Home | History | Annotate | Line # | Download | only in kern
subr_pool.c revision 1.138.4.1
      1  1.138.4.1    bouyer /*	$NetBSD: subr_pool.c,v 1.138.4.1 2007/12/13 21:56:54 bouyer Exp $	*/
      2        1.1        pk 
      3        1.1        pk /*-
      4      1.134        ad  * Copyright (c) 1997, 1999, 2000, 2002, 2007 The NetBSD Foundation, Inc.
      5        1.1        pk  * All rights reserved.
      6        1.1        pk  *
      7        1.1        pk  * This code is derived from software contributed to The NetBSD Foundation
      8       1.20   thorpej  * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
      9      1.134        ad  * Simulation Facility, NASA Ames Research Center, and by Andrew Doran.
     10        1.1        pk  *
     11        1.1        pk  * Redistribution and use in source and binary forms, with or without
     12        1.1        pk  * modification, are permitted provided that the following conditions
     13        1.1        pk  * are met:
     14        1.1        pk  * 1. Redistributions of source code must retain the above copyright
     15        1.1        pk  *    notice, this list of conditions and the following disclaimer.
     16        1.1        pk  * 2. Redistributions in binary form must reproduce the above copyright
     17        1.1        pk  *    notice, this list of conditions and the following disclaimer in the
     18        1.1        pk  *    documentation and/or other materials provided with the distribution.
     19        1.1        pk  * 3. All advertising materials mentioning features or use of this software
     20        1.1        pk  *    must display the following acknowledgement:
     21       1.13  christos  *	This product includes software developed by the NetBSD
     22       1.13  christos  *	Foundation, Inc. and its contributors.
     23        1.1        pk  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24        1.1        pk  *    contributors may be used to endorse or promote products derived
     25        1.1        pk  *    from this software without specific prior written permission.
     26        1.1        pk  *
     27        1.1        pk  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28        1.1        pk  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29        1.1        pk  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30        1.1        pk  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31        1.1        pk  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32        1.1        pk  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33        1.1        pk  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34        1.1        pk  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35        1.1        pk  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36        1.1        pk  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37        1.1        pk  * POSSIBILITY OF SUCH DAMAGE.
     38        1.1        pk  */
     39       1.64     lukem 
     40       1.64     lukem #include <sys/cdefs.h>
     41  1.138.4.1    bouyer __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.138.4.1 2007/12/13 21:56:54 bouyer Exp $");
     42       1.24    scottr 
     43  1.138.4.1    bouyer #include "opt_ddb.h"
     44       1.25   thorpej #include "opt_pool.h"
     45       1.24    scottr #include "opt_poollog.h"
     46       1.28   thorpej #include "opt_lockdebug.h"
     47        1.1        pk 
     48        1.1        pk #include <sys/param.h>
     49        1.1        pk #include <sys/systm.h>
     50      1.135      yamt #include <sys/bitops.h>
     51        1.1        pk #include <sys/proc.h>
     52        1.1        pk #include <sys/errno.h>
     53        1.1        pk #include <sys/kernel.h>
     54        1.1        pk #include <sys/malloc.h>
     55        1.1        pk #include <sys/lock.h>
     56        1.1        pk #include <sys/pool.h>
     57       1.20   thorpej #include <sys/syslog.h>
     58      1.125        ad #include <sys/debug.h>
     59      1.134        ad #include <sys/lockdebug.h>
     60      1.134        ad #include <sys/xcall.h>
     61      1.134        ad #include <sys/cpu.h>
     62        1.3        pk 
     63        1.3        pk #include <uvm/uvm.h>
     64        1.3        pk 
     65        1.1        pk /*
     66        1.1        pk  * Pool resource management utility.
     67        1.3        pk  *
     68       1.88       chs  * Memory is allocated in pages which are split into pieces according to
     69       1.88       chs  * the pool item size. Each page is kept on one of three lists in the
     70       1.88       chs  * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
     71       1.88       chs  * for empty, full and partially-full pages respectively. The individual
     72       1.88       chs  * pool items are on a linked list headed by `ph_itemlist' in each page
     73       1.88       chs  * header. The memory for building the page list is either taken from
     74       1.88       chs  * the allocated pages themselves (for small pool items) or taken from
     75       1.88       chs  * an internal pool of page headers (`phpool').
     76        1.1        pk  */
     77        1.1        pk 
     78        1.3        pk /* List of all pools */
     79      1.102       chs LIST_HEAD(,pool) pool_head = LIST_HEAD_INITIALIZER(pool_head);
     80        1.3        pk 
     81      1.134        ad /* List of all caches. */
     82      1.134        ad LIST_HEAD(,pool_cache) pool_cache_head =
     83      1.134        ad     LIST_HEAD_INITIALIZER(pool_cache_head);
     84      1.134        ad 
     85        1.3        pk /* Private pool for page header structures */
     86       1.97      yamt #define	PHPOOL_MAX	8
     87       1.97      yamt static struct pool phpool[PHPOOL_MAX];
     88      1.135      yamt #define	PHPOOL_FREELIST_NELEM(idx) \
     89      1.135      yamt 	(((idx) == 0) ? 0 : BITMAP_SIZE * (1 << (idx)))
     90        1.3        pk 
     91       1.62     bjh21 #ifdef POOL_SUBPAGE
     92       1.62     bjh21 /* Pool of subpages for use by normal pools. */
     93       1.62     bjh21 static struct pool psppool;
     94       1.62     bjh21 #endif
     95       1.62     bjh21 
     96      1.117      yamt static SLIST_HEAD(, pool_allocator) pa_deferinitq =
     97      1.117      yamt     SLIST_HEAD_INITIALIZER(pa_deferinitq);
     98      1.117      yamt 
     99       1.98      yamt static void *pool_page_alloc_meta(struct pool *, int);
    100       1.98      yamt static void pool_page_free_meta(struct pool *, void *);
    101       1.98      yamt 
    102       1.98      yamt /* allocator for pool metadata */
    103      1.134        ad struct pool_allocator pool_allocator_meta = {
    104      1.117      yamt 	pool_page_alloc_meta, pool_page_free_meta,
    105      1.117      yamt 	.pa_backingmapptr = &kmem_map,
    106       1.98      yamt };
    107       1.98      yamt 
    108        1.3        pk /* # of seconds to retain page after last use */
    109        1.3        pk int pool_inactive_time = 10;
    110        1.3        pk 
    111        1.3        pk /* Next candidate for drainage (see pool_drain()) */
    112       1.23   thorpej static struct pool	*drainpp;
    113       1.23   thorpej 
    114      1.134        ad /* This lock protects both pool_head and drainpp. */
    115      1.134        ad static kmutex_t pool_head_lock;
    116      1.134        ad static kcondvar_t pool_busy;
    117        1.3        pk 
    118      1.135      yamt typedef uint32_t pool_item_bitmap_t;
    119      1.135      yamt #define	BITMAP_SIZE	(CHAR_BIT * sizeof(pool_item_bitmap_t))
    120      1.135      yamt #define	BITMAP_MASK	(BITMAP_SIZE - 1)
    121       1.99      yamt 
    122        1.3        pk struct pool_item_header {
    123        1.3        pk 	/* Page headers */
    124       1.88       chs 	LIST_ENTRY(pool_item_header)
    125        1.3        pk 				ph_pagelist;	/* pool page list */
    126       1.88       chs 	SPLAY_ENTRY(pool_item_header)
    127       1.88       chs 				ph_node;	/* Off-page page headers */
    128      1.128  christos 	void *			ph_page;	/* this page's address */
    129        1.3        pk 	struct timeval		ph_time;	/* last referenced */
    130      1.135      yamt 	uint16_t		ph_nmissing;	/* # of chunks in use */
    131  1.138.4.1    bouyer 	uint16_t		ph_off;		/* start offset in page */
    132       1.97      yamt 	union {
    133       1.97      yamt 		/* !PR_NOTOUCH */
    134       1.97      yamt 		struct {
    135      1.102       chs 			LIST_HEAD(, pool_item)
    136       1.97      yamt 				phu_itemlist;	/* chunk list for this page */
    137       1.97      yamt 		} phu_normal;
    138       1.97      yamt 		/* PR_NOTOUCH */
    139       1.97      yamt 		struct {
    140  1.138.4.1    bouyer 			pool_item_bitmap_t phu_bitmap[1];
    141       1.97      yamt 		} phu_notouch;
    142       1.97      yamt 	} ph_u;
    143        1.3        pk };
    144       1.97      yamt #define	ph_itemlist	ph_u.phu_normal.phu_itemlist
    145      1.135      yamt #define	ph_bitmap	ph_u.phu_notouch.phu_bitmap
    146        1.3        pk 
    147        1.1        pk struct pool_item {
    148        1.3        pk #ifdef DIAGNOSTIC
    149       1.82   thorpej 	u_int pi_magic;
    150       1.33       chs #endif
    151      1.134        ad #define	PI_MAGIC 0xdeaddeadU
    152        1.3        pk 	/* Other entries use only this list entry */
    153      1.102       chs 	LIST_ENTRY(pool_item)	pi_list;
    154        1.3        pk };
    155        1.3        pk 
    156       1.53   thorpej #define	POOL_NEEDS_CATCHUP(pp)						\
    157       1.53   thorpej 	((pp)->pr_nitems < (pp)->pr_minitems)
    158       1.53   thorpej 
    159       1.43   thorpej /*
    160       1.43   thorpej  * Pool cache management.
    161       1.43   thorpej  *
    162       1.43   thorpej  * Pool caches provide a way for constructed objects to be cached by the
    163       1.43   thorpej  * pool subsystem.  This can lead to performance improvements by avoiding
    164       1.43   thorpej  * needless object construction/destruction; it is deferred until absolutely
    165       1.43   thorpej  * necessary.
    166       1.43   thorpej  *
    167      1.134        ad  * Caches are grouped into cache groups.  Each cache group references up
    168      1.134        ad  * to PCG_NUMOBJECTS constructed objects.  When a cache allocates an
    169      1.134        ad  * object from the pool, it calls the object's constructor and places it
    170      1.134        ad  * into a cache group.  When a cache group frees an object back to the
    171      1.134        ad  * pool, it first calls the object's destructor.  This allows the object
    172      1.134        ad  * to persist in constructed form while freed to the cache.
    173      1.134        ad  *
    174      1.134        ad  * The pool references each cache, so that when a pool is drained by the
    175      1.134        ad  * pagedaemon, it can drain each individual cache as well.  Each time a
    176      1.134        ad  * cache is drained, the most idle cache group is freed to the pool in
    177      1.134        ad  * its entirety.
    178       1.43   thorpej  *
    179       1.43   thorpej  * Pool caches are layed on top of pools.  By layering them, we can avoid
    180       1.43   thorpej  * the complexity of cache management for pools which would not benefit
    181       1.43   thorpej  * from it.
    182       1.43   thorpej  */
    183       1.43   thorpej 
    184       1.43   thorpej static struct pool pcgpool;
    185      1.134        ad static struct pool cache_pool;
    186      1.134        ad static struct pool cache_cpu_pool;
    187        1.3        pk 
    188      1.134        ad static pool_cache_cpu_t *pool_cache_put_slow(pool_cache_cpu_t *, int *,
    189      1.134        ad 					     void *, paddr_t);
    190      1.134        ad static pool_cache_cpu_t *pool_cache_get_slow(pool_cache_cpu_t *, int *,
    191      1.134        ad 					     void **, paddr_t *, int);
    192      1.134        ad static void	pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
    193      1.134        ad static void	pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
    194      1.134        ad static void	pool_cache_xcall(pool_cache_t);
    195        1.3        pk 
    196       1.42   thorpej static int	pool_catchup(struct pool *);
    197      1.128  christos static void	pool_prime_page(struct pool *, void *,
    198       1.55   thorpej 		    struct pool_item_header *);
    199       1.88       chs static void	pool_update_curpage(struct pool *);
    200       1.66   thorpej 
    201      1.113      yamt static int	pool_grow(struct pool *, int);
    202      1.117      yamt static void	*pool_allocator_alloc(struct pool *, int);
    203      1.117      yamt static void	pool_allocator_free(struct pool *, void *);
    204        1.3        pk 
    205       1.97      yamt static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
    206       1.88       chs 	void (*)(const char *, ...));
    207       1.42   thorpej static void pool_print1(struct pool *, const char *,
    208       1.42   thorpej 	void (*)(const char *, ...));
    209        1.3        pk 
    210       1.88       chs static int pool_chk_page(struct pool *, const char *,
    211       1.88       chs 			 struct pool_item_header *);
    212       1.88       chs 
    213        1.3        pk /*
    214       1.52   thorpej  * Pool log entry. An array of these is allocated in pool_init().
    215        1.3        pk  */
    216        1.3        pk struct pool_log {
    217        1.3        pk 	const char	*pl_file;
    218        1.3        pk 	long		pl_line;
    219        1.3        pk 	int		pl_action;
    220       1.25   thorpej #define	PRLOG_GET	1
    221       1.25   thorpej #define	PRLOG_PUT	2
    222        1.3        pk 	void		*pl_addr;
    223        1.1        pk };
    224        1.1        pk 
    225       1.86      matt #ifdef POOL_DIAGNOSTIC
    226        1.3        pk /* Number of entries in pool log buffers */
    227       1.17   thorpej #ifndef POOL_LOGSIZE
    228       1.17   thorpej #define	POOL_LOGSIZE	10
    229       1.17   thorpej #endif
    230       1.17   thorpej 
    231       1.17   thorpej int pool_logsize = POOL_LOGSIZE;
    232        1.1        pk 
    233      1.110     perry static inline void
    234       1.42   thorpej pr_log(struct pool *pp, void *v, int action, const char *file, long line)
    235        1.3        pk {
    236        1.3        pk 	int n = pp->pr_curlogentry;
    237        1.3        pk 	struct pool_log *pl;
    238        1.3        pk 
    239       1.20   thorpej 	if ((pp->pr_roflags & PR_LOGGING) == 0)
    240        1.3        pk 		return;
    241        1.3        pk 
    242        1.3        pk 	/*
    243        1.3        pk 	 * Fill in the current entry. Wrap around and overwrite
    244        1.3        pk 	 * the oldest entry if necessary.
    245        1.3        pk 	 */
    246        1.3        pk 	pl = &pp->pr_log[n];
    247        1.3        pk 	pl->pl_file = file;
    248        1.3        pk 	pl->pl_line = line;
    249        1.3        pk 	pl->pl_action = action;
    250        1.3        pk 	pl->pl_addr = v;
    251        1.3        pk 	if (++n >= pp->pr_logsize)
    252        1.3        pk 		n = 0;
    253        1.3        pk 	pp->pr_curlogentry = n;
    254        1.3        pk }
    255        1.3        pk 
    256        1.3        pk static void
    257       1.42   thorpej pr_printlog(struct pool *pp, struct pool_item *pi,
    258       1.42   thorpej     void (*pr)(const char *, ...))
    259        1.3        pk {
    260        1.3        pk 	int i = pp->pr_logsize;
    261        1.3        pk 	int n = pp->pr_curlogentry;
    262        1.3        pk 
    263       1.20   thorpej 	if ((pp->pr_roflags & PR_LOGGING) == 0)
    264        1.3        pk 		return;
    265        1.3        pk 
    266        1.3        pk 	/*
    267        1.3        pk 	 * Print all entries in this pool's log.
    268        1.3        pk 	 */
    269        1.3        pk 	while (i-- > 0) {
    270        1.3        pk 		struct pool_log *pl = &pp->pr_log[n];
    271        1.3        pk 		if (pl->pl_action != 0) {
    272       1.25   thorpej 			if (pi == NULL || pi == pl->pl_addr) {
    273       1.25   thorpej 				(*pr)("\tlog entry %d:\n", i);
    274       1.25   thorpej 				(*pr)("\t\taction = %s, addr = %p\n",
    275       1.25   thorpej 				    pl->pl_action == PRLOG_GET ? "get" : "put",
    276       1.25   thorpej 				    pl->pl_addr);
    277       1.25   thorpej 				(*pr)("\t\tfile: %s at line %lu\n",
    278       1.25   thorpej 				    pl->pl_file, pl->pl_line);
    279       1.25   thorpej 			}
    280        1.3        pk 		}
    281        1.3        pk 		if (++n >= pp->pr_logsize)
    282        1.3        pk 			n = 0;
    283        1.3        pk 	}
    284        1.3        pk }
    285       1.25   thorpej 
    286      1.110     perry static inline void
    287       1.42   thorpej pr_enter(struct pool *pp, const char *file, long line)
    288       1.25   thorpej {
    289       1.25   thorpej 
    290       1.34   thorpej 	if (__predict_false(pp->pr_entered_file != NULL)) {
    291       1.25   thorpej 		printf("pool %s: reentrancy at file %s line %ld\n",
    292       1.25   thorpej 		    pp->pr_wchan, file, line);
    293       1.25   thorpej 		printf("         previous entry at file %s line %ld\n",
    294       1.25   thorpej 		    pp->pr_entered_file, pp->pr_entered_line);
    295       1.25   thorpej 		panic("pr_enter");
    296       1.25   thorpej 	}
    297       1.25   thorpej 
    298       1.25   thorpej 	pp->pr_entered_file = file;
    299       1.25   thorpej 	pp->pr_entered_line = line;
    300       1.25   thorpej }
    301       1.25   thorpej 
    302      1.110     perry static inline void
    303       1.42   thorpej pr_leave(struct pool *pp)
    304       1.25   thorpej {
    305       1.25   thorpej 
    306       1.34   thorpej 	if (__predict_false(pp->pr_entered_file == NULL)) {
    307       1.25   thorpej 		printf("pool %s not entered?\n", pp->pr_wchan);
    308       1.25   thorpej 		panic("pr_leave");
    309       1.25   thorpej 	}
    310       1.25   thorpej 
    311       1.25   thorpej 	pp->pr_entered_file = NULL;
    312       1.25   thorpej 	pp->pr_entered_line = 0;
    313       1.25   thorpej }
    314       1.25   thorpej 
    315      1.110     perry static inline void
    316       1.42   thorpej pr_enter_check(struct pool *pp, void (*pr)(const char *, ...))
    317       1.25   thorpej {
    318       1.25   thorpej 
    319       1.25   thorpej 	if (pp->pr_entered_file != NULL)
    320       1.25   thorpej 		(*pr)("\n\tcurrently entered from file %s line %ld\n",
    321       1.25   thorpej 		    pp->pr_entered_file, pp->pr_entered_line);
    322       1.25   thorpej }
    323        1.3        pk #else
    324       1.25   thorpej #define	pr_log(pp, v, action, file, line)
    325       1.25   thorpej #define	pr_printlog(pp, pi, pr)
    326       1.25   thorpej #define	pr_enter(pp, file, line)
    327       1.25   thorpej #define	pr_leave(pp)
    328       1.25   thorpej #define	pr_enter_check(pp, pr)
    329       1.59   thorpej #endif /* POOL_DIAGNOSTIC */
    330        1.3        pk 
    331      1.135      yamt static inline unsigned int
    332       1.97      yamt pr_item_notouch_index(const struct pool *pp, const struct pool_item_header *ph,
    333       1.97      yamt     const void *v)
    334       1.97      yamt {
    335       1.97      yamt 	const char *cp = v;
    336      1.135      yamt 	unsigned int idx;
    337       1.97      yamt 
    338       1.97      yamt 	KASSERT(pp->pr_roflags & PR_NOTOUCH);
    339      1.128  christos 	idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
    340       1.97      yamt 	KASSERT(idx < pp->pr_itemsperpage);
    341       1.97      yamt 	return idx;
    342       1.97      yamt }
    343       1.97      yamt 
    344      1.110     perry static inline void
    345       1.97      yamt pr_item_notouch_put(const struct pool *pp, struct pool_item_header *ph,
    346       1.97      yamt     void *obj)
    347       1.97      yamt {
    348      1.135      yamt 	unsigned int idx = pr_item_notouch_index(pp, ph, obj);
    349      1.135      yamt 	pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE);
    350      1.135      yamt 	pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
    351       1.97      yamt 
    352      1.135      yamt 	KASSERT((*bitmap & mask) == 0);
    353      1.135      yamt 	*bitmap |= mask;
    354       1.97      yamt }
    355       1.97      yamt 
    356      1.110     perry static inline void *
    357       1.97      yamt pr_item_notouch_get(const struct pool *pp, struct pool_item_header *ph)
    358       1.97      yamt {
    359      1.135      yamt 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
    360      1.135      yamt 	unsigned int idx;
    361      1.135      yamt 	int i;
    362       1.97      yamt 
    363      1.135      yamt 	for (i = 0; ; i++) {
    364      1.135      yamt 		int bit;
    365       1.97      yamt 
    366      1.135      yamt 		KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage);
    367      1.135      yamt 		bit = ffs32(bitmap[i]);
    368      1.135      yamt 		if (bit) {
    369      1.135      yamt 			pool_item_bitmap_t mask;
    370      1.135      yamt 
    371      1.135      yamt 			bit--;
    372      1.135      yamt 			idx = (i * BITMAP_SIZE) + bit;
    373      1.135      yamt 			mask = 1 << bit;
    374      1.135      yamt 			KASSERT((bitmap[i] & mask) != 0);
    375      1.135      yamt 			bitmap[i] &= ~mask;
    376      1.135      yamt 			break;
    377      1.135      yamt 		}
    378      1.135      yamt 	}
    379      1.135      yamt 	KASSERT(idx < pp->pr_itemsperpage);
    380      1.128  christos 	return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
    381       1.97      yamt }
    382       1.97      yamt 
    383      1.135      yamt static inline void
    384      1.135      yamt pr_item_notouch_init(const struct pool *pp, struct pool_item_header *ph)
    385      1.135      yamt {
    386      1.135      yamt 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
    387      1.135      yamt 	const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE);
    388      1.135      yamt 	int i;
    389      1.135      yamt 
    390      1.135      yamt 	for (i = 0; i < n; i++) {
    391      1.135      yamt 		bitmap[i] = (pool_item_bitmap_t)-1;
    392      1.135      yamt 	}
    393      1.135      yamt }
    394      1.135      yamt 
    395      1.110     perry static inline int
    396       1.88       chs phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
    397       1.88       chs {
    398      1.121      yamt 
    399      1.121      yamt 	/*
    400      1.121      yamt 	 * we consider pool_item_header with smaller ph_page bigger.
