 	pc->pc_fullgroups = NULL;
   2288  1.134        ad 	pc->pc_emptygroups = NULL;
   2289  1.134        ad 	pc->pc_partgroups = NULL;
   2290  1.134        ad 	pc->pc_nfull = 0;
   2291  1.134        ad 	pc->pc_nempty = 0;
   2292  1.134        ad 	pc->pc_npart = 0;
   2293  1.134        ad 	mutex_exit(&pc->pc_lock);
   2294  1.134        ad 
   2295  1.134        ad 	pool_cache_invalidate_groups(pc, full);
   2296  1.134        ad 	pool_cache_invalidate_groups(pc, empty);
   2297  1.134        ad 	pool_cache_invalidate_groups(pc, part);
   2298  1.134        ad }
   2299  1.134        ad 
   2300  1.134        ad void
   2301  1.134        ad pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
   2302  1.134        ad {
   2303  1.134        ad 
   2304  1.134        ad 	pool_set_drain_hook(&pc->pc_pool, fn, arg);
   2305  1.134        ad }
   2306  1.134        ad 
   2307  1.134        ad void
   2308  1.134        ad pool_cache_setlowat(pool_cache_t pc, int n)
   2309  1.134        ad {
   2310  1.134        ad 
   2311  1.134        ad 	pool_setlowat(&pc->pc_pool, n);
   2312  1.134        ad }
   2313  1.134        ad 
   2314  1.134        ad void
   2315  1.134        ad pool_cache_sethiwat(pool_cache_t pc, int n)
   2316  1.134        ad {
   2317  1.134        ad 
   2318  1.134        ad 	pool_sethiwat(&pc->pc_pool, n);
   2319  1.134        ad }
   2320  1.134        ad 
   2321  1.134        ad void
   2322  1.134        ad pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
   2323  1.134        ad {
   2324  1.134        ad 
   2325  1.134        ad 	pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
   2326  1.134        ad }
   2327  1.134        ad 
   2328  1.134        ad static inline pool_cache_cpu_t *
   2329  1.134        ad pool_cache_cpu_enter(pool_cache_t pc, int *s)
   2330  1.134        ad {
   2331  1.134        ad 	pool_cache_cpu_t *cc;
   2332  1.134        ad 
   2333  1.134        ad 	/*
   2334  1.134        ad 	 * Prevent other users of the cache from accessing our
   2335  1.134        ad 	 * CPU-local data.  To avoid touching shared state, we
   2336  1.134        ad 	 * pull the neccessary information from CPU local data.
   2337  1.134        ad 	 */
   2338  1.137        ad 	crit_enter();
   2339  1.137        ad 	cc = pc->pc_cpus[curcpu()->ci_index];
   2340  1.134        ad 	KASSERT(cc->cc_cache == pc);
   2341  1.137        ad 	if (cc->cc_ipl != IPL_NONE) {
   2342  1.134        ad 		*s = splraiseipl(cc->cc_iplcookie);
   2343  1.134        ad 	}
   2344  1.134        ad 	KASSERT(((uintptr_t)cc & (CACHE_LINE_SIZE - 1)) == 0);
   2345  1.134        ad 
   2346  1.134        ad 	return cc;
   2347  1.134        ad }
   2348  1.134        ad 
   2349  1.134        ad static inline void
   2350  1.134        ad pool_cache_cpu_exit(pool_cache_cpu_t *cc, int *s)
   2351  1.134        ad {
   2352  1.134        ad 
   2353  1.134        ad 	/* No longer need exclusive access to the per-CPU data. */
   2354  1.137        ad 	if (cc->cc_ipl != IPL_NONE) {
   2355  1.134        ad 		splx(*s);
   2356  1.134        ad 	}
   2357  1.137        ad 	crit_exit();
   2358  1.134        ad }
   2359  1.134        ad 
   2360  1.134        ad #if __GNUC_PREREQ__(3, 0)
   2361  1.134        ad __attribute ((noinline))
   2362  1.134        ad #endif
   2363  1.134        ad pool_cache_cpu_t *
   2364  1.134        ad pool_cache_get_slow(pool_cache_cpu_t *cc, int *s, void **objectp,
   2365  1.134        ad 		    paddr_t *pap, int flags)
   2366   1.43   thorpej {
   2367  1.134        ad 	pcg_t *pcg, *cur;
   2368  1.134        ad 	uint64_t ncsw;
   2369  1.134        ad 	pool_cache_t pc;
   2370   1.43   thorpej 	void *object;
   2371   1.58   thorpej 
   2372  1.134        ad 	pc = cc->cc_cache;
   2373  1.134        ad 	cc->cc_misses++;
   2374   1.43   thorpej 
   2375  1.134        ad 	/*
   2376  1.134        ad 	 * Nothing was available locally.  Try and grab a group
   2377  1.134        ad 	 * from the cache.
