subr_pool.c revision 1.140 1 1.140 yamt /* $NetBSD: subr_pool.c,v 1.140 2007/12/13 01:22:50 yamt Exp $ */
2 1.1 pk
3 1.1 pk /*-
4 1.134 ad * Copyright (c) 1997, 1999, 2000, 2002, 2007 The NetBSD Foundation, Inc.
5 1.1 pk * All rights reserved.
6 1.1 pk *
7 1.1 pk * This code is derived from software contributed to The NetBSD Foundation
8 1.20 thorpej * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
9 1.134 ad * Simulation Facility, NASA Ames Research Center, and by Andrew Doran.
10 1.1 pk *
11 1.1 pk * Redistribution and use in source and binary forms, with or without
12 1.1 pk * modification, are permitted provided that the following conditions
13 1.1 pk * are met:
14 1.1 pk * 1. Redistributions of source code must retain the above copyright
15 1.1 pk * notice, this list of conditions and the following disclaimer.
16 1.1 pk * 2. Redistributions in binary form must reproduce the above copyright
17 1.1 pk * notice, this list of conditions and the following disclaimer in the
18 1.1 pk * documentation and/or other materials provided with the distribution.
19 1.1 pk * 3. All advertising materials mentioning features or use of this software
20 1.1 pk * must display the following acknowledgement:
21 1.13 christos * This product includes software developed by the NetBSD
22 1.13 christos * Foundation, Inc. and its contributors.
23 1.1 pk * 4. Neither the name of The NetBSD Foundation nor the names of its
24 1.1 pk * contributors may be used to endorse or promote products derived
25 1.1 pk * from this software without specific prior written permission.
26 1.1 pk *
27 1.1 pk * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 1.1 pk * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 1.1 pk * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 1.1 pk * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 1.1 pk * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 1.1 pk * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 1.1 pk * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 1.1 pk * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 1.1 pk * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 1.1 pk * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 1.1 pk * POSSIBILITY OF SUCH DAMAGE.
38 1.1 pk */
39 1.64 lukem
40 1.64 lukem #include <sys/cdefs.h>
41 1.140 yamt __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.140 2007/12/13 01:22:50 yamt Exp $");
42 1.24 scottr
43 1.25 thorpej #include "opt_pool.h"
44 1.24 scottr #include "opt_poollog.h"
45 1.28 thorpej #include "opt_lockdebug.h"
46 1.1 pk
47 1.1 pk #include <sys/param.h>
48 1.1 pk #include <sys/systm.h>
49 1.135 yamt #include <sys/bitops.h>
50 1.1 pk #include <sys/proc.h>
51 1.1 pk #include <sys/errno.h>
52 1.1 pk #include <sys/kernel.h>
53 1.1 pk #include <sys/malloc.h>
54 1.1 pk #include <sys/lock.h>
55 1.1 pk #include <sys/pool.h>
56 1.20 thorpej #include <sys/syslog.h>
57 1.125 ad #include <sys/debug.h>
58 1.134 ad #include <sys/lockdebug.h>
59 1.134 ad #include <sys/xcall.h>
60 1.134 ad #include <sys/cpu.h>
61 1.3 pk
62 1.3 pk #include <uvm/uvm.h>
63 1.3 pk
64 1.1 pk /*
65 1.1 pk * Pool resource management utility.
66 1.3 pk *
67 1.88 chs * Memory is allocated in pages which are split into pieces according to
68 1.88 chs * the pool item size. Each page is kept on one of three lists in the
69 1.88 chs * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
70 1.88 chs * for empty, full and partially-full pages respectively. The individual
71 1.88 chs * pool items are on a linked list headed by `ph_itemlist' in each page
72 1.88 chs * header. The memory for building the page list is either taken from
73 1.88 chs * the allocated pages themselves (for small pool items) or taken from
74 1.88 chs * an internal pool of page headers (`phpool').
75 1.1 pk */
76 1.1 pk
77 1.3 pk /* List of all pools */
78 1.102 chs LIST_HEAD(,pool) pool_head = LIST_HEAD_INITIALIZER(pool_head);
79 1.3 pk
80 1.134 ad /* List of all caches. */
81 1.134 ad LIST_HEAD(,pool_cache) pool_cache_head =
82 1.134 ad LIST_HEAD_INITIALIZER(pool_cache_head);
83 1.134 ad
84 1.3 pk /* Private pool for page header structures */
85 1.97 yamt #define PHPOOL_MAX 8
86 1.97 yamt static struct pool phpool[PHPOOL_MAX];
87 1.135 yamt #define PHPOOL_FREELIST_NELEM(idx) \
88 1.135 yamt (((idx) == 0) ? 0 : BITMAP_SIZE * (1 << (idx)))
89 1.3 pk
90 1.62 bjh21 #ifdef POOL_SUBPAGE
91 1.62 bjh21 /* Pool of subpages for use by normal pools. */
92 1.62 bjh21 static struct pool psppool;
93 1.62 bjh21 #endif
94 1.62 bjh21
95 1.117 yamt static SLIST_HEAD(, pool_allocator) pa_deferinitq =
96 1.117 yamt SLIST_HEAD_INITIALIZER(pa_deferinitq);
97 1.117 yamt
98 1.98 yamt static void *pool_page_alloc_meta(struct pool *, int);
99 1.98 yamt static void pool_page_free_meta(struct pool *, void *);
100 1.98 yamt
101 1.98 yamt /* allocator for pool metadata */
102 1.134 ad struct pool_allocator pool_allocator_meta = {
103 1.117 yamt pool_page_alloc_meta, pool_page_free_meta,
104 1.117 yamt .pa_backingmapptr = &kmem_map,
105 1.98 yamt };
106 1.98 yamt
107 1.3 pk /* # of seconds to retain page after last use */
108 1.3 pk int pool_inactive_time = 10;
109 1.3 pk
110 1.3 pk /* Next candidate for drainage (see pool_drain()) */
111 1.23 thorpej static struct pool *drainpp;
112 1.23 thorpej
113 1.134 ad /* This lock protects both pool_head and drainpp. */
114 1.134 ad static kmutex_t pool_head_lock;
115 1.134 ad static kcondvar_t pool_busy;
116 1.3 pk
117 1.135 yamt typedef uint32_t pool_item_bitmap_t;
118 1.135 yamt #define BITMAP_SIZE (CHAR_BIT * sizeof(pool_item_bitmap_t))
119 1.135 yamt #define BITMAP_MASK (BITMAP_SIZE - 1)
120 1.99 yamt
121 1.3 pk struct pool_item_header {
122 1.3 pk /* Page headers */
123 1.88 chs LIST_ENTRY(pool_item_header)
124 1.3 pk ph_pagelist; /* pool page list */
125 1.88 chs SPLAY_ENTRY(pool_item_header)
126 1.88 chs ph_node; /* Off-page page headers */
127 1.128 christos void * ph_page; /* this page's address */
128 1.3 pk struct timeval ph_time; /* last referenced */
129 1.135 yamt uint16_t ph_nmissing; /* # of chunks in use */
130 1.97 yamt union {
131 1.97 yamt /* !PR_NOTOUCH */
132 1.97 yamt struct {
133 1.102 chs LIST_HEAD(, pool_item)
134 1.97 yamt phu_itemlist; /* chunk list for this page */
135 1.97 yamt } phu_normal;
136 1.97 yamt /* PR_NOTOUCH */
137 1.97 yamt struct {
138 1.135 yamt uint16_t phu_off; /* start offset in page */
139 1.135 yamt pool_item_bitmap_t phu_bitmap[];
140 1.97 yamt } phu_notouch;
141 1.97 yamt } ph_u;
142 1.3 pk };
143 1.97 yamt #define ph_itemlist ph_u.phu_normal.phu_itemlist
144 1.97 yamt #define ph_off ph_u.phu_notouch.phu_off
145 1.135 yamt #define ph_bitmap ph_u.phu_notouch.phu_bitmap
146 1.3 pk
147 1.1 pk struct pool_item {
148 1.3 pk #ifdef DIAGNOSTIC
149 1.82 thorpej u_int pi_magic;
150 1.33 chs #endif
151 1.134 ad #define PI_MAGIC 0xdeaddeadU
152 1.3 pk /* Other entries use only this list entry */
153 1.102 chs LIST_ENTRY(pool_item) pi_list;
154 1.3 pk };
155 1.3 pk
156 1.53 thorpej #define POOL_NEEDS_CATCHUP(pp) \
157 1.53 thorpej ((pp)->pr_nitems < (pp)->pr_minitems)
158 1.53 thorpej
159 1.43 thorpej /*
160 1.43 thorpej * Pool cache management.
161 1.43 thorpej *
162 1.43 thorpej * Pool caches provide a way for constructed objects to be cached by the
163 1.43 thorpej * pool subsystem. This can lead to performance improvements by avoiding
164 1.43 thorpej * needless object construction/destruction; it is deferred until absolutely
165 1.43 thorpej * necessary.
166 1.43 thorpej *
167 1.134 ad * Caches are grouped into cache groups. Each cache group references up
168 1.134 ad * to PCG_NUMOBJECTS constructed objects. When a cache allocates an
169 1.134 ad * object from the pool, it calls the object's constructor and places it
170 1.134 ad * into a cache group. When a cache group frees an object back to the
171 1.134 ad * pool, it first calls the object's destructor. This allows the object
172 1.134 ad * to persist in constructed form while freed to the cache.
173 1.134 ad *
174 1.134 ad * The pool references each cache, so that when a pool is drained by the
175 1.134 ad * pagedaemon, it can drain each individual cache as well. Each time a
176 1.134 ad * cache is drained, the most idle cache group is freed to the pool in
177 1.134 ad * its entirety.
178 1.43 thorpej *
179 1.43 thorpej * Pool caches are layed on top of pools. By layering them, we can avoid
180 1.43 thorpej * the complexity of cache management for pools which would not benefit
181 1.43 thorpej * from it.
182 1.43 thorpej */
183 1.43 thorpej
184 1.43 thorpej static struct pool pcgpool;
185 1.134 ad static struct pool cache_pool;
186 1.134 ad static struct pool cache_cpu_pool;
187 1.3 pk
188 1.134 ad static pool_cache_cpu_t *pool_cache_put_slow(pool_cache_cpu_t *, int *,
189 1.134 ad void *, paddr_t);
190 1.134 ad static pool_cache_cpu_t *pool_cache_get_slow(pool_cache_cpu_t *, int *,
191 1.134 ad void **, paddr_t *, int);
192 1.134 ad static void pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
193 1.134 ad static void pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
194 1.134 ad static void pool_cache_xcall(pool_cache_t);
195 1.3 pk
196 1.42 thorpej static int pool_catchup(struct pool *);
197 1.128 christos static void pool_prime_page(struct pool *, void *,
198 1.55 thorpej struct pool_item_header *);
199 1.88 chs static void pool_update_curpage(struct pool *);
200 1.66 thorpej
201 1.113 yamt static int pool_grow(struct pool *, int);
202 1.117 yamt static void *pool_allocator_alloc(struct pool *, int);
203 1.117 yamt static void pool_allocator_free(struct pool *, void *);
204 1.3 pk
205 1.97 yamt static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
206 1.88 chs void (*)(const char *, ...));
207 1.42 thorpej static void pool_print1(struct pool *, const char *,
208 1.42 thorpej void (*)(const char *, ...));
209 1.3 pk
210 1.88 chs static int pool_chk_page(struct pool *, const char *,
211 1.88 chs struct pool_item_header *);
212 1.88 chs
213 1.3 pk /*
214 1.52 thorpej * Pool log entry. An array of these is allocated in pool_init().
215 1.3 pk */
216 1.3 pk struct pool_log {
217 1.3 pk const char *pl_file;
218 1.3 pk long pl_line;
219 1.3 pk int pl_action;
220 1.25 thorpej #define PRLOG_GET 1
221 1.25 thorpej #define PRLOG_PUT 2
222 1.3 pk void *pl_addr;
223 1.1 pk };
224 1.1 pk
225 1.86 matt #ifdef POOL_DIAGNOSTIC
226 1.3 pk /* Number of entries in pool log buffers */
227 1.17 thorpej #ifndef POOL_LOGSIZE
228 1.17 thorpej #define POOL_LOGSIZE 10
229 1.17 thorpej #endif
230 1.17 thorpej
231 1.17 thorpej int pool_logsize = POOL_LOGSIZE;
232 1.1 pk
233 1.110 perry static inline void
234 1.42 thorpej pr_log(struct pool *pp, void *v, int action, const char *file, long line)
235 1.3 pk {
236 1.3 pk int n = pp->pr_curlogentry;
237 1.3 pk struct pool_log *pl;
238 1.3 pk
239 1.20 thorpej if ((pp->pr_roflags & PR_LOGGING) == 0)
240 1.3 pk return;
241 1.3 pk
242 1.3 pk /*
243 1.3 pk * Fill in the current entry. Wrap around and overwrite
244 1.3 pk * the oldest entry if necessary.
245 1.3 pk */
246 1.3 pk pl = &pp->pr_log[n];
247 1.3 pk pl->pl_file = file;
248 1.3 pk pl->pl_line = line;
249 1.3 pk pl->pl_action = action;
250 1.3 pk pl->pl_addr = v;
251 1.3 pk if (++n >= pp->pr_logsize)
252 1.3 pk n = 0;
253 1.3 pk pp->pr_curlogentry = n;
254 1.3 pk }
255 1.3 pk
256 1.3 pk static void
257 1.42 thorpej pr_printlog(struct pool *pp, struct pool_item *pi,
258 1.42 thorpej void (*pr)(const char *, ...))
259 1.3 pk {
260 1.3 pk int i = pp->pr_logsize;
261 1.3 pk int n = pp->pr_curlogentry;
262 1.3 pk
263 1.20 thorpej if ((pp->pr_roflags & PR_LOGGING) == 0)
264 1.3 pk return;
265 1.3 pk
266 1.3 pk /*
267 1.3 pk * Print all entries in this pool's log.
268 1.3 pk */
269 1.3 pk while (i-- > 0) {
270 1.3 pk struct pool_log *pl = &pp->pr_log[n];
271 1.3 pk if (pl->pl_action != 0) {
272 1.25 thorpej if (pi == NULL || pi == pl->pl_addr) {
273 1.25 thorpej (*pr)("\tlog entry %d:\n", i);
274 1.25 thorpej (*pr)("\t\taction = %s, addr = %p\n",
275 1.25 thorpej pl->pl_action == PRLOG_GET ? "get" : "put",
276 1.25 thorpej pl->pl_addr);
277 1.25 thorpej (*pr)("\t\tfile: %s at line %lu\n",
278 1.25 thorpej pl->pl_file, pl->pl_line);
279 1.25 thorpej }
280 1.3 pk }
281 1.3 pk if (++n >= pp->pr_logsize)
282 1.3 pk n = 0;
283 1.3 pk }
284 1.3 pk }
285 1.25 thorpej
286 1.110 perry static inline void
287 1.42 thorpej pr_enter(struct pool *pp, const char *file, long line)
288 1.25 thorpej {
289 1.25 thorpej
290 1.34 thorpej if (__predict_false(pp->pr_entered_file != NULL)) {
291 1.25 thorpej printf("pool %s: reentrancy at file %s line %ld\n",
292 1.25 thorpej pp->pr_wchan, file, line);
293 1.25 thorpej printf(" previous entry at file %s line %ld\n",
294 1.25 thorpej pp->pr_entered_file, pp->pr_entered_line);
295 1.25 thorpej panic("pr_enter");
296 1.25 thorpej }
297 1.25 thorpej
298 1.25 thorpej pp->pr_entered_file = file;
299 1.25 thorpej pp->pr_entered_line = line;
300 1.25 thorpej }
301 1.25 thorpej
302 1.110 perry static inline void
303 1.42 thorpej pr_leave(struct pool *pp)
304 1.25 thorpej {
305 1.25 thorpej
306 1.34 thorpej if (__predict_false(pp->pr_entered_file == NULL)) {
307 1.25 thorpej printf("pool %s not entered?\n", pp->pr_wchan);
308 1.25 thorpej panic("pr_leave");
309 1.25 thorpej }
310 1.25 thorpej
311 1.25 thorpej pp->pr_entered_file = NULL;
312 1.25 thorpej pp->pr_entered_line = 0;
313 1.25 thorpej }
314 1.25 thorpej
315 1.110 perry static inline void
316 1.42 thorpej pr_enter_check(struct pool *pp, void (*pr)(const char *, ...))