    401      1.121      yamt 	 * (this unnatural ordering is for the benefit of pr_find_pagehead.)
    402      1.121      yamt 	 */
    403      1.121      yamt 
    404       1.88       chs 	if (a->ph_page < b->ph_page)
    405      1.121      yamt 		return (1);
    406      1.121      yamt 	else if (a->ph_page > b->ph_page)
    407       1.88       chs 		return (-1);
    408       1.88       chs 	else
    409       1.88       chs 		return (0);
    410       1.88       chs }
    411       1.88       chs 
    412       1.88       chs SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
    413       1.88       chs SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
    414       1.88       chs 
    415  1.138.4.1    bouyer static inline struct pool_item_header *
    416  1.138.4.1    bouyer pr_find_pagehead_noalign(struct pool *pp, void *v)
    417  1.138.4.1    bouyer {
    418  1.138.4.1    bouyer 	struct pool_item_header *ph, tmp;
    419  1.138.4.1    bouyer 
    420  1.138.4.1    bouyer 	tmp.ph_page = (void *)(uintptr_t)v;
    421  1.138.4.1    bouyer 	ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
    422  1.138.4.1    bouyer 	if (ph == NULL) {
    423  1.138.4.1    bouyer 		ph = SPLAY_ROOT(&pp->pr_phtree);
    424  1.138.4.1    bouyer 		if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
    425  1.138.4.1    bouyer 			ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
    426  1.138.4.1    bouyer 		}
    427  1.138.4.1    bouyer 		KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
    428  1.138.4.1    bouyer 	}
    429  1.138.4.1    bouyer 
    430  1.138.4.1    bouyer 	return ph;
    431  1.138.4.1    bouyer }
    432  1.138.4.1    bouyer 
    433        1.3        pk /*
    434      1.121      yamt  * Return the pool page header based on item address.
    435        1.3        pk  */
    436      1.110     perry static inline struct pool_item_header *
    437      1.121      yamt pr_find_pagehead(struct pool *pp, void *v)
    438        1.3        pk {
    439       1.88       chs 	struct pool_item_header *ph, tmp;
    440        1.3        pk 
    441      1.121      yamt 	if ((pp->pr_roflags & PR_NOALIGN) != 0) {
    442  1.138.4.1    bouyer 		ph = pr_find_pagehead_noalign(pp, v);
    443      1.121      yamt 	} else {
    444      1.128  christos 		void *page =
    445      1.128  christos 		    (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask);
    446      1.121      yamt 
    447      1.121      yamt 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
    448      1.128  christos 			ph = (struct pool_item_header *)((char *)page + pp->pr_phoffset);
    449      1.121      yamt 		} else {
    450      1.121      yamt 			tmp.ph_page = page;
    451      1.121      yamt 			ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
    452      1.121      yamt 		}
    453      1.121      yamt 	}
    454        1.3        pk 
    455      1.121      yamt 	KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
    456      1.128  christos 	    ((char *)ph->ph_page <= (char *)v &&
    457      1.128  christos 	    (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
    458       1.88       chs 	return ph;
    459        1.3        pk }
    460        1.3        pk 
    461      1.101   thorpej static void
    462      1.101   thorpej pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
    463      1.101   thorpej {
    464      1.101   thorpej 	struct pool_item_header *ph;
    465      1.101   thorpej 
    466      1.101   thorpej 	while ((ph = LIST_FIRST(pq)) != NULL) {
    467      1.101   thorpej 		LIST_REMOVE(ph, ph_pagelist);
    468      1.101   thorpej 		pool_allocator_free(pp, ph->ph_page);
    469      1.134        ad 		if ((pp->pr_roflags & PR_PHINPAGE) == 0)
    470      1.101   thorpej 			pool_put(pp->pr_phpool, ph);
    471      1.101   thorpej 	}
    472      1.101   thorpej }
    473      1.101   thorpej 
    474        1.3        pk /*
    475        1.3        pk  * Remove a page from the pool.
    476        1.3        pk  */
    477      1.110     perry static inline void
    478       1.61       chs pr_rmpage(struct pool *pp, struct pool_item_header *ph,
    479       1.61       chs      struct pool_pagelist *pq)
    480        1.3        pk {
    481        1.3        pk 
    482      1.134        ad 	KASSERT(mutex_owned(&pp->pr_lock));
    483       1.91      yamt 
    484        1.3        pk 	/*
    485        1.7   thorpej 	 * If the page was idle, decrement the idle page count.
    486        1.3        pk 	 */
    487        1.6   thorpej 	if (ph->ph_nmissing == 0) {
    488        1.6   thorpej #ifdef DIAGNOSTIC
    489        1.6   thorpej 		if (pp->pr_nidle == 0)
    490        1.6   thorpej 			panic("pr_rmpage: nidle inconsistent");
    491       1.20   thorpej 		if (pp->pr_nitems < pp->pr_itemsperpage)
    492       1.20   thorpej 			panic("pr_rmpage: nitems inconsistent");
    493        1.6   thorpej #endif
    494        1.6   thorpej 		pp->pr_nidle--;
    495        1.6   thorpej 	}
    496        1.7   thorpej 
    497       1.20   thorpej 	pp->pr_nitems -= pp->pr_itemsperpage;
    498       1.20   thorpej 
    499        1.7   thorpej 	/*
    500      1.101   thorpej 	 * Unlink the page from the pool and queue it for release.
    501        1.7   thorpej 	 */
    502       1.88       chs 	LIST_REMOVE(ph, ph_pagelist);
    503       1.91      yamt 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
    504       1.91      yamt 		SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
    505      1.101   thorpej 	LIST_INSERT_HEAD(pq, ph, ph_pagelist);
    506      1.101   thorpej 
    507        1.7   thorpej 	pp->pr_npages--;
    508        1.7   thorpej 	pp->pr_npagefree++;
    509        1.6   thorpej 
    510       1.88       chs 	pool_update_curpage(pp);
    511        1.3        pk }
    512        1.3        pk 
    513      1.126   thorpej static bool
    514      1.117      yamt pa_starved_p(struct pool_allocator *pa)
    515      1.117      yamt {
    516      1.117      yamt 
    517      1.117      yamt 	if (pa->pa_backingmap != NULL) {
    518      1.117      yamt 		return vm_map_starved_p(pa->pa_backingmap);
    519      1.117      yamt 	}
    520      1.127   thorpej 	return false;
    521      1.117      yamt }
    522      1.117      yamt 
    523      1.117      yamt static int
    524      1.124      yamt pool_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
    525      1.117      yamt {
    526      1.117      yamt 	struct pool *pp = obj;
    527      1.117      yamt 	struct pool_allocator *pa = pp->pr_alloc;
    528      1.117      yamt 
    529      1.117      yamt 	KASSERT(&pp->pr_reclaimerentry == ce);
    530      1.117      yamt 	pool_reclaim(pp);
    531      1.117      yamt 	if (!pa_starved_p(pa)) {
    532      1.117      yamt 		return CALLBACK_CHAIN_ABORT;
    533      1.117      yamt 	}
    534      1.117      yamt 	return CALLBACK_CHAIN_CONTINUE;
    535      1.117      yamt }
    536      1.117      yamt 
    537      1.117      yamt static void
    538      1.117      yamt pool_reclaim_register(struct pool *pp)
    539      1.117      yamt {
    540      1.117      yamt 	struct vm_map *map = pp->pr_alloc->pa_backingmap;
    541      1.117      yamt 	int s;
    542      1.117      yamt 
    543      1.117      yamt 	if (map == NULL) {
    544      1.117      yamt 		return;
    545      1.117      yamt 	}
    546      1.117      yamt 
    547      1.117      yamt 	s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
    548      1.117      yamt 	callback_register(&vm_map_to_kernel(map)->vmk_reclaim_callback,
    549      1.117      yamt 	    &pp->pr_reclaimerentry, pp, pool_reclaim_callback);
    550      1.117      yamt 	splx(s);
    551      1.117      yamt }
    552      1.117      yamt 
    553      1.117      yamt static void
    554      1.117      yamt pool_reclaim_unregister(struct pool *pp)
    555      1.117      yamt {
    556      1.117      yamt 	struct vm_map *map = pp->pr_alloc->pa_backingmap;
    557      1.117      yamt 	int s;
    558      1.117      yamt 
    559      1.117      yamt 	if (map == NULL) {
    560      1.117      yamt 		return;
    561      1.117      yamt 	}
    562      1.117      yamt 
    563      1.117      yamt 	s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
    564      1.117      yamt 	callback_unregister(&vm_map_to_kernel(map)->vmk_reclaim_callback,
    565      1.117      yamt 	    &pp->pr_reclaimerentry);
    566      1.117      yamt 	splx(s);
    567      1.117      yamt }
    568      1.117      yamt 
    569      1.117      yamt static void
    570      1.117      yamt pa_reclaim_register(struct pool_allocator *pa)
    571      1.117      yamt {
    572      1.117      yamt 	struct vm_map *map = *pa->pa_backingmapptr;
    573      1.117      yamt 	struct pool *pp;
    574      1.117      yamt 
    575      1.117      yamt 	KASSERT(pa->pa_backingmap == NULL);
    576      1.117      yamt 	if (map == NULL) {
    577      1.117      yamt 		SLIST_INSERT_HEAD(&pa_deferinitq, pa, pa_q);
    578      1.117      yamt 		return;
    579      1.117      yamt 	}
    580      1.117      yamt 	pa->pa_backingmap = map;
    581      1.117      yamt 	TAILQ_FOREACH(pp, &pa->pa_list, pr_alloc_list) {
    582      1.117      yamt 		pool_reclaim_register(pp);
    583      1.117      yamt 	}
    584      1.117      yamt }
    585      1.117      yamt 
    586        1.3        pk /*
    587       1.94    simonb  * Initialize all the pools listed in the "pools" link set.
    588       1.94    simonb  */
    589       1.94    simonb void
    590      1.117      yamt pool_subsystem_init(void)
    591       1.94    simonb {
    592      1.117      yamt 	struct pool_allocator *pa;
    593       1.94    simonb 	__link_set_decl(pools, struct link_pool_init);
    594       1.94    simonb 	struct link_pool_init * const *pi;
    595       1.94    simonb 
    596      1.134        ad 	mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
    597      1.134        ad 	cv_init(&pool_busy, "poolbusy");
    598      1.134        ad 
    599       1.94    simonb 	__link_set_foreach(pi, pools)
    600       1.94    simonb 		pool_init((*pi)->pp, (*pi)->size, (*pi)->align,
    601       1.94    simonb 		    (*pi)->align_offset, (*pi)->flags, (*pi)->wchan,
    602      1.129        ad 		    (*pi)->palloc, (*pi)->ipl);
    603      1.117      yamt 
    604      1.117      yamt 	while ((pa = SLIST_FIRST(&pa_deferinitq)) != NULL) {
    605      1.117      yamt 		KASSERT(pa->pa_backingmapptr != NULL);
    606      1.117      yamt 		KASSERT(*pa->pa_backingmapptr != NULL);
    607      1.117      yamt 		SLIST_REMOVE_HEAD(&pa_deferinitq, pa_q);
    608      1.117      yamt 		pa_reclaim_register(pa);
    609      1.117      yamt 	}
    610      1.134        ad 
    611      1.134        ad 	pool_init(&cache_pool, sizeof(struct pool_cache), CACHE_LINE_SIZE,
    612      1.134        ad 	    0, 0, "pcache", &pool_allocator_nointr, IPL_NONE);
    613      1.134        ad 
    614      1.134        ad 	pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), CACHE_LINE_SIZE,
    615      1.134        ad 	    0, 0, "pcachecpu", &pool_allocator_nointr, IPL_NONE);
    616       1.94    simonb }
    617       1.94    simonb 
    618       1.94    simonb /*
    619        1.3        pk  * Initialize the given pool resource structure.
    620        1.3        pk  *
    621        1.3        pk  * We export this routine to allow other kernel parts to declare
    622        1.3        pk  * static pools that must be initialized before malloc() is available.
    623        1.3        pk  */
    624        1.3        pk void
    625       1.42   thorpej pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
    626      1.129        ad     const char *wchan, struct pool_allocator *palloc, int ipl)
    627        1.3        pk {
    628      1.116    simonb #ifdef DEBUG
    629      1.116    simonb 	struct pool *pp1;
    630      1.116    simonb #endif
    631       1.92     enami 	size_t trysize, phsize;
    632      1.134        ad 	int off, slack;
    633        1.3        pk 
    634      1.116    simonb #ifdef DEBUG
    635      1.116    simonb 	/*
    636      1.116    simonb 	 * Check that the pool hasn't already been initialised and
    637      1.116    simonb 	 * added to the list of all pools.
    638      1.116    simonb 	 */
    639      1.116    simonb 	LIST_FOREACH(pp1, &pool_head, pr_poollist) {
    640      1.116    simonb 		if (pp == pp1)
    641      1.116    simonb 			panic("pool_init: pool %s already initialised",
    642      1.116    simonb 			    wchan);
    643      1.116    simonb 	}
    644      1.116    simonb #endif
    645      1.116    simonb 
    646       1.25   thorpej #ifdef POOL_DIAGNOSTIC
    647       1.25   thorpej 	/*
    648       1.25   thorpej 	 * Always log if POOL_DIAGNOSTIC is defined.
    649       1.25   thorpej 	 */
    650       1.25   thorpej 	if (pool_logsize != 0)
    651       1.25   thorpej 		flags |= PR_LOGGING;
    652       1.25   thorpej #endif
    653       1.25   thorpej 
    654       1.66   thorpej 	if (palloc == NULL)
    655       1.66   thorpej 		palloc = &pool_allocator_kmem;
    656      1.112     bjh21 #ifdef POOL_SUBPAGE
    657      1.112     bjh21 	if (size > palloc->pa_pagesz) {
    658      1.112     bjh21 		if (palloc == &pool_allocator_kmem)
    659      1.112     bjh21 			palloc = &pool_allocator_kmem_fullpage;
    660      1.112     bjh21 		else if (palloc == &pool_allocator_nointr)
    661      1.112     bjh21 			palloc = &pool_allocator_nointr_fullpage;
    662      1.112     bjh21 	}
    663       1.66   thorpej #endif /* POOL_SUBPAGE */
    664       1.66   thorpej 	if ((palloc->pa_flags & PA_INITIALIZED) == 0) {
    665      1.112     bjh21 		if (palloc->pa_pagesz == 0)
    666       1.66   thorpej 			palloc->pa_pagesz = PAGE_SIZE;
    667       1.66   thorpej 
    668       1.66   thorpej 		TAILQ_INIT(&palloc->pa_list);
    669       1.66   thorpej 
    670      1.134        ad 		mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
    671       1.66   thorpej 		palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
    672       1.66   thorpej 		palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
    673      1.117      yamt 
    674      1.117      yamt 		if (palloc->pa_backingmapptr != NULL) {
    675      1.117      yamt 			pa_reclaim_register(palloc);
    676      1.117      yamt 		}
    677       1.66   thorpej 		palloc->pa_flags |= PA_INITIALIZED;
    678        1.4   thorpej 	}
    679        1.3        pk 
    680        1.3        pk 	if (align == 0)
    681        1.3        pk 		align = ALIGN(1);
    682       1.14   thorpej 
    683      1.120      yamt 	if ((flags & PR_NOTOUCH) == 0 && size < sizeof(struct pool_item))
    684       1.14   thorpej 		size = sizeof(struct pool_item);
    685        1.3        pk 
    686       1.78   thorpej 	size = roundup(size, align);
    687       1.66   thorpej #ifdef DIAGNOSTIC
    688       1.66   thorpej 	if (size > palloc->pa_pagesz)
    689      1.121      yamt 		panic("pool_init: pool item size (%zu) too large", size);
    690       1.66   thorpej #endif
    691       1.35        pk 
    692        1.3        pk 	/*
    693        1.3        pk 	 * Initialize the pool structure.
    694        1.3        pk 	 */
    695       1.88       chs 	LIST_INIT(&pp->pr_emptypages);
    696       1.88       chs 	LIST_INIT(&pp->pr_fullpages);
    697       1.88       chs 	LIST_INIT(&pp->pr_partpages);
    698      1.134        ad 	pp->pr_cache = NULL;
    699        1.3        pk 	pp->pr_curpage = NULL;
    700        1.3        pk 	pp->pr_npages = 0;
    701        1.3        pk 	pp->pr_minitems = 0;
    702        1.3        pk 	pp->pr_minpages = 0;
    703        1.3        pk 	pp->pr_maxpages = UINT_MAX;
    704       1.20   thorpej 	pp->pr_roflags = flags;
    705       1.20   thorpej 	pp->pr_flags = 0;
    706       1.35        pk 	pp->pr_size = size;
    707        1.3        pk 	pp->pr_align = align;
    708        1.3        pk 	pp->pr_wchan = wchan;
    709       1.66   thorpej 	pp->pr_alloc = palloc;
    710       1.20   thorpej 	pp->pr_nitems = 0;
    711       1.20   thorpej 	pp->pr_nout = 0;
    712       1.20   thorpej 	pp->pr_hardlimit = UINT_MAX;
    713       1.20   thorpej 	pp->pr_hardlimit_warning = NULL;
    714       1.31   thorpej 	pp->pr_hardlimit_ratecap.tv_sec = 0;
    715       1.31   thorpej 	pp->pr_hardlimit_ratecap.tv_usec = 0;
    716       1.31   thorpej 	pp->pr_hardlimit_warning_last.tv_sec = 0;
    717       1.31   thorpej 	pp->pr_hardlimit_warning_last.tv_usec = 0;
    718       1.68   thorpej 	pp->pr_drain_hook = NULL;
    719       1.68   thorpej 	pp->pr_drain_hook_arg = NULL;
    720      1.125        ad 	pp->pr_freecheck = NULL;
    721        1.3        pk 
    722        1.3        pk 	/*
    723        1.3        pk 	 * Decide whether to put the page header off page to avoid
    724       1.92     enami 	 * wasting too large a part of the page or too big item.
    725       1.92     enami 	 * Off-page page headers go on a hash table, so we can match
    726       1.92     enami 	 * a returned item with its header based on the page address.
    727       1.92     enami 	 * We use 1/16 of the page size and about 8 times of the item
    728       1.92     enami 	 * size as the threshold (XXX: tune)
    729       1.92     enami 	 *
    730       1.92     enami 	 * However, we'll put the header into the page if we can put
    731       1.92     enami 	 * it without wasting any items.
    732       1.92     enami 	 *
    733       1.92     enami 	 * Silently enforce `0 <= ioff < align'.