   2378  1.134        ad 	 */
   2379  1.134        ad 	if (!mutex_tryenter(&pc->pc_lock)) {
   2380  1.134        ad 		ncsw = curlwp->l_ncsw;
   2381  1.134        ad 		mutex_enter(&pc->pc_lock);
   2382  1.134        ad 		pc->pc_contended++;
   2383   1.43   thorpej 
   2384  1.134        ad 		/*
   2385  1.134        ad 		 * If we context switched while locking, then
   2386  1.134        ad 		 * our view of the per-CPU data is invalid:
   2387  1.134        ad 		 * retry.
   2388  1.134        ad 		 */
   2389  1.134        ad 		if (curlwp->l_ncsw != ncsw) {
   2390  1.134        ad 			mutex_exit(&pc->pc_lock);
   2391  1.134        ad 			pool_cache_cpu_exit(cc, s);
   2392  1.134        ad 			return pool_cache_cpu_enter(pc, s);
   2393   1.43   thorpej 		}
   2394  1.102       chs 	}
   2395   1.43   thorpej 
   2396  1.134        ad 	if ((pcg = pc->pc_fullgroups) != NULL) {
   2397   1.43   thorpej 		/*
   2398  1.134        ad 		 * If there's a full group, release our empty
   2399  1.134        ad 		 * group back to the cache.  Install the full
   2400  1.134        ad 		 * group as cc_current and return.
   2401   1.43   thorpej 		 */
   2402  1.134        ad 		if ((cur = cc->cc_current) != NULL) {
   2403  1.134        ad 			KASSERT(cur->pcg_avail == 0);
   2404  1.134        ad 			cur->pcg_next = pc->pc_emptygroups;
   2405  1.134        ad 			pc->pc_emptygroups = cur;
   2406  1.134        ad 			pc->pc_nempty++;
   2407   1.87   thorpej 		}
   2408  1.134        ad 		KASSERT(pcg->pcg_avail == PCG_NOBJECTS);
   2409  1.134        ad 		cc->cc_current = pcg;
   2410  1.134        ad 		pc->pc_fullgroups = pcg->pcg_next;
   2411  1.134        ad 		pc->pc_hits++;
   2412  1.134        ad 		pc->pc_nfull--;
   2413  1.134        ad 		mutex_exit(&pc->pc_lock);
   2414  1.134        ad 		return cc;
   2415  1.134        ad 	}
   2416  1.134        ad 
   2417  1.134        ad 	/*
   2418  1.134        ad 	 * Nothing available locally or in cache.  Take the slow
   2419  1.134        ad 	 * path: fetch a new object from the pool and construct
   2420  1.134        ad 	 * it.
   2421  1.134        ad 	 */
   2422  1.134        ad 	pc->pc_misses++;
   2423  1.134        ad 	mutex_exit(&pc->pc_lock);
   2424  1.134        ad 	pool_cache_cpu_exit(cc, s);
   2425  1.134        ad 
   2426  1.134        ad 	object = pool_get(&pc->pc_pool, flags);
   2427  1.134        ad 	*objectp = object;
   2428  1.134        ad 	if (object == NULL)
   2429  1.134        ad 		return NULL;
   2430  1.125        ad 
   2431  1.134        ad 	if ((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0) {
   2432  1.134        ad 		pool_put(&pc->pc_pool, object);
   2433  1.134        ad 		*objectp = NULL;
   2434  1.134        ad 		return NULL;
   2435   1.43   thorpej 	}
   2436   1.43   thorpej 
   2437  1.134        ad 	KASSERT((((vaddr_t)object + pc->pc_pool.pr_itemoffset) &
   2438  1.134        ad 	    (pc->pc_pool.pr_align - 1)) == 0);
   2439   1.43   thorpej 
   2440  1.134        ad 	if (pap != NULL) {
   2441  1.134        ad #ifdef POOL_VTOPHYS
   2442  1.134        ad 		*pap = POOL_VTOPHYS(object);
   2443  1.134        ad #else
   2444  1.134        ad 		*pap = POOL_PADDR_INVALID;
   2445  1.134        ad #endif
   2446  1.102       chs 	}
   2447   1.43   thorpej 
   2448  1.125        ad 	FREECHECK_OUT(&pc->pc_freecheck, object);
   2449  1.134        ad 	return NULL;
   2450   1.43   thorpej }
   2451   1.43   thorpej 
   2452   1.43   thorpej /*
   2453  1.134        ad  * pool_cache_get{,_paddr}:
   2454   1.43   thorpej  *
   2455  1.134        ad  *	Get an object from a pool cache (optionally returning
   2456  1.134        ad  *	the physical address of the object).