317 1.25 thorpej {
318 1.25 thorpej
319 1.25 thorpej if (pp->pr_entered_file != NULL)
320 1.25 thorpej (*pr)("\n\tcurrently entered from file %s line %ld\n",
321 1.25 thorpej pp->pr_entered_file, pp->pr_entered_line);
322 1.25 thorpej }
323 1.3 pk #else
324 1.25 thorpej #define pr_log(pp, v, action, file, line)
325 1.25 thorpej #define pr_printlog(pp, pi, pr)
326 1.25 thorpej #define pr_enter(pp, file, line)
327 1.25 thorpej #define pr_leave(pp)
328 1.25 thorpej #define pr_enter_check(pp, pr)
329 1.59 thorpej #endif /* POOL_DIAGNOSTIC */
330 1.3 pk
331 1.135 yamt static inline unsigned int
332 1.97 yamt pr_item_notouch_index(const struct pool *pp, const struct pool_item_header *ph,
333 1.97 yamt const void *v)
334 1.97 yamt {
335 1.97 yamt const char *cp = v;
336 1.135 yamt unsigned int idx;
337 1.97 yamt
338 1.97 yamt KASSERT(pp->pr_roflags & PR_NOTOUCH);
339 1.128 christos idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
340 1.97 yamt KASSERT(idx < pp->pr_itemsperpage);
341 1.97 yamt return idx;
342 1.97 yamt }
343 1.97 yamt
344 1.110 perry static inline void
345 1.97 yamt pr_item_notouch_put(const struct pool *pp, struct pool_item_header *ph,
346 1.97 yamt void *obj)
347 1.97 yamt {
348 1.135 yamt unsigned int idx = pr_item_notouch_index(pp, ph, obj);
349 1.135 yamt pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE);
350 1.135 yamt pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
351 1.97 yamt
352 1.135 yamt KASSERT((*bitmap & mask) == 0);
353 1.135 yamt *bitmap |= mask;
354 1.97 yamt }
355 1.97 yamt
356 1.110 perry static inline void *
357 1.97 yamt pr_item_notouch_get(const struct pool *pp, struct pool_item_header *ph)
358 1.97 yamt {
359 1.135 yamt pool_item_bitmap_t *bitmap = ph->ph_bitmap;
360 1.135 yamt unsigned int idx;
361 1.135 yamt int i;
362 1.97 yamt
363 1.135 yamt for (i = 0; ; i++) {
364 1.135 yamt int bit;
365 1.97 yamt
366 1.135 yamt KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage);
367 1.135 yamt bit = ffs32(bitmap[i]);
368 1.135 yamt if (bit) {
369 1.135 yamt pool_item_bitmap_t mask;
370 1.135 yamt
371 1.135 yamt bit--;
372 1.135 yamt idx = (i * BITMAP_SIZE) + bit;
373 1.135 yamt mask = 1 << bit;
374 1.135 yamt KASSERT((bitmap[i] & mask) != 0);
375 1.135 yamt bitmap[i] &= ~mask;
376 1.135 yamt break;
377 1.135 yamt }
378 1.135 yamt }
379 1.135 yamt KASSERT(idx < pp->pr_itemsperpage);
380 1.128 christos return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
381 1.97 yamt }
382 1.97 yamt
383 1.135 yamt static inline void
384 1.140 yamt pr_item_notouch_init(const struct pool *pp, struct pool_item_header *ph,
385 1.140 yamt unsigned int offset)
386 1.135 yamt {
387 1.135 yamt pool_item_bitmap_t *bitmap = ph->ph_bitmap;
388 1.135 yamt const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE);
389 1.135 yamt int i;
390 1.135 yamt
391 1.140 yamt ph->ph_off = offset;
392 1.135 yamt for (i = 0; i < n; i++) {
393 1.135 yamt bitmap[i] = (pool_item_bitmap_t)-1;
394 1.135 yamt }
395 1.135 yamt }
396 1.135 yamt
397 1.110 perry static inline int
398 1.88 chs phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
399 1.88 chs {
400 1.121 yamt
401 1.121 yamt /*
402 1.121 yamt * we consider pool_item_header with smaller ph_page bigger.
403 1.121 yamt * (this unnatural ordering is for the benefit of pr_find_pagehead.)
404 1.121 yamt */
405 1.121 yamt
406 1.88 chs if (a->ph_page < b->ph_page)
407 1.121 yamt return (1);
408 1.121 yamt else if (a->ph_page > b->ph_page)
409 1.88 chs return (-1);
410 1.88 chs else
411 1.88 chs return (0);
412 1.88 chs }
413 1.88 chs
414 1.88 chs SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
415 1.88 chs SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
416 1.88 chs
417 1.3 pk /*
418 1.121 yamt * Return the pool page header based on item address.
419 1.3 pk */
420 1.110 perry static inline struct pool_item_header *
421 1.121 yamt pr_find_pagehead(struct pool *pp, void *v)
422 1.3 pk {
423 1.88 chs struct pool_item_header *ph, tmp;
424 1.3 pk
425 1.121 yamt if ((pp->pr_roflags & PR_NOALIGN) != 0) {
426 1.128 christos tmp.ph_page = (void *)(uintptr_t)v;
427 1.121 yamt ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
428 1.121 yamt if (ph == NULL) {
429 1.121 yamt ph = SPLAY_ROOT(&pp->pr_phtree);
430 1.121 yamt if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
431 1.121 yamt ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
432 1.121 yamt }
433 1.121 yamt KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
434 1.121 yamt }
435 1.121 yamt } else {
436 1.128 christos void *page =
437 1.128 christos (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask);
438 1.121 yamt
439 1.121 yamt if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
440 1.128 christos ph = (struct pool_item_header *)((char *)page + pp->pr_phoffset);
441 1.121 yamt } else {
442 1.121 yamt tmp.ph_page = page;
443 1.121 yamt ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
444 1.121 yamt }
445 1.121 yamt }
446 1.3 pk
447 1.121 yamt KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
448 1.128 christos ((char *)ph->ph_page <= (char *)v &&
449 1.128 christos (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
450 1.88 chs return ph;
451 1.3 pk }
452 1.3 pk
453 1.101 thorpej static void
454 1.101 thorpej pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
455 1.101 thorpej {
456 1.101 thorpej struct pool_item_header *ph;
457 1.101 thorpej
458 1.101 thorpej while ((ph = LIST_FIRST(pq)) != NULL) {
459 1.101 thorpej LIST_REMOVE(ph, ph_pagelist);
460 1.101 thorpej pool_allocator_free(pp, ph->ph_page);
461 1.134 ad if ((pp->pr_roflags & PR_PHINPAGE) == 0)
462 1.101 thorpej pool_put(pp->pr_phpool, ph);
463 1.101 thorpej }
464 1.101 thorpej }
465 1.101 thorpej
466 1.3 pk /*
467 1.3 pk * Remove a page from the pool.
468 1.3 pk */
469 1.110 perry static inline void
470 1.61 chs pr_rmpage(struct pool *pp, struct pool_item_header *ph,
471 1.61 chs struct pool_pagelist *pq)
472 1.3 pk {
473 1.3 pk
474 1.134 ad KASSERT(mutex_owned(&pp->pr_lock));
475 1.91 yamt
476 1.3 pk /*
477 1.7 thorpej * If the page was idle, decrement the idle page count.
478 1.3 pk */
479 1.6 thorpej if (ph->ph_nmissing == 0) {
480 1.6 thorpej #ifdef DIAGNOSTIC
481 1.6 thorpej if (pp->pr_nidle == 0)
482 1.6 thorpej panic("pr_rmpage: nidle inconsistent");
483 1.20 thorpej if (pp->pr_nitems < pp->pr_itemsperpage)
484 1.20 thorpej panic("pr_rmpage: nitems inconsistent");
485 1.6 thorpej #endif
486 1.6 thorpej pp->pr_nidle--;
487 1.6 thorpej }
488 1.7 thorpej
489 1.20 thorpej pp->pr_nitems -= pp->pr_itemsperpage;
490 1.20 thorpej
491 1.7 thorpej /*
492 1.101 thorpej * Unlink the page from the pool and queue it for release.
493 1.7 thorpej */
494 1.88 chs LIST_REMOVE(ph, ph_pagelist);
495 1.91 yamt if ((pp->pr_roflags & PR_PHINPAGE) == 0)
496 1.91 yamt SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
497 1.101 thorpej LIST_INSERT_HEAD(pq, ph, ph_pagelist);
498 1.101 thorpej
499 1.7 thorpej pp->pr_npages--;
500 1.7 thorpej pp->pr_npagefree++;
501 1.6 thorpej
502 1.88 chs pool_update_curpage(pp);
503 1.3 pk }
504 1.3 pk
505 1.126 thorpej static bool
506 1.117 yamt pa_starved_p(struct pool_allocator *pa)
507 1.117 yamt {
508 1.117 yamt
509 1.117 yamt if (pa->pa_backingmap != NULL) {
510 1.117 yamt return vm_map_starved_p(pa->pa_backingmap);
511 1.117 yamt }
512 1.127 thorpej return false;
513 1.117 yamt }
514 1.117 yamt
515 1.117 yamt static int
516 1.124 yamt pool_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
517 1.117 yamt {
518 1.117 yamt struct pool *pp = obj;
519 1.117 yamt struct pool_allocator *pa = pp->pr_alloc;
520 1.117 yamt
521 1.117 yamt KASSERT(&pp->pr_reclaimerentry == ce);
522 1.117 yamt pool_reclaim(pp);
523 1.117 yamt if (!pa_starved_p(pa)) {
524 1.117 yamt return CALLBACK_CHAIN_ABORT;
525 1.117 yamt }
526 1.117 yamt return CALLBACK_CHAIN_CONTINUE;
527 1.117 yamt }
528 1.117 yamt
529 1.117 yamt static void
530 1.117 yamt pool_reclaim_register(struct pool *pp)
531 1.117 yamt {
532 1.117 yamt struct vm_map *map = pp->pr_alloc->pa_backingmap;
533 1.117 yamt int s;
534 1.117 yamt
535 1.117 yamt if (map == NULL) {
536 1.117 yamt return;
537 1.117 yamt }
538 1.117 yamt
539 1.117 yamt s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
540 1.117 yamt callback_register(&vm_map_to_kernel(map)->vmk_reclaim_callback,
541 1.117 yamt &pp->pr_reclaimerentry, pp, pool_reclaim_callback);
542 1.117 yamt splx(s);
543 1.117 yamt }
544 1.117 yamt
545 1.117 yamt static void
546 1.117 yamt pool_reclaim_unregister(struct pool *pp)
547 1.117 yamt {
548 1.117 yamt struct vm_map *map = pp->pr_alloc->pa_backingmap;
549 1.117 yamt int s;
550 1.117 yamt
551 1.117 yamt if (map == NULL) {
552 1.117 yamt return;
553 1.117 yamt }
554 1.117 yamt
555 1.117 yamt s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
556 1.117 yamt callback_unregister(&vm_map_to_kernel(map)->vmk_reclaim_callback,
557 1.117 yamt &pp->pr_reclaimerentry);
558 1.117 yamt splx(s);
559 1.117 yamt }
560 1.117 yamt
561 1.117 yamt static void
562 1.117 yamt pa_reclaim_register(struct pool_allocator *pa)
563 1.117 yamt {
564 1.117 yamt struct vm_map *map = *pa->pa_backingmapptr;
565 1.117 yamt struct pool *pp;
566 1.117 yamt
567 1.117 yamt KASSERT(pa->pa_backingmap == NULL);
568 1.117 yamt if (map == NULL) {
569 1.117 yamt SLIST_INSERT_HEAD(&pa_deferinitq, pa, pa_q);
570 1.117 yamt return;
571 1.117 yamt }
572 1.117 yamt pa->pa_backingmap = map;
573 1.117 yamt TAILQ_FOREACH(pp, &pa->pa_list, pr_alloc_list) {
574 1.117 yamt pool_reclaim_register(pp);
575 1.117 yamt }
576 1.117 yamt }
577 1.117 yamt
578 1.3 pk /*
579 1.94 simonb * Initialize all the pools listed in the "pools" link set.
580 1.94 simonb */
581 1.94 simonb void
582 1.117 yamt pool_subsystem_init(void)
583 1.94 simonb {
584 1.117 yamt struct pool_allocator *pa;
585 1.94 simonb __link_set_decl(pools, struct link_pool_init);
586 1.94 simonb struct link_pool_init * const *pi;
587 1.94 simonb
588 1.134 ad mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
589 1.134 ad cv_init(&pool_busy, "poolbusy");
590 1.134 ad
591 1.94 simonb __link_set_foreach(pi, pools)
592 1.94 simonb pool_init((*pi)->pp, (*pi)->size, (*pi)->align,
593 1.94 simonb (*pi)->align_offset, (*pi)->flags, (*pi)->wchan,
594 1.129 ad (*pi)->palloc, (*pi)->ipl);
595 1.117 yamt
596 1.117 yamt while ((pa = SLIST_FIRST(&pa_deferinitq)) != NULL) {
597 1.117 yamt KASSERT(pa->pa_backingmapptr != NULL);
598 1.117 yamt KASSERT(*pa->pa_backingmapptr != NULL);
599 1.117 yamt SLIST_REMOVE_HEAD(&pa_deferinitq, pa_q);
600 1.117 yamt pa_reclaim_register(pa);
601 1.117 yamt }
602 1.134 ad
603 1.134 ad pool_init(&cache_pool, sizeof(struct pool_cache), CACHE_LINE_SIZE,
604 1.134 ad 0, 0, "pcache", &pool_allocator_nointr, IPL_NONE);
605 1.134 ad
606 1.134 ad pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), CACHE_LINE_SIZE,
607 1.134 ad 0, 0, "pcachecpu", &pool_allocator_nointr, IPL_NONE);
608 1.94 simonb }
609 1.94 simonb
610 1.94 simonb /*
611 1.3 pk * Initialize the given pool resource structure.
612 1.3 pk *
613 1.3 pk * We export this routine to allow other kernel parts to declare
614 1.3 pk * static pools that must be initialized before malloc() is available.