    734        1.3        pk 	 */
    735       1.92     enami 	pp->pr_itemoffset = ioff %= align;
    736       1.92     enami 	/* See the comment below about reserved bytes. */
    737       1.92     enami 	trysize = palloc->pa_pagesz - ((align - ioff) % align);
    738       1.92     enami 	phsize = ALIGN(sizeof(struct pool_item_header));
    739      1.121      yamt 	if ((pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) == 0 &&
    740       1.97      yamt 	    (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) ||
    741       1.97      yamt 	    trysize / pp->pr_size == (trysize - phsize) / pp->pr_size)) {
    742        1.3        pk 		/* Use the end of the page for the page header */
    743       1.20   thorpej 		pp->pr_roflags |= PR_PHINPAGE;
    744       1.92     enami 		pp->pr_phoffset = off = palloc->pa_pagesz - phsize;
    745        1.2        pk 	} else {
    746        1.3        pk 		/* The page header will be taken from our page header pool */
    747        1.3        pk 		pp->pr_phoffset = 0;
    748       1.66   thorpej 		off = palloc->pa_pagesz;
    749       1.88       chs 		SPLAY_INIT(&pp->pr_phtree);
    750        1.2        pk 	}
    751        1.1        pk 
    752        1.3        pk 	/*
    753        1.3        pk 	 * Alignment is to take place at `ioff' within the item. This means
    754        1.3        pk 	 * we must reserve up to `align - 1' bytes on the page to allow
    755        1.3        pk 	 * appropriate positioning of each item.
    756        1.3        pk 	 */
    757        1.3        pk 	pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
    758       1.43   thorpej 	KASSERT(pp->pr_itemsperpage != 0);
    759       1.97      yamt 	if ((pp->pr_roflags & PR_NOTOUCH)) {
    760       1.97      yamt 		int idx;
    761       1.97      yamt 
    762       1.97      yamt 		for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
    763       1.97      yamt 		    idx++) {
    764       1.97      yamt 			/* nothing */
    765       1.97      yamt 		}
    766       1.97      yamt 		if (idx >= PHPOOL_MAX) {
    767       1.97      yamt 			/*
    768       1.97      yamt 			 * if you see this panic, consider to tweak
    769       1.97      yamt 			 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
    770       1.97      yamt 			 */
    771       1.97      yamt 			panic("%s: too large itemsperpage(%d) for PR_NOTOUCH",
    772       1.97      yamt 			    pp->pr_wchan, pp->pr_itemsperpage);
    773       1.97      yamt 		}
    774       1.97      yamt 		pp->pr_phpool = &phpool[idx];
    775       1.97      yamt 	} else if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
    776       1.97      yamt 		pp->pr_phpool = &phpool[0];
    777       1.97      yamt 	}
    778       1.97      yamt #if defined(DIAGNOSTIC)
    779       1.97      yamt 	else {
    780       1.97      yamt 		pp->pr_phpool = NULL;
    781       1.97      yamt 	}
    782       1.97      yamt #endif
    783        1.3        pk 
    784        1.3        pk 	/*
    785        1.3        pk 	 * Use the slack between the chunks and the page header
    786        1.3        pk 	 * for "cache coloring".
    787        1.3        pk 	 */
    788        1.3        pk 	slack = off - pp->pr_itemsperpage * pp->pr_size;
    789        1.3        pk 	pp->pr_maxcolor = (slack / align) * align;
    790        1.3        pk 	pp->pr_curcolor = 0;
    791        1.3        pk 
    792        1.3        pk 	pp->pr_nget = 0;
    793        1.3        pk 	pp->pr_nfail = 0;
    794        1.3        pk 	pp->pr_nput = 0;
    795        1.3        pk 	pp->pr_npagealloc = 0;
    796        1.3        pk 	pp->pr_npagefree = 0;
    797        1.1        pk 	pp->pr_hiwat = 0;
    798        1.8   thorpej 	pp->pr_nidle = 0;
    799      1.134        ad 	pp->pr_refcnt = 0;
    800        1.3        pk 
    801       1.59   thorpej #ifdef POOL_DIAGNOSTIC
    802       1.25   thorpej 	if (flags & PR_LOGGING) {
    803       1.25   thorpej 		if (kmem_map == NULL ||
    804       1.25   thorpej 		    (pp->pr_log = malloc(pool_logsize * sizeof(struct pool_log),
    805       1.25   thorpej 		     M_TEMP, M_NOWAIT)) == NULL)
    806       1.20   thorpej 			pp->pr_roflags &= ~PR_LOGGING;
    807        1.3        pk 		pp->pr_curlogentry = 0;
    808        1.3        pk 		pp->pr_logsize = pool_logsize;
    809        1.3        pk 	}
    810       1.59   thorpej #endif
    811       1.25   thorpej 
    812       1.25   thorpej 	pp->pr_entered_file = NULL;
    813       1.25   thorpej 	pp->pr_entered_line = 0;
    814        1.3        pk 
    815      1.138        ad 	/*
    816      1.138        ad 	 * XXXAD hack to prevent IP input processing from blocking.
    817      1.138        ad 	 */
    818      1.138        ad 	if (ipl == IPL_SOFTNET) {
    819      1.138        ad 		mutex_init(&pp->pr_lock, MUTEX_DEFAULT, IPL_VM);
    820      1.138        ad 	} else {
    821      1.138        ad 		mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
    822      1.138        ad 	}
    823      1.134        ad 	cv_init(&pp->pr_cv, wchan);
    824      1.134        ad 	pp->pr_ipl = ipl;
    825        1.1        pk 
    826        1.3        pk 	/*
    827       1.43   thorpej 	 * Initialize private page header pool and cache magazine pool if we
    828       1.43   thorpej 	 * haven't done so yet.
    829       1.23   thorpej 	 * XXX LOCKING.
    830        1.3        pk 	 */
    831       1.97      yamt 	if (phpool[0].pr_size == 0) {
    832       1.97      yamt 		int idx;
    833       1.97      yamt 		for (idx = 0; idx < PHPOOL_MAX; idx++) {
    834       1.97      yamt 			static char phpool_names[PHPOOL_MAX][6+1+6+1];
    835       1.97      yamt 			int nelem;
    836       1.97      yamt 			size_t sz;
    837       1.97      yamt 
    838       1.97      yamt 			nelem = PHPOOL_FREELIST_NELEM(idx);
    839       1.97      yamt 			snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
    840       1.97      yamt 			    "phpool-%d", nelem);
    841       1.97      yamt 			sz = sizeof(struct pool_item_header);
    842       1.97      yamt 			if (nelem) {
    843      1.135      yamt 				sz = offsetof(struct pool_item_header,
    844      1.135      yamt 				    ph_bitmap[howmany(nelem, BITMAP_SIZE)]);
    845       1.97      yamt 			}
    846       1.97      yamt 			pool_init(&phpool[idx], sz, 0, 0, 0,
    847      1.129        ad 			    phpool_names[idx], &pool_allocator_meta, IPL_VM);
    848       1.97      yamt 		}
    849       1.62     bjh21 #ifdef POOL_SUBPAGE
    850       1.62     bjh21 		pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
    851      1.129        ad 		    PR_RECURSIVE, "psppool", &pool_allocator_meta, IPL_VM);
    852       1.62     bjh21 #endif
    853      1.134        ad 		pool_init(&pcgpool, sizeof(pcg_t), CACHE_LINE_SIZE, 0, 0,
    854      1.134        ad 		    "cachegrp", &pool_allocator_meta, IPL_VM);
    855        1.1        pk 	}
    856        1.1        pk 
    857      1.134        ad 	if (__predict_true(!cold)) {
    858      1.134        ad 		/* Insert into the list of all pools. */
    859      1.134        ad 		mutex_enter(&pool_head_lock);
    860      1.134        ad 		LIST_INSERT_HEAD(&pool_head, pp, pr_poollist);
    861      1.134        ad 		mutex_exit(&pool_head_lock);
    862      1.134        ad 
    863      1.134        ad 		/* Insert this into the list of pools using this allocator. */
    864      1.134        ad 		mutex_enter(&palloc->pa_lock);
    865      1.134        ad 		TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
    866      1.134        ad 		mutex_exit(&palloc->pa_lock);
    867      1.134        ad 	} else {
    868      1.134        ad 		LIST_INSERT_HEAD(&pool_head, pp, pr_poollist);
    869      1.134        ad 		TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
    870      1.134        ad 	}
    871       1.66   thorpej 
    872      1.117      yamt 	pool_reclaim_register(pp);
    873        1.1        pk }
    874        1.1        pk 
    875        1.1        pk /*
    876        1.1        pk  * De-commision a pool resource.
    877        1.1        pk  */
    878        1.1        pk void
    879       1.42   thorpej pool_destroy(struct pool *pp)
    880        1.1        pk {
    881      1.101   thorpej 	struct pool_pagelist pq;
    882        1.3        pk 	struct pool_item_header *ph;
    883       1.43   thorpej 
    884      1.101   thorpej 	/* Remove from global pool list */
    885      1.134        ad 	mutex_enter(&pool_head_lock);
    886      1.134        ad 	while (pp->pr_refcnt != 0)
    887      1.134        ad 		cv_wait(&pool_busy, &pool_head_lock);
    888      1.102       chs 	LIST_REMOVE(pp, pr_poollist);
    889      1.101   thorpej 	if (drainpp == pp)
    890      1.101   thorpej 		drainpp = NULL;
    891      1.134        ad 	mutex_exit(&pool_head_lock);
    892      1.101   thorpej 
    893      1.101   thorpej 	/* Remove this pool from its allocator's list of pools. */
    894      1.117      yamt 	pool_reclaim_unregister(pp);
    895      1.134        ad 	mutex_enter(&pp->pr_alloc->pa_lock);
    896       1.66   thorpej 	TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
    897      1.134        ad 	mutex_exit(&pp->pr_alloc->pa_lock);
    898       1.66   thorpej 
    899      1.134        ad 	mutex_enter(&pp->pr_lock);
    900      1.101   thorpej 
    901      1.134        ad 	KASSERT(pp->pr_cache == NULL);
    902        1.3        pk 
    903        1.3        pk #ifdef DIAGNOSTIC
    904       1.20   thorpej 	if (pp->pr_nout != 0) {
    905       1.25   thorpej 		pr_printlog(pp, NULL, printf);
    906       1.80    provos 		panic("pool_destroy: pool busy: still out: %u",
    907       1.20   thorpej 		    pp->pr_nout);
    908        1.3        pk 	}
    909        1.3        pk #endif
    910        1.1        pk 
    911      1.101   thorpej 	KASSERT(LIST_EMPTY(&pp->pr_fullpages));
    912      1.101   thorpej 	KASSERT(LIST_EMPTY(&pp->pr_partpages));
    913      1.101   thorpej 
    914        1.3        pk 	/* Remove all pages */
    915      1.101   thorpej 	LIST_INIT(&pq);
    916       1.88       chs 	while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
    917      1.101   thorpej 		pr_rmpage(pp, ph, &pq);
    918      1.101   thorpej 
    919      1.134        ad 	mutex_exit(&pp->pr_lock);
    920        1.3        pk 
    921      1.101   thorpej 	pr_pagelist_free(pp, &pq);
    922        1.3        pk 
    923       1.59   thorpej #ifdef POOL_DIAGNOSTIC
    924       1.20   thorpej 	if ((pp->pr_roflags & PR_LOGGING) != 0)
    925        1.3        pk 		free(pp->pr_log, M_TEMP);
    926       1.59   thorpej #endif
    927      1.134        ad 
    928      1.134        ad 	cv_destroy(&pp->pr_cv);
    929      1.134        ad 	mutex_destroy(&pp->pr_lock);
    930        1.1        pk }
    931        1.1        pk 
    932       1.68   thorpej void
    933       1.68   thorpej pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
    934       1.68   thorpej {
    935       1.68   thorpej 
    936       1.68   thorpej 	/* XXX no locking -- must be used just after pool_init() */
    937       1.68   thorpej #ifdef DIAGNOSTIC
    938       1.68   thorpej 	if (pp->pr_drain_hook != NULL)
    939       1.68   thorpej 		panic("pool_set_drain_hook(%s): already set", pp->pr_wchan);
    940       1.68   thorpej #endif
    941       1.68   thorpej 	pp->pr_drain_hook = fn;
    942       1.68   thorpej 	pp->pr_drain_hook_arg = arg;
    943       1.68   thorpej }
    944       1.68   thorpej 
    945       1.88       chs static struct pool_item_header *
    946      1.128  christos pool_alloc_item_header(struct pool *pp, void *storage, int flags)
    947       1.55   thorpej {
    948       1.55   thorpej 	struct pool_item_header *ph;
    949       1.55   thorpej 
    950       1.55   thorpej 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
    951      1.128  christos 		ph = (struct pool_item_header *) ((char *)storage + pp->pr_phoffset);
    952      1.134        ad 	else
    953       1.97      yamt 		ph = pool_get(pp->pr_phpool, flags);
    954       1.55   thorpej 
    955       1.55   thorpej 	return (ph);
    956       1.55   thorpej }
    957        1.1        pk 
    958        1.1        pk /*
    959      1.134        ad  * Grab an item from the pool.
    960        1.1        pk  */
    961        1.3        pk void *
    962       1.59   thorpej #ifdef POOL_DIAGNOSTIC
    963       1.42   thorpej _pool_get(struct pool *pp, int flags, const char *file, long line)
    964       1.56  sommerfe #else
    965       1.56  sommerfe pool_get(struct pool *pp, int flags)
    966       1.56  sommerfe #endif
    967        1.1        pk {
    968        1.1        pk 	struct pool_item *pi;
    969        1.3        pk 	struct pool_item_header *ph;
    970       1.55   thorpej 	void *v;
    971        1.1        pk 
    972        1.2        pk #ifdef DIAGNOSTIC
    973       1.95    atatat 	if (__predict_false(pp->pr_itemsperpage == 0))
    974       1.95    atatat 		panic("pool_get: pool %p: pr_itemsperpage is zero, "
    975       1.95    atatat 		    "pool not initialized?", pp);
    976       1.84   thorpej 	if (__predict_false(curlwp == NULL && doing_shutdown == 0 &&
    977       1.37  sommerfe 			    (flags & PR_WAITOK) != 0))
    978       1.77      matt 		panic("pool_get: %s: must have NOWAIT", pp->pr_wchan);
    979       1.58   thorpej 
    980      1.102       chs #endif /* DIAGNOSTIC */
    981       1.58   thorpej #ifdef LOCKDEBUG
    982       1.58   thorpej 	if (flags & PR_WAITOK)
    983      1.119      yamt 		ASSERT_SLEEPABLE(NULL, "pool_get(PR_WAITOK)");
    984       1.56  sommerfe #endif
    985        1.1        pk 
    986      1.134        ad 	mutex_enter(&pp->pr_lock);
    987       1.25   thorpej 	pr_enter(pp, file, line);
    988       1.20   thorpej 
    989       1.20   thorpej  startover:
    990       1.20   thorpej 	/*
    991       1.20   thorpej 	 * Check to see if we've reached the hard limit.  If we have,
    992       1.20   thorpej 	 * and we can wait, then wait until an item has been returned to
    993       1.20   thorpej 	 * the pool.
    994       1.20   thorpej 	 */
    995       1.20   thorpej #ifdef DIAGNOSTIC
    996       1.34   thorpej 	if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
    997       1.25   thorpej 		pr_leave(pp);
    998      1.134        ad 		mutex_exit(&pp->pr_lock);
    999       1.20   thorpej 		panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
   1000       1.20   thorpej 	}
   1001       1.20   thorpej #endif
   1002       1.34   thorpej 	if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
   1003       1.68   thorpej 		if (pp->pr_drain_hook != NULL) {
   1004       1.68   thorpej 			/*
   1005       1.68   thorpej 			 * Since the drain hook is going to free things
   1006       1.68   thorpej 			 * back to the pool, unlock, call the hook, re-lock,
   1007       1.68   thorpej 			 * and check the hardlimit condition again.
   1008       1.68   thorpej 			 */
   1009       1.68   thorpej 			pr_leave(pp);
   1010      1.134        ad 			mutex_exit(&pp->pr_lock);
   1011       1.68   thorpej 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
   1012      1.134        ad 			mutex_enter(&pp->pr_lock);
   1013       1.68   thorpej 			pr_enter(pp, file, line);
   1014       1.68   thorpej 			if (pp->pr_nout < pp->pr_hardlimit)
   1015       1.68   thorpej 				goto startover;
   1016       1.68   thorpej 		}
   1017       1.68   thorpej 
   1018       1.29  sommerfe 		if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
   1019       1.20   thorpej 			/*
   1020       1.20   thorpej 			 * XXX: A warning isn't logged in this case.  Should
   1021       1.20   thorpej 			 * it be?
   1022       1.20   thorpej 			 */
   1023       1.20   thorpej 			pp->pr_flags |= PR_WANTED;
   1024       1.25   thorpej 			pr_leave(pp);
   1025      1.134        ad 			cv_wait(&pp->pr_cv, &pp->pr_lock);
   1026       1.25   thorpej 			pr_enter(pp, file, line);
   1027       1.20   thorpej 			goto startover;
   1028       1.20   thorpej 		}
   1029       1.31   thorpej 
   1030       1.31   thorpej 		/*
   1031       1.31   thorpej 		 * Log a message that the hard limit has been hit.
   1032       1.31   thorpej 		 */
   1033       1.31   thorpej 		if (pp->pr_hardlimit_warning != NULL &&
   1034       1.31   thorpej 		    ratecheck(&pp->pr_hardlimit_warning_last,
   1035       1.31   thorpej 			      &pp->pr_hardlimit_ratecap))
   1036       1.31   thorpej 			log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
   1037       1.21   thorpej 
   1038       1.21   thorpej 		pp->pr_nfail++;
   1039       1.21   thorpej 
   1040       1.25   thorpej 		pr_leave(pp);
   1041      1.134        ad 		mutex_exit(&pp->pr_lock);
   1042       1.20   thorpej 		return (NULL);
   1043       1.20   thorpej 	}
   1044       1.20   thorpej 
   1045        1.3        pk 	/*
   1046        1.3        pk 	 * The convention we use is that if `curpage' is not NULL, then
   1047        1.3        pk 	 * it points at a non-empty bucket. In particular, `curpage'
   1048        1.3        pk 	 * never points at a page header which has PR_PHINPAGE set and
   1049        1.3        pk 	 * has no items in its bucket.
   1050        1.3        pk 	 */
   1051       1.20   thorpej 	if ((ph = pp->pr_curpage) == NULL) {
   1052      1.113      yamt 		int error;
   1053      1.113      yamt 
   1054       1.20   thorpej #ifdef DIAGNOSTIC
   1055       1.20   thorpej 		if (pp->pr_nitems != 0) {
   1056      1.134        ad 			mutex_exit(&pp->pr_lock);
   1057       1.20   thorpej 			printf("pool_get: %s: curpage NULL, nitems %u\n",
   1058       1.20   thorpej 			    pp->pr_wchan, pp->pr_nitems);
   1059       1.80    provos 			panic("pool_get: nitems inconsistent");
   1060       1.20   thorpej 		}
   1061       1.20   thorpej #endif
   1062       1.20   thorpej 
   1063       1.21   thorpej 		/*
   1064       1.21   thorpej 		 * Call the back-end page allocator for more memory.
   1065       1.21   thorpej 		 * Release the pool lock, as the back-end page allocator
   1066       1.21   thorpej 		 * may block.
   1067       1.21   thorpej 		 */
   1068       1.25   thorpej 		pr_leave(pp);
   1069      1.113      yamt 		error = pool_grow(pp, flags);
   1070      1.113      yamt 		pr_enter(pp, file, line);
   1071      1.113      yamt 		if (error != 0) {
   1072       1.21   thorpej 			/*
   1073       1.55   thorpej 			 * We were unable to allocate a page or item
   1074       1.55   thorpej 			 * header, but we released the lock during
   1075       1.55   thorpej 			 * allocation, so perhaps items were freed
   1076       1.55   thorpej 			 * back to the pool.  Check for this case.