   2457   1.43   thorpej  */
   2458  1.134        ad void *
   2459  1.134        ad pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
   2460   1.43   thorpej {
   2461  1.134        ad 	pool_cache_cpu_t *cc;
   2462  1.134        ad 	pcg_t *pcg;
   2463  1.134        ad 	void *object;
   2464   1.60   thorpej 	int s;
   2465   1.43   thorpej 
   2466  1.134        ad #ifdef LOCKDEBUG
   2467  1.134        ad 	if (flags & PR_WAITOK)
   2468  1.134        ad 		ASSERT_SLEEPABLE(NULL, "pool_cache_get(PR_WAITOK)");
   2469  1.134        ad #endif
   2470  1.125        ad 
   2471  1.134        ad 	cc = pool_cache_cpu_enter(pc, &s);
   2472  1.134        ad 	do {
   2473  1.134        ad 		/* Try and allocate an object from the current group. */
   2474  1.134        ad 	 	pcg = cc->cc_current;
   2475  1.134        ad 		if (pcg != NULL && pcg->pcg_avail > 0) {
   2476  1.134        ad 			object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;
   2477  1.134        ad 			if (pap != NULL)
   2478  1.134        ad 				*pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa;
   2479  1.134        ad 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL;
   2480  1.134        ad 			KASSERT(pcg->pcg_avail <= PCG_NOBJECTS);
   2481  1.134        ad 			KASSERT(object != NULL);
   2482  1.134        ad 			cc->cc_hits++;
   2483  1.134        ad 			pool_cache_cpu_exit(cc, &s);
   2484  1.134        ad 			FREECHECK_OUT(&pc->pc_freecheck, object);
   2485  1.134        ad 			return object;
   2486   1.43   thorpej 		}
   2487   1.43   thorpej 
   2488   1.43   thorpej 		/*
   2489  1.134        ad 		 * That failed.  If the previous group isn't empty, swap
   2490  1.134        ad 		 * it with the current group and allocate from there.
   2491   1.43   thorpej 		 */
   2492  1.134        ad 		pcg = cc->cc_previous;
   2493  1.134        ad 		if (pcg != NULL && pcg->pcg_avail > 0) {
   2494  1.134        ad 			cc->cc_previous = cc->cc_current;
   2495  1.134        ad 			cc->cc_current = pcg;
   2496  1.134        ad 			continue;
   2497   1.43   thorpej 		}
   2498   1.43   thorpej 
   2499  1.134        ad 		/*
   2500  1.134        ad 		 * Can't allocate from either group: try the slow path.
   2501  1.134        ad 		 * If get_slow() allocated an object for us, or if
   2502  1.134        ad 		 * no more objects are available, it will return NULL.
   2503  1.134        ad 		 * Otherwise, we need to retry.