615 1.3 pk */
616 1.3 pk void
617 1.42 thorpej pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
618 1.129 ad const char *wchan, struct pool_allocator *palloc, int ipl)
619 1.3 pk {
620 1.116 simonb #ifdef DEBUG
621 1.116 simonb struct pool *pp1;
622 1.116 simonb #endif
623 1.92 enami size_t trysize, phsize;
624 1.134 ad int off, slack;
625 1.3 pk
626 1.116 simonb #ifdef DEBUG
627 1.116 simonb /*
628 1.116 simonb * Check that the pool hasn't already been initialised and
629 1.116 simonb * added to the list of all pools.
630 1.116 simonb */
631 1.116 simonb LIST_FOREACH(pp1, &pool_head, pr_poollist) {
632 1.116 simonb if (pp == pp1)
633 1.116 simonb panic("pool_init: pool %s already initialised",
634 1.116 simonb wchan);
635 1.116 simonb }
636 1.116 simonb #endif
637 1.116 simonb
638 1.25 thorpej #ifdef POOL_DIAGNOSTIC
639 1.25 thorpej /*
640 1.25 thorpej * Always log if POOL_DIAGNOSTIC is defined.
641 1.25 thorpej */
642 1.25 thorpej if (pool_logsize != 0)
643 1.25 thorpej flags |= PR_LOGGING;
644 1.25 thorpej #endif
645 1.25 thorpej
646 1.66 thorpej if (palloc == NULL)
647 1.66 thorpej palloc = &pool_allocator_kmem;
648 1.112 bjh21 #ifdef POOL_SUBPAGE
649 1.112 bjh21 if (size > palloc->pa_pagesz) {
650 1.112 bjh21 if (palloc == &pool_allocator_kmem)
651 1.112 bjh21 palloc = &pool_allocator_kmem_fullpage;
652 1.112 bjh21 else if (palloc == &pool_allocator_nointr)
653 1.112 bjh21 palloc = &pool_allocator_nointr_fullpage;
654 1.112 bjh21 }
655 1.66 thorpej #endif /* POOL_SUBPAGE */
656 1.66 thorpej if ((palloc->pa_flags & PA_INITIALIZED) == 0) {
657 1.112 bjh21 if (palloc->pa_pagesz == 0)
658 1.66 thorpej palloc->pa_pagesz = PAGE_SIZE;
659 1.66 thorpej
660 1.66 thorpej TAILQ_INIT(&palloc->pa_list);
661 1.66 thorpej
662 1.134 ad mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
663 1.66 thorpej palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
664 1.66 thorpej palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
665 1.117 yamt
666 1.117 yamt if (palloc->pa_backingmapptr != NULL) {
667 1.117 yamt pa_reclaim_register(palloc);
668 1.117 yamt }
669 1.66 thorpej palloc->pa_flags |= PA_INITIALIZED;
670 1.4 thorpej }
671 1.3 pk
672 1.3 pk if (align == 0)
673 1.3 pk align = ALIGN(1);
674 1.14 thorpej
675 1.120 yamt if ((flags & PR_NOTOUCH) == 0 && size < sizeof(struct pool_item))
676 1.14 thorpej size = sizeof(struct pool_item);
677 1.3 pk
678 1.78 thorpej size = roundup(size, align);
679 1.66 thorpej #ifdef DIAGNOSTIC
680 1.66 thorpej if (size > palloc->pa_pagesz)
681 1.121 yamt panic("pool_init: pool item size (%zu) too large", size);
682 1.66 thorpej #endif
683 1.35 pk
684 1.3 pk /*
685 1.3 pk * Initialize the pool structure.
686 1.3 pk */
687 1.88 chs LIST_INIT(&pp->pr_emptypages);
688 1.88 chs LIST_INIT(&pp->pr_fullpages);
689 1.88 chs LIST_INIT(&pp->pr_partpages);
690 1.134 ad pp->pr_cache = NULL;
691 1.3 pk pp->pr_curpage = NULL;
692 1.3 pk pp->pr_npages = 0;
693 1.3 pk pp->pr_minitems = 0;
694 1.3 pk pp->pr_minpages = 0;
695 1.3 pk pp->pr_maxpages = UINT_MAX;
696 1.20 thorpej pp->pr_roflags = flags;
697 1.20 thorpej pp->pr_flags = 0;
698 1.35 pk pp->pr_size = size;
699 1.3 pk pp->pr_align = align;
700 1.3 pk pp->pr_wchan = wchan;
701 1.66 thorpej pp->pr_alloc = palloc;
702 1.20 thorpej pp->pr_nitems = 0;
703 1.20 thorpej pp->pr_nout = 0;
704 1.20 thorpej pp->pr_hardlimit = UINT_MAX;
705 1.20 thorpej pp->pr_hardlimit_warning = NULL;
706 1.31 thorpej pp->pr_hardlimit_ratecap.tv_sec = 0;
707 1.31 thorpej pp->pr_hardlimit_ratecap.tv_usec = 0;
708 1.31 thorpej pp->pr_hardlimit_warning_last.tv_sec = 0;
709 1.31 thorpej pp->pr_hardlimit_warning_last.tv_usec = 0;
710 1.68 thorpej pp->pr_drain_hook = NULL;
711 1.68 thorpej pp->pr_drain_hook_arg = NULL;
712 1.125 ad pp->pr_freecheck = NULL;
713 1.3 pk
714 1.3 pk /*
715 1.3 pk * Decide whether to put the page header off page to avoid
716 1.92 enami * wasting too large a part of the page or too big item.
717 1.92 enami * Off-page page headers go on a hash table, so we can match
718 1.92 enami * a returned item with its header based on the page address.
719 1.92 enami * We use 1/16 of the page size and about 8 times of the item
720 1.92 enami * size as the threshold (XXX: tune)
721 1.92 enami *
722 1.92 enami * However, we'll put the header into the page if we can put
723 1.92 enami * it without wasting any items.
724 1.92 enami *
725 1.92 enami * Silently enforce `0 <= ioff < align'.
726 1.3 pk */
727 1.92 enami pp->pr_itemoffset = ioff %= align;
728 1.92 enami /* See the comment below about reserved bytes. */
729 1.92 enami trysize = palloc->pa_pagesz - ((align - ioff) % align);
730 1.92 enami phsize = ALIGN(sizeof(struct pool_item_header));
731 1.121 yamt if ((pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) == 0 &&
732 1.97 yamt (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) ||
733 1.97 yamt trysize / pp->pr_size == (trysize - phsize) / pp->pr_size)) {
734 1.3 pk /* Use the end of the page for the page header */
735 1.20 thorpej pp->pr_roflags |= PR_PHINPAGE;
736 1.92 enami pp->pr_phoffset = off = palloc->pa_pagesz - phsize;
737 1.2 pk } else {
738 1.3 pk /* The page header will be taken from our page header pool */
739 1.3 pk pp->pr_phoffset = 0;
740 1.66 thorpej off = palloc->pa_pagesz;
741 1.88 chs SPLAY_INIT(&pp->pr_phtree);
742 1.2 pk }
743 1.1 pk
744 1.3 pk /*
745 1.3 pk * Alignment is to take place at `ioff' within the item. This means
746 1.3 pk * we must reserve up to `align - 1' bytes on the page to allow
747 1.3 pk * appropriate positioning of each item.
748 1.3 pk */
749 1.3 pk pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
750 1.43 thorpej KASSERT(pp->pr_itemsperpage != 0);
751 1.97 yamt if ((pp->pr_roflags & PR_NOTOUCH)) {
752 1.97 yamt int idx;
753 1.97 yamt
754 1.97 yamt for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
755 1.97 yamt idx++) {
756 1.97 yamt /* nothing */
757 1.97 yamt }
758 1.97 yamt if (idx >= PHPOOL_MAX) {
759 1.97 yamt /*
760 1.97 yamt * if you see this panic, consider to tweak
761 1.97 yamt * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
762 1.97 yamt */
763 1.97 yamt panic("%s: too large itemsperpage(%d) for PR_NOTOUCH",
764 1.97 yamt pp->pr_wchan, pp->pr_itemsperpage);
765 1.97 yamt }
766 1.97 yamt pp->pr_phpool = &phpool[idx];
767 1.97 yamt } else if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
768 1.97 yamt pp->pr_phpool = &phpool[0];
769 1.97 yamt }
770 1.97 yamt #if defined(DIAGNOSTIC)
771 1.97 yamt else {
772 1.97 yamt pp->pr_phpool = NULL;
773 1.97 yamt }
774 1.97 yamt #endif
775 1.3 pk
776 1.3 pk /*
777 1.3 pk * Use the slack between the chunks and the page header
778 1.3 pk * for "cache coloring".
779 1.3 pk */
780 1.3 pk slack = off - pp->pr_itemsperpage * pp->pr_size;
781 1.3 pk pp->pr_maxcolor = (slack / align) * align;
782 1.3 pk pp->pr_curcolor = 0;
783 1.3 pk
784 1.3 pk pp->pr_nget = 0;
785 1.3 pk pp->pr_nfail = 0;
786 1.3 pk pp->pr_nput = 0;
787 1.3 pk pp->pr_npagealloc = 0;
788 1.3 pk pp->pr_npagefree = 0;
789 1.1 pk pp->pr_hiwat = 0;
790 1.8 thorpej pp->pr_nidle = 0;
791 1.134 ad pp->pr_refcnt = 0;
792 1.3 pk
793 1.59 thorpej #ifdef POOL_DIAGNOSTIC
794 1.25 thorpej if (flags & PR_LOGGING) {
795 1.25 thorpej if (kmem_map == NULL ||
796 1.25 thorpej (pp->pr_log = malloc(pool_logsize * sizeof(struct pool_log),
797 1.25 thorpej M_TEMP, M_NOWAIT)) == NULL)
798 1.20 thorpej pp->pr_roflags &= ~PR_LOGGING;
799 1.3 pk pp->pr_curlogentry = 0;
800 1.3 pk pp->pr_logsize = pool_logsize;
801 1.3 pk }
802 1.59 thorpej #endif
803 1.25 thorpej
804 1.25 thorpej pp->pr_entered_file = NULL;
805 1.25 thorpej pp->pr_entered_line = 0;
806 1.3 pk
807 1.138 ad /*
808 1.138 ad * XXXAD hack to prevent IP input processing from blocking.
809 1.138 ad */
810 1.138 ad if (ipl == IPL_SOFTNET) {
811 1.138 ad mutex_init(&pp->pr_lock, MUTEX_DEFAULT, IPL_VM);
812 1.138 ad } else {
813 1.138 ad mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
814 1.138 ad }
815 1.134 ad cv_init(&pp->pr_cv, wchan);
816 1.134 ad pp->pr_ipl = ipl;
817 1.1 pk
818 1.3 pk /*
819 1.43 thorpej * Initialize private page header pool and cache magazine pool if we
820 1.43 thorpej * haven't done so yet.
821 1.23 thorpej * XXX LOCKING.
822 1.3 pk */
823 1.97 yamt if (phpool[0].pr_size == 0) {
824 1.97 yamt int idx;
825 1.97 yamt for (idx = 0; idx < PHPOOL_MAX; idx++) {
826 1.97 yamt static char phpool_names[PHPOOL_MAX][6+1+6+1];
827 1.97 yamt int nelem;
828 1.97 yamt size_t sz;
829 1.97 yamt
830 1.97 yamt nelem = PHPOOL_FREELIST_NELEM(idx);
831 1.97 yamt snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
832 1.97 yamt "phpool-%d", nelem);
833 1.97 yamt sz = sizeof(struct pool_item_header);
834 1.97 yamt if (nelem) {
835 1.135 yamt sz = offsetof(struct pool_item_header,
836 1.135 yamt ph_bitmap[howmany(nelem, BITMAP_SIZE)]);
837 1.97 yamt }
838 1.97 yamt pool_init(&phpool[idx], sz, 0, 0, 0,
839 1.129 ad phpool_names[idx], &pool_allocator_meta, IPL_VM);
840 1.97 yamt }
841 1.62 bjh21 #ifdef POOL_SUBPAGE
842 1.62 bjh21 pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
843 1.129 ad PR_RECURSIVE, "psppool", &pool_allocator_meta, IPL_VM);
844 1.62 bjh21 #endif
845 1.134 ad pool_init(&pcgpool, sizeof(pcg_t), CACHE_LINE_SIZE, 0, 0,
846 1.134 ad "cachegrp", &pool_allocator_meta, IPL_VM);
847 1.1 pk }
848 1.1 pk
849 1.134 ad if (__predict_true(!cold)) {
850 1.134 ad /* Insert into the list of all pools. */
851 1.134 ad mutex_enter(&pool_head_lock);
852 1.134 ad LIST_INSERT_HEAD(&pool_head, pp, pr_poollist);
853 1.134 ad mutex_exit(&pool_head_lock);
854 1.134 ad
855 1.134 ad /* Insert this into the list of pools using this allocator. */
856 1.134 ad mutex_enter(&palloc->pa_lock);
857 1.134 ad TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
858 1.134 ad mutex_exit(&palloc->pa_lock);
859 1.134 ad } else {
860 1.134 ad LIST_INSERT_HEAD(&pool_head, pp, pr_poollist);
861 1.134 ad TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
862 1.134 ad }
863 1.66 thorpej
864 1.117 yamt pool_reclaim_register(pp);
865 1.1 pk }
866 1.1 pk
867 1.1 pk /*
868 1.1 pk * De-commision a pool resource.