   1077       1.21   thorpej 			 */
   1078       1.21   thorpej 			if (pp->pr_curpage != NULL)
   1079       1.21   thorpej 				goto startover;
   1080       1.15        pk 
   1081      1.117      yamt 			pp->pr_nfail++;
   1082       1.25   thorpej 			pr_leave(pp);
   1083      1.134        ad 			mutex_exit(&pp->pr_lock);
   1084      1.117      yamt 			return (NULL);
   1085        1.1        pk 		}
   1086        1.3        pk 
   1087       1.20   thorpej 		/* Start the allocation process over. */
   1088       1.20   thorpej 		goto startover;
   1089        1.3        pk 	}
   1090       1.97      yamt 	if (pp->pr_roflags & PR_NOTOUCH) {
   1091       1.97      yamt #ifdef DIAGNOSTIC
   1092       1.97      yamt 		if (__predict_false(ph->ph_nmissing == pp->pr_itemsperpage)) {
   1093       1.97      yamt 			pr_leave(pp);
   1094      1.134        ad 			mutex_exit(&pp->pr_lock);
   1095       1.97      yamt 			panic("pool_get: %s: page empty", pp->pr_wchan);
   1096       1.97      yamt 		}
   1097       1.97      yamt #endif
   1098       1.97      yamt 		v = pr_item_notouch_get(pp, ph);
   1099       1.97      yamt #ifdef POOL_DIAGNOSTIC
   1100       1.97      yamt 		pr_log(pp, v, PRLOG_GET, file, line);
   1101       1.97      yamt #endif
   1102       1.97      yamt 	} else {
   1103      1.102       chs 		v = pi = LIST_FIRST(&ph->ph_itemlist);
   1104       1.97      yamt 		if (__predict_false(v == NULL)) {
   1105       1.97      yamt 			pr_leave(pp);
   1106      1.134        ad 			mutex_exit(&pp->pr_lock);
   1107       1.97      yamt 			panic("pool_get: %s: page empty", pp->pr_wchan);
   1108       1.97      yamt 		}
   1109       1.20   thorpej #ifdef DIAGNOSTIC
   1110       1.97      yamt 		if (__predict_false(pp->pr_nitems == 0)) {
   1111       1.97      yamt 			pr_leave(pp);
   1112      1.134        ad 			mutex_exit(&pp->pr_lock);
   1113       1.97      yamt 			printf("pool_get: %s: items on itemlist, nitems %u\n",
   1114       1.97      yamt 			    pp->pr_wchan, pp->pr_nitems);
   1115       1.97      yamt 			panic("pool_get: nitems inconsistent");
   1116       1.97      yamt 		}
   1117       1.65     enami #endif
   1118       1.56  sommerfe 
   1119       1.65     enami #ifdef POOL_DIAGNOSTIC
   1120       1.97      yamt 		pr_log(pp, v, PRLOG_GET, file, line);
   1121       1.65     enami #endif
   1122        1.3        pk 
   1123       1.65     enami #ifdef DIAGNOSTIC
   1124       1.97      yamt 		if (__predict_false(pi->pi_magic != PI_MAGIC)) {
   1125       1.97      yamt 			pr_printlog(pp, pi, printf);
   1126       1.97      yamt 			panic("pool_get(%s): free list modified: "
   1127       1.97      yamt 			    "magic=%x; page %p; item addr %p\n",
   1128       1.97      yamt 			    pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
   1129       1.97      yamt 		}
   1130        1.3        pk #endif
   1131        1.3        pk 
   1132       1.97      yamt 		/*
   1133       1.97      yamt 		 * Remove from item list.
   1134       1.97      yamt 		 */
   1135      1.102       chs 		LIST_REMOVE(pi, pi_list);
   1136       1.97      yamt 	}
   1137       1.20   thorpej 	pp->pr_nitems--;
   1138       1.20   thorpej 	pp->pr_nout++;
   1139        1.6   thorpej 	if (ph->ph_nmissing == 0) {
   1140        1.6   thorpej #ifdef DIAGNOSTIC
   1141       1.34   thorpej 		if (__predict_false(pp->pr_nidle == 0))
   1142        1.6   thorpej 			panic("pool_get: nidle inconsistent");
   1143        1.6   thorpej #endif
   1144        1.6   thorpej 		pp->pr_nidle--;
   1145       1.88       chs 
   1146       1.88       chs 		/*
   1147       1.88       chs 		 * This page was previously empty.  Move it to the list of
   1148       1.88       chs 		 * partially-full pages.  This page is already curpage.
   1149       1.88       chs 		 */
   1150       1.88       chs 		LIST_REMOVE(ph, ph_pagelist);
   1151       1.88       chs 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
   1152        1.6   thorpej 	}
   1153        1.3        pk 	ph->ph_nmissing++;
   1154       1.97      yamt 	if (ph->ph_nmissing == pp->pr_itemsperpage) {
   1155       1.21   thorpej #ifdef DIAGNOSTIC
   1156       1.97      yamt 		if (__predict_false((pp->pr_roflags & PR_NOTOUCH) == 0 &&
   1157      1.102       chs 		    !LIST_EMPTY(&ph->ph_itemlist))) {
   1158       1.25   thorpej 			pr_leave(pp);
   1159      1.134        ad 			mutex_exit(&pp->pr_lock);
   1160       1.21   thorpej 			panic("pool_get: %s: nmissing inconsistent",
   1161       1.21   thorpej 			    pp->pr_wchan);
   1162       1.21   thorpej 		}
   1163       1.21   thorpej #endif
   1164        1.3        pk 		/*
   1165       1.88       chs 		 * This page is now full.  Move it to the full list
   1166       1.88       chs 		 * and select a new current page.
   1167        1.3        pk 		 */
   1168       1.88       chs 		LIST_REMOVE(ph, ph_pagelist);
   1169       1.88       chs 		LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
   1170       1.88       chs 		pool_update_curpage(pp);
   1171        1.1        pk 	}
   1172        1.3        pk 
   1173        1.3        pk 	pp->pr_nget++;
   1174      1.111  christos 	pr_leave(pp);
   1175       1.20   thorpej 
   1176       1.20   thorpej 	/*
   1177       1.20   thorpej 	 * If we have a low water mark and we are now below that low
   1178       1.20   thorpej 	 * water mark, add more items to the pool.
   1179       1.20   thorpej 	 */
   1180       1.53   thorpej 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
   1181       1.20   thorpej 		/*
   1182       1.20   thorpej 		 * XXX: Should we log a warning?  Should we set up a timeout
   1183       1.20   thorpej 		 * to try again in a second or so?  The latter could break
   1184       1.20   thorpej 		 * a caller's assumptions about interrupt protection, etc.
   1185       1.20   thorpej 		 */
   1186       1.20   thorpej 	}
   1187       1.20   thorpej 
   1188      1.134        ad 	mutex_exit(&pp->pr_lock);
   1189      1.125        ad 	KASSERT((((vaddr_t)v + pp->pr_itemoffset) & (pp->pr_align - 1)) == 0);
   1190      1.125        ad 	FREECHECK_OUT(&pp->pr_freecheck, v);
   1191        1.1        pk 	return (v);
   1192        1.1        pk }
   1193        1.1        pk 
   1194        1.1        pk /*
   1195       1.43   thorpej  * Internal version of pool_put().  Pool is already locked/entered.
   1196        1.1        pk  */
   1197       1.43   thorpej static void
   1198      1.101   thorpej pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
   1199        1.1        pk {
   1200        1.1        pk 	struct pool_item *pi = v;
   1201        1.3        pk 	struct pool_item_header *ph;
   1202        1.3        pk 
   1203      1.134        ad 	KASSERT(mutex_owned(&pp->pr_lock));
   1204      1.125        ad 	FREECHECK_IN(&pp->pr_freecheck, v);
   1205      1.134        ad 	LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
   1206       1.61       chs 
   1207       1.30   thorpej #ifdef DIAGNOSTIC
   1208       1.34   thorpej 	if (__predict_false(pp->pr_nout == 0)) {
   1209       1.30   thorpej 		printf("pool %s: putting with none out\n",
   1210       1.30   thorpej 		    pp->pr_wchan);
   1211       1.30   thorpej 		panic("pool_put");
   1212       1.30   thorpej 	}
   1213       1.30   thorpej #endif
   1214        1.3        pk 
   1215      1.121      yamt 	if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
   1216       1.25   thorpej 		pr_printlog(pp, NULL, printf);
   1217        1.3        pk 		panic("pool_put: %s: page header missing", pp->pr_wchan);
   1218        1.3        pk 	}
   1219       1.28   thorpej 
   1220        1.3        pk 	/*
   1221        1.3        pk 	 * Return to item list.
   1222        1.3        pk 	 */
   1223       1.97      yamt 	if (pp->pr_roflags & PR_NOTOUCH) {
   1224       1.97      yamt 		pr_item_notouch_put(pp, ph, v);
   1225       1.97      yamt 	} else {
   1226        1.2        pk #ifdef DIAGNOSTIC
   1227       1.97      yamt 		pi->pi_magic = PI_MAGIC;
   1228        1.3        pk #endif
   1229       1.32       chs #ifdef DEBUG
   1230       1.97      yamt 		{
   1231       1.97      yamt 			int i, *ip = v;
   1232       1.32       chs 
   1233       1.97      yamt 			for (i = 0; i < pp->pr_size / sizeof(int); i++) {
   1234       1.97      yamt 				*ip++ = PI_MAGIC;
   1235       1.97      yamt 			}
   1236       1.32       chs 		}
   1237       1.32       chs #endif
   1238       1.32       chs 
   1239      1.102       chs 		LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
   1240       1.97      yamt 	}
   1241       1.79   thorpej 	KDASSERT(ph->ph_nmissing != 0);
   1242        1.3        pk 	ph->ph_nmissing--;
   1243        1.3        pk 	pp->pr_nput++;
   1244       1.20   thorpej 	pp->pr_nitems++;
   1245       1.20   thorpej 	pp->pr_nout--;
   1246        1.3        pk 
   1247        1.3        pk 	/* Cancel "pool empty" condition if it exists */
   1248        1.3        pk 	if (pp->pr_curpage == NULL)
   1249        1.3        pk 		pp->pr_curpage = ph;
   1250        1.3        pk 
   1251        1.3        pk 	if (pp->pr_flags & PR_WANTED) {
   1252        1.3        pk 		pp->pr_flags &= ~PR_WANTED;
   1253       1.15        pk 		if (ph->ph_nmissing == 0)
   1254       1.15        pk 			pp->pr_nidle++;
   1255      1.134        ad 		cv_broadcast(&pp->pr_cv);
   1256        1.3        pk 		return;
   1257        1.3        pk 	}
   1258        1.3        pk 
   1259        1.3        pk 	/*
   1260       1.88       chs 	 * If this page is now empty, do one of two things:
   1261       1.21   thorpej 	 *
   1262       1.88       chs 	 *	(1) If we have more pages than the page high water mark,
   1263       1.96   thorpej 	 *	    free the page back to the system.  ONLY CONSIDER
   1264       1.90   thorpej 	 *	    FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
   1265       1.90   thorpej 	 *	    CLAIM.
   1266       1.21   thorpej 	 *
   1267       1.88       chs 	 *	(2) Otherwise, move the page to the empty page list.
   1268       1.88       chs 	 *
   1269       1.88       chs 	 * Either way, select a new current page (so we use a partially-full
   1270       1.88       chs 	 * page if one is available).
   1271        1.3        pk 	 */
   1272        1.3        pk 	if (ph->ph_nmissing == 0) {
   1273        1.6   thorpej 		pp->pr_nidle++;
   1274       1.90   thorpej 		if (pp->pr_npages > pp->pr_minpages &&
   1275       1.90   thorpej 		    (pp->pr_npages > pp->pr_maxpages ||
   1276      1.117      yamt 		     pa_starved_p(pp->pr_alloc))) {
   1277      1.101   thorpej 			pr_rmpage(pp, ph, pq);
   1278        1.3        pk 		} else {
   1279       1.88       chs 			LIST_REMOVE(ph, ph_pagelist);
   1280       1.88       chs 			LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
   1281        1.3        pk 
   1282       1.21   thorpej 			/*
   1283       1.21   thorpej 			 * Update the timestamp on the page.  A page must
   1284       1.21   thorpej 			 * be idle for some period of time before it can
   1285       1.21   thorpej 			 * be reclaimed by the pagedaemon.  This minimizes
   1286       1.21   thorpej 			 * ping-pong'ing for memory.
   1287       1.21   thorpej 			 */
   1288      1.118    kardel 			getmicrotime(&ph->ph_time);
   1289        1.1        pk 		}
   1290       1.88       chs 		pool_update_curpage(pp);
   1291        1.1        pk 	}
   1292       1.88       chs 
   1293       1.21   thorpej 	/*
   1294       1.88       chs 	 * If the page was previously completely full, move it to the
   1295       1.88       chs 	 * partially-full list and make it the current page.  The next
   1296       1.88       chs 	 * allocation will get the item from this page, instead of
   1297       1.88       chs 	 * further fragmenting the pool.
   1298       1.21   thorpej 	 */
   1299       1.21   thorpej 	else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
   1300       1.88       chs 		LIST_REMOVE(ph, ph_pagelist);
   1301       1.88       chs 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
   1302       1.21   thorpej 		pp->pr_curpage = ph;
   1303       1.21   thorpej 	}
   1304       1.43   thorpej }
   1305       1.43   thorpej 
   1306       1.43   thorpej /*
   1307      1.134        ad  * Return resource to the pool.
   1308       1.43   thorpej  */
   1309       1.59   thorpej #ifdef POOL_DIAGNOSTIC
   1310       1.43   thorpej void
   1311       1.43   thorpej _pool_put(struct pool *pp, void *v, const char *file, long line)
   1312       1.43   thorpej {
   1313      1.101   thorpej 	struct pool_pagelist pq;
   1314      1.101   thorpej 
   1315      1.101   thorpej 	LIST_INIT(&pq);
   1316       1.43   thorpej 
   1317      1.134        ad 	mutex_enter(&pp->pr_lock);
   1318       1.43   thorpej 	pr_enter(pp, file, line);
   1319       1.43   thorpej 
   1320       1.56  sommerfe 	pr_log(pp, v, PRLOG_PUT, file, line);
   1321       1.56  sommerfe 
   1322      1.101   thorpej 	pool_do_put(pp, v, &pq);
   1323       1.21   thorpej 
   1324       1.25   thorpej 	pr_leave(pp);
   1325      1.134        ad 	mutex_exit(&pp->pr_lock);
   1326      1.101   thorpej 
   1327      1.102       chs 	pr_pagelist_free(pp, &pq);
   1328        1.1        pk }
   1329       1.57  sommerfe #undef pool_put
   1330       1.59   thorpej #endif /* POOL_DIAGNOSTIC */
   1331        1.1        pk 
   1332       1.56  sommerfe void
   1333       1.56  sommerfe pool_put(struct pool *pp, void *v)
   1334       1.56  sommerfe {
   1335      1.101   thorpej 	struct pool_pagelist pq;
   1336      1.101   thorpej 
   1337      1.101   thorpej 	LIST_INIT(&pq);
   1338       1.56  sommerfe 
   1339      1.134        ad 	mutex_enter(&pp->pr_lock);
   1340      1.101   thorpej 	pool_do_put(pp, v, &pq);
   1341      1.134        ad 	mutex_exit(&pp->pr_lock);
   1342       1.56  sommerfe 
   1343      1.102       chs 	pr_pagelist_free(pp, &pq);
   1344       1.56  sommerfe }
   1345       1.57  sommerfe 
   1346       1.59   thorpej #ifdef POOL_DIAGNOSTIC
   1347       1.57  sommerfe #define		pool_put(h, v)	_pool_put((h), (v), __FILE__, __LINE__)
   1348       1.56  sommerfe #endif
   1349       1.74   thorpej 
   1350       1.74   thorpej /*
   1351      1.113      yamt  * pool_grow: grow a pool by a page.
   1352      1.113      yamt  *
   1353      1.113      yamt  * => called with pool locked.
   1354      1.113      yamt  * => unlock and relock the pool.
   1355      1.113      yamt  * => return with pool locked.
   1356      1.113      yamt  */
   1357      1.113      yamt 
   1358      1.113      yamt static int
   1359      1.113      yamt pool_grow(struct pool *pp, int flags)
   1360      1.113      yamt {
   1361      1.113      yamt 	struct pool_item_header *ph = NULL;
   1362      1.113      yamt 	char *cp;
   1363      1.113      yamt 
   1364      1.134        ad 	mutex_exit(&pp->pr_lock);
   1365      1.113      yamt 	cp = pool_allocator_alloc(pp, flags);
   1366      1.113      yamt 	if (__predict_true(cp != NULL)) {
   1367      1.113      yamt 		ph = pool_alloc_item_header(pp, cp, flags);
   1368      1.113      yamt 	}
   1369      1.113      yamt 	if (__predict_false(cp == NULL || ph == NULL)) {
   1370      1.113      yamt 		if (cp != NULL) {
   1371      1.113      yamt 			pool_allocator_free(pp, cp);
   1372      1.113      yamt 		}
   1373      1.134        ad 		mutex_enter(&pp->pr_lock);
   1374      1.113      yamt 		return ENOMEM;
   1375      1.113      yamt 	}
   1376      1.113      yamt 
   1377      1.134        ad 	mutex_enter(&pp->pr_lock);
   1378      1.113      yamt 	pool_prime_page(pp, cp, ph);
   1379      1.113      yamt 	pp->pr_npagealloc++;
   1380      1.113      yamt 	return 0;
   1381      1.113      yamt }
   1382      1.113      yamt 
   1383      1.113      yamt /*
   1384       1.74   thorpej  * Add N items to the pool.
   1385       1.74   thorpej  */
   1386       1.74   thorpej int
   1387       1.74   thorpej pool_prime(struct pool *pp, int n)
   1388       1.74   thorpej {
   1389       1.75    simonb 	int newpages;
   1390      1.113      yamt 	int error = 0;
   1391       1.74   thorpej 
   1392      1.134        ad 	mutex_enter(&pp->pr_lock);
   1393       1.74   thorpej 
   1394       1.74   thorpej 	newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1395       1.74   thorpej 
   1396       1.74   thorpej 	while (newpages-- > 0) {
   1397      1.113      yamt 		error = pool_grow(pp, PR_NOWAIT);
   1398      1.113      yamt 		if (error) {
   1399       1.74   thorpej 			break;
   1400       1.74   thorpej 		}
   1401       1.74   thorpej 		pp->pr_minpages++;
   1402       1.74   thorpej 	}
   1403       1.74   thorpej 
   1404       1.74   thorpej 	if (pp->pr_minpages >= pp->pr_maxpages)
   1405       1.74   thorpej 		pp->pr_maxpages = pp->pr_minpages + 1;	/* XXX */
   1406       1.74   thorpej 
   1407      1.134        ad 	mutex_exit(&pp->pr_lock);
   1408      1.113      yamt 	return error;
   1409       1.74   thorpej }
   1410       1.55   thorpej 
   1411       1.55   thorpej /*
   1412        1.3        pk  * Add a page worth of items to the pool.
   1413       1.21   thorpej  *
   1414       1.21   thorpej  * Note, we must be called with the pool descriptor LOCKED.
   1415        1.3        pk  */
   1416       1.55   thorpej static void
   1417      1.128  christos pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
   1418        1.3        pk {
   1419        1.3        pk 	struct pool_item *pi;
   1420      1.128  christos 	void *cp = storage;
   1421      1.125        ad 	const unsigned int align = pp->pr_align;
   1422      1.125        ad 	const unsigned int ioff = pp->pr_itemoffset;
   1423       1.55   thorpej 	int n;
   1424       1.36        pk 
   1425      1.134        ad 	KASSERT(mutex_owned(&pp->pr_lock));
   1426       1.91      yamt 
   1427       1.66   thorpej #ifdef DIAGNOSTIC
   1428      1.121      yamt 	if ((pp->pr_roflags & PR_NOALIGN) == 0 &&
   1429      1.121      yamt 	    ((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) != 0)
   1430       1.36        pk 		panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
   1431       1.66   thorpej #endif
   1432        1.3        pk 
   1433        1.3        pk 	/*
   1434        1.3        pk 	 * Insert page header.
   1435        1.3        pk 	 */
   1436       1.88       chs 	LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
   1437      1.102       chs 	LIST_INIT(&ph->ph_itemlist);
   1438        1.3        pk 	ph->ph_page = storage;
   1439        1.3        pk 	ph->ph_nmissing = 0;
   1440      1.118    kardel 	getmicrotime(&ph->ph_time);
   1441       1.88       chs 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
   1442       1.88       chs 		SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
   1443        1.3        pk 
   1444        1.6   thorpej 	pp->pr_nidle++;
   1445        1.6   thorpej 
   1446        1.3        pk 	/*
   1447        1.3        pk 	 * Color this page.
   1448        1.3        pk 	 */
   1449  1.138.4.1    bouyer 	ph->ph_off = pp->pr_curcolor;
   1450  1.138.4.1    bouyer 	cp = (char *)cp + ph->ph_off;
   1451        1.3        pk 	if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
   1452        1.3        pk 		pp->pr_curcolor = 0;
   1453        1.3        pk 
   1454        1.3        pk 	/*
   1455        1.3        pk 	 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
   1456        1.3        pk 	 */
   1457        1.3        pk 	if (ioff != 0)
   1458      1.128  christos 		cp = (char *)cp + align - ioff;
   1459        1.3        pk 
   1460      1.125        ad 	KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
   1461      1.125        ad 
   1462        1.3        pk 	/*
   1463        1.3        pk 	 * Insert remaining chunks on the bucket list.