   2504  1.134        ad 		 */
   2505  1.134        ad 		cc = pool_cache_get_slow(cc, &s, &object, pap, flags);
   2506  1.134        ad 	} while (cc != NULL);
   2507   1.43   thorpej 
   2508  1.134        ad 	return object;
   2509   1.51   thorpej }
   2510   1.51   thorpej 
   2511  1.134        ad #if __GNUC_PREREQ__(3, 0)
   2512  1.134        ad __attribute ((noinline))
   2513  1.134        ad #endif
   2514  1.134        ad pool_cache_cpu_t *
   2515  1.134        ad pool_cache_put_slow(pool_cache_cpu_t *cc, int *s, void *object, paddr_t pa)
   2516   1.51   thorpej {
   2517  1.134        ad 	pcg_t *pcg, *cur;
   2518  1.134        ad 	uint64_t ncsw;
   2519  1.134        ad 	pool_cache_t pc;
   2520   1.51   thorpej 
   2521  1.134        ad 	pc = cc->cc_cache;
   2522  1.134        ad 	cc->cc_misses++;
   2523   1.43   thorpej 
   2524  1.134        ad 	/*
   2525  1.134        ad 	 * No free slots locally.  Try to grab an empty, unused
   2526  1.134        ad 	 * group from the cache.
   2527  1.134        ad 	 */
   2528  1.134        ad 	if (!mutex_tryenter(&pc->pc_lock)) {
   2529  1.134        ad 		ncsw = curlwp->l_ncsw;
   2530  1.134        ad 		mutex_enter(&pc->pc_lock);
   2531  1.134        ad 		pc->pc_contended++;
   2532  1.102       chs 
   2533  1.134        ad 		/*
   2534  1.134        ad 		 * If we context switched while locking, then
   2535  1.134        ad 		 * our view of the per-CPU data is invalid:
   2536  1.134        ad 		 * retry.
   2537  1.134        ad 		 */
   2538  1.134        ad 		if (curlwp->l_ncsw != ncsw) {
   2539  1.134        ad 			mutex_exit(&pc->pc_lock);
   2540  1.134        ad 			pool_cache_cpu_exit(cc, s);
   2541  1.134        ad 			return pool_cache_cpu_enter(pc, s);
   2542  1.134        ad 		}
   2543  1.134        ad 	}
   2544  1.130        ad 
   2545  1.134        ad 	if ((pcg = pc->pc_emptygroups) != NULL) {
   2546  1.134        ad 		/*
   2547  1.134        ad 		 * If there's a empty group, release our full
   2548  1.134        ad 		 * group back to the cache.  Install the empty
   2549  1.134        ad 		 * group as cc_current and return.
   2550  1.134        ad 		 */
   2551  1.134        ad 		if ((cur = cc->cc_current) != NULL) {
   2552  1.134        ad 			KASSERT(cur->pcg_avail == PCG_NOBJECTS);
   2553  1.134        ad 			cur->pcg_next = pc->pc_fullgroups;
   2554  1.134        ad 			pc->pc_fullgroups = cur;
   2555  1.134        ad 			pc->pc_nfull++;
   2556  1.102       chs 		}
   2557  1.134        ad 		KASSERT(pcg->pcg_avail == 0);
   2558  1.134        ad 		cc->cc_current = pcg;
   2559  1.134        ad 		pc->pc_emptygroups = pcg->pcg_next;
   2560  1.134        ad 		pc->pc_hits++;
   2561  1.134        ad 		pc->pc_nempty--;
   2562  1.134        ad 		mutex_exit(&pc->pc_lock);
   2563  1.134        ad 		return cc;
   2564  1.102       chs 	}
   2565  1.105  christos 
   2566  1.134        ad 	/*
   2567  1.134        ad 	 * Nothing available locally or in cache.  Take the
   2568  1.134        ad 	 * slow path and try to allocate a new group that we
   2569  1.134        ad 	 * can release to.
   2570  1.134        ad 	 */
   2571  1.134        ad 	pc->pc_misses++;
   2572  1.134        ad 	mutex_exit(&pc->pc_lock);
   2573  1.134        ad 	pool_cache_cpu_exit(cc, s);
   2574  1.105  christos 
   2575  1.134        ad 	/*
   2576  1.134        ad 	 * If we can't allocate a new group, just throw the
   2577  1.134        ad 	 * object away.
   2578  1.134        ad 	 */
   2579  1.134        ad 	pcg = pool_get(&pcgpool, PR_NOWAIT);
   2580  1.134        ad 	if (pcg == NULL) {
   2581  1.134        ad 		pool_cache_destruct_object(pc, object);
   2582  1.134        ad 		return NULL;
   2583  1.134        ad 	}
   2584  1.134        ad #ifdef DIAGNOSTIC
   2585  1.134        ad 	memset(pcg, 0, sizeof(*pcg));
   2586  1.134        ad #else
   2587  1.134        ad 	pcg->pcg_avail = 0;
   2588  1.134        ad #endif
   2589  1.105  christos 
   2590  1.134        ad 	/*
   2591  1.134        ad 	 * Add the empty group to the cache and try again.