869 1.1 pk */
870 1.1 pk void
871 1.42 thorpej pool_destroy(struct pool *pp)
872 1.1 pk {
873 1.101 thorpej struct pool_pagelist pq;
874 1.3 pk struct pool_item_header *ph;
875 1.43 thorpej
876 1.101 thorpej /* Remove from global pool list */
877 1.134 ad mutex_enter(&pool_head_lock);
878 1.134 ad while (pp->pr_refcnt != 0)
879 1.134 ad cv_wait(&pool_busy, &pool_head_lock);
880 1.102 chs LIST_REMOVE(pp, pr_poollist);
881 1.101 thorpej if (drainpp == pp)
882 1.101 thorpej drainpp = NULL;
883 1.134 ad mutex_exit(&pool_head_lock);
884 1.101 thorpej
885 1.101 thorpej /* Remove this pool from its allocator's list of pools. */
886 1.117 yamt pool_reclaim_unregister(pp);
887 1.134 ad mutex_enter(&pp->pr_alloc->pa_lock);
888 1.66 thorpej TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
889 1.134 ad mutex_exit(&pp->pr_alloc->pa_lock);
890 1.66 thorpej
891 1.134 ad mutex_enter(&pp->pr_lock);
892 1.101 thorpej
893 1.134 ad KASSERT(pp->pr_cache == NULL);
894 1.3 pk
895 1.3 pk #ifdef DIAGNOSTIC
896 1.20 thorpej if (pp->pr_nout != 0) {
897 1.25 thorpej pr_printlog(pp, NULL, printf);
898 1.80 provos panic("pool_destroy: pool busy: still out: %u",
899 1.20 thorpej pp->pr_nout);
900 1.3 pk }
901 1.3 pk #endif
902 1.1 pk
903 1.101 thorpej KASSERT(LIST_EMPTY(&pp->pr_fullpages));
904 1.101 thorpej KASSERT(LIST_EMPTY(&pp->pr_partpages));
905 1.101 thorpej
906 1.3 pk /* Remove all pages */
907 1.101 thorpej LIST_INIT(&pq);
908 1.88 chs while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
909 1.101 thorpej pr_rmpage(pp, ph, &pq);
910 1.101 thorpej
911 1.134 ad mutex_exit(&pp->pr_lock);
912 1.3 pk
913 1.101 thorpej pr_pagelist_free(pp, &pq);
914 1.3 pk
915 1.59 thorpej #ifdef POOL_DIAGNOSTIC
916 1.20 thorpej if ((pp->pr_roflags & PR_LOGGING) != 0)
917 1.3 pk free(pp->pr_log, M_TEMP);
918 1.59 thorpej #endif
919 1.134 ad
920 1.134 ad cv_destroy(&pp->pr_cv);
921 1.134 ad mutex_destroy(&pp->pr_lock);
922 1.1 pk }
923 1.1 pk
924 1.68 thorpej void
925 1.68 thorpej pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
926 1.68 thorpej {
927 1.68 thorpej
928 1.68 thorpej /* XXX no locking -- must be used just after pool_init() */
929 1.68 thorpej #ifdef DIAGNOSTIC
930 1.68 thorpej if (pp->pr_drain_hook != NULL)
931 1.68 thorpej panic("pool_set_drain_hook(%s): already set", pp->pr_wchan);
932 1.68 thorpej #endif
933 1.68 thorpej pp->pr_drain_hook = fn;
934 1.68 thorpej pp->pr_drain_hook_arg = arg;
935 1.68 thorpej }
936 1.68 thorpej
937 1.88 chs static struct pool_item_header *
938 1.128 christos pool_alloc_item_header(struct pool *pp, void *storage, int flags)
939 1.55 thorpej {
940 1.55 thorpej struct pool_item_header *ph;
941 1.55 thorpej
942 1.55 thorpej if ((pp->pr_roflags & PR_PHINPAGE) != 0)
943 1.128 christos ph = (struct pool_item_header *) ((char *)storage + pp->pr_phoffset);
944 1.134 ad else
945 1.97 yamt ph = pool_get(pp->pr_phpool, flags);
946 1.55 thorpej
947 1.55 thorpej return (ph);
948 1.55 thorpej }
949 1.1 pk
950 1.1 pk /*
951 1.134 ad * Grab an item from the pool.
952 1.1 pk */
953 1.3 pk void *
954 1.59 thorpej #ifdef POOL_DIAGNOSTIC
955 1.42 thorpej _pool_get(struct pool *pp, int flags, const char *file, long line)
956 1.56 sommerfe #else
957 1.56 sommerfe pool_get(struct pool *pp, int flags)
958 1.56 sommerfe #endif
959 1.1 pk {
960 1.1 pk struct pool_item *pi;
961 1.3 pk struct pool_item_header *ph;
962 1.55 thorpej void *v;
963 1.1 pk
964 1.2 pk #ifdef DIAGNOSTIC
965 1.95 atatat if (__predict_false(pp->pr_itemsperpage == 0))
966 1.95 atatat panic("pool_get: pool %p: pr_itemsperpage is zero, "
967 1.95 atatat "pool not initialized?", pp);
968 1.84 thorpej if (__predict_false(curlwp == NULL && doing_shutdown == 0 &&
969 1.37 sommerfe (flags & PR_WAITOK) != 0))
970 1.77 matt panic("pool_get: %s: must have NOWAIT", pp->pr_wchan);
971 1.58 thorpej
972 1.102 chs #endif /* DIAGNOSTIC */
973 1.58 thorpej #ifdef LOCKDEBUG
974 1.58 thorpej if (flags & PR_WAITOK)
975 1.119 yamt ASSERT_SLEEPABLE(NULL, "pool_get(PR_WAITOK)");
976 1.56 sommerfe #endif
977 1.1 pk
978 1.134 ad mutex_enter(&pp->pr_lock);
979 1.25 thorpej pr_enter(pp, file, line);
980 1.20 thorpej
981 1.20 thorpej startover:
982 1.20 thorpej /*
983 1.20 thorpej * Check to see if we've reached the hard limit. If we have,
984 1.20 thorpej * and we can wait, then wait until an item has been returned to
985 1.20 thorpej * the pool.
986 1.20 thorpej */
987 1.20 thorpej #ifdef DIAGNOSTIC
988 1.34 thorpej if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
989 1.25 thorpej pr_leave(pp);
990 1.134 ad mutex_exit(&pp->pr_lock);
991 1.20 thorpej panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
992 1.20 thorpej }
993 1.20 thorpej #endif
994 1.34 thorpej if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
995 1.68 thorpej if (pp->pr_drain_hook != NULL) {
996 1.68 thorpej /*
997 1.68 thorpej * Since the drain hook is going to free things
998 1.68 thorpej * back to the pool, unlock, call the hook, re-lock,
999 1.68 thorpej * and check the hardlimit condition again.
1000 1.68 thorpej */
1001 1.68 thorpej pr_leave(pp);
1002 1.134 ad mutex_exit(&pp->pr_lock);
1003 1.68 thorpej (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
1004 1.134 ad mutex_enter(&pp->pr_lock);
1005 1.68 thorpej pr_enter(pp, file, line);
1006 1.68 thorpej if (pp->pr_nout < pp->pr_hardlimit)
1007 1.68 thorpej goto startover;
1008 1.68 thorpej }
1009 1.68 thorpej
1010 1.29 sommerfe if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
1011 1.20 thorpej /*
1012 1.20 thorpej * XXX: A warning isn't logged in this case. Should
1013 1.20 thorpej * it be?
1014 1.20 thorpej */
1015 1.20 thorpej pp->pr_flags |= PR_WANTED;
1016 1.25 thorpej pr_leave(pp);
1017 1.134 ad cv_wait(&pp->pr_cv, &pp->pr_lock);
1018 1.25 thorpej pr_enter(pp, file, line);
1019 1.20 thorpej goto startover;
1020 1.20 thorpej }
1021 1.31 thorpej
1022 1.31 thorpej /*
1023 1.31 thorpej * Log a message that the hard limit has been hit.
1024 1.31 thorpej */
1025 1.31 thorpej if (pp->pr_hardlimit_warning != NULL &&
1026 1.31 thorpej ratecheck(&pp->pr_hardlimit_warning_last,
1027 1.31 thorpej &pp->pr_hardlimit_ratecap))
1028 1.31 thorpej log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
1029 1.21 thorpej
1030 1.21 thorpej pp->pr_nfail++;
1031 1.21 thorpej
1032 1.25 thorpej pr_leave(pp);
1033 1.134 ad mutex_exit(&pp->pr_lock);
1034 1.20 thorpej return (NULL);
1035 1.20 thorpej }
1036 1.20 thorpej
1037 1.3 pk /*
1038 1.3 pk * The convention we use is that if `curpage' is not NULL, then
1039 1.3 pk * it points at a non-empty bucket. In particular, `curpage'
1040 1.3 pk * never points at a page header which has PR_PHINPAGE set and
1041 1.3 pk * has no items in its bucket.
1042 1.3 pk */
1043 1.20 thorpej if ((ph = pp->pr_curpage) == NULL) {
1044 1.113 yamt int error;
1045 1.113 yamt
1046 1.20 thorpej #ifdef DIAGNOSTIC
1047 1.20 thorpej if (pp->pr_nitems != 0) {
1048 1.134 ad mutex_exit(&pp->pr_lock);
1049 1.20 thorpej printf("pool_get: %s: curpage NULL, nitems %u\n",
1050 1.20 thorpej pp->pr_wchan, pp->pr_nitems);
1051 1.80 provos panic("pool_get: nitems inconsistent");
1052 1.20 thorpej }
1053 1.20 thorpej #endif
1054 1.20 thorpej
1055 1.21 thorpej /*
1056 1.21 thorpej * Call the back-end page allocator for more memory.
1057 1.21 thorpej * Release the pool lock, as the back-end page allocator
1058 1.21 thorpej * may block.
1059 1.21 thorpej */
1060 1.25 thorpej pr_leave(pp);
1061 1.113 yamt error = pool_grow(pp, flags);
1062 1.113 yamt pr_enter(pp, file, line);
1063 1.113 yamt if (error != 0) {
1064 1.21 thorpej /*
1065 1.55 thorpej * We were unable to allocate a page or item
1066 1.55 thorpej * header, but we released the lock during
1067 1.55 thorpej * allocation, so perhaps items were freed
1068 1.55 thorpej * back to the pool. Check for this case.
1069 1.21 thorpej */
1070 1.21 thorpej if (pp->pr_curpage != NULL)
1071 1.21 thorpej goto startover;
1072 1.15 pk
1073 1.117 yamt pp->pr_nfail++;
1074 1.25 thorpej pr_leave(pp);
1075 1.134 ad mutex_exit(&pp->pr_lock);
1076 1.117 yamt return (NULL);
1077 1.1 pk }
1078 1.3 pk
1079 1.20 thorpej /* Start the allocation process over. */
1080 1.20 thorpej goto startover;
1081 1.3 pk }
1082 1.97 yamt if (pp->pr_roflags & PR_NOTOUCH) {
1083 1.97 yamt #ifdef DIAGNOSTIC
1084 1.97 yamt if (__predict_false(ph->ph_nmissing == pp->pr_itemsperpage)) {
1085 1.97 yamt pr_leave(pp);
1086 1.134 ad mutex_exit(&pp->pr_lock);
1087 1.97 yamt panic("pool_get: %s: page empty", pp->pr_wchan);
1088 1.97 yamt }
1089 1.97 yamt #endif
1090 1.97 yamt v = pr_item_notouch_get(pp, ph);
1091 1.97 yamt #ifdef POOL_DIAGNOSTIC
1092 1.97 yamt pr_log(pp, v, PRLOG_GET, file, line);
1093 1.97 yamt #endif
1094 1.97 yamt } else {
1095 1.102 chs v = pi = LIST_FIRST(&ph->ph_itemlist);
1096 1.97 yamt if (__predict_false(v == NULL)) {
1097 1.97 yamt pr_leave(pp);
1098 1.134 ad mutex_exit(&pp->pr_lock);
1099 1.97 yamt panic("pool_get: %s: page empty", pp->pr_wchan);
1100 1.97 yamt }
1101 1.20 thorpej #ifdef DIAGNOSTIC
1102 1.97 yamt if (__predict_false(pp->pr_nitems == 0)) {
1103 1.97 yamt pr_leave(pp);
1104 1.134 ad mutex_exit(&pp->pr_lock);
1105 1.97 yamt printf("pool_get: %s: items on itemlist, nitems %u\n",
1106 1.97 yamt pp->pr_wchan, pp->pr_nitems);
1107 1.97 yamt panic("pool_get: nitems inconsistent");
1108 1.97 yamt }
1109 1.65 enami #endif
1110 1.56 sommerfe
1111 1.65 enami #ifdef POOL_DIAGNOSTIC
1112 1.97 yamt pr_log(pp, v, PRLOG_GET, file, line);
1113 1.65 enami #endif
1114 1.3 pk
1115 1.65 enami #ifdef DIAGNOSTIC
1116 1.97 yamt if (__predict_false(pi->pi_magic != PI_MAGIC)) {
1117 1.97 yamt pr_printlog(pp, pi, printf);
1118 1.97 yamt panic("pool_get(%s): free list modified: "
1119 1.97 yamt "magic=%x; page %p; item addr %p\n",
1120 1.97 yamt pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
1121 1.97 yamt }
1122 1.3 pk #endif
1123 1.3 pk
1124 1.97 yamt /*
1125 1.97 yamt * Remove from item list.
1126 1.97 yamt */
1127 1.102 chs LIST_REMOVE(pi, pi_list);
1128 1.97 yamt }
1129 1.20 thorpej pp->pr_nitems--;
1130 1.20 thorpej pp->pr_nout++;
1131 1.6 thorpej if (ph->ph_nmissing == 0) {
1132 1.6 thorpej #ifdef DIAGNOSTIC
1133 1.34 thorpej if (__predict_false(pp->pr_nidle == 0))
1134 1.6 thorpej panic("pool_get: nidle inconsistent");
1135 1.6 thorpej #endif
1136 1.6 thorpej pp->pr_nidle--;
1137 1.88 chs
1138 1.88 chs /*
1139 1.88 chs * This page was previously empty. Move it to the list of
1140 1.88 chs * partially-full pages. This page is already curpage.
1141 1.88 chs */
1142 1.88 chs LIST_REMOVE(ph, ph_pagelist);
1143 1.88 chs LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1144 1.6 thorpej }
1145 1.3 pk ph->ph_nmissing++;
1146 1.97 yamt if (ph->ph_nmissing == pp->pr_itemsperpage) {
1147 1.21 thorpej #ifdef DIAGNOSTIC
1148 1.97 yamt if (__predict_false((pp->pr_roflags & PR_NOTOUCH) == 0 &&
1149 1.102 chs !LIST_EMPTY(&ph->ph_itemlist))) {
1150 1.25 thorpej pr_leave(pp);
1151 1.134 ad mutex_exit(&pp->pr_lock);
1152 1.21 thorpej panic("pool_get: %s: nmissing inconsistent",
1153 1.21 thorpej pp->pr_wchan);
1154 1.21 thorpej }
1155 1.21 thorpej #endif
1156 1.3 pk /*
1157 1.88 chs * This page is now full. Move it to the full list
1158 1.88 chs * and select a new current page.
1159 1.3 pk */
1160 1.88 chs LIST_REMOVE(ph, ph_pagelist);
1161 1.88 chs LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
1162 1.88 chs pool_update_curpage(pp);
1163 1.1 pk }
1164 1.3 pk
1165 1.3 pk pp->pr_nget++;
1166 1.111 christos pr_leave(pp);
1167 1.20 thorpej
1168 1.20 thorpej /*
1169 1.20 thorpej * If we have a low water mark and we are now below that low
1170 1.20 thorpej * water mark, add more items to the pool.
1171 1.20 thorpej */
1172 1.53 thorpej if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1173 1.20 thorpej /*
1174 1.20 thorpej * XXX: Should we log a warning? Should we set up a timeout
1175 1.20 thorpej * to try again in a second or so? The latter could break
1176 1.20 thorpej * a caller's assumptions about interrupt protection, etc.
1177 1.20 thorpej */
1178 1.20 thorpej }
1179 1.20 thorpej
1180 1.134 ad mutex_exit(&pp->pr_lock);
1181 1.125 ad KASSERT((((vaddr_t)v + pp->pr_itemoffset) & (pp->pr_align - 1)) == 0);
1182 1.125 ad FREECHECK_OUT(&pp->pr_freecheck, v);
1183 1.1 pk return (v);
1184 1.1 pk }
1185 1.1 pk
1186 1.1 pk /*
1187 1.43 thorpej * Internal version of pool_put(). Pool is already locked/entered.