   1464        1.3        pk 	 */
   1465        1.3        pk 	n = pp->pr_itemsperpage;
   1466       1.20   thorpej 	pp->pr_nitems += n;
   1467        1.3        pk 
   1468       1.97      yamt 	if (pp->pr_roflags & PR_NOTOUCH) {
   1469      1.135      yamt 		pr_item_notouch_init(pp, ph);
   1470       1.97      yamt 	} else {
   1471       1.97      yamt 		while (n--) {
   1472       1.97      yamt 			pi = (struct pool_item *)cp;
   1473       1.78   thorpej 
   1474       1.97      yamt 			KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0);
   1475        1.3        pk 
   1476       1.97      yamt 			/* Insert on page list */
   1477      1.102       chs 			LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
   1478        1.3        pk #ifdef DIAGNOSTIC
   1479       1.97      yamt 			pi->pi_magic = PI_MAGIC;
   1480        1.3        pk #endif
   1481      1.128  christos 			cp = (char *)cp + pp->pr_size;
   1482      1.125        ad 
   1483      1.125        ad 			KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
   1484       1.97      yamt 		}
   1485        1.3        pk 	}
   1486        1.3        pk 
   1487        1.3        pk 	/*
   1488        1.3        pk 	 * If the pool was depleted, point at the new page.
   1489        1.3        pk 	 */
   1490        1.3        pk 	if (pp->pr_curpage == NULL)
   1491        1.3        pk 		pp->pr_curpage = ph;
   1492        1.3        pk 
   1493        1.3        pk 	if (++pp->pr_npages > pp->pr_hiwat)
   1494        1.3        pk 		pp->pr_hiwat = pp->pr_npages;
   1495        1.3        pk }
   1496        1.3        pk 
   1497       1.20   thorpej /*
   1498       1.52   thorpej  * Used by pool_get() when nitems drops below the low water mark.  This
   1499       1.88       chs  * is used to catch up pr_nitems with the low water mark.
   1500       1.20   thorpej  *
   1501       1.21   thorpej  * Note 1, we never wait for memory here, we let the caller decide what to do.
   1502       1.20   thorpej  *
   1503       1.73   thorpej  * Note 2, we must be called with the pool already locked, and we return
   1504       1.20   thorpej  * with it locked.
   1505       1.20   thorpej  */
   1506       1.20   thorpej static int
   1507       1.42   thorpej pool_catchup(struct pool *pp)
   1508       1.20   thorpej {
   1509       1.20   thorpej 	int error = 0;
   1510       1.20   thorpej 
   1511       1.54   thorpej 	while (POOL_NEEDS_CATCHUP(pp)) {
   1512      1.113      yamt 		error = pool_grow(pp, PR_NOWAIT);
   1513      1.113      yamt 		if (error) {
   1514       1.20   thorpej 			break;
   1515       1.20   thorpej 		}
   1516       1.20   thorpej 	}
   1517      1.113      yamt 	return error;
   1518       1.20   thorpej }
   1519       1.20   thorpej 
   1520       1.88       chs static void
   1521       1.88       chs pool_update_curpage(struct pool *pp)
   1522       1.88       chs {
   1523       1.88       chs 
   1524       1.88       chs 	pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
   1525       1.88       chs 	if (pp->pr_curpage == NULL) {
   1526       1.88       chs 		pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
   1527       1.88       chs 	}
   1528       1.88       chs }
   1529       1.88       chs 
   1530        1.3        pk void
   1531       1.42   thorpej pool_setlowat(struct pool *pp, int n)
   1532        1.3        pk {
   1533       1.15        pk 
   1534      1.134        ad 	mutex_enter(&pp->pr_lock);
   1535       1.21   thorpej 
   1536        1.3        pk 	pp->pr_minitems = n;
   1537       1.15        pk 	pp->pr_minpages = (n == 0)
   1538       1.15        pk 		? 0
   1539       1.18   thorpej 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1540       1.20   thorpej 
   1541       1.20   thorpej 	/* Make sure we're caught up with the newly-set low water mark. */
   1542       1.75    simonb 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
   1543       1.20   thorpej 		/*
   1544       1.20   thorpej 		 * XXX: Should we log a warning?  Should we set up a timeout
   1545       1.20   thorpej 		 * to try again in a second or so?  The latter could break
   1546       1.20   thorpej 		 * a caller's assumptions about interrupt protection, etc.
   1547       1.20   thorpej 		 */
   1548       1.20   thorpej 	}
   1549       1.21   thorpej 
   1550      1.134        ad 	mutex_exit(&pp->pr_lock);
   1551        1.3        pk }
   1552        1.3        pk 
   1553        1.3        pk void
   1554       1.42   thorpej pool_sethiwat(struct pool *pp, int n)
   1555        1.3        pk {
   1556       1.15        pk 
   1557      1.134        ad 	mutex_enter(&pp->pr_lock);
   1558       1.21   thorpej 
   1559       1.15        pk 	pp->pr_maxpages = (n == 0)
   1560       1.15        pk 		? 0
   1561       1.18   thorpej 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1562       1.21   thorpej 
   1563      1.134        ad 	mutex_exit(&pp->pr_lock);
   1564        1.3        pk }
   1565        1.3        pk 
   1566       1.20   thorpej void
   1567       1.42   thorpej pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
   1568       1.20   thorpej {
   1569       1.20   thorpej 
   1570      1.134        ad 	mutex_enter(&pp->pr_lock);
   1571       1.20   thorpej 
   1572       1.20   thorpej 	pp->pr_hardlimit = n;
   1573       1.20   thorpej 	pp->pr_hardlimit_warning = warnmess;
   1574       1.31   thorpej 	pp->pr_hardlimit_ratecap.tv_sec = ratecap;
   1575       1.31   thorpej 	pp->pr_hardlimit_warning_last.tv_sec = 0;
   1576       1.31   thorpej 	pp->pr_hardlimit_warning_last.tv_usec = 0;
   1577       1.20   thorpej 
   1578       1.20   thorpej 	/*
   1579       1.21   thorpej 	 * In-line version of pool_sethiwat(), because we don't want to
   1580       1.21   thorpej 	 * release the lock.
   1581       1.20   thorpej 	 */
   1582       1.20   thorpej 	pp->pr_maxpages = (n == 0)
   1583       1.20   thorpej 		? 0
   1584       1.20   thorpej 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1585       1.21   thorpej 
   1586      1.134        ad 	mutex_exit(&pp->pr_lock);
   1587       1.20   thorpej }
   1588        1.3        pk 
   1589        1.3        pk /*
   1590        1.3        pk  * Release all complete pages that have not been used recently.
   1591        1.3        pk  */
   1592       1.66   thorpej int
   1593       1.59   thorpej #ifdef POOL_DIAGNOSTIC
   1594       1.42   thorpej _pool_reclaim(struct pool *pp, const char *file, long line)
   1595       1.56  sommerfe #else
   1596       1.56  sommerfe pool_reclaim(struct pool *pp)
   1597       1.56  sommerfe #endif
   1598        1.3        pk {
   1599        1.3        pk 	struct pool_item_header *ph, *phnext;
   1600       1.61       chs 	struct pool_pagelist pq;
   1601      1.102       chs 	struct timeval curtime, diff;
   1602      1.134        ad 	bool klock;
   1603      1.134        ad 	int rv;
   1604        1.3        pk 
   1605       1.68   thorpej 	if (pp->pr_drain_hook != NULL) {
   1606       1.68   thorpej 		/*
   1607       1.68   thorpej 		 * The drain hook must be called with the pool unlocked.
   1608       1.68   thorpej 		 */
   1609       1.68   thorpej 		(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
   1610       1.68   thorpej 	}
   1611       1.68   thorpej 
   1612      1.134        ad 	/*
   1613      1.134        ad 	 * XXXSMP Because mutexes at IPL_SOFTXXX are still spinlocks,
   1614      1.134        ad 	 * and we are called from the pagedaemon without kernel_lock.
   1615      1.134        ad 	 * Does not apply to IPL_SOFTBIO.
   1616      1.134        ad 	 */
   1617      1.134        ad 	if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK ||
   1618      1.134        ad 	    pp->pr_ipl == IPL_SOFTSERIAL) {
   1619      1.134        ad 		KERNEL_LOCK(1, NULL);
   1620      1.134        ad 		klock = true;
   1621      1.134        ad 	} else
   1622      1.134        ad 		klock = false;
   1623      1.134        ad 
   1624      1.134        ad 	/* Reclaim items from the pool's cache (if any). */
   1625      1.134        ad 	if (pp->pr_cache != NULL)
   1626      1.134        ad 		pool_cache_invalidate(pp->pr_cache);
   1627      1.134        ad 
   1628      1.134        ad 	if (mutex_tryenter(&pp->pr_lock) == 0) {
   1629      1.134        ad 		if (klock) {
   1630      1.134        ad 			KERNEL_UNLOCK_ONE(NULL);
   1631      1.134        ad 		}
   1632       1.66   thorpej 		return (0);
   1633      1.134        ad 	}
   1634       1.25   thorpej 	pr_enter(pp, file, line);
   1635       1.68   thorpej 
   1636       1.88       chs 	LIST_INIT(&pq);
   1637       1.43   thorpej 
   1638      1.118    kardel 	getmicrotime(&curtime);
   1639       1.21   thorpej 
   1640       1.88       chs 	for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
   1641       1.88       chs 		phnext = LIST_NEXT(ph, ph_pagelist);
   1642        1.3        pk 
   1643        1.3        pk 		/* Check our minimum page claim */
   1644        1.3        pk 		if (pp->pr_npages <= pp->pr_minpages)
   1645        1.3        pk 			break;
   1646        1.3        pk 
   1647       1.88       chs 		KASSERT(ph->ph_nmissing == 0);
   1648       1.88       chs 		timersub(&curtime, &ph->ph_time, &diff);
   1649      1.117      yamt 		if (diff.tv_sec < pool_inactive_time
   1650      1.117      yamt 		    && !pa_starved_p(pp->pr_alloc))
   1651       1.88       chs 			continue;
   1652       1.21   thorpej 
   1653       1.88       chs 		/*
   1654       1.88       chs 		 * If freeing this page would put us below
   1655       1.88       chs 		 * the low water mark, stop now.
   1656       1.88       chs 		 */
   1657       1.88       chs 		if ((pp->pr_nitems - pp->pr_itemsperpage) <
   1658       1.88       chs 		    pp->pr_minitems)
   1659       1.88       chs 			break;
   1660       1.21   thorpej 
   1661       1.88       chs 		pr_rmpage(pp, ph, &pq);
   1662        1.3        pk 	}
   1663        1.3        pk 
   1664       1.25   thorpej 	pr_leave(pp);
   1665      1.134        ad 	mutex_exit(&pp->pr_lock);
   1666      1.134        ad 
   1667      1.134        ad 	if (LIST_EMPTY(&pq))
   1668      1.134        ad 		rv = 0;
   1669      1.134        ad 	else {
   1670      1.134        ad 		pr_pagelist_free(pp, &pq);
   1671      1.134        ad 		rv = 1;
   1672      1.134        ad 	}
   1673      1.134        ad 
   1674      1.134        ad 	if (klock) {
   1675      1.134        ad 		KERNEL_UNLOCK_ONE(NULL);
   1676      1.134        ad 	}
   1677       1.66   thorpej 
   1678      1.134        ad 	return (rv);
   1679        1.3        pk }
   1680        1.3        pk 
   1681        1.3        pk /*
   1682      1.134        ad  * Drain pools, one at a time.  This is a two stage process;
   1683      1.134        ad  * drain_start kicks off a cross call to drain CPU-level caches
   1684      1.134        ad  * if the pool has an associated pool_cache.  drain_end waits
   1685      1.134        ad  * for those cross calls to finish, and then drains the cache
   1686      1.134        ad  * (if any) and pool.
   1687      1.131        ad  *
   1688      1.134        ad  * Note, must never be called from interrupt context.
   1689        1.3        pk  */
   1690        1.3        pk void
   1691      1.134        ad pool_drain_start(struct pool **ppp, uint64_t *wp)
   1692        1.3        pk {
   1693        1.3        pk 	struct pool *pp;
   1694      1.134        ad 
   1695      1.134        ad 	KASSERT(!LIST_EMPTY(&pool_head));
   1696        1.3        pk 
   1697       1.61       chs 	pp = NULL;
   1698      1.134        ad 
   1699      1.134        ad 	/* Find next pool to drain, and add a reference. */
   1700      1.134        ad 	mutex_enter(&pool_head_lock);
   1701      1.134        ad 	do {
   1702      1.134        ad 		if (drainpp == NULL) {
   1703      1.134        ad 			drainpp = LIST_FIRST(&pool_head);
   1704      1.134        ad 		}
   1705      1.134        ad 		if (drainpp != NULL) {
   1706      1.134        ad 			pp = drainpp;
   1707      1.134        ad 			drainpp = LIST_NEXT(pp, pr_poollist);
   1708      1.134        ad 		}
   1709      1.134        ad 		/*
   1710      1.134        ad 		 * Skip completely idle pools.  We depend on at least
   1711      1.134        ad 		 * one pool in the system being active.
   1712      1.134        ad 		 */
   1713      1.134        ad 	} while (pp == NULL || pp->pr_npages == 0);
   1714      1.134        ad 	pp->pr_refcnt++;
   1715      1.134        ad 	mutex_exit(&pool_head_lock);
   1716      1.134        ad 
   1717      1.134        ad 	/* If there is a pool_cache, drain CPU level caches. */
   1718      1.134        ad 	*ppp = pp;
   1719      1.134        ad 	if (pp->pr_cache != NULL) {
   1720      1.134        ad 		*wp = xc_broadcast(0, (xcfunc_t)pool_cache_xcall,
   1721      1.134        ad 		    pp->pr_cache, NULL);
   1722      1.134        ad 	}
   1723      1.134        ad }
   1724      1.134        ad 
   1725      1.134        ad void
   1726      1.134        ad pool_drain_end(struct pool *pp, uint64_t where)
   1727      1.134        ad {
   1728      1.134        ad 
   1729      1.134        ad 	if (pp == NULL)
   1730      1.134        ad 		return;
   1731      1.134        ad 
   1732      1.134        ad 	KASSERT(pp->pr_refcnt > 0);
   1733      1.134        ad 
   1734      1.134        ad 	/* Wait for remote draining to complete. */
   1735      1.134        ad 	if (pp->pr_cache != NULL)
   1736      1.134        ad 		xc_wait(where);
   1737      1.134        ad 
   1738      1.134        ad 	/* Drain the cache (if any) and pool.. */
   1739      1.134        ad 	pool_reclaim(pp);
   1740      1.134        ad 
   1741      1.134        ad 	/* Finally, unlock the pool. */
   1742      1.134        ad 	mutex_enter(&pool_head_lock);
   1743      1.134        ad 	pp->pr_refcnt--;
   1744      1.134        ad 	cv_broadcast(&pool_busy);
   1745      1.134        ad 	mutex_exit(&pool_head_lock);
   1746        1.3        pk }
   1747        1.3        pk 
   1748        1.3        pk /*
   1749        1.3        pk  * Diagnostic helpers.
   1750        1.3        pk  */
   1751        1.3        pk void
   1752       1.42   thorpej pool_print(struct pool *pp, const char *modif)
   1753       1.21   thorpej {
   1754       1.21   thorpej 
   1755       1.25   thorpej 	pool_print1(pp, modif, printf);
   1756       1.21   thorpej }
   1757       1.21   thorpej 
   1758       1.25   thorpej void
   1759      1.108      yamt pool_printall(const char *modif, void (*pr)(const char *, ...))
   1760      1.108      yamt {
   1761      1.108      yamt 	struct pool *pp;
   1762      1.108      yamt 
   1763      1.108      yamt 	LIST_FOREACH(pp, &pool_head, pr_poollist) {
   1764      1.108      yamt 		pool_printit(pp, modif, pr);
   1765      1.108      yamt 	}
   1766      1.108      yamt }
   1767      1.108      yamt 
   1768      1.108      yamt void
   1769       1.42   thorpej pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1770       1.25   thorpej {
   1771       1.25   thorpej 
   1772       1.25   thorpej 	if (pp == NULL) {
   1773       1.25   thorpej 		(*pr)("Must specify a pool to print.\n");
   1774       1.25   thorpej 		return;
   1775       1.25   thorpej 	}
   1776       1.25   thorpej 
   1777       1.25   thorpej 	pool_print1(pp, modif, pr);
   1778       1.25   thorpej }
   1779       1.25   thorpej 
   1780       1.21   thorpej static void
   1781      1.124      yamt pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
   1782       1.97      yamt     void (*pr)(const char *, ...))