   2592  1.134        ad 	 */
   2593  1.134        ad 	mutex_enter(&pc->pc_lock);
   2594  1.134        ad 	pcg->pcg_next = pc->pc_emptygroups;
   2595  1.134        ad 	pc->pc_emptygroups = pcg;
   2596  1.134        ad 	pc->pc_nempty++;
   2597  1.134        ad 	mutex_exit(&pc->pc_lock);
   2598  1.103       chs 
   2599  1.134        ad 	return pool_cache_cpu_enter(pc, s);
   2600  1.134        ad }
   2601  1.102       chs 
   2602   1.43   thorpej /*
   2603  1.134        ad  * pool_cache_put{,_paddr}:
   2604   1.43   thorpej  *
   2605  1.134        ad  *	Put an object back to the pool cache (optionally caching the
   2606  1.134        ad  *	physical address of the object).
   2607   1.43   thorpej  */
   2608  1.101   thorpej void
   2609  1.134        ad pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
   2610   1.43   thorpej {
   2611  1.134        ad 	pool_cache_cpu_t *cc;
   2612  1.134        ad 	pcg_t *pcg;
   2613  1.134        ad 	int s;
   2614  1.101   thorpej 
   2615  1.134        ad 	FREECHECK_IN(&pc->pc_freecheck, object);
   2616  1.101   thorpej 
   2617  1.134        ad 	cc = pool_cache_cpu_enter(pc, &s);
   2618  1.134        ad 	do {
   2619  1.134        ad 		/* If the current group isn't full, release it there. */
   2620  1.134        ad 	 	pcg = cc->cc_current;
   2621  1.134        ad 		if (pcg != NULL && pcg->pcg_avail < PCG_NOBJECTS) {
   2622  1.134        ad 			KASSERT(pcg->pcg_objects[pcg->pcg_avail].pcgo_va
   2623  1.134        ad 			    == NULL);
   2624  1.134        ad 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object;
   2625  1.134        ad 			pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa;
   2626  1.134        ad 			pcg->pcg_avail++;
   2627  1.134        ad 			cc->cc_hits++;
   2628  1.134        ad 			pool_cache_cpu_exit(cc, &s);
   2629  1.134        ad 			return;
   2630  1.134        ad 		}
   2631   1.43   thorpej 
   2632  1.134        ad 		/*
   2633  1.134        ad 		 * That failed.  If the previous group is empty, swap
   2634  1.134        ad 		 * it with the current group and try again.
   2635  1.134        ad 		 */
   2636  1.134        ad 		pcg = cc->cc_previous;
   2637  1.134        ad 		if (pcg != NULL && pcg->pcg_avail == 0) {
   2638  1.134        ad 			cc->cc_previous = cc->cc_current;
   2639  1.134        ad 			cc->cc_current = pcg;
   2640  1.134        ad 			continue;
   2641  1.134        ad 		}
   2642   1.43   thorpej 
   2643  1.134        ad 		/*
   2644  1.134        ad 		 * Can't free to either group: try the slow path.
   2645  1.134        ad 		 * If put_slow() releases the object for us, it
   2646  1.134        ad 		 * will return NULL.  Otherwise we need to retry.
   2647  1.134        ad 		 */
   2648  1.134        ad 		cc = pool_cache_put_slow(cc, &s, object, pa);
   2649  1.134        ad 	} while (cc != NULL);
   2650   1.43   thorpej }
   2651   1.43   thorpej 
   2652   1.43   thorpej /*
   2653  1.134        ad  * pool_cache_xcall:
   2654   1.43   thorpej  *
   2655  1.134        ad  *	Transfer objects from the per-CPU cache to the global cache.
   2656  1.134        ad  *	Run within a cross-call thread.