1188 1.1 pk */
1189 1.43 thorpej static void
1190 1.101 thorpej pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
1191 1.1 pk {
1192 1.1 pk struct pool_item *pi = v;
1193 1.3 pk struct pool_item_header *ph;
1194 1.3 pk
1195 1.134 ad KASSERT(mutex_owned(&pp->pr_lock));
1196 1.125 ad FREECHECK_IN(&pp->pr_freecheck, v);
1197 1.134 ad LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
1198 1.61 chs
1199 1.30 thorpej #ifdef DIAGNOSTIC
1200 1.34 thorpej if (__predict_false(pp->pr_nout == 0)) {
1201 1.30 thorpej printf("pool %s: putting with none out\n",
1202 1.30 thorpej pp->pr_wchan);
1203 1.30 thorpej panic("pool_put");
1204 1.30 thorpej }
1205 1.30 thorpej #endif
1206 1.3 pk
1207 1.121 yamt if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
1208 1.25 thorpej pr_printlog(pp, NULL, printf);
1209 1.3 pk panic("pool_put: %s: page header missing", pp->pr_wchan);
1210 1.3 pk }
1211 1.28 thorpej
1212 1.3 pk /*
1213 1.3 pk * Return to item list.
1214 1.3 pk */
1215 1.97 yamt if (pp->pr_roflags & PR_NOTOUCH) {
1216 1.97 yamt pr_item_notouch_put(pp, ph, v);
1217 1.97 yamt } else {
1218 1.2 pk #ifdef DIAGNOSTIC
1219 1.97 yamt pi->pi_magic = PI_MAGIC;
1220 1.3 pk #endif
1221 1.32 chs #ifdef DEBUG
1222 1.97 yamt {
1223 1.97 yamt int i, *ip = v;
1224 1.32 chs
1225 1.97 yamt for (i = 0; i < pp->pr_size / sizeof(int); i++) {
1226 1.97 yamt *ip++ = PI_MAGIC;
1227 1.97 yamt }
1228 1.32 chs }
1229 1.32 chs #endif
1230 1.32 chs
1231 1.102 chs LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1232 1.97 yamt }
1233 1.79 thorpej KDASSERT(ph->ph_nmissing != 0);
1234 1.3 pk ph->ph_nmissing--;
1235 1.3 pk pp->pr_nput++;
1236 1.20 thorpej pp->pr_nitems++;
1237 1.20 thorpej pp->pr_nout--;
1238 1.3 pk
1239 1.3 pk /* Cancel "pool empty" condition if it exists */
1240 1.3 pk if (pp->pr_curpage == NULL)
1241 1.3 pk pp->pr_curpage = ph;
1242 1.3 pk
1243 1.3 pk if (pp->pr_flags & PR_WANTED) {
1244 1.3 pk pp->pr_flags &= ~PR_WANTED;
1245 1.15 pk if (ph->ph_nmissing == 0)
1246 1.15 pk pp->pr_nidle++;
1247 1.134 ad cv_broadcast(&pp->pr_cv);
1248 1.3 pk return;
1249 1.3 pk }
1250 1.3 pk
1251 1.3 pk /*
1252 1.88 chs * If this page is now empty, do one of two things:
1253 1.21 thorpej *
1254 1.88 chs * (1) If we have more pages than the page high water mark,
1255 1.96 thorpej * free the page back to the system. ONLY CONSIDER
1256 1.90 thorpej * FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
1257 1.90 thorpej * CLAIM.
1258 1.21 thorpej *
1259 1.88 chs * (2) Otherwise, move the page to the empty page list.
1260 1.88 chs *
1261 1.88 chs * Either way, select a new current page (so we use a partially-full
1262 1.88 chs * page if one is available).
1263 1.3 pk */
1264 1.3 pk if (ph->ph_nmissing == 0) {
1265 1.6 thorpej pp->pr_nidle++;
1266 1.90 thorpej if (pp->pr_npages > pp->pr_minpages &&
1267 1.90 thorpej (pp->pr_npages > pp->pr_maxpages ||
1268 1.117 yamt pa_starved_p(pp->pr_alloc))) {
1269 1.101 thorpej pr_rmpage(pp, ph, pq);
1270 1.3 pk } else {
1271 1.88 chs LIST_REMOVE(ph, ph_pagelist);
1272 1.88 chs LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1273 1.3 pk
1274 1.21 thorpej /*
1275 1.21 thorpej * Update the timestamp on the page. A page must
1276 1.21 thorpej * be idle for some period of time before it can
1277 1.21 thorpej * be reclaimed by the pagedaemon. This minimizes
1278 1.21 thorpej * ping-pong'ing for memory.
1279 1.21 thorpej */
1280 1.118 kardel getmicrotime(&ph->ph_time);
1281 1.1 pk }
1282 1.88 chs pool_update_curpage(pp);
1283 1.1 pk }
1284 1.88 chs
1285 1.21 thorpej /*
1286 1.88 chs * If the page was previously completely full, move it to the
1287 1.88 chs * partially-full list and make it the current page. The next
1288 1.88 chs * allocation will get the item from this page, instead of
1289 1.88 chs * further fragmenting the pool.
1290 1.21 thorpej */
1291 1.21 thorpej else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
1292 1.88 chs LIST_REMOVE(ph, ph_pagelist);
1293 1.88 chs LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1294 1.21 thorpej pp->pr_curpage = ph;
1295 1.21 thorpej }
1296 1.43 thorpej }
1297 1.43 thorpej
1298 1.43 thorpej /*
1299 1.134 ad * Return resource to the pool.
1300 1.43 thorpej */
1301 1.59 thorpej #ifdef POOL_DIAGNOSTIC
1302 1.43 thorpej void
1303 1.43 thorpej _pool_put(struct pool *pp, void *v, const char *file, long line)
1304 1.43 thorpej {
1305 1.101 thorpej struct pool_pagelist pq;
1306 1.101 thorpej
1307 1.101 thorpej LIST_INIT(&pq);
1308 1.43 thorpej
1309 1.134 ad mutex_enter(&pp->pr_lock);
1310 1.43 thorpej pr_enter(pp, file, line);
1311 1.43 thorpej
1312 1.56 sommerfe pr_log(pp, v, PRLOG_PUT, file, line);
1313 1.56 sommerfe
1314 1.101 thorpej pool_do_put(pp, v, &pq);
1315 1.21 thorpej
1316 1.25 thorpej pr_leave(pp);
1317 1.134 ad mutex_exit(&pp->pr_lock);
1318 1.101 thorpej
1319 1.102 chs pr_pagelist_free(pp, &pq);
1320 1.1 pk }
1321 1.57 sommerfe #undef pool_put
1322 1.59 thorpej #endif /* POOL_DIAGNOSTIC */
1323 1.1 pk
1324 1.56 sommerfe void
1325 1.56 sommerfe pool_put(struct pool *pp, void *v)
1326 1.56 sommerfe {
1327 1.101 thorpej struct pool_pagelist pq;
1328 1.101 thorpej
1329 1.101 thorpej LIST_INIT(&pq);
1330 1.56 sommerfe
1331 1.134 ad mutex_enter(&pp->pr_lock);
1332 1.101 thorpej pool_do_put(pp, v, &pq);
1333 1.134 ad mutex_exit(&pp->pr_lock);
1334 1.56 sommerfe
1335 1.102 chs pr_pagelist_free(pp, &pq);
1336 1.56 sommerfe }
1337 1.57 sommerfe
1338 1.59 thorpej #ifdef POOL_DIAGNOSTIC
1339 1.57 sommerfe #define pool_put(h, v) _pool_put((h), (v), __FILE__, __LINE__)
1340 1.56 sommerfe #endif
1341 1.74 thorpej
1342 1.74 thorpej /*
1343 1.113 yamt * pool_grow: grow a pool by a page.
1344 1.113 yamt *
1345 1.113 yamt * => called with pool locked.
1346 1.113 yamt * => unlock and relock the pool.
1347 1.113 yamt * => return with pool locked.
1348 1.113 yamt */
1349 1.113 yamt
1350 1.113 yamt static int
1351 1.113 yamt pool_grow(struct pool *pp, int flags)
1352 1.113 yamt {
1353 1.113 yamt struct pool_item_header *ph = NULL;
1354 1.113 yamt char *cp;
1355 1.113 yamt
1356 1.134 ad mutex_exit(&pp->pr_lock);
1357 1.113 yamt cp = pool_allocator_alloc(pp, flags);
1358 1.113 yamt if (__predict_true(cp != NULL)) {
1359 1.113 yamt ph = pool_alloc_item_header(pp, cp, flags);
1360 1.113 yamt }
1361 1.113 yamt if (__predict_false(cp == NULL || ph == NULL)) {
1362 1.113 yamt if (cp != NULL) {
1363 1.113 yamt pool_allocator_free(pp, cp);
1364 1.113 yamt }
1365 1.134 ad mutex_enter(&pp->pr_lock);
1366 1.113 yamt return ENOMEM;
1367 1.113 yamt }
1368 1.113 yamt
1369 1.134 ad mutex_enter(&pp->pr_lock);
1370 1.113 yamt pool_prime_page(pp, cp, ph);
1371 1.113 yamt pp->pr_npagealloc++;
1372 1.113 yamt return 0;
1373 1.113 yamt }
1374 1.113 yamt
1375 1.113 yamt /*
1376 1.74 thorpej * Add N items to the pool.
1377 1.74 thorpej */
1378 1.74 thorpej int
1379 1.74 thorpej pool_prime(struct pool *pp, int n)
1380 1.74 thorpej {
1381 1.75 simonb int newpages;
1382 1.113 yamt int error = 0;
1383 1.74 thorpej
1384 1.134 ad mutex_enter(&pp->pr_lock);
1385 1.74 thorpej
1386 1.74 thorpej newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1387 1.74 thorpej
1388 1.74 thorpej while (newpages-- > 0) {
1389 1.113 yamt error = pool_grow(pp, PR_NOWAIT);
1390 1.113 yamt if (error) {
1391 1.74 thorpej break;
1392 1.74 thorpej }
1393 1.74 thorpej pp->pr_minpages++;
1394 1.74 thorpej }
1395 1.74 thorpej
1396 1.74 thorpej if (pp->pr_minpages >= pp->pr_maxpages)
1397 1.74 thorpej pp->pr_maxpages = pp->pr_minpages + 1; /* XXX */
1398 1.74 thorpej
1399 1.134 ad mutex_exit(&pp->pr_lock);
1400 1.113 yamt return error;
1401 1.74 thorpej }
1402 1.55 thorpej
1403 1.55 thorpej /*
1404 1.3 pk * Add a page worth of items to the pool.
1405 1.21 thorpej *
1406 1.21 thorpej * Note, we must be called with the pool descriptor LOCKED.
1407 1.3 pk */
1408 1.55 thorpej static void
1409 1.128 christos pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
1410 1.3 pk {
1411 1.3 pk struct pool_item *pi;
1412 1.128 christos void *cp = storage;
1413 1.125 ad const unsigned int align = pp->pr_align;
1414 1.125 ad const unsigned int ioff = pp->pr_itemoffset;
1415 1.55 thorpej int n;
1416 1.36 pk
1417 1.134 ad KASSERT(mutex_owned(&pp->pr_lock));
1418 1.91 yamt
1419 1.66 thorpej #ifdef DIAGNOSTIC
1420 1.121 yamt if ((pp->pr_roflags & PR_NOALIGN) == 0 &&
1421 1.121 yamt ((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) != 0)
1422 1.36 pk panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
1423 1.66 thorpej #endif
1424 1.3 pk
1425 1.3 pk /*
1426 1.3 pk * Insert page header.
1427 1.3 pk */
1428 1.88 chs LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1429 1.102 chs LIST_INIT(&ph->ph_itemlist);
1430 1.3 pk ph->ph_page = storage;
1431 1.3 pk ph->ph_nmissing = 0;
1432 1.118 kardel getmicrotime(&ph->ph_time);
1433 1.88 chs if ((pp->pr_roflags & PR_PHINPAGE) == 0)
1434 1.88 chs SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
1435 1.3 pk
1436 1.6 thorpej pp->pr_nidle++;
1437 1.6 thorpej
1438 1.3 pk /*
1439 1.3 pk * Color this page.
1440 1.3 pk */
1441 1.128 christos cp = (char *)cp + pp->pr_curcolor;
1442 1.3 pk if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
1443 1.3 pk pp->pr_curcolor = 0;
1444 1.3 pk
1445 1.3 pk /*
1446 1.3 pk * Adjust storage to apply aligment to `pr_itemoffset' in each item.
1447 1.3 pk */
1448 1.3 pk if (ioff != 0)
1449 1.128 christos cp = (char *)cp + align - ioff;
1450 1.3 pk
1451 1.125 ad KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
1452 1.125 ad
1453 1.3 pk /*
1454 1.3 pk * Insert remaining chunks on the bucket list.
1455 1.3 pk */
1456 1.3 pk n = pp->pr_itemsperpage;
1457 1.20 thorpej pp->pr_nitems += n;
1458 1.3 pk
1459 1.97 yamt if (pp->pr_roflags & PR_NOTOUCH) {
1460 1.140 yamt pr_item_notouch_init(pp, ph, (char *)cp - (char *)storage);
1461 1.97 yamt } else {
1462 1.97 yamt while (n--) {
1463 1.97 yamt pi = (struct pool_item *)cp;
1464 1.78 thorpej
1465 1.97 yamt KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0);
1466 1.3 pk
1467 1.97 yamt /* Insert on page list */
1468 1.102 chs LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1469 1.3 pk #ifdef DIAGNOSTIC
1470 1.97 yamt pi->pi_magic = PI_MAGIC;
1471 1.3 pk #endif
1472 1.128 christos cp = (char *)cp + pp->pr_size;
1473 1.125 ad
1474 1.125 ad KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
1475 1.97 yamt }
1476 1.3 pk }
1477 1.3 pk
1478 1.3 pk /*
1479 1.3 pk * If the pool was depleted, point at the new page.
1480 1.3 pk */
1481 1.3 pk if (pp->pr_curpage == NULL)
1482 1.3 pk pp->pr_curpage = ph;
1483 1.3 pk
1484 1.3 pk if (++pp->pr_npages > pp->pr_hiwat)
1485 1.3 pk pp->pr_hiwat = pp->pr_npages;
1486 1.3 pk }
1487 1.3 pk
1488 1.20 thorpej /*
1489 1.52 thorpej * Used by pool_get() when nitems drops below the low water mark. This
1490 1.88 chs * is used to catch up pr_nitems with the low water mark.
1491 1.20 thorpej *
1492 1.21 thorpej * Note 1, we never wait for memory here, we let the caller decide what to do.
1493 1.20 thorpej *
1494 1.73 thorpej * Note 2, we must be called with the pool already locked, and we return
1495 1.20 thorpej * with it locked.