   1783       1.88       chs {
   1784       1.88       chs 	struct pool_item_header *ph;
   1785       1.88       chs #ifdef DIAGNOSTIC
   1786       1.88       chs 	struct pool_item *pi;
   1787       1.88       chs #endif
   1788       1.88       chs 
   1789       1.88       chs 	LIST_FOREACH(ph, pl, ph_pagelist) {
   1790       1.88       chs 		(*pr)("\t\tpage %p, nmissing %d, time %lu,%lu\n",
   1791       1.88       chs 		    ph->ph_page, ph->ph_nmissing,
   1792       1.88       chs 		    (u_long)ph->ph_time.tv_sec,
   1793       1.88       chs 		    (u_long)ph->ph_time.tv_usec);
   1794       1.88       chs #ifdef DIAGNOSTIC
   1795       1.97      yamt 		if (!(pp->pr_roflags & PR_NOTOUCH)) {
   1796      1.102       chs 			LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
   1797       1.97      yamt 				if (pi->pi_magic != PI_MAGIC) {
   1798       1.97      yamt 					(*pr)("\t\t\titem %p, magic 0x%x\n",
   1799       1.97      yamt 					    pi, pi->pi_magic);
   1800       1.97      yamt 				}
   1801       1.88       chs 			}
   1802       1.88       chs 		}
   1803       1.88       chs #endif
   1804       1.88       chs 	}
   1805       1.88       chs }
   1806       1.88       chs 
   1807       1.88       chs static void
   1808       1.42   thorpej pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1809        1.3        pk {
   1810       1.25   thorpej 	struct pool_item_header *ph;
   1811      1.134        ad 	pool_cache_t pc;
   1812      1.134        ad 	pcg_t *pcg;
   1813      1.134        ad 	pool_cache_cpu_t *cc;
   1814      1.134        ad 	uint64_t cpuhit, cpumiss;
   1815       1.44   thorpej 	int i, print_log = 0, print_pagelist = 0, print_cache = 0;
   1816       1.25   thorpej 	char c;
   1817       1.25   thorpej 
   1818       1.25   thorpej 	while ((c = *modif++) != '\0') {
   1819       1.25   thorpej 		if (c == 'l')
   1820       1.25   thorpej 			print_log = 1;
   1821       1.25   thorpej 		if (c == 'p')
   1822       1.25   thorpej 			print_pagelist = 1;
   1823       1.44   thorpej 		if (c == 'c')
   1824       1.44   thorpej 			print_cache = 1;
   1825       1.25   thorpej 	}
   1826       1.25   thorpej 
   1827      1.134        ad 	if ((pc = pp->pr_cache) != NULL) {
   1828      1.134        ad 		(*pr)("POOL CACHE");
   1829      1.134        ad 	} else {
   1830      1.134        ad 		(*pr)("POOL");
   1831      1.134        ad 	}
   1832      1.134        ad 
   1833      1.134        ad 	(*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
   1834       1.25   thorpej 	    pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
   1835       1.25   thorpej 	    pp->pr_roflags);
   1836       1.66   thorpej 	(*pr)("\talloc %p\n", pp->pr_alloc);
   1837       1.25   thorpej 	(*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
   1838       1.25   thorpej 	    pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
   1839       1.25   thorpej 	(*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
   1840       1.25   thorpej 	    pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
   1841       1.25   thorpej 
   1842      1.134        ad 	(*pr)("\tnget %lu, nfail %lu, nput %lu\n",
   1843       1.25   thorpej 	    pp->pr_nget, pp->pr_nfail, pp->pr_nput);
   1844       1.25   thorpej 	(*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
   1845       1.25   thorpej 	    pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
   1846       1.25   thorpej 
   1847       1.25   thorpej 	if (print_pagelist == 0)
   1848       1.25   thorpej 		goto skip_pagelist;
   1849       1.25   thorpej 
   1850       1.88       chs 	if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
   1851       1.88       chs 		(*pr)("\n\tempty page list:\n");
   1852       1.97      yamt 	pool_print_pagelist(pp, &pp->pr_emptypages, pr);
   1853       1.88       chs 	if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
   1854       1.88       chs 		(*pr)("\n\tfull page list:\n");
   1855       1.97      yamt 	pool_print_pagelist(pp, &pp->pr_fullpages, pr);
   1856       1.88       chs 	if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
   1857       1.88       chs 		(*pr)("\n\tpartial-page list:\n");
   1858       1.97      yamt 	pool_print_pagelist(pp, &pp->pr_partpages, pr);
   1859       1.88       chs 
   1860       1.25   thorpej 	if (pp->pr_curpage == NULL)
   1861       1.25   thorpej 		(*pr)("\tno current page\n");
   1862       1.25   thorpej 	else
   1863       1.25   thorpej 		(*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
   1864       1.25   thorpej 
   1865       1.25   thorpej  skip_pagelist:
   1866       1.25   thorpej 	if (print_log == 0)
   1867       1.25   thorpej 		goto skip_log;
   1868       1.25   thorpej 
   1869       1.25   thorpej 	(*pr)("\n");
   1870       1.25   thorpej 	if ((pp->pr_roflags & PR_LOGGING) == 0)
   1871       1.25   thorpej 		(*pr)("\tno log\n");
   1872      1.122  christos 	else {
   1873       1.25   thorpej 		pr_printlog(pp, NULL, pr);
   1874      1.122  christos 	}
   1875        1.3        pk 
   1876       1.25   thorpej  skip_log:
   1877       1.44   thorpej 
   1878      1.102       chs #define PR_GROUPLIST(pcg)						\
   1879      1.102       chs 	(*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail);		\
   1880      1.102       chs 	for (i = 0; i < PCG_NOBJECTS; i++) {				\
   1881      1.102       chs 		if (pcg->pcg_objects[i].pcgo_pa !=			\
   1882      1.102       chs 		    POOL_PADDR_INVALID) {				\
   1883      1.102       chs 			(*pr)("\t\t\t%p, 0x%llx\n",			\
   1884      1.102       chs 			    pcg->pcg_objects[i].pcgo_va,		\
   1885      1.102       chs 			    (unsigned long long)			\
   1886      1.102       chs 			    pcg->pcg_objects[i].pcgo_pa);		\
   1887      1.102       chs 		} else {						\
   1888      1.102       chs 			(*pr)("\t\t\t%p\n",				\
   1889      1.102       chs 			    pcg->pcg_objects[i].pcgo_va);		\
   1890      1.102       chs 		}							\
   1891      1.102       chs 	}
   1892      1.102       chs 
   1893      1.134        ad 	if (pc != NULL) {
   1894      1.134        ad 		cpuhit = 0;
   1895      1.134        ad 		cpumiss = 0;
   1896      1.134        ad 		for (i = 0; i < MAXCPUS; i++) {
   1897      1.134        ad 			if ((cc = pc->pc_cpus[i]) == NULL)
   1898      1.134        ad 				continue;
   1899      1.134        ad 			cpuhit += cc->cc_hits;
   1900      1.134        ad 			cpumiss += cc->cc_misses;
   1901      1.134        ad 		}
   1902      1.134        ad 		(*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
   1903      1.134        ad 		(*pr)("\tcache layer hits %llu misses %llu\n",
   1904      1.134        ad 		    pc->pc_hits, pc->pc_misses);
   1905      1.134        ad 		(*pr)("\tcache layer entry uncontended %llu contended %llu\n",
   1906      1.134        ad 		    pc->pc_hits + pc->pc_misses - pc->pc_contended,
   1907      1.134        ad 		    pc->pc_contended);
   1908      1.134        ad 		(*pr)("\tcache layer empty groups %u full groups %u\n",
   1909      1.134        ad 		    pc->pc_nempty, pc->pc_nfull);
   1910      1.134        ad 		if (print_cache) {
   1911      1.134        ad 			(*pr)("\tfull cache groups:\n");
   1912      1.134        ad 			for (pcg = pc->pc_fullgroups; pcg != NULL;
   1913      1.134        ad 			    pcg = pcg->pcg_next) {
   1914      1.134        ad 				PR_GROUPLIST(pcg);
   1915      1.134        ad 			}
   1916      1.134        ad 			(*pr)("\tempty cache groups:\n");
   1917      1.134        ad 			for (pcg = pc->pc_emptygroups; pcg != NULL;
   1918      1.134        ad 			    pcg = pcg->pcg_next) {
   1919      1.134        ad 				PR_GROUPLIST(pcg);
   1920      1.134        ad 			}
   1921      1.103       chs 		}
   1922       1.44   thorpej 	}
   1923      1.102       chs #undef PR_GROUPLIST
   1924       1.44   thorpej 
   1925       1.88       chs 	pr_enter_check(pp, pr);
   1926       1.88       chs }
   1927       1.88       chs 
   1928       1.88       chs static int
   1929       1.88       chs pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
   1930       1.88       chs {
   1931       1.88       chs 	struct pool_item *pi;
   1932      1.128  christos 	void *page;
   1933       1.88       chs 	int n;
   1934       1.88       chs 
   1935      1.121      yamt 	if ((pp->pr_roflags & PR_NOALIGN) == 0) {
   1936      1.128  christos 		page = (void *)((uintptr_t)ph & pp->pr_alloc->pa_pagemask);
   1937      1.121      yamt 		if (page != ph->ph_page &&
   1938      1.121      yamt 		    (pp->pr_roflags & PR_PHINPAGE) != 0) {
   1939      1.121      yamt 			if (label != NULL)
   1940      1.121      yamt 				printf("%s: ", label);
   1941      1.121      yamt 			printf("pool(%p:%s): page inconsistency: page %p;"
   1942      1.121      yamt 			       " at page head addr %p (p %p)\n", pp,
   1943      1.121      yamt 				pp->pr_wchan, ph->ph_page,
   1944      1.121      yamt 				ph, page);
   1945      1.121      yamt 			return 1;
   1946      1.121      yamt 		}
   1947       1.88       chs 	}
   1948        1.3        pk 
   1949       1.97      yamt 	if ((pp->pr_roflags & PR_NOTOUCH) != 0)
   1950       1.97      yamt 		return 0;
   1951       1.97      yamt 
   1952      1.102       chs 	for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
   1953       1.88       chs 	     pi != NULL;
   1954      1.102       chs 	     pi = LIST_NEXT(pi,pi_list), n++) {
   1955       1.88       chs 
   1956       1.88       chs #ifdef DIAGNOSTIC
   1957       1.88       chs 		if (pi->pi_magic != PI_MAGIC) {
   1958       1.88       chs 			if (label != NULL)
   1959       1.88       chs 				printf("%s: ", label);
   1960       1.88       chs 			printf("pool(%s): free list modified: magic=%x;"
   1961      1.121      yamt 			       " page %p; item ordinal %d; addr %p\n",
   1962       1.88       chs 				pp->pr_wchan, pi->pi_magic, ph->ph_page,
   1963      1.121      yamt 				n, pi);
   1964       1.88       chs 			panic("pool");
   1965       1.88       chs 		}
   1966       1.88       chs #endif
   1967      1.121      yamt 		if ((pp->pr_roflags & PR_NOALIGN) != 0) {
   1968      1.121      yamt 			continue;
   1969      1.121      yamt 		}
   1970      1.128  christos 		page = (void *)((uintptr_t)pi & pp->pr_alloc->pa_pagemask);
   1971       1.88       chs 		if (page == ph->ph_page)
   1972       1.88       chs 			continue;
   1973       1.88       chs 
   1974       1.88       chs 		if (label != NULL)
   1975       1.88       chs 			printf("%s: ", label);
   1976       1.88       chs 		printf("pool(%p:%s): page inconsistency: page %p;"
   1977       1.88       chs 		       " item ordinal %d; addr %p (p %p)\n", pp,
   1978       1.88       chs 			pp->pr_wchan, ph->ph_page,
   1979       1.88       chs 			n, pi, page);
   1980       1.88       chs 		return 1;
   1981       1.88       chs 	}
   1982       1.88       chs 	return 0;
   1983        1.3        pk }
   1984        1.3        pk 
   1985       1.88       chs 
   1986        1.3        pk int
   1987       1.42   thorpej pool_chk(struct pool *pp, const char *label)
   1988        1.3        pk {
   1989        1.3        pk 	struct pool_item_header *ph;
   1990        1.3        pk 	int r = 0;
   1991        1.3        pk 
   1992      1.134        ad 	mutex_enter(&pp->pr_lock);
   1993       1.88       chs 	LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
   1994       1.88       chs 		r = pool_chk_page(pp, label, ph);
   1995       1.88       chs 		if (r) {
   1996       1.88       chs 			goto out;
   1997       1.88       chs 		}
   1998       1.88       chs 	}
   1999       1.88       chs 	LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
   2000       1.88       chs 		r = pool_chk_page(pp, label, ph);
   2001       1.88       chs 		if (r) {
   2002        1.3        pk 			goto out;
   2003        1.3        pk 		}
   2004       1.88       chs 	}
   2005       1.88       chs 	LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
   2006       1.88       chs 		r = pool_chk_page(pp, label, ph);
   2007       1.88       chs 		if (r) {
   2008        1.3        pk 			goto out;
   2009        1.3        pk 		}
   2010        1.3        pk 	}
   2011       1.88       chs 
   2012        1.3        pk out:
   2013      1.134        ad 	mutex_exit(&pp->pr_lock);
   2014        1.3        pk 	return (r);
   2015       1.43   thorpej }
   2016       1.43   thorpej 
   2017       1.43   thorpej /*
   2018       1.43   thorpej  * pool_cache_init:
   2019       1.43   thorpej  *
   2020       1.43   thorpej  *	Initialize a pool cache.
   2021      1.134        ad  */
   2022      1.134        ad pool_cache_t
   2023      1.134        ad pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
   2024      1.134        ad     const char *wchan, struct pool_allocator *palloc, int ipl,
   2025      1.134        ad     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
   2026      1.134        ad {
   2027      1.134        ad 	pool_cache_t pc;
   2028      1.134        ad 
   2029      1.134        ad 	pc = pool_get(&cache_pool, PR_WAITOK);
   2030      1.134        ad 	if (pc == NULL)
   2031      1.134        ad 		return NULL;
   2032      1.134        ad 
   2033      1.134        ad 	pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
   2034      1.134        ad 	   palloc, ipl, ctor, dtor, arg);
   2035      1.134        ad 
   2036      1.134        ad 	return pc;
   2037      1.134        ad }
   2038      1.134        ad 
   2039      1.134        ad /*
   2040      1.134        ad  * pool_cache_bootstrap:
   2041       1.43   thorpej  *
   2042      1.134        ad  *	Kernel-private version of pool_cache_init().  The caller
   2043      1.134        ad  *	provides initial storage.
   2044       1.43   thorpej  */
   2045       1.43   thorpej void
   2046      1.134        ad pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
   2047      1.134        ad     u_int align_offset, u_int flags, const char *wchan,
   2048      1.134        ad     struct pool_allocator *palloc, int ipl,
   2049      1.134        ad     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
   2050       1.43   thorpej     void *arg)
   2051       1.43   thorpej {
   2052      1.134        ad 	CPU_INFO_ITERATOR cii;
   2053      1.134        ad 	struct cpu_info *ci;
   2054      1.134        ad 	struct pool *pp;
   2055      1.134        ad 
   2056      1.134        ad 	pp = &pc->pc_pool;
   2057      1.134        ad 	if (palloc == NULL && ipl == IPL_NONE)
   2058      1.134        ad 		palloc = &pool_allocator_nointr;
   2059      1.134        ad 	pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl);
   2060       1.43   thorpej 
   2061      1.138        ad 	/*
   2062      1.138        ad 	 * XXXAD hack to prevent IP input processing from blocking.
   2063      1.138        ad 	 */
   2064      1.138        ad 	if (ipl == IPL_SOFTNET) {
   2065      1.138        ad 		mutex_init(&pc->pc_lock, MUTEX_DEFAULT, IPL_VM);
   2066      1.138        ad 	} else {
   2067      1.138        ad 		mutex_init(&pc->pc_lock, MUTEX_DEFAULT, ipl);
   2068      1.138        ad 	}
   2069       1.43   thorpej 
   2070      1.134        ad 	if (ctor == NULL) {
   2071      1.134        ad 		ctor = (int (*)(void *, void *, int))nullop;
   2072      1.134        ad 	}
   2073      1.134        ad 	if (dtor == NULL) {
   2074      1.134        ad 		dtor = (void (*)(void *, void *))nullop;
   2075      1.134        ad 	}
   2076       1.43   thorpej 
   2077      1.134        ad 	pc->pc_emptygroups = NULL;
   2078      1.134        ad 	pc->pc_fullgroups = NULL;
   2079      1.134        ad 	pc->pc_partgroups = NULL;
   2080       1.43   thorpej 	pc->pc_ctor = ctor;
   2081       1.43   thorpej 	pc->pc_dtor = dtor;
   2082       1.43   thorpej 	pc->pc_arg  = arg;
   2083      1.134        ad 	pc->pc_hits  = 0;
   2084       1.48   thorpej 	pc->pc_misses = 0;
   2085      1.134        ad 	pc->pc_nempty = 0;
   2086      1.134        ad 	pc->pc_npart = 0;
   2087      1.134        ad 	pc->pc_nfull = 0;
   2088      1.134        ad 	pc->pc_contended = 0;
   2089      1.134        ad 	pc->pc_refcnt = 0;
   2090      1.136      yamt 	pc->pc_freecheck = NULL;
   2091      1.134        ad 
   2092      1.134        ad 	/* Allocate per-CPU caches. */
   2093      1.134        ad 	memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
   2094      1.134        ad 	pc->pc_ncpu = 0;
   2095  1.138.4.1    bouyer 	if (ncpu < 2) {
   2096      1.137        ad 		/* XXX For sparc: boot CPU is not attached yet. */
   2097      1.137        ad 		pool_cache_cpu_init1(curcpu(), pc);
   2098      1.137        ad 	} else {
   2099      1.137        ad 		for (CPU_INFO_FOREACH(cii, ci)) {
   2100      1.137        ad 			pool_cache_cpu_init1(ci, pc);
   2101      1.137        ad 		}
   2102      1.134        ad 	}
   2103      1.134        ad 
   2104      1.134        ad 	if (__predict_true(!cold)) {
   2105      1.134        ad 		mutex_enter(&pp->pr_lock);
   2106      1.134        ad 		pp->pr_cache = pc;
   2107      1.134        ad 		mutex_exit(&pp->pr_lock);
   2108      1.134        ad 		mutex_enter(&pool_head_lock);
   2109      1.134        ad 		LIST_INSERT_HEAD(&pool_cache_head, pc, pc_cachelist);
   2110      1.134        ad 		mutex_exit(&pool_head_lock);
   2111      1.134        ad 	} else {
   2112      1.134        ad 		pp->pr_cache = pc;
   2113      1.134        ad 		LIST_INSERT_HEAD(&pool_cache_head, pc, pc_cachelist);
   2114      1.134        ad 	}
   2115       1.43   thorpej }
   2116       1.43   thorpej 
   2117       1.43   thorpej /*
   2118       1.43   thorpej  * pool_cache_destroy:
   2119       1.43   thorpej  *
   2120       1.43   thorpej  *	Destroy a pool cache.
   2121       1.43   thorpej  */
   2122       1.43   thorpej void
   2123      1.134        ad pool_cache_destroy(pool_cache_t pc)
   2124       1.43   thorpej {
   2125      1.134        ad 	struct pool *pp = &pc->pc_pool;
   2126      1.134        ad 	pool_cache_cpu_t *cc;
   2127      1.134        ad 	pcg_t *pcg;
   2128      1.134        ad 	int i;
   2129      1.134        ad 
   2130      1.134        ad 	/* Remove it from the global list. */
   2131      1.134        ad 	mutex_enter(&pool_head_lock);
   2132      1.134        ad 	while (pc->pc_refcnt != 0)
   2133      1.134        ad 		cv_wait(&pool_busy, &pool_head_lock);
   2134      1.134        ad 	LIST_REMOVE(pc, pc_cachelist);
   2135      1.134        ad 	mutex_exit(&pool_head_lock);
   2136       1.43   thorpej 
   2137       1.43   thorpej 	/* First, invalidate the entire cache. */
   2138       1.43   thorpej 	pool_cache_invalidate(pc);
   2139       1.43   thorpej 
   2140      1.134        ad 	/* Disassociate it from the pool. */
   2141      1.134        ad 	mutex_enter(&pp->pr_lock);
   2142      1.134        ad 	pp->pr_cache = NULL;
   2143      1.134        ad 	mutex_exit(&pp->pr_lock);
   2144      1.134        ad 
   2145      1.134        ad 	/* Destroy per-CPU data */
   2146      1.134        ad 	for (i = 0; i < MAXCPUS; i++) {
   2147      1.134        ad 		if ((cc = pc->pc_cpus[i]) == NULL)
   2148      1.134        ad 			continue;
   2149      1.134        ad 		if ((pcg = cc->cc_current) != NULL) {
   2150      1.134        ad 			pcg->pcg_next = NULL;
   2151      1.134        ad 			pool_cache_invalidate_groups(pc, pcg);
   2152      1.134        ad 		}
   2153      1.134        ad 		if ((pcg = cc->cc_previous) != NULL) {
   2154      1.134        ad 			pcg->pcg_next = NULL;
   2155      1.134        ad 			pool_cache_invalidate_groups(pc, pcg);
   2156      1.134        ad 		}
   2157      1.134        ad 		if (cc != &pc->pc_cpu0)
   2158      1.134        ad 			pool_put(&cache_cpu_pool, cc);
   2159      1.134        ad 	}
   2160      1.134        ad 
   2161      1.134        ad 	/* Finally, destroy it. */
   2162      1.134        ad 	mutex_destroy(&pc->pc_lock);
   2163      1.134        ad 	pool_destroy(pp);
   2164      1.134        ad 	pool_put(&cache_pool, pc);
   2165      1.134        ad }
   2166      1.134        ad 
   2167      1.134        ad /*
   2168      1.134        ad  * pool_cache_cpu_init1:
   2169      1.134        ad  *
   2170      1.134        ad  *	Called for each pool_cache whenever a new CPU is attached.
   2171      1.134        ad  */
   2172      1.134        ad static void
   2173      1.134        ad pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
   2174      1.134        ad {
   2175      1.134        ad 	pool_cache_cpu_t *cc;
   2176      1.137        ad 	int index;
   2177      1.134        ad 
   2178      1.137        ad 	index = ci->ci_index;
   2179      1.137        ad 
   2180      1.137        ad 	KASSERT(index < MAXCPUS);
   2181      1.134        ad 	KASSERT(((uintptr_t)pc->pc_cpus & (CACHE_LINE_SIZE - 1)) == 0);
   2182      1.134        ad 
   2183      1.137        ad 	if ((cc = pc->pc_cpus[index]) != NULL) {
   2184      1.137        ad 		KASSERT(cc->cc_cpuindex == index);
   2185      1.134        ad 		return;
   2186      1.134        ad 	}
   2187      1.134        ad 
   2188      1.134        ad 	/*
   2189      1.134        ad 	 * The first CPU is 'free'.  This needs to be the case for
   2190      1.134        ad 	 * bootstrap - we may not be able to allocate yet.
   2191      1.134        ad 	 */
   2192      1.134        ad 	if (pc->pc_ncpu == 0) {
   2193      1.134        ad 		cc = &pc->pc_cpu0;
   2194      1.134        ad 		pc->pc_ncpu = 1;
   2195      1.134        ad 	} else {
   2196      1.134        ad 		mutex_enter(&pc->pc_lock);
   2197      1.134        ad 		pc->pc_ncpu++;
   2198      1.134        ad 		mutex_exit(&pc->pc_lock);
   2199      1.134        ad 		cc = pool_get(&cache_cpu_pool, PR_WAITOK);
   2200      1.134        ad 	}
   2201      1.134        ad 
   2202      1.134        ad 	cc->cc_ipl = pc->pc_pool.pr_ipl;
   2203      1.134        ad 	cc->cc_iplcookie = makeiplcookie(cc->cc_ipl);
   2204      1.134        ad 	cc->cc_cache = pc;
   2205      1.137        ad 	cc->cc_cpuindex = index;
   2206      1.134        ad 	cc->cc_hits = 0;
   2207      1.134        ad 	cc->cc_misses = 0;
   2208      1.134        ad 	cc->cc_current = NULL;
   2209      1.134        ad 	cc->cc_previous = NULL;
   2210      1.134        ad 
   2211      1.137        ad 	pc->pc_cpus[index] = cc;
   2212       1.43   thorpej }
   2213       1.43   thorpej 
   2214      1.134        ad /*
   2215      1.134        ad  * pool_cache_cpu_init:
   2216      1.134        ad  *
   2217      1.134        ad  *	Called whenever a new CPU is attached.