   2657   1.43   thorpej  */
   2658   1.43   thorpej static void
   2659  1.134        ad pool_cache_xcall(pool_cache_t pc)
   2660   1.43   thorpej {
   2661  1.134        ad 	pool_cache_cpu_t *cc;
   2662  1.134        ad 	pcg_t *prev, *cur, **list;
   2663  1.134        ad 	int s = 0; /* XXXgcc */
   2664  1.134        ad 
   2665  1.134        ad 	cc = pool_cache_cpu_enter(pc, &s);
   2666  1.134        ad 	cur = cc->cc_current;
   2667  1.134        ad 	cc->cc_current = NULL;
   2668  1.134        ad 	prev = cc->cc_previous;
   2669  1.134        ad 	cc->cc_previous = NULL;
   2670  1.134        ad 	pool_cache_cpu_exit(cc, &s);
   2671  1.134        ad 
   2672  1.134        ad 	/*
   2673  1.134        ad 	 * XXXSMP Go to splvm to prevent kernel_lock from being taken,
   2674  1.134        ad 	 * because locks at IPL_SOFTXXX are still spinlocks.  Does not
   2675  1.134        ad 	 * apply to IPL_SOFTBIO.  Cross-call threads do not take the
   2676  1.134        ad 	 * kernel_lock.
   2677  1.101   thorpej 	 */
   2678  1.134        ad 	s = splvm();
   2679  1.134        ad 	mutex_enter(&pc->pc_lock);
   2680  1.134        ad 	if (cur != NULL) {
   2681  1.134        ad 		if (cur->pcg_avail == PCG_NOBJECTS) {
   2682  1.134        ad 			list = &pc->pc_fullgroups;
   2683  1.134        ad 			pc->pc_nfull++;
   2684  1.134        ad 		} else if (cur->pcg_avail == 0) {
   2685  1.134        ad 			list = &pc->pc_emptygroups;
   2686  1.134        ad 			pc->pc_nempty++;
   2687  1.134        ad 		} else {
   2688  1.134        ad 			list = &pc->pc_partgroups;
   2689  1.134        ad 			pc->pc_npart++;
   2690  1.134        ad 		}
   2691  1.134        ad 		cur->pcg_next = *list;
   2692  1.134        ad 		*list = cur;
   2693  1.134        ad 	}
   2694  1.134        ad 	if (prev != NULL) {
   2695  1.134        ad 		if (prev->pcg_avail == PCG_NOBJECTS) {
   2696  1.134        ad 			list = &pc->pc_fullgroups;
   2697  1.134        ad 			pc->pc_nfull++;
   2698  1.134        ad 		} else if (prev->pcg_avail == 0) {
   2699  1.134        ad 			list = &pc->pc_emptygroups;
   2700  1.134        ad 			pc->pc_nempty++;
   2701  1.134        ad 		} else {
   2702  1.134        ad 			list = &pc->pc_partgroups;
   2703  1.134        ad 			pc->pc_npart++;
   2704  1.134        ad 		}
   2705  1.134        ad 		prev->pcg_next = *list;
   2706  1.134        ad 		*list = prev;
   2707  1.134        ad 	}
   2708  1.134        ad 	mutex_exit(&pc->pc_lock);
   2709  1.134        ad 	splx(s);
   2710    1.3        pk }
   2711   1.66   thorpej 
   2712   1.66   thorpej /*
   2713   1.66   thorpej  * Pool backend allocators.
   2714   1.66   thorpej  *
   2715   1.66   thorpej  * Each pool has a backend allocator that handles allocation, deallocation,
   2716   1.66   thorpej  * and any additional draining that might be needed.
   2717   1.66   thorpej  *
   2718   1.66   thorpej  * We provide two standard allocators:
   2719   1.66   thorpej  *
   2720   1.66   thorpej  *	pool_allocator_kmem - the default when no allocator is specified
   2721   1.66   thorpej  *
   2722   1.66   thorpej  *	pool_allocator_nointr - used for pools that will not be accessed
   2723   1.66   thorpej  *	in interrupt context.