1496 1.20 thorpej */
1497 1.20 thorpej static int
1498 1.42 thorpej pool_catchup(struct pool *pp)
1499 1.20 thorpej {
1500 1.20 thorpej int error = 0;
1501 1.20 thorpej
1502 1.54 thorpej while (POOL_NEEDS_CATCHUP(pp)) {
1503 1.113 yamt error = pool_grow(pp, PR_NOWAIT);
1504 1.113 yamt if (error) {
1505 1.20 thorpej break;
1506 1.20 thorpej }
1507 1.20 thorpej }
1508 1.113 yamt return error;
1509 1.20 thorpej }
1510 1.20 thorpej
1511 1.88 chs static void
1512 1.88 chs pool_update_curpage(struct pool *pp)
1513 1.88 chs {
1514 1.88 chs
1515 1.88 chs pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
1516 1.88 chs if (pp->pr_curpage == NULL) {
1517 1.88 chs pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
1518 1.88 chs }
1519 1.88 chs }
1520 1.88 chs
1521 1.3 pk void
1522 1.42 thorpej pool_setlowat(struct pool *pp, int n)
1523 1.3 pk {
1524 1.15 pk
1525 1.134 ad mutex_enter(&pp->pr_lock);
1526 1.21 thorpej
1527 1.3 pk pp->pr_minitems = n;
1528 1.15 pk pp->pr_minpages = (n == 0)
1529 1.15 pk ? 0
1530 1.18 thorpej : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1531 1.20 thorpej
1532 1.20 thorpej /* Make sure we're caught up with the newly-set low water mark. */
1533 1.75 simonb if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1534 1.20 thorpej /*
1535 1.20 thorpej * XXX: Should we log a warning? Should we set up a timeout
1536 1.20 thorpej * to try again in a second or so? The latter could break
1537 1.20 thorpej * a caller's assumptions about interrupt protection, etc.
1538 1.20 thorpej */
1539 1.20 thorpej }
1540 1.21 thorpej
1541 1.134 ad mutex_exit(&pp->pr_lock);
1542 1.3 pk }
1543 1.3 pk
1544 1.3 pk void
1545 1.42 thorpej pool_sethiwat(struct pool *pp, int n)
1546 1.3 pk {
1547 1.15 pk
1548 1.134 ad mutex_enter(&pp->pr_lock);
1549 1.21 thorpej
1550 1.15 pk pp->pr_maxpages = (n == 0)
1551 1.15 pk ? 0
1552 1.18 thorpej : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1553 1.21 thorpej
1554 1.134 ad mutex_exit(&pp->pr_lock);
1555 1.3 pk }
1556 1.3 pk
1557 1.20 thorpej void
1558 1.42 thorpej pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
1559 1.20 thorpej {
1560 1.20 thorpej
1561 1.134 ad mutex_enter(&pp->pr_lock);
1562 1.20 thorpej
1563 1.20 thorpej pp->pr_hardlimit = n;
1564 1.20 thorpej pp->pr_hardlimit_warning = warnmess;
1565 1.31 thorpej pp->pr_hardlimit_ratecap.tv_sec = ratecap;
1566 1.31 thorpej pp->pr_hardlimit_warning_last.tv_sec = 0;
1567 1.31 thorpej pp->pr_hardlimit_warning_last.tv_usec = 0;
1568 1.20 thorpej
1569 1.20 thorpej /*
1570 1.21 thorpej * In-line version of pool_sethiwat(), because we don't want to
1571 1.21 thorpej * release the lock.
1572 1.20 thorpej */
1573 1.20 thorpej pp->pr_maxpages = (n == 0)
1574 1.20 thorpej ? 0
1575 1.20 thorpej : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1576 1.21 thorpej
1577 1.134 ad mutex_exit(&pp->pr_lock);
1578 1.20 thorpej }
1579 1.3 pk
1580 1.3 pk /*
1581 1.3 pk * Release all complete pages that have not been used recently.
1582 1.3 pk */
1583 1.66 thorpej int
1584 1.59 thorpej #ifdef POOL_DIAGNOSTIC
1585 1.42 thorpej _pool_reclaim(struct pool *pp, const char *file, long line)
1586 1.56 sommerfe #else
1587 1.56 sommerfe pool_reclaim(struct pool *pp)
1588 1.56 sommerfe #endif
1589 1.3 pk {
1590 1.3 pk struct pool_item_header *ph, *phnext;
1591 1.61 chs struct pool_pagelist pq;
1592 1.102 chs struct timeval curtime, diff;
1593 1.134 ad bool klock;
1594 1.134 ad int rv;
1595 1.3 pk
1596 1.68 thorpej if (pp->pr_drain_hook != NULL) {
1597 1.68 thorpej /*
1598 1.68 thorpej * The drain hook must be called with the pool unlocked.
1599 1.68 thorpej */
1600 1.68 thorpej (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
1601 1.68 thorpej }
1602 1.68 thorpej
1603 1.134 ad /*
1604 1.134 ad * XXXSMP Because mutexes at IPL_SOFTXXX are still spinlocks,
1605 1.134 ad * and we are called from the pagedaemon without kernel_lock.
1606 1.134 ad * Does not apply to IPL_SOFTBIO.
1607 1.134 ad */
1608 1.134 ad if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK ||
1609 1.134 ad pp->pr_ipl == IPL_SOFTSERIAL) {
1610 1.134 ad KERNEL_LOCK(1, NULL);
1611 1.134 ad klock = true;
1612 1.134 ad } else
1613 1.134 ad klock = false;
1614 1.134 ad
1615 1.134 ad /* Reclaim items from the pool's cache (if any). */
1616 1.134 ad if (pp->pr_cache != NULL)
1617 1.134 ad pool_cache_invalidate(pp->pr_cache);
1618 1.134 ad
1619 1.134 ad if (mutex_tryenter(&pp->pr_lock) == 0) {
1620 1.134 ad if (klock) {
1621 1.134 ad KERNEL_UNLOCK_ONE(NULL);
1622 1.134 ad }
1623 1.66 thorpej return (0);
1624 1.134 ad }
1625 1.25 thorpej pr_enter(pp, file, line);
1626 1.68 thorpej
1627 1.88 chs LIST_INIT(&pq);
1628 1.43 thorpej
1629 1.118 kardel getmicrotime(&curtime);
1630 1.21 thorpej
1631 1.88 chs for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
1632 1.88 chs phnext = LIST_NEXT(ph, ph_pagelist);
1633 1.3 pk
1634 1.3 pk /* Check our minimum page claim */
1635 1.3 pk if (pp->pr_npages <= pp->pr_minpages)
1636 1.3 pk break;
1637 1.3 pk
1638 1.88 chs KASSERT(ph->ph_nmissing == 0);
1639 1.88 chs timersub(&curtime, &ph->ph_time, &diff);
1640 1.117 yamt if (diff.tv_sec < pool_inactive_time
1641 1.117 yamt && !pa_starved_p(pp->pr_alloc))
1642 1.88 chs continue;
1643 1.21 thorpej
1644 1.88 chs /*
1645 1.88 chs * If freeing this page would put us below
1646 1.88 chs * the low water mark, stop now.
1647 1.88 chs */
1648 1.88 chs if ((pp->pr_nitems - pp->pr_itemsperpage) <
1649 1.88 chs pp->pr_minitems)
1650 1.88 chs break;
1651 1.21 thorpej
1652 1.88 chs pr_rmpage(pp, ph, &pq);
1653 1.3 pk }
1654 1.3 pk
1655 1.25 thorpej pr_leave(pp);
1656 1.134 ad mutex_exit(&pp->pr_lock);
1657 1.134 ad
1658 1.134 ad if (LIST_EMPTY(&pq))
1659 1.134 ad rv = 0;
1660 1.134 ad else {
1661 1.134 ad pr_pagelist_free(pp, &pq);
1662 1.134 ad rv = 1;
1663 1.134 ad }
1664 1.134 ad
1665 1.134 ad if (klock) {
1666 1.134 ad KERNEL_UNLOCK_ONE(NULL);
1667 1.134 ad }
1668 1.66 thorpej
1669 1.134 ad return (rv);
1670 1.3 pk }
1671 1.3 pk
1672 1.3 pk /*
1673 1.134 ad * Drain pools, one at a time. This is a two stage process;
1674 1.134 ad * drain_start kicks off a cross call to drain CPU-level caches
1675 1.134 ad * if the pool has an associated pool_cache. drain_end waits
1676 1.134 ad * for those cross calls to finish, and then drains the cache
1677 1.134 ad * (if any) and pool.
1678 1.131 ad *
1679 1.134 ad * Note, must never be called from interrupt context.
1680 1.3 pk */
1681 1.3 pk void
1682 1.134 ad pool_drain_start(struct pool **ppp, uint64_t *wp)
1683 1.3 pk {
1684 1.3 pk struct pool *pp;
1685 1.134 ad
1686 1.134 ad KASSERT(!LIST_EMPTY(&pool_head));
1687 1.3 pk
1688 1.61 chs pp = NULL;
1689 1.134 ad
1690 1.134 ad /* Find next pool to drain, and add a reference. */
1691 1.134 ad mutex_enter(&pool_head_lock);
1692 1.134 ad do {
1693 1.134 ad if (drainpp == NULL) {
1694 1.134 ad drainpp = LIST_FIRST(&pool_head);
1695 1.134 ad }
1696 1.134 ad if (drainpp != NULL) {
1697 1.134 ad pp = drainpp;
1698 1.134 ad drainpp = LIST_NEXT(pp, pr_poollist);
1699 1.134 ad }
1700 1.134 ad /*
1701 1.134 ad * Skip completely idle pools. We depend on at least
1702 1.134 ad * one pool in the system being active.
1703 1.134 ad */
1704 1.134 ad } while (pp == NULL || pp->pr_npages == 0);
1705 1.134 ad pp->pr_refcnt++;
1706 1.134 ad mutex_exit(&pool_head_lock);
1707 1.134 ad
1708 1.134 ad /* If there is a pool_cache, drain CPU level caches. */
1709 1.134 ad *ppp = pp;
1710 1.134 ad if (pp->pr_cache != NULL) {
1711 1.134 ad *wp = xc_broadcast(0, (xcfunc_t)pool_cache_xcall,
1712 1.134 ad pp->pr_cache, NULL);
1713 1.134 ad }
1714 1.134 ad }
1715 1.134 ad
1716 1.134 ad void
1717 1.134 ad pool_drain_end(struct pool *pp, uint64_t where)
1718 1.134 ad {
1719 1.134 ad
1720 1.134 ad if (pp == NULL)
1721 1.134 ad return;
1722 1.134 ad
1723 1.134 ad KASSERT(pp->pr_refcnt > 0);
1724 1.134 ad
1725 1.134 ad /* Wait for remote draining to complete. */
1726 1.134 ad if (pp->pr_cache != NULL)
1727 1.134 ad xc_wait(where);
1728 1.134 ad
1729 1.134 ad /* Drain the cache (if any) and pool.. */
1730 1.134 ad pool_reclaim(pp);
1731 1.134 ad
1732 1.134 ad /* Finally, unlock the pool. */
1733 1.134 ad mutex_enter(&pool_head_lock);
1734 1.134 ad pp->pr_refcnt--;
1735 1.134 ad cv_broadcast(&pool_busy);
1736 1.134 ad mutex_exit(&pool_head_lock);
1737 1.3 pk }
1738 1.3 pk
1739 1.3 pk /*
1740 1.3 pk * Diagnostic helpers.
1741 1.3 pk */
1742 1.3 pk void
1743 1.42 thorpej pool_print(struct pool *pp, const char *modif)
1744 1.21 thorpej {
1745 1.21 thorpej
1746 1.25 thorpej pool_print1(pp, modif, printf);
1747 1.21 thorpej }
1748 1.21 thorpej
1749 1.25 thorpej void
1750 1.108 yamt pool_printall(const char *modif, void (*pr)(const char *, ...))
1751 1.108 yamt {
1752 1.108 yamt struct pool *pp;
1753 1.108 yamt
1754 1.108 yamt LIST_FOREACH(pp, &pool_head, pr_poollist) {
1755 1.108 yamt pool_printit(pp, modif, pr);
1756 1.108 yamt }
1757 1.108 yamt }
1758 1.108 yamt
1759 1.108 yamt void
1760 1.42 thorpej pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1761 1.25 thorpej {
1762 1.25 thorpej
1763 1.25 thorpej if (pp == NULL) {
1764 1.25 thorpej (*pr)("Must specify a pool to print.\n");
1765 1.25 thorpej return;
1766 1.25 thorpej }
1767 1.25 thorpej
1768 1.25 thorpej pool_print1(pp, modif, pr);
1769 1.25 thorpej }
1770 1.25 thorpej
1771 1.21 thorpej static void
1772 1.124 yamt pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
1773 1.97 yamt void (*pr)(const char *, ...))