   2218      1.134        ad  */
   2219      1.134        ad void
   2220      1.134        ad pool_cache_cpu_init(struct cpu_info *ci)
   2221       1.43   thorpej {
   2222      1.134        ad 	pool_cache_t pc;
   2223      1.134        ad 
   2224      1.134        ad 	mutex_enter(&pool_head_lock);
   2225      1.134        ad 	LIST_FOREACH(pc, &pool_cache_head, pc_cachelist) {
   2226      1.134        ad 		pc->pc_refcnt++;
   2227      1.134        ad 		mutex_exit(&pool_head_lock);
   2228       1.43   thorpej 
   2229      1.134        ad 		pool_cache_cpu_init1(ci, pc);
   2230       1.43   thorpej 
   2231      1.134        ad 		mutex_enter(&pool_head_lock);
   2232      1.134        ad 		pc->pc_refcnt--;
   2233      1.134        ad 		cv_broadcast(&pool_busy);
   2234      1.134        ad 	}
   2235      1.134        ad 	mutex_exit(&pool_head_lock);
   2236       1.43   thorpej }
   2237       1.43   thorpej 
   2238      1.134        ad /*
   2239      1.134        ad  * pool_cache_reclaim:
   2240      1.134        ad  *
   2241      1.134        ad  *	Reclaim memory from a pool cache.
   2242      1.134        ad  */
   2243      1.134        ad bool
   2244      1.134        ad pool_cache_reclaim(pool_cache_t pc)
   2245       1.43   thorpej {
   2246       1.43   thorpej 
   2247      1.134        ad 	return pool_reclaim(&pc->pc_pool);
   2248      1.134        ad }
   2249       1.43   thorpej 
   2250      1.136      yamt static void
   2251      1.136      yamt pool_cache_destruct_object1(pool_cache_t pc, void *object)
   2252      1.136      yamt {
   2253      1.136      yamt 
   2254      1.136      yamt 	(*pc->pc_dtor)(pc->pc_arg, object);
   2255      1.136      yamt 	pool_put(&pc->pc_pool, object);
   2256      1.136      yamt }
   2257      1.136      yamt 
   2258      1.134        ad /*
   2259      1.134        ad  * pool_cache_destruct_object:
   2260      1.134        ad  *
   2261      1.134        ad  *	Force destruction of an object and its release back into
   2262      1.134        ad  *	the pool.
   2263      1.134        ad  */
   2264      1.134        ad void
   2265      1.134        ad pool_cache_destruct_object(pool_cache_t pc, void *object)
   2266      1.134        ad {
   2267      1.134        ad 
   2268      1.136      yamt 	FREECHECK_IN(&pc->pc_freecheck, object);
   2269      1.136      yamt 
   2270      1.136      yamt 	pool_cache_destruct_object1(pc, object);
   2271       1.43   thorpej }
   2272       1.43   thorpej 
   2273      1.134        ad /*
   2274      1.134        ad  * pool_cache_invalidate_groups:
   2275      1.134        ad  *
   2276      1.134        ad  *	Invalidate a chain of groups and destruct all objects.
   2277      1.134        ad  */
   2278      1.102       chs static void
   2279      1.134        ad pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
   2280      1.102       chs {
   2281      1.134        ad 	void *object;
   2282      1.134        ad 	pcg_t *next;
   2283      1.134        ad 	int i;
   2284      1.134        ad 
   2285      1.134        ad 	for (; pcg != NULL; pcg = next) {
   2286      1.134        ad 		next = pcg->pcg_next;
   2287      1.134        ad 
   2288      1.134        ad 		for (i = 0; i < pcg->pcg_avail; i++) {
   2289      1.134        ad 			object = pcg->pcg_objects[i].pcgo_va;
   2290      1.136      yamt 			pool_cache_destruct_object1(pc, object);
   2291      1.134        ad 		}
   2292      1.102       chs 
   2293      1.102       chs 		pool_put(&pcgpool, pcg);
   2294      1.102       chs 	}
   2295      1.102       chs }
   2296      1.102       chs 
   2297       1.43   thorpej /*
   2298      1.134        ad  * pool_cache_invalidate:
   2299       1.43   thorpej  *
   2300      1.134        ad  *	Invalidate a pool cache (destruct and release all of the
   2301      1.134        ad  *	cached objects).  Does not reclaim objects from the pool.
   2302       1.43   thorpej  */
   2303      1.134        ad void
   2304      1.134        ad pool_cache_invalidate(pool_cache_t pc)
   2305      1.134        ad {
   2306      1.134        ad 	pcg_t *full, *empty, *part;
   2307      1.134        ad 
   2308      1.134        ad 	mutex_enter(&pc->pc_lock);
   2309      1.134        ad 	full = pc->pc_fullgroups;
   2310      1.134        ad 	empty = pc->pc_emptygroups;
   2311      1.134        ad 	part = pc->pc_partgroups;
   2312      1.134        ad 	pc->pc_fullgroups = NULL;
   2313      1.134        ad 	pc->pc_emptygroups = NULL;
   2314      1.134        ad 	pc->pc_partgroups = NULL;
   2315      1.134        ad 	pc->pc_nfull = 0;
   2316      1.134        ad 	pc->pc_nempty = 0;
   2317      1.134        ad 	pc->pc_npart = 0;
   2318      1.134        ad 	mutex_exit(&pc->pc_lock);
   2319      1.134        ad 
   2320      1.134        ad 	pool_cache_invalidate_groups(pc, full);
   2321      1.134        ad 	pool_cache_invalidate_groups(pc, empty);
   2322      1.134        ad 	pool_cache_invalidate_groups(pc, part);
   2323      1.134        ad }
   2324      1.134        ad 
   2325      1.134        ad void
   2326      1.134        ad pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
   2327      1.134        ad {
   2328      1.134        ad 
   2329      1.134        ad 	pool_set_drain_hook(&pc->pc_pool, fn, arg);
   2330      1.134        ad }
   2331      1.134        ad 
   2332      1.134        ad void
   2333      1.134        ad pool_cache_setlowat(pool_cache_t pc, int n)
   2334      1.134        ad {
   2335      1.134        ad 
   2336      1.134        ad 	pool_setlowat(&pc->pc_pool, n);
   2337      1.134        ad }
   2338      1.134        ad 
   2339      1.134        ad void
   2340      1.134        ad pool_cache_sethiwat(pool_cache_t pc, int n)
   2341      1.134        ad {
   2342      1.134        ad 
   2343      1.134        ad 	pool_sethiwat(&pc->pc_pool, n);
   2344      1.134        ad }
   2345      1.134        ad 
   2346      1.134        ad void
   2347      1.134        ad pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
   2348      1.134        ad {
   2349      1.134        ad 
   2350      1.134        ad 	pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
   2351      1.134        ad }
   2352      1.134        ad 
   2353      1.134        ad static inline pool_cache_cpu_t *
   2354      1.134        ad pool_cache_cpu_enter(pool_cache_t pc, int *s)
   2355      1.134        ad {
   2356      1.134        ad 	pool_cache_cpu_t *cc;
   2357      1.134        ad 
   2358      1.134        ad 	/*
   2359      1.134        ad 	 * Prevent other users of the cache from accessing our
   2360      1.134        ad 	 * CPU-local data.  To avoid touching shared state, we
   2361      1.134        ad 	 * pull the neccessary information from CPU local data.
   2362      1.134        ad 	 */
   2363      1.137        ad 	crit_enter();
   2364      1.137        ad 	cc = pc->pc_cpus[curcpu()->ci_index];
   2365      1.134        ad 	KASSERT(cc->cc_cache == pc);
   2366      1.137        ad 	if (cc->cc_ipl != IPL_NONE) {
   2367      1.134        ad 		*s = splraiseipl(cc->cc_iplcookie);
   2368      1.134        ad 	}
   2369      1.134        ad 	KASSERT(((uintptr_t)cc & (CACHE_LINE_SIZE - 1)) == 0);
   2370      1.134        ad 
   2371      1.134        ad 	return cc;
   2372      1.134        ad }
   2373      1.134        ad 
   2374      1.134        ad static inline void
   2375      1.134        ad pool_cache_cpu_exit(pool_cache_cpu_t *cc, int *s)
   2376      1.134        ad {
   2377      1.134        ad 
   2378      1.134        ad 	/* No longer need exclusive access to the per-CPU data. */
   2379      1.137        ad 	if (cc->cc_ipl != IPL_NONE) {
   2380      1.134        ad 		splx(*s);
   2381      1.134        ad 	}
   2382      1.137        ad 	crit_exit();
   2383      1.134        ad }
   2384      1.134        ad 
   2385      1.134        ad #if __GNUC_PREREQ__(3, 0)
   2386      1.134        ad __attribute ((noinline))
   2387      1.134        ad #endif
   2388      1.134        ad pool_cache_cpu_t *
   2389      1.134        ad pool_cache_get_slow(pool_cache_cpu_t *cc, int *s, void **objectp,
   2390      1.134        ad 		    paddr_t *pap, int flags)
   2391       1.43   thorpej {
   2392      1.134        ad 	pcg_t *pcg, *cur;
   2393      1.134        ad 	uint64_t ncsw;
   2394      1.134        ad 	pool_cache_t pc;
   2395       1.43   thorpej 	void *object;
   2396       1.58   thorpej 
   2397      1.134        ad 	pc = cc->cc_cache;
   2398      1.134        ad 	cc->cc_misses++;
   2399       1.43   thorpej 
   2400      1.134        ad 	/*
   2401      1.134        ad 	 * Nothing was available locally.  Try and grab a group
   2402      1.134        ad 	 * from the cache.
   2403      1.134        ad 	 */
   2404      1.134        ad 	if (!mutex_tryenter(&pc->pc_lock)) {
   2405      1.134        ad 		ncsw = curlwp->l_ncsw;
   2406      1.134        ad 		mutex_enter(&pc->pc_lock);
   2407      1.134        ad 		pc->pc_contended++;
   2408       1.43   thorpej 
   2409      1.134        ad 		/*
   2410      1.134        ad 		 * If we context switched while locking, then
   2411      1.134        ad 		 * our view of the per-CPU data is invalid:
   2412      1.134        ad 		 * retry.
   2413      1.134        ad 		 */
   2414      1.134        ad 		if (curlwp->l_ncsw != ncsw) {
   2415      1.134        ad 			mutex_exit(&pc->pc_lock);
   2416      1.134        ad 			pool_cache_cpu_exit(cc, s);
   2417      1.134        ad 			return pool_cache_cpu_enter(pc, s);
   2418       1.43   thorpej 		}
   2419      1.102       chs 	}
   2420       1.43   thorpej 
   2421      1.134        ad 	if ((pcg = pc->pc_fullgroups) != NULL) {
   2422       1.43   thorpej 		/*
   2423      1.134        ad 		 * If there's a full group, release our empty
   2424      1.134        ad 		 * group back to the cache.  Install the full
   2425      1.134        ad 		 * group as cc_current and return.
   2426       1.43   thorpej 		 */
   2427      1.134        ad 		if ((cur = cc->cc_current) != NULL) {
   2428      1.134        ad 			KASSERT(cur->pcg_avail == 0);
   2429      1.134        ad 			cur->pcg_next = pc->pc_emptygroups;
   2430      1.134        ad 			pc->pc_emptygroups = cur;
   2431      1.134        ad 			pc->pc_nempty++;
   2432       1.87   thorpej 		}
   2433      1.134        ad 		KASSERT(pcg->pcg_avail == PCG_NOBJECTS);
   2434      1.134        ad 		cc->cc_current = pcg;
   2435      1.134        ad 		pc->pc_fullgroups = pcg->pcg_next;
   2436      1.134        ad 		pc->pc_hits++;
   2437      1.134        ad 		pc->pc_nfull--;
   2438      1.134        ad 		mutex_exit(&pc->pc_lock);
   2439      1.134        ad 		return cc;
   2440      1.134        ad 	}
   2441      1.134        ad 
   2442      1.134        ad 	/*
   2443      1.134        ad 	 * Nothing available locally or in cache.  Take the slow
   2444      1.134        ad 	 * path: fetch a new object from the pool and construct
   2445      1.134        ad 	 * it.
   2446      1.134        ad 	 */
   2447      1.134        ad 	pc->pc_misses++;
   2448      1.134        ad 	mutex_exit(&pc->pc_lock);
   2449      1.134        ad 	pool_cache_cpu_exit(cc, s);
   2450      1.134        ad 
   2451      1.134        ad 	object = pool_get(&pc->pc_pool, flags);
   2452      1.134        ad 	*objectp = object;
   2453      1.134        ad 	if (object == NULL)
   2454      1.134        ad 		return NULL;
   2455      1.125        ad 
   2456      1.134        ad 	if ((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0) {
   2457      1.134        ad 		pool_put(&pc->pc_pool, object);
   2458      1.134        ad 		*objectp = NULL;
   2459      1.134        ad 		return NULL;
   2460       1.43   thorpej 	}
   2461       1.43   thorpej 
   2462      1.134        ad 	KASSERT((((vaddr_t)object + pc->pc_pool.pr_itemoffset) &
   2463      1.134        ad 	    (pc->pc_pool.pr_align - 1)) == 0);
   2464       1.43   thorpej 
   2465      1.134        ad 	if (pap != NULL) {
   2466      1.134        ad #ifdef POOL_VTOPHYS
   2467      1.134        ad 		*pap = POOL_VTOPHYS(object);
   2468      1.134        ad #else
   2469      1.134        ad 		*pap = POOL_PADDR_INVALID;
   2470      1.134        ad #endif
   2471      1.102       chs 	}
   2472       1.43   thorpej 
   2473      1.125        ad 	FREECHECK_OUT(&pc->pc_freecheck, object);
   2474      1.134        ad 	return NULL;
   2475       1.43   thorpej }
   2476       1.43   thorpej 
   2477       1.43   thorpej /*
   2478      1.134        ad  * pool_cache_get{,_paddr}:
   2479       1.43   thorpej  *
   2480      1.134        ad  *	Get an object from a pool cache (optionally returning
   2481      1.134        ad  *	the physical address of the object).
   2482       1.43   thorpej  */
   2483      1.134        ad void *
   2484      1.134        ad pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
   2485       1.43   thorpej {
   2486      1.134        ad 	pool_cache_cpu_t *cc;
   2487      1.134        ad 	pcg_t *pcg;
   2488      1.134        ad 	void *object;
   2489       1.60   thorpej 	int s;
   2490       1.43   thorpej 
   2491      1.134        ad #ifdef LOCKDEBUG
   2492      1.134        ad 	if (flags & PR_WAITOK)
   2493      1.134        ad 		ASSERT_SLEEPABLE(NULL, "pool_cache_get(PR_WAITOK)");
   2494      1.134        ad #endif
   2495      1.125        ad 
   2496      1.134        ad 	cc = pool_cache_cpu_enter(pc, &s);
   2497      1.134        ad 	do {
   2498      1.134        ad 		/* Try and allocate an object from the current group. */
   2499      1.134        ad 	 	pcg = cc->cc_current;
   2500      1.134        ad 		if (pcg != NULL && pcg->pcg_avail > 0) {
   2501      1.134        ad 			object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;
   2502      1.134        ad 			if (pap != NULL)
   2503      1.134        ad 				*pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa;
   2504      1.134        ad 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL;
   2505      1.134        ad 			KASSERT(pcg->pcg_avail <= PCG_NOBJECTS);
   2506      1.134        ad 			KASSERT(object != NULL);
   2507      1.134        ad 			cc->cc_hits++;
   2508      1.134        ad 			pool_cache_cpu_exit(cc, &s);
   2509      1.134        ad 			FREECHECK_OUT(&pc->pc_freecheck, object);
   2510      1.134        ad 			return object;
   2511       1.43   thorpej 		}
   2512       1.43   thorpej 
   2513       1.43   thorpej 		/*
   2514      1.134        ad 		 * That failed.  If the previous group isn't empty, swap
   2515      1.134        ad 		 * it with the current group and allocate from there.
   2516       1.43   thorpej 		 */
   2517      1.134        ad 		pcg = cc->cc_previous;
   2518      1.134        ad 		if (pcg != NULL && pcg->pcg_avail > 0) {
   2519      1.134        ad 			cc->cc_previous = cc->cc_current;
   2520      1.134        ad 			cc->cc_current = pcg;
   2521      1.134        ad 			continue;
   2522       1.43   thorpej 		}
   2523       1.43   thorpej 
   2524      1.134        ad 		/*
   2525      1.134        ad 		 * Can't allocate from either group: try the slow path.
   2526      1.134        ad 		 * If get_slow() allocated an object for us, or if
   2527      1.134        ad 		 * no more objects are available, it will return NULL.
   2528      1.134        ad 		 * Otherwise, we need to retry.
   2529      1.134        ad 		 */
   2530      1.134        ad 		cc = pool_cache_get_slow(cc, &s, &object, pap, flags);
   2531      1.134        ad 	} while (cc != NULL);
   2532       1.43   thorpej 
   2533      1.134        ad 	return object;
   2534       1.51   thorpej }
   2535       1.51   thorpej 
   2536      1.134        ad #if __GNUC_PREREQ__(3, 0)
   2537      1.134        ad __attribute ((noinline))
   2538      1.134        ad #endif
   2539      1.134        ad pool_cache_cpu_t *
   2540      1.134        ad pool_cache_put_slow(pool_cache_cpu_t *cc, int *s, void *object, paddr_t pa)
   2541       1.51   thorpej {
   2542      1.134        ad 	pcg_t *pcg, *cur;
   2543      1.134        ad 	uint64_t ncsw;
   2544      1.134        ad 	pool_cache_t pc;
   2545       1.51   thorpej 
   2546      1.134        ad 	pc = cc->cc_cache;
   2547      1.134        ad 	cc->cc_misses++;
   2548       1.43   thorpej 
   2549      1.134        ad 	/*
   2550      1.134        ad 	 * No free slots locally.  Try to grab an empty, unused
   2551      1.134        ad 	 * group from the cache.
   2552      1.134        ad 	 */
   2553      1.134        ad 	if (!mutex_tryenter(&pc->pc_lock)) {
   2554      1.134        ad 		ncsw = curlwp->l_ncsw;
   2555      1.134        ad 		mutex_enter(&pc->pc_lock);
   2556      1.134        ad 		pc->pc_contended++;
   2557      1.102       chs 
   2558      1.134        ad 		/*
   2559      1.134        ad 		 * If we context switched while locking, then
   2560      1.134        ad 		 * our view of the per-CPU data is invalid:
   2561      1.134        ad 		 * retry.
   2562      1.134        ad 		 */
   2563      1.134        ad 		if (curlwp->l_ncsw != ncsw) {
   2564      1.134        ad 			mutex_exit(&pc->pc_lock);
   2565      1.134        ad 			pool_cache_cpu_exit(cc, s);
   2566      1.134        ad 			return pool_cache_cpu_enter(pc, s);
   2567      1.134        ad 		}
   2568      1.134        ad 	}
   2569      1.130        ad 
   2570      1.134        ad 	if ((pcg = pc->pc_emptygroups) != NULL) {
   2571      1.134        ad 		/*
   2572      1.134        ad 		 * If there's a empty group, release our full
   2573      1.134        ad 		 * group back to the cache.  Install the empty
   2574      1.134        ad 		 * group as cc_current and return.
   2575      1.134        ad 		 */
   2576      1.134        ad 		if ((cur = cc->cc_current) != NULL) {
   2577      1.134        ad 			KASSERT(cur->pcg_avail == PCG_NOBJECTS);
   2578      1.134        ad 			cur->pcg_next = pc->pc_fullgroups;
   2579      1.134        ad 			pc->pc_fullgroups = cur;
   2580      1.134        ad 			pc->pc_nfull++;
   2581      1.102       chs 		}
   2582      1.134        ad 		KASSERT(pcg->pcg_avail == 0);
   2583      1.134        ad 		cc->cc_current = pcg;
   2584      1.134        ad 		pc->pc_emptygroups = pcg->pcg_next;
   2585      1.134        ad 		pc->pc_hits++;
   2586      1.134        ad 		pc->pc_nempty--;
   2587      1.134        ad 		mutex_exit(&pc->pc_lock);
   2588      1.134        ad 		return cc;
   2589      1.102       chs 	}
   2590      1.105  christos 
   2591      1.134        ad 	/*
   2592      1.134        ad 	 * Nothing available locally or in cache.  Take the
   2593      1.134        ad 	 * slow path and try to allocate a new group that we
   2594      1.134        ad 	 * can release to.