   2724   1.66   thorpej  */
   2725   1.66   thorpej void	*pool_page_alloc(struct pool *, int);
   2726   1.66   thorpej void	pool_page_free(struct pool *, void *);
   2727   1.66   thorpej 
   2728  1.112     bjh21 #ifdef POOL_SUBPAGE
   2729  1.112     bjh21 struct pool_allocator pool_allocator_kmem_fullpage = {
   2730  1.112     bjh21 	pool_page_alloc, pool_page_free, 0,
   2731  1.117      yamt 	.pa_backingmapptr = &kmem_map,
   2732  1.112     bjh21 };
   2733  1.112     bjh21 #else
   2734   1.66   thorpej struct pool_allocator pool_allocator_kmem = {
   2735   1.66   thorpej 	pool_page_alloc, pool_page_free, 0,
   2736  1.117      yamt 	.pa_backingmapptr = &kmem_map,
   2737   1.66   thorpej };
   2738  1.112     bjh21 #endif
   2739   1.66   thorpej 
   2740   1.66   thorpej void	*pool_page_alloc_nointr(struct pool *, int);
   2741   1.66   thorpej void	pool_page_free_nointr(struct pool *, void *);
   2742   1.66   thorpej 
   2743  1.112     bjh21 #ifdef POOL_SUBPAGE
   2744  1.112     bjh21 struct pool_allocator pool_allocator_nointr_fullpage = {
   2745  1.112     bjh21 	pool_page_alloc_nointr, pool_page_free_nointr, 0,
   2746  1.117      yamt 	.pa_backingmapptr = &kernel_map,
   2747  1.112     bjh21 };
   2748  1.112     bjh21 #else
   2749   1.66   thorpej struct pool_allocator pool_allocator_nointr = {
   2750   1.66   thorpej 	pool_page_alloc_nointr, pool_page_free_nointr, 0,
   2751  1.117      yamt 	.pa_backingmapptr = &kernel_map,
   2752   1.66   thorpej };
   2753  1.112     bjh21 #endif
   2754   1.66   thorpej 
   2755   1.66   thorpej #ifdef POOL_SUBPAGE
   2756   1.66   thorpej void	*pool_subpage_alloc(struct pool *, int);
   2757   1.66   thorpej void	pool_subpage_free(struct pool *, void *);
   2758   1.66   thorpej 
   2759  1.112     bjh21 struct pool_allocator pool_allocator_kmem = {
   2760  1.112     bjh21 	pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
   2761  1.117      yamt 	.pa_backingmapptr = &kmem_map,
   2762  1.112     bjh21 };
   2763  1.112     bjh21 
   2764  1.112     bjh21 void	*pool_subpage_alloc_nointr(struct pool *, int);
   2765  1.112     bjh21 void	pool_subpage_free_nointr(struct pool *, void *);
   2766  1.112     bjh21 
   2767  1.112     bjh21 struct pool_allocator pool_allocator_nointr = {
   2768  1.112     bjh21 	pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
   2769  1.117      yamt 	.pa_backingmapptr = &kmem_map,
   2770   1.66   thorpej };
   2771   1.66   thorpej #endif /* POOL_SUBPAGE */
   2772   1.66   thorpej 
   2773  1.117      yamt static void *
   2774  1.117      yamt pool_allocator_alloc(struct pool *pp, int flags)
   2775   1.66   thorpej {
   2776  1.117      yamt 	struct pool_allocator *pa = pp->pr_alloc;
   2777   1.66   thorpej 	void *res;
   2778   1.66   thorpej 
   2779  1.117      yamt 	res = (*pa->pa_alloc)(pp, flags);
   2780  1.117      yamt 	if (res == NULL && (flags & PR_WAITOK) == 0) {
   2781   1.66   thorpej 		/*
   2782  1.117      yamt 		 * We only run the drain hook here if PR_NOWAIT.
   2783  1.117      yamt 		 * In other cases, the hook will be run in
   2784  1.117      yamt 		 * pool_reclaim().