1774 1.88 chs {
1775 1.88 chs struct pool_item_header *ph;
1776 1.88 chs #ifdef DIAGNOSTIC
1777 1.88 chs struct pool_item *pi;
1778 1.88 chs #endif
1779 1.88 chs
1780 1.88 chs LIST_FOREACH(ph, pl, ph_pagelist) {
1781 1.88 chs (*pr)("\t\tpage %p, nmissing %d, time %lu,%lu\n",
1782 1.88 chs ph->ph_page, ph->ph_nmissing,
1783 1.88 chs (u_long)ph->ph_time.tv_sec,
1784 1.88 chs (u_long)ph->ph_time.tv_usec);
1785 1.88 chs #ifdef DIAGNOSTIC
1786 1.97 yamt if (!(pp->pr_roflags & PR_NOTOUCH)) {
1787 1.102 chs LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
1788 1.97 yamt if (pi->pi_magic != PI_MAGIC) {
1789 1.97 yamt (*pr)("\t\t\titem %p, magic 0x%x\n",
1790 1.97 yamt pi, pi->pi_magic);
1791 1.97 yamt }
1792 1.88 chs }
1793 1.88 chs }
1794 1.88 chs #endif
1795 1.88 chs }
1796 1.88 chs }
1797 1.88 chs
1798 1.88 chs static void
1799 1.42 thorpej pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1800 1.3 pk {
1801 1.25 thorpej struct pool_item_header *ph;
1802 1.134 ad pool_cache_t pc;
1803 1.134 ad pcg_t *pcg;
1804 1.134 ad pool_cache_cpu_t *cc;
1805 1.134 ad uint64_t cpuhit, cpumiss;
1806 1.44 thorpej int i, print_log = 0, print_pagelist = 0, print_cache = 0;
1807 1.25 thorpej char c;
1808 1.25 thorpej
1809 1.25 thorpej while ((c = *modif++) != '\0') {
1810 1.25 thorpej if (c == 'l')
1811 1.25 thorpej print_log = 1;
1812 1.25 thorpej if (c == 'p')
1813 1.25 thorpej print_pagelist = 1;
1814 1.44 thorpej if (c == 'c')
1815 1.44 thorpej print_cache = 1;
1816 1.25 thorpej }
1817 1.25 thorpej
1818 1.134 ad if ((pc = pp->pr_cache) != NULL) {
1819 1.134 ad (*pr)("POOL CACHE");
1820 1.134 ad } else {
1821 1.134 ad (*pr)("POOL");
1822 1.134 ad }
1823 1.134 ad
1824 1.134 ad (*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
1825 1.25 thorpej pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
1826 1.25 thorpej pp->pr_roflags);
1827 1.66 thorpej (*pr)("\talloc %p\n", pp->pr_alloc);
1828 1.25 thorpej (*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
1829 1.25 thorpej pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
1830 1.25 thorpej (*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
1831 1.25 thorpej pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
1832 1.25 thorpej
1833 1.134 ad (*pr)("\tnget %lu, nfail %lu, nput %lu\n",
1834 1.25 thorpej pp->pr_nget, pp->pr_nfail, pp->pr_nput);
1835 1.25 thorpej (*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
1836 1.25 thorpej pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
1837 1.25 thorpej
1838 1.25 thorpej if (print_pagelist == 0)
1839 1.25 thorpej goto skip_pagelist;
1840 1.25 thorpej
1841 1.88 chs if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
1842 1.88 chs (*pr)("\n\tempty page list:\n");
1843 1.97 yamt pool_print_pagelist(pp, &pp->pr_emptypages, pr);
1844 1.88 chs if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
1845 1.88 chs (*pr)("\n\tfull page list:\n");
1846 1.97 yamt pool_print_pagelist(pp, &pp->pr_fullpages, pr);
1847 1.88 chs if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
1848 1.88 chs (*pr)("\n\tpartial-page list:\n");
1849 1.97 yamt pool_print_pagelist(pp, &pp->pr_partpages, pr);
1850 1.88 chs
1851 1.25 thorpej if (pp->pr_curpage == NULL)
1852 1.25 thorpej (*pr)("\tno current page\n");
1853 1.25 thorpej else
1854 1.25 thorpej (*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
1855 1.25 thorpej
1856 1.25 thorpej skip_pagelist:
1857 1.25 thorpej if (print_log == 0)
1858 1.25 thorpej goto skip_log;
1859 1.25 thorpej
1860 1.25 thorpej (*pr)("\n");
1861 1.25 thorpej if ((pp->pr_roflags & PR_LOGGING) == 0)
1862 1.25 thorpej (*pr)("\tno log\n");
1863 1.122 christos else {
1864 1.25 thorpej pr_printlog(pp, NULL, pr);
1865 1.122 christos }
1866 1.3 pk
1867 1.25 thorpej skip_log:
1868 1.44 thorpej
1869 1.102 chs #define PR_GROUPLIST(pcg) \
1870 1.102 chs (*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail); \
1871 1.102 chs for (i = 0; i < PCG_NOBJECTS; i++) { \
1872 1.102 chs if (pcg->pcg_objects[i].pcgo_pa != \
1873 1.102 chs POOL_PADDR_INVALID) { \
1874 1.102 chs (*pr)("\t\t\t%p, 0x%llx\n", \
1875 1.102 chs pcg->pcg_objects[i].pcgo_va, \
1876 1.102 chs (unsigned long long) \
1877 1.102 chs pcg->pcg_objects[i].pcgo_pa); \
1878 1.102 chs } else { \
1879 1.102 chs (*pr)("\t\t\t%p\n", \
1880 1.102 chs pcg->pcg_objects[i].pcgo_va); \
1881 1.102 chs } \
1882 1.102 chs }
1883 1.102 chs
1884 1.134 ad if (pc != NULL) {
1885 1.134 ad cpuhit = 0;
1886 1.134 ad cpumiss = 0;
1887 1.134 ad for (i = 0; i < MAXCPUS; i++) {
1888 1.134 ad if ((cc = pc->pc_cpus[i]) == NULL)
1889 1.134 ad continue;
1890 1.134 ad cpuhit += cc->cc_hits;
1891 1.134 ad cpumiss += cc->cc_misses;
1892 1.134 ad }
1893 1.134 ad (*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
1894 1.134 ad (*pr)("\tcache layer hits %llu misses %llu\n",
1895 1.134 ad pc->pc_hits, pc->pc_misses);
1896 1.134 ad (*pr)("\tcache layer entry uncontended %llu contended %llu\n",
1897 1.134 ad pc->pc_hits + pc->pc_misses - pc->pc_contended,
1898 1.134 ad pc->pc_contended);
1899 1.134 ad (*pr)("\tcache layer empty groups %u full groups %u\n",
1900 1.134 ad pc->pc_nempty, pc->pc_nfull);
1901 1.134 ad if (print_cache) {
1902 1.134 ad (*pr)("\tfull cache groups:\n");
1903 1.134 ad for (pcg = pc->pc_fullgroups; pcg != NULL;
1904 1.134 ad pcg = pcg->pcg_next) {
1905 1.134 ad PR_GROUPLIST(pcg);
1906 1.134 ad }
1907 1.134 ad (*pr)("\tempty cache groups:\n");
1908 1.134 ad for (pcg = pc->pc_emptygroups; pcg != NULL;
1909 1.134 ad pcg = pcg->pcg_next) {
1910 1.134 ad PR_GROUPLIST(pcg);
1911 1.134 ad }
1912 1.103 chs }
1913 1.44 thorpej }
1914 1.102 chs #undef PR_GROUPLIST
1915 1.44 thorpej
1916 1.88 chs pr_enter_check(pp, pr);
1917 1.88 chs }
1918 1.88 chs
1919 1.88 chs static int
1920 1.88 chs pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
1921 1.88 chs {
1922 1.88 chs struct pool_item *pi;
1923 1.128 christos void *page;
1924 1.88 chs int n;
1925 1.88 chs
1926 1.121 yamt if ((pp->pr_roflags & PR_NOALIGN) == 0) {
1927 1.128 christos page = (void *)((uintptr_t)ph & pp->pr_alloc->pa_pagemask);
1928 1.121 yamt if (page != ph->ph_page &&
1929 1.121 yamt (pp->pr_roflags & PR_PHINPAGE) != 0) {
1930 1.121 yamt if (label != NULL)
1931 1.121 yamt printf("%s: ", label);
1932 1.121 yamt printf("pool(%p:%s): page inconsistency: page %p;"
1933 1.121 yamt " at page head addr %p (p %p)\n", pp,
1934 1.121 yamt pp->pr_wchan, ph->ph_page,
1935 1.121 yamt ph, page);
1936 1.121 yamt return 1;
1937 1.121 yamt }
1938 1.88 chs }
1939 1.3 pk
1940 1.97 yamt if ((pp->pr_roflags & PR_NOTOUCH) != 0)
1941 1.97 yamt return 0;
1942 1.97 yamt
1943 1.102 chs for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
1944 1.88 chs pi != NULL;
1945 1.102 chs pi = LIST_NEXT(pi,pi_list), n++) {
1946 1.88 chs
1947 1.88 chs #ifdef DIAGNOSTIC
1948 1.88 chs if (pi->pi_magic != PI_MAGIC) {
1949 1.88 chs if (label != NULL)
1950 1.88 chs printf("%s: ", label);
1951 1.88 chs printf("pool(%s): free list modified: magic=%x;"
1952 1.121 yamt " page %p; item ordinal %d; addr %p\n",
1953 1.88 chs pp->pr_wchan, pi->pi_magic, ph->ph_page,
1954 1.121 yamt n, pi);
1955 1.88 chs panic("pool");
1956 1.88 chs }
1957 1.88 chs #endif
1958 1.121 yamt if ((pp->pr_roflags & PR_NOALIGN) != 0) {
1959 1.121 yamt continue;
1960 1.121 yamt }
1961 1.128 christos page = (void *)((uintptr_t)pi & pp->pr_alloc->pa_pagemask);
1962 1.88 chs if (page == ph->ph_page)
1963 1.88 chs continue;
1964 1.88 chs
1965 1.88 chs if (label != NULL)
1966 1.88 chs printf("%s: ", label);
1967 1.88 chs printf("pool(%p:%s): page inconsistency: page %p;"
1968 1.88 chs " item ordinal %d; addr %p (p %p)\n", pp,
1969 1.88 chs pp->pr_wchan, ph->ph_page,
1970 1.88 chs n, pi, page);
1971 1.88 chs return 1;
1972 1.88 chs }
1973 1.88 chs return 0;
1974 1.3 pk }
1975 1.3 pk
1976 1.88 chs
1977 1.3 pk int
1978 1.42 thorpej pool_chk(struct pool *pp, const char *label)
1979 1.3 pk {
1980 1.3 pk struct pool_item_header *ph;
1981 1.3 pk int r = 0;
1982 1.3 pk
1983 1.134 ad mutex_enter(&pp->pr_lock);
1984 1.88 chs LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
1985 1.88 chs r = pool_chk_page(pp, label, ph);
1986 1.88 chs if (r) {
1987 1.88 chs goto out;
1988 1.88 chs }
1989 1.88 chs }
1990 1.88 chs LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
1991 1.88 chs r = pool_chk_page(pp, label, ph);
1992 1.88 chs if (r) {
1993 1.3 pk goto out;
1994 1.3 pk }
1995 1.88 chs }
1996 1.88 chs LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
1997 1.88 chs r = pool_chk_page(pp, label, ph);
1998 1.88 chs if (r) {
1999 1.3 pk goto out;
2000 1.3 pk }
2001 1.3 pk }
2002 1.88 chs
2003 1.3 pk out:
2004 1.134 ad mutex_exit(&pp->pr_lock);
2005 1.3 pk return (r);
2006 1.43 thorpej }
2007 1.43 thorpej
2008 1.43 thorpej /*
2009 1.43 thorpej * pool_cache_init:
2010 1.43 thorpej *
2011 1.43 thorpej * Initialize a pool cache.
2012 1.134 ad */
2013 1.134 ad pool_cache_t
2014 1.134 ad pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
2015 1.134 ad const char *wchan, struct pool_allocator *palloc, int ipl,
2016 1.134 ad int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
2017 1.134 ad {
2018 1.134 ad pool_cache_t pc;
2019 1.134 ad
2020 1.134 ad pc = pool_get(&cache_pool, PR_WAITOK);
2021 1.134 ad if (pc == NULL)
2022 1.134 ad return NULL;
2023 1.134 ad
2024 1.134 ad pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
2025 1.134 ad palloc, ipl, ctor, dtor, arg);
2026 1.134 ad
2027 1.134 ad return pc;
2028 1.134 ad }
2029 1.134 ad
2030 1.134 ad /*
2031 1.134 ad * pool_cache_bootstrap:
2032 1.43 thorpej *
2033 1.134 ad * Kernel-private version of pool_cache_init(). The caller
2034 1.134 ad * provides initial storage.
2035 1.43 thorpej */
2036 1.43 thorpej void
2037 1.134 ad pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
2038 1.134 ad u_int align_offset, u_int flags, const char *wchan,
2039 1.134 ad struct pool_allocator *palloc, int ipl,
2040 1.134 ad int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
2041 1.43 thorpej void *arg)
2042 1.43 thorpej {
2043 1.134 ad CPU_INFO_ITERATOR cii;
2044 1.134 ad struct cpu_info *ci;
2045 1.134 ad struct pool *pp;
2046 1.134 ad
2047 1.134 ad pp = &pc->pc_pool;
2048 1.134 ad if (palloc == NULL && ipl == IPL_NONE)
2049 1.134 ad palloc = &pool_allocator_nointr;
2050 1.134 ad pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl);
2051 1.43 thorpej
2052 1.138 ad /*
2053 1.138 ad * XXXAD hack to prevent IP input processing from blocking.
2054 1.138 ad */
2055 1.138 ad if (ipl == IPL_SOFTNET) {
2056 1.138 ad mutex_init(&pc->pc_lock, MUTEX_DEFAULT, IPL_VM);
2057 1.138 ad } else {
2058 1.138 ad mutex_init(&pc->pc_lock, MUTEX_DEFAULT, ipl);
2059 1.138 ad }
2060 1.43 thorpej
2061 1.134 ad if (ctor == NULL) {
2062 1.134 ad ctor = (int (*)(void *, void *, int))nullop;
2063 1.134 ad }
2064 1.134 ad if (dtor == NULL) {
2065 1.134 ad dtor = (void (*)(void *, void *))nullop;
2066 1.134 ad }
2067 1.43 thorpej
2068 1.134 ad pc->pc_emptygroups = NULL;
2069 1.134 ad pc->pc_fullgroups = NULL;
2070 1.134 ad pc->pc_partgroups = NULL;
2071 1.43 thorpej pc->pc_ctor = ctor;
2072 1.43 thorpej pc->pc_dtor = dtor;
2073 1.43 thorpej pc->pc_arg = arg;
2074 1.134 ad pc->pc_hits = 0;
2075 1.48 thorpej pc->pc_misses = 0;
2076 1.134 ad pc->pc_nempty = 0;
2077 1.134 ad pc->pc_npart = 0;
2078 1.134 ad pc->pc_nfull = 0;
2079 1.134 ad pc->pc_contended = 0;
2080 1.134 ad pc->pc_refcnt = 0;
2081 1.136 yamt pc->pc_freecheck = NULL;
2082 1.134 ad
2083 1.134 ad /* Allocate per-CPU caches. */
2084 1.134 ad memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
2085 1.134 ad pc->pc_ncpu = 0;
2086 1.139 ad if (ncpu < 2) {
2087 1.137 ad /* XXX For sparc: boot CPU is not attached yet. */
2088 1.137 ad pool_cache_cpu_init1(curcpu(), pc);
2089 1.137 ad } else {
2090 1.137 ad for (CPU_INFO_FOREACH(cii, ci)) {
2091 1.137 ad pool_cache_cpu_init1(ci, pc);
2092 1.137 ad }
2093 1.134 ad }
2094 1.134 ad
2095 1.134 ad if (__predict_true(!cold)) {
2096 1.134 ad mutex_enter(&pp->pr_lock);
2097 1.134 ad pp->pr_cache = pc;
2098 1.134 ad mutex_exit(&pp->pr_lock);
2099 1.134 ad mutex_enter(&pool_head_lock);
2100 1.134 ad LIST_INSERT_HEAD(&pool_cache_head, pc, pc_cachelist);
2101 1.134 ad mutex_exit(&pool_head_lock);
2102 1.134 ad } else {
2103 1.134 ad pp->pr_cache = pc;
2104 1.134 ad LIST_INSERT_HEAD(&pool_cache_head, pc, pc_cachelist);
2105 1.134 ad }
2106 1.43 thorpej }
2107 1.43 thorpej
2108 1.43 thorpej /*
2109 1.43 thorpej * pool_cache_destroy:
2110 1.43 thorpej *
2111 1.43 thorpej * Destroy a pool cache.
2112 1.43 thorpej */
2113 1.43 thorpej void
2114 1.134 ad pool_cache_destroy(pool_cache_t pc)
2115 1.43 thorpej {
2116 1.134 ad struct pool *pp = &pc->pc_pool;
2117 1.134 ad pool_cache_cpu_t *cc;
2118 1.134 ad pcg_t *pcg;
2119 1.134 ad int i;
2120 1.134 ad
2121 1.134 ad /* Remove it from the global list. */
2122 1.134 ad mutex_enter(&pool_head_lock);
2123 1.134 ad while (pc->pc_refcnt != 0)
2124 1.134 ad cv_wait(&pool_busy, &pool_head_lock);
2125 1.134 ad LIST_REMOVE(pc, pc_cachelist);
2126 1.134 ad mutex_exit(&pool_head_lock);
2127 1.43 thorpej
2128 1.43 thorpej /* First, invalidate the entire cache. */
2129 1.43 thorpej pool_cache_invalidate(pc);
2130 1.43 thorpej
2131 1.134 ad /* Disassociate it from the pool. */
2132 1.134 ad mutex_enter(&pp->pr_lock);
2133 1.134 ad pp->pr_cache = NULL;
2134 1.134 ad mutex_exit(&pp->pr_lock);
2135 1.134 ad
2136 1.134 ad /* Destroy per-CPU data */
2137 1.134 ad for (i = 0; i < MAXCPUS; i++) {
2138 1.134 ad if ((cc = pc->pc_cpus[i]) == NULL)
2139 1.134 ad continue;
2140 1.134 ad if ((pcg = cc->cc_current) != NULL) {
2141 1.134 ad pcg->pcg_next = NULL;
2142 1.134 ad pool_cache_invalidate_groups(pc, pcg);
2143 1.134 ad }
2144 1.134 ad if ((pcg = cc->cc_previous) != NULL) {
2145 1.134 ad pcg->pcg_next = NULL;
2146 1.134 ad pool_cache_invalidate_groups(pc, pcg);
2147 1.134 ad }
2148 1.134 ad if (cc != &pc->pc_cpu0)
2149 1.134 ad pool_put(&cache_cpu_pool, cc);
2150 1.134 ad }
2151 1.134 ad
2152 1.134 ad /* Finally, destroy it. */
2153 1.134 ad mutex_destroy(&pc->pc_lock);
2154 1.134 ad pool_destroy(pp);
2155 1.134 ad pool_put(&cache_pool, pc);
2156 1.134 ad }
2157 1.134 ad
2158 1.134 ad /*
2159 1.134 ad * pool_cache_cpu_init1:
2160 1.134 ad *
2161 1.134 ad * Called for each pool_cache whenever a new CPU is attached.