   2595      1.134        ad 	 */
   2596      1.134        ad 	pc->pc_misses++;
   2597      1.134        ad 	mutex_exit(&pc->pc_lock);
   2598      1.134        ad 	pool_cache_cpu_exit(cc, s);
   2599      1.105  christos 
   2600      1.134        ad 	/*
   2601      1.134        ad 	 * If we can't allocate a new group, just throw the
   2602      1.134        ad 	 * object away.
   2603      1.134        ad 	 */
   2604      1.134        ad 	pcg = pool_get(&pcgpool, PR_NOWAIT);
   2605      1.134        ad 	if (pcg == NULL) {
   2606      1.134        ad 		pool_cache_destruct_object(pc, object);
   2607      1.134        ad 		return NULL;
   2608      1.134        ad 	}
   2609      1.134        ad #ifdef DIAGNOSTIC
   2610      1.134        ad 	memset(pcg, 0, sizeof(*pcg));
   2611      1.134        ad #else
   2612      1.134        ad 	pcg->pcg_avail = 0;
   2613      1.134        ad #endif
   2614      1.105  christos 
   2615      1.134        ad 	/*
   2616      1.134        ad 	 * Add the empty group to the cache and try again.
   2617      1.134        ad 	 */
   2618      1.134        ad 	mutex_enter(&pc->pc_lock);
   2619      1.134        ad 	pcg->pcg_next = pc->pc_emptygroups;
   2620      1.134        ad 	pc->pc_emptygroups = pcg;
   2621      1.134        ad 	pc->pc_nempty++;
   2622      1.134        ad 	mutex_exit(&pc->pc_lock);
   2623      1.103       chs 
   2624      1.134        ad 	return pool_cache_cpu_enter(pc, s);
   2625      1.134        ad }
   2626      1.102       chs 
   2627       1.43   thorpej /*
   2628      1.134        ad  * pool_cache_put{,_paddr}:
   2629       1.43   thorpej  *
   2630      1.134        ad  *	Put an object back to the pool cache (optionally caching the
   2631      1.134        ad  *	physical address of the object).
   2632       1.43   thorpej  */
   2633      1.101   thorpej void
   2634      1.134        ad pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
   2635       1.43   thorpej {
   2636      1.134        ad 	pool_cache_cpu_t *cc;
   2637      1.134        ad 	pcg_t *pcg;
   2638      1.134        ad 	int s;
   2639      1.101   thorpej 
   2640      1.134        ad 	FREECHECK_IN(&pc->pc_freecheck, object);
   2641      1.101   thorpej 
   2642      1.134        ad 	cc = pool_cache_cpu_enter(pc, &s);
   2643      1.134        ad 	do {
   2644      1.134        ad 		/* If the current group isn't full, release it there. */
   2645      1.134        ad 	 	pcg = cc->cc_current;
   2646      1.134        ad 		if (pcg != NULL && pcg->pcg_avail < PCG_NOBJECTS) {
   2647      1.134        ad 			KASSERT(pcg->pcg_objects[pcg->pcg_avail].pcgo_va
   2648      1.134        ad 			    == NULL);
   2649      1.134        ad 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object;
   2650      1.134        ad 			pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa;
   2651      1.134        ad 			pcg->pcg_avail++;
   2652      1.134        ad 			cc->cc_hits++;
   2653      1.134        ad 			pool_cache_cpu_exit(cc, &s);
   2654      1.134        ad 			return;
   2655      1.134        ad 		}
   2656       1.43   thorpej 
   2657      1.134        ad 		/*
   2658      1.134        ad 		 * That failed.  If the previous group is empty, swap
   2659      1.134        ad 		 * it with the current group and try again.
   2660      1.134        ad 		 */
   2661      1.134        ad 		pcg = cc->cc_previous;
   2662      1.134        ad 		if (pcg != NULL && pcg->pcg_avail == 0) {
   2663      1.134        ad 			cc->cc_previous = cc->cc_current;
   2664      1.134        ad 			cc->cc_current = pcg;
   2665      1.134        ad 			continue;
   2666      1.134        ad 		}
   2667       1.43   thorpej 
   2668      1.134        ad 		/*
   2669      1.134        ad 		 * Can't free to either group: try the slow path.
   2670      1.134        ad 		 * If put_slow() releases the object for us, it
   2671      1.134        ad 		 * will return NULL.  Otherwise we need to retry.
   2672      1.134        ad 		 */
   2673      1.134        ad 		cc = pool_cache_put_slow(cc, &s, object, pa);
   2674      1.134        ad 	} while (cc != NULL);
   2675       1.43   thorpej }
   2676       1.43   thorpej 
   2677       1.43   thorpej /*
   2678      1.134        ad  * pool_cache_xcall:
   2679       1.43   thorpej  *
   2680      1.134        ad  *	Transfer objects from the per-CPU cache to the global cache.
   2681      1.134        ad  *	Run within a cross-call thread.
   2682       1.43   thorpej  */
   2683       1.43   thorpej static void
   2684      1.134        ad pool_cache_xcall(pool_cache_t pc)
   2685       1.43   thorpej {
   2686      1.134        ad 	pool_cache_cpu_t *cc;
   2687      1.134        ad 	pcg_t *prev, *cur, **list;
   2688      1.134        ad 	int s = 0; /* XXXgcc */
   2689      1.134        ad 
   2690      1.134        ad 	cc = pool_cache_cpu_enter(pc, &s);
   2691      1.134        ad 	cur = cc->cc_current;
   2692      1.134        ad 	cc->cc_current = NULL;
   2693      1.134        ad 	prev = cc->cc_previous;
   2694      1.134        ad 	cc->cc_previous = NULL;
   2695      1.134        ad 	pool_cache_cpu_exit(cc, &s);
   2696      1.134        ad 
   2697      1.134        ad 	/*
   2698      1.134        ad 	 * XXXSMP Go to splvm to prevent kernel_lock from being taken,
   2699      1.134        ad 	 * because locks at IPL_SOFTXXX are still spinlocks.  Does not
   2700      1.134        ad 	 * apply to IPL_SOFTBIO.  Cross-call threads do not take the
   2701      1.134        ad 	 * kernel_lock.
   2702      1.101   thorpej 	 */
   2703      1.134        ad 	s = splvm();
   2704      1.134        ad 	mutex_enter(&pc->pc_lock);
   2705      1.134        ad 	if (cur != NULL) {
   2706      1.134        ad 		if (cur->pcg_avail == PCG_NOBJECTS) {
   2707      1.134        ad 			list = &pc->pc_fullgroups;
   2708      1.134        ad 			pc->pc_nfull++;
   2709      1.134        ad 		} else if (cur->pcg_avail == 0) {
   2710      1.134        ad 			list = &pc->pc_emptygroups;
   2711      1.134        ad 			pc->pc_nempty++;
   2712      1.134        ad 		} else {
   2713      1.134        ad 			list = &pc->pc_partgroups;
   2714      1.134        ad 			pc->pc_npart++;
   2715      1.134        ad 		}
   2716      1.134        ad 		cur->pcg_next = *list;
   2717      1.134        ad 		*list = cur;
   2718      1.134        ad 	}
   2719      1.134        ad 	if (prev != NULL) {
   2720      1.134        ad 		if (prev->pcg_avail == PCG_NOBJECTS) {
   2721      1.134        ad 			list = &pc->pc_fullgroups;
   2722      1.134        ad 			pc->pc_nfull++;
   2723      1.134        ad 		} else if (prev->pcg_avail == 0) {
   2724      1.134        ad 			list = &pc->pc_emptygroups;
   2725      1.134        ad 			pc->pc_nempty++;
   2726      1.134        ad 		} else {
   2727      1.134        ad 			list = &pc->pc_partgroups;
   2728      1.134        ad 			pc->pc_npart++;
   2729      1.134        ad 		}
   2730      1.134        ad 		prev->pcg_next = *list;
   2731      1.134        ad 		*list = prev;
   2732      1.134        ad 	}
   2733      1.134        ad 	mutex_exit(&pc->pc_lock);
   2734      1.134        ad 	splx(s);
   2735        1.3        pk }
   2736       1.66   thorpej 
   2737       1.66   thorpej /*
   2738       1.66   thorpej  * Pool backend allocators.
   2739       1.66   thorpej  *
   2740       1.66   thorpej  * Each pool has a backend allocator that handles allocation, deallocation,
   2741       1.66   thorpej  * and any additional draining that might be needed.
   2742       1.66   thorpej  *
   2743       1.66   thorpej  * We provide two standard allocators:
   2744       1.66   thorpej  *
   2745       1.66   thorpej  *	pool_allocator_kmem - the default when no allocator is specified
   2746       1.66   thorpej  *
   2747       1.66   thorpej  *	pool_allocator_nointr - used for pools that will not be accessed
   2748       1.66   thorpej  *	in interrupt context.
   2749       1.66   thorpej  */
   2750       1.66   thorpej void	*pool_page_alloc(struct pool *, int);
   2751       1.66   thorpej void	pool_page_free(struct pool *, void *);
   2752       1.66   thorpej 
   2753      1.112     bjh21 #ifdef POOL_SUBPAGE
   2754      1.112     bjh21 struct pool_allocator pool_allocator_kmem_fullpage = {
   2755      1.112     bjh21 	pool_page_alloc, pool_page_free, 0,
   2756      1.117      yamt 	.pa_backingmapptr = &kmem_map,
   2757      1.112     bjh21 };
   2758      1.112     bjh21 #else
   2759       1.66   thorpej struct pool_allocator pool_allocator_kmem = {
   2760       1.66   thorpej 	pool_page_alloc, pool_page_free, 0,
   2761      1.117      yamt 	.pa_backingmapptr = &kmem_map,
   2762       1.66   thorpej };
   2763      1.112     bjh21 #endif
   2764       1.66   thorpej 
   2765       1.66   thorpej void	*pool_page_alloc_nointr(struct pool *, int);
   2766       1.66   thorpej void	pool_page_free_nointr(struct pool *, void *);
   2767       1.66   thorpej 
   2768      1.112     bjh21 #ifdef POOL_SUBPAGE
   2769      1.112     bjh21 struct pool_allocator pool_allocator_nointr_fullpage = {
   2770      1.112     bjh21 	pool_page_alloc_nointr, pool_page_free_nointr, 0,
   2771      1.117      yamt 	.pa_backingmapptr = &kernel_map,
   2772      1.112     bjh21 };
   2773      1.112     bjh21 #else
   2774       1.66   thorpej struct pool_allocator pool_allocator_nointr = {
   2775       1.66   thorpej 	pool_page_alloc_nointr, pool_page_free_nointr, 0,
   2776      1.117      yamt 	.pa_backingmapptr = &kernel_map,
   2777       1.66   thorpej };
   2778      1.112     bjh21 #endif
   2779       1.66   thorpej 
   2780       1.66   thorpej #ifdef POOL_SUBPAGE
   2781       1.66   thorpej void	*pool_subpage_alloc(struct pool *, int);
   2782       1.66   thorpej void	pool_subpage_free(struct pool *, void *);
   2783       1.66   thorpej 
   2784      1.112     bjh21 struct pool_allocator pool_allocator_kmem = {
   2785      1.112     bjh21 	pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
   2786      1.117      yamt 	.pa_backingmapptr = &kmem_map,
   2787      1.112     bjh21 };
   2788      1.112     bjh21 
   2789      1.112     bjh21 void	*pool_subpage_alloc_nointr(struct pool *, int);
   2790      1.112     bjh21 void	pool_subpage_free_nointr(struct pool *, void *);
   2791      1.112     bjh21 
   2792      1.112     bjh21 struct pool_allocator pool_allocator_nointr = {
   2793      1.112     bjh21 	pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
   2794      1.117      yamt 	.pa_backingmapptr = &kmem_map,
   2795       1.66   thorpej };
   2796       1.66   thorpej #endif /* POOL_SUBPAGE */
   2797       1.66   thorpej 
   2798      1.117      yamt static void *
   2799      1.117      yamt pool_allocator_alloc(struct pool *pp, int flags)
   2800       1.66   thorpej {
   2801      1.117      yamt 	struct pool_allocator *pa = pp->pr_alloc;
   2802       1.66   thorpej 	void *res;
   2803       1.66   thorpej 
   2804      1.117      yamt 	res = (*pa->pa_alloc)(pp, flags);
   2805      1.117      yamt 	if (res == NULL && (flags & PR_WAITOK) == 0) {
   2806       1.66   thorpej 		/*
   2807      1.117      yamt 		 * We only run the drain hook here if PR_NOWAIT.
   2808      1.117      yamt 		 * In other cases, the hook will be run in
   2809      1.117      yamt 		 * pool_reclaim().
   2810       1.66   thorpej 		 */
   2811      1.117      yamt 		if (pp->pr_drain_hook != NULL) {
   2812      1.117      yamt 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
   2813      1.117      yamt 			res = (*pa->pa_alloc)(pp, flags);
   2814       1.66   thorpej 		}
   2815      1.117      yamt 	}
   2816      1.117      yamt 	return res;
   2817       1.66   thorpej }
   2818       1.66   thorpej 
   2819      1.117      yamt static void
   2820       1.66   thorpej pool_allocator_free(struct pool *pp, void *v)
   2821       1.66   thorpej {
   2822       1.66   thorpej 	struct pool_allocator *pa = pp->pr_alloc;
   2823       1.66   thorpej 
   2824       1.66   thorpej 	(*pa->pa_free)(pp, v);
   2825       1.66   thorpej }
   2826       1.66   thorpej 
   2827       1.66   thorpej void *
   2828      1.124      yamt pool_page_alloc(struct pool *pp, int flags)
   2829       1.66   thorpej {
   2830      1.127   thorpej 	bool waitok = (flags & PR_WAITOK) ? true : false;
   2831       1.66   thorpej 
   2832      1.100      yamt 	return ((void *) uvm_km_alloc_poolpage_cache(kmem_map, waitok));
   2833       1.66   thorpej }
   2834       1.66   thorpej 
   2835       1.66   thorpej void
   2836      1.124      yamt pool_page_free(struct pool *pp, void *v)
   2837       1.66   thorpej {
   2838       1.66   thorpej 
   2839       1.98      yamt 	uvm_km_free_poolpage_cache(kmem_map, (vaddr_t) v);
   2840       1.98      yamt }
   2841       1.98      yamt 
   2842       1.98      yamt static void *
   2843      1.124      yamt pool_page_alloc_meta(struct pool *pp, int flags)
   2844       1.98      yamt {
   2845      1.127   thorpej 	bool waitok = (flags & PR_WAITOK) ? true : false;
   2846       1.98      yamt 
   2847      1.100      yamt 	return ((void *) uvm_km_alloc_poolpage(kmem_map, waitok));
   2848       1.98      yamt }
   2849       1.98      yamt 
   2850       1.98      yamt static void
   2851      1.124      yamt pool_page_free_meta(struct pool *pp, void *v)
   2852       1.98      yamt {
   2853       1.98      yamt 
   2854      1.100      yamt 	uvm_km_free_poolpage(kmem_map, (vaddr_t) v);
   2855       1.66   thorpej }
   2856       1.66   thorpej 
   2857       1.66   thorpej #ifdef POOL_SUBPAGE
   2858       1.66   thorpej /* Sub-page allocator, for machines with large hardware pages. */
   2859       1.66   thorpej void *
   2860       1.66   thorpej pool_subpage_alloc(struct pool *pp, int flags)
   2861       1.66   thorpej {
   2862      1.134        ad 	return pool_get(&psppool, flags);
   2863       1.66   thorpej }
   2864       1.66   thorpej 
   2865       1.66   thorpej void
   2866       1.66   thorpej pool_subpage_free(struct pool *pp, void *v)
   2867       1.66   thorpej {
   2868       1.66   thorpej 	pool_put(&psppool, v);
   2869       1.66   thorpej }
   2870       1.66   thorpej 
   2871       1.66   thorpej /* We don't provide a real nointr allocator.  Maybe later. */
   2872       1.66   thorpej void *
   2873      1.112     bjh21 pool_subpage_alloc_nointr(struct pool *pp, int flags)
   2874       1.66   thorpej {
   2875       1.66   thorpej 
   2876       1.66   thorpej 	return (pool_subpage_alloc(pp, flags));
   2877       1.66   thorpej }
   2878       1.66   thorpej 
   2879       1.66   thorpej void
   2880      1.112     bjh21 pool_subpage_free_nointr(struct pool *pp, void *v)
   2881       1.66   thorpej {
   2882       1.66   thorpej 
   2883       1.66   thorpej 	pool_subpage_free(pp, v);
   2884       1.66   thorpej }
   2885      1.112     bjh21 #endif /* POOL_SUBPAGE */
   2886       1.66   thorpej void *
   2887      1.124      yamt pool_page_alloc_nointr(struct pool *pp, int flags)
   2888       1.66   thorpej {
   2889      1.127   thorpej 	bool waitok = (flags & PR_WAITOK) ? true : false;
   2890       1.66   thorpej 
   2891      1.100      yamt 	return ((void *) uvm_km_alloc_poolpage_cache(kernel_map, waitok));
   2892       1.66   thorpej }
   2893       1.66   thorpej 
   2894       1.66   thorpej void
   2895      1.124      yamt pool_page_free_nointr(struct pool *pp, void *v)
   2896       1.66   thorpej {
   2897       1.66   thorpej 
   2898       1.98      yamt 	uvm_km_free_poolpage_cache(kernel_map, (vaddr_t) v);
   2899       1.66   thorpej }
   2900  1.138.4.1    bouyer 
   2901  1.138.4.1    bouyer #if defined(DDB)
   2902  1.138.4.1    bouyer static bool
   2903  1.138.4.1    bouyer pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
   2904  1.138.4.1    bouyer {
   2905  1.138.4.1    bouyer 
   2906  1.138.4.1    bouyer 	return (uintptr_t)ph->ph_page <= addr &&
   2907  1.138.4.1    bouyer 	    addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz;
   2908  1.138.4.1    bouyer }
   2909  1.138.4.1    bouyer 
   2910  1.138.4.1    bouyer void
   2911  1.138.4.1    bouyer pool_whatis(uintptr_t addr, void (*pr)(const char *, ...))
   2912  1.138.4.1    bouyer {
   2913  1.138.4.1    bouyer 	struct pool *pp;
   2914  1.138.4.1    bouyer 
   2915  1.138.4.1    bouyer 	LIST_FOREACH(pp, &pool_head, pr_poollist) {
   2916  1.138.4.1    bouyer 		struct pool_item_header *ph;
   2917  1.138.4.1    bouyer 		uintptr_t item;
   2918  1.138.4.1    bouyer 
   2919  1.138.4.1    bouyer 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
   2920  1.138.4.1    bouyer 			LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
   2921  1.138.4.1    bouyer 				if (pool_in_page(pp, ph, addr)) {
   2922  1.138.4.1    bouyer 					goto found;
   2923  1.138.4.1    bouyer 				}
   2924  1.138.4.1    bouyer 			}
   2925  1.138.4.1    bouyer 			LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
   2926  1.138.4.1    bouyer 				if (pool_in_page(pp, ph, addr)) {
   2927  1.138.4.1    bouyer 					goto found;
   2928  1.138.4.1    bouyer 				}
   2929  1.138.4.1    bouyer 			}
   2930  1.138.4.1    bouyer 			continue;
   2931  1.138.4.1    bouyer 		} else {
   2932  1.138.4.1    bouyer 			ph = pr_find_pagehead_noalign(pp, (void *)addr);
   2933  1.138.4.1    bouyer 			if (ph == NULL || !pool_in_page(pp, ph, addr)) {
   2934  1.138.4.1    bouyer 				continue;
   2935  1.138.4.1    bouyer 			}
   2936  1.138.4.1    bouyer 		}
   2937  1.138.4.1    bouyer found:
   2938  1.138.4.1    bouyer 		item = (uintptr_t)ph->ph_page + ph->ph_off;
   2939  1.138.4.1    bouyer 		item = item + rounddown(addr - item, pp->pr_size);
   2940  1.138.4.1    bouyer 		(*pr)("%p is %p+%zu from POOL '%s'\n",
   2941  1.138.4.1    bouyer 		    (void *)addr, item, (size_t)(addr - item),
   2942  1.138.4.1    bouyer 		    pp->pr_wchan);
   2943  1.138.4.1    bouyer 	}
   2944  1.138.4.1    bouyer }
   2945  1.138.4.1    bouyer #endif /* defined(DDB) */
   2946