   2785   1.66   thorpej 		 */
   2786  1.117      yamt 		if (pp->pr_drain_hook != NULL) {
   2787  1.117      yamt 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
   2788  1.117      yamt 			res = (*pa->pa_alloc)(pp, flags);
   2789   1.66   thorpej 		}
   2790  1.117      yamt 	}
   2791  1.117      yamt 	return res;
   2792   1.66   thorpej }
   2793   1.66   thorpej 
   2794  1.117      yamt static void
   2795   1.66   thorpej pool_allocator_free(struct pool *pp, void *v)
   2796   1.66   thorpej {
   2797   1.66   thorpej 	struct pool_allocator *pa = pp->pr_alloc;
   2798   1.66   thorpej 
   2799   1.66   thorpej 	(*pa->pa_free)(pp, v);
   2800   1.66   thorpej }
   2801   1.66   thorpej 
   2802   1.66   thorpej void *
   2803  1.124      yamt pool_page_alloc(struct pool *pp, int flags)
   2804   1.66   thorpej {
   2805  1.127   thorpej 	bool waitok = (flags & PR_WAITOK) ? true : false;
   2806   1.66   thorpej 
   2807  1.100      yamt 	return ((void *) uvm_km_alloc_poolpage_cache(kmem_map, waitok));
   2808   1.66   thorpej }
   2809   1.66   thorpej 
   2810   1.66   thorpej void
   2811  1.124      yamt pool_page_free(struct pool *pp, void *v)
   2812   1.66   thorpej {
   2813   1.66   thorpej 
   2814   1.98      yamt 	uvm_km_free_poolpage_cache(kmem_map, (vaddr_t) v);
   2815   1.98      yamt }
   2816   1.98      yamt 
   2817   1.98      yamt static void *
   2818  1.124      yamt pool_page_alloc_meta(struct pool *pp, int flags)
   2819   1.98      yamt {
   2820  1.127   thorpej 	bool waitok = (flags & PR_WAITOK) ? true : false;
   2821   1.98      yamt 
   2822  1.100      yamt 	return ((void *) uvm_km_alloc_poolpage(kmem_map, waitok));
   2823   1.98      yamt }
   2824   1.98      yamt 
   2825   1.98      yamt static void
   2826  1.124      yamt pool_page_free_meta(struct pool *pp, void *v)
   2827   1.98      yamt {
   2828   1.98      yamt 
   2829  1.100      yamt 	uvm_km_free_poolpage(kmem_map, (vaddr_t) v);
   2830   1.66   thorpej }
   2831   1.66   thorpej 
   2832   1.66   thorpej #ifdef POOL_SUBPAGE
   2833   1.66   thorpej /* Sub-page allocator, for machines with large hardware pages. */
   2834   1.66   thorpej void *
   2835   1.66   thorpej pool_subpage_alloc(struct pool *pp, int flags)
   2836   1.66   thorpej {
   2837  1.134        ad 	return pool_get(&psppool, flags);
   2838   1.66   thorpej }
   2839   1.66   thorpej 
   2840   1.66   thorpej void
   2841   1.66   thorpej pool_subpage_free(struct pool *pp, void *v)
   2842   1.66   thorpej {
   2843   1.66   thorpej 	pool_put(&psppool, v);
   2844   1.66   thorpej }
   2845   1.66   thorpej 
   2846   1.66   thorpej /* We don't provide a real nointr allocator.  Maybe later. */
   2847   1.66   thorpej void *
   2848  1.112     bjh21 pool_subpage_alloc_nointr(struct pool *pp, int flags)
   2849   1.66   thorpej {
   2850   1.66   thorpej 
   2851   1.66   thorpej 	return (pool_subpage_alloc(pp, flags));
   2852   1.66   thorpej }
   2853   1.66   thorpej 
   2854   1.66   thorpej void
   2855  1.112     bjh21 pool_subpage_free_nointr(struct pool *pp, void *v)
   2856   1.66   thorpej {
   2857   1.66   thorpej 
   2858   1.66   thorpej 	pool_subpage_free(pp, v);
   2859   1.66   thorpej }
   2860  1.112     bjh21 #endif /* POOL_SUBPAGE */
   2861   1.66   thorpej void *
   2862  1.124      yamt pool_page_alloc_nointr(struct pool *pp, int flags)
   2863   1.66   thorpej {
   2864  1.127   thorpej 	bool waitok = (flags & PR_WAITOK) ? true : false;
   2865   1.66   thorpej 
   2866  1.100      yamt 	return ((void *) uvm_km_alloc_poolpage_cache(kernel_map, waitok));
   2867   1.66   thorpej }
   2868   1.66   thorpej 
   2869   1.66   thorpej void
   2870  1.124      yamt pool_page_free_nointr(struct pool *pp, void *v)
   2871   1.66   thorpej {
   2872   1.66   thorpej 
   2873   1.98      yamt 	uvm_km_free_poolpage_cache(kernel_map, (vaddr_t) v);
   2874   1.66   thorpej }
   2875