2162 1.134 ad */
2163 1.134 ad static void
2164 1.134 ad pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
2165 1.134 ad {
2166 1.134 ad pool_cache_cpu_t *cc;
2167 1.137 ad int index;
2168 1.134 ad
2169 1.137 ad index = ci->ci_index;
2170 1.137 ad
2171 1.137 ad KASSERT(index < MAXCPUS);
2172 1.134 ad KASSERT(((uintptr_t)pc->pc_cpus & (CACHE_LINE_SIZE - 1)) == 0);
2173 1.134 ad
2174 1.137 ad if ((cc = pc->pc_cpus[index]) != NULL) {
2175 1.137 ad KASSERT(cc->cc_cpuindex == index);
2176 1.134 ad return;
2177 1.134 ad }
2178 1.134 ad
2179 1.134 ad /*
2180 1.134 ad * The first CPU is 'free'. This needs to be the case for
2181 1.134 ad * bootstrap - we may not be able to allocate yet.
2182 1.134 ad */
2183 1.134 ad if (pc->pc_ncpu == 0) {
2184 1.134 ad cc = &pc->pc_cpu0;
2185 1.134 ad pc->pc_ncpu = 1;
2186 1.134 ad } else {
2187 1.134 ad mutex_enter(&pc->pc_lock);
2188 1.134 ad pc->pc_ncpu++;
2189 1.134 ad mutex_exit(&pc->pc_lock);
2190 1.134 ad cc = pool_get(&cache_cpu_pool, PR_WAITOK);
2191 1.134 ad }
2192 1.134 ad
2193 1.134 ad cc->cc_ipl = pc->pc_pool.pr_ipl;
2194 1.134 ad cc->cc_iplcookie = makeiplcookie(cc->cc_ipl);
2195 1.134 ad cc->cc_cache = pc;
2196 1.137 ad cc->cc_cpuindex = index;
2197 1.134 ad cc->cc_hits = 0;
2198 1.134 ad cc->cc_misses = 0;
2199 1.134 ad cc->cc_current = NULL;
2200 1.134 ad cc->cc_previous = NULL;
2201 1.134 ad
2202 1.137 ad pc->pc_cpus[index] = cc;
2203 1.43 thorpej }
2204 1.43 thorpej
2205 1.134 ad /*
2206 1.134 ad * pool_cache_cpu_init:
2207 1.134 ad *
2208 1.134 ad * Called whenever a new CPU is attached.
2209 1.134 ad */
2210 1.134 ad void
2211 1.134 ad pool_cache_cpu_init(struct cpu_info *ci)
2212 1.43 thorpej {
2213 1.134 ad pool_cache_t pc;
2214 1.134 ad
2215 1.134 ad mutex_enter(&pool_head_lock);
2216 1.134 ad LIST_FOREACH(pc, &pool_cache_head, pc_cachelist) {
2217 1.134 ad pc->pc_refcnt++;
2218 1.134 ad mutex_exit(&pool_head_lock);
2219 1.43 thorpej
2220 1.134 ad pool_cache_cpu_init1(ci, pc);
2221 1.43 thorpej
2222 1.134 ad mutex_enter(&pool_head_lock);
2223 1.134 ad pc->pc_refcnt--;
2224 1.134 ad cv_broadcast(&pool_busy);
2225 1.134 ad }
2226 1.134 ad mutex_exit(&pool_head_lock);
2227 1.43 thorpej }
2228 1.43 thorpej
2229 1.134 ad /*
2230 1.134 ad * pool_cache_reclaim:
2231 1.134 ad *
2232 1.134 ad * Reclaim memory from a pool cache.
2233 1.134 ad */
2234 1.134 ad bool
2235 1.134 ad pool_cache_reclaim(pool_cache_t pc)
2236 1.43 thorpej {
2237 1.43 thorpej
2238 1.134 ad return pool_reclaim(&pc->pc_pool);
2239 1.134 ad }
2240 1.43 thorpej
2241 1.136 yamt static void
2242 1.136 yamt pool_cache_destruct_object1(pool_cache_t pc, void *object)
2243 1.136 yamt {
2244 1.136 yamt
2245 1.136 yamt (*pc->pc_dtor)(pc->pc_arg, object);
2246 1.136 yamt pool_put(&pc->pc_pool, object);
2247 1.136 yamt }
2248 1.136 yamt
2249 1.134 ad /*
2250 1.134 ad * pool_cache_destruct_object:
2251 1.134 ad *
2252 1.134 ad * Force destruction of an object and its release back into
2253 1.134 ad * the pool.
2254 1.134 ad */
2255 1.134 ad void
2256 1.134 ad pool_cache_destruct_object(pool_cache_t pc, void *object)
2257 1.134 ad {
2258 1.134 ad
2259 1.136 yamt FREECHECK_IN(&pc->pc_freecheck, object);
2260 1.136 yamt
2261 1.136 yamt pool_cache_destruct_object1(pc, object);
2262 1.43 thorpej }
2263 1.43 thorpej
2264 1.134 ad /*
2265 1.134 ad * pool_cache_invalidate_groups:
2266 1.134 ad *
2267 1.134 ad * Invalidate a chain of groups and destruct all objects.
2268 1.134 ad */
2269 1.102 chs static void
2270 1.134 ad pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
2271 1.102 chs {
2272 1.134 ad void *object;
2273 1.134 ad pcg_t *next;
2274 1.134 ad int i;
2275 1.134 ad
2276 1.134 ad for (; pcg != NULL; pcg = next) {
2277 1.134 ad next = pcg->pcg_next;
2278 1.134 ad
2279 1.134 ad for (i = 0; i < pcg->pcg_avail; i++) {
2280 1.134 ad object = pcg->pcg_objects[i].pcgo_va;
2281 1.136 yamt pool_cache_destruct_object1(pc, object);
2282 1.134 ad }
2283 1.102 chs
2284 1.102 chs pool_put(&pcgpool, pcg);
2285 1.102 chs }
2286 1.102 chs }
2287 1.102 chs
2288 1.43 thorpej /*
2289 1.134 ad * pool_cache_invalidate:
2290 1.43 thorpej *
2291 1.134 ad * Invalidate a pool cache (destruct and release all of the
2292 1.134 ad * cached objects). Does not reclaim objects from the pool.
2293 1.43 thorpej */
2294 1.134 ad void
2295 1.134 ad pool_cache_invalidate(pool_cache_t pc)
2296 1.134 ad {
2297 1.134 ad pcg_t *full, *empty, *part;
2298 1.134 ad
2299 1.134 ad mutex_enter(&pc->pc_lock);
2300 1.134 ad full = pc->pc_fullgroups;
2301 1.134 ad empty = pc->pc_emptygroups;
2302 1.134 ad part = pc->pc_partgroups;
2303 1.134 ad pc->pc_fullgroups = NULL;
2304 1.134 ad pc->pc_emptygroups = NULL;
2305 1.134 ad pc->pc_partgroups = NULL;
2306 1.134 ad pc->pc_nfull = 0;
2307 1.134 ad pc->pc_nempty = 0;
2308 1.134 ad pc->pc_npart = 0;
2309 1.134 ad mutex_exit(&pc->pc_lock);
2310 1.134 ad
2311 1.134 ad pool_cache_invalidate_groups(pc, full);
2312 1.134 ad pool_cache_invalidate_groups(pc, empty);
2313 1.134 ad pool_cache_invalidate_groups(pc, part);
2314 1.134 ad }
2315 1.134 ad
2316 1.134 ad void
2317 1.134 ad pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
2318 1.134 ad {
2319 1.134 ad
2320 1.134 ad pool_set_drain_hook(&pc->pc_pool, fn, arg);
2321 1.134 ad }
2322 1.134 ad
2323 1.134 ad void
2324 1.134 ad pool_cache_setlowat(pool_cache_t pc, int n)
2325 1.134 ad {
2326 1.134 ad
2327 1.134 ad pool_setlowat(&pc->pc_pool, n);
2328 1.134 ad }
2329 1.134 ad
2330 1.134 ad void
2331 1.134 ad pool_cache_sethiwat(pool_cache_t pc, int n)
2332 1.134 ad {
2333 1.134 ad
2334 1.134 ad pool_sethiwat(&pc->pc_pool, n);
2335 1.134 ad }
2336 1.134 ad
2337 1.134 ad void
2338 1.134 ad pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
2339 1.134 ad {
2340 1.134 ad
2341 1.134 ad pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
2342 1.134 ad }
2343 1.134 ad
2344 1.134 ad static inline pool_cache_cpu_t *
2345 1.134 ad pool_cache_cpu_enter(pool_cache_t pc, int *s)
2346 1.134 ad {
2347 1.134 ad pool_cache_cpu_t *cc;
2348 1.134 ad
2349 1.134 ad /*
2350 1.134 ad * Prevent other users of the cache from accessing our
2351 1.134 ad * CPU-local data. To avoid touching shared state, we
2352 1.134 ad * pull the neccessary information from CPU local data.
2353 1.134 ad */
2354 1.137 ad crit_enter();
2355 1.137 ad cc = pc->pc_cpus[curcpu()->ci_index];
2356 1.134 ad KASSERT(cc->cc_cache == pc);
2357 1.137 ad if (cc->cc_ipl != IPL_NONE) {
2358 1.134 ad *s = splraiseipl(cc->cc_iplcookie);
2359 1.134 ad }
2360 1.134 ad KASSERT(((uintptr_t)cc & (CACHE_LINE_SIZE - 1)) == 0);
2361 1.134 ad
2362 1.134 ad return cc;
2363 1.134 ad }
2364 1.134 ad
2365 1.134 ad static inline void
2366 1.134 ad pool_cache_cpu_exit(pool_cache_cpu_t *cc, int *s)
2367 1.134 ad {
2368 1.134 ad
2369 1.134 ad /* No longer need exclusive access to the per-CPU data. */
2370 1.137 ad if (cc->cc_ipl != IPL_NONE) {
2371 1.134 ad splx(*s);
2372 1.134 ad }
2373 1.137 ad crit_exit();
2374 1.134 ad }
2375 1.134 ad
2376 1.134 ad #if __GNUC_PREREQ__(3, 0)
2377 1.134 ad __attribute ((noinline))
2378 1.134 ad #endif
2379 1.134 ad pool_cache_cpu_t *
2380 1.134 ad pool_cache_get_slow(pool_cache_cpu_t *cc, int *s, void **objectp,
2381 1.134 ad paddr_t *pap, int flags)
2382 1.43 thorpej {
2383 1.134 ad pcg_t *pcg, *cur;
2384 1.134 ad uint64_t ncsw;
2385 1.134 ad pool_cache_t pc;
2386 1.43 thorpej void *object;
2387 1.58 thorpej
2388 1.134 ad pc = cc->cc_cache;
2389 1.134 ad cc->cc_misses++;
2390 1.43 thorpej
2391 1.134 ad /*
2392 1.134 ad * Nothing was available locally. Try and grab a group
2393 1.134 ad * from the cache.
2394 1.134 ad */
2395 1.134 ad if (!mutex_tryenter(&pc->pc_lock)) {
2396 1.134 ad ncsw = curlwp->l_ncsw;
2397 1.134 ad mutex_enter(&pc->pc_lock);
2398 1.134 ad pc->pc_contended++;
2399 1.43 thorpej
2400 1.134 ad /*
2401 1.134 ad * If we context switched while locking, then
2402 1.134 ad * our view of the per-CPU data is invalid:
2403 1.134 ad * retry.
2404 1.134 ad */
2405 1.134 ad if (curlwp->l_ncsw != ncsw) {
2406 1.134 ad mutex_exit(&pc->pc_lock);
2407 1.134 ad pool_cache_cpu_exit(cc, s);
2408 1.134 ad return pool_cache_cpu_enter(pc, s);
2409 1.43 thorpej }
2410 1.102 chs }
2411 1.43 thorpej
2412 1.134 ad if ((pcg = pc->pc_fullgroups) != NULL) {
2413 1.43 thorpej /*
2414 1.134 ad * If there's a full group, release our empty
2415 1.134 ad * group back to the cache. Install the full
2416 1.134 ad * group as cc_current and return.
2417 1.43 thorpej */
2418 1.134 ad if ((cur = cc->cc_current) != NULL) {
2419 1.134 ad KASSERT(cur->pcg_avail == 0);
2420 1.134 ad cur->pcg_next = pc->pc_emptygroups;
2421 1.134 ad pc->pc_emptygroups = cur;
2422 1.134 ad pc->pc_nempty++;
2423 1.87 thorpej }
2424 1.134 ad KASSERT(pcg->pcg_avail == PCG_NOBJECTS);
2425 1.134 ad cc->cc_current = pcg;
2426 1.134 ad pc->pc_fullgroups = pcg->pcg_next;
2427 1.134 ad pc->pc_hits++;
2428 1.134 ad pc->pc_nfull--;
2429 1.134 ad mutex_exit(&pc->pc_lock);
2430 1.134 ad return cc;
2431 1.134 ad }
2432 1.134 ad
2433 1.134 ad /*
2434 1.134 ad * Nothing available locally or in cache. Take the slow
2435 1.134 ad * path: fetch a new object from the pool and construct
2436 1.134 ad * it.
2437 1.134 ad */
2438 1.134 ad pc->pc_misses++;
2439 1.134 ad mutex_exit(&pc->pc_lock);
2440 1.134 ad pool_cache_cpu_exit(cc, s);
2441 1.134 ad
2442 1.134 ad object = pool_get(&pc->pc_pool, flags);
2443 1.134 ad *objectp = object;
2444 1.134 ad if (object == NULL)
2445 1.134 ad return NULL;
2446 1.125 ad
2447 1.134 ad if ((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0) {
2448 1.134 ad pool_put(&pc->pc_pool, object);
2449 1.134 ad *objectp = NULL;
2450 1.134 ad return NULL;
2451 1.43 thorpej }
2452 1.43 thorpej
2453 1.134 ad KASSERT((((vaddr_t)object + pc->pc_pool.pr_itemoffset) &
2454 1.134 ad (pc->pc_pool.pr_align - 1)) == 0);
2455 1.43 thorpej
2456 1.134 ad if (pap != NULL) {
2457 1.134 ad #ifdef POOL_VTOPHYS
2458 1.134 ad *pap = POOL_VTOPHYS(object);
2459 1.134 ad #else
2460 1.134 ad *pap = POOL_PADDR_INVALID;
2461 1.134 ad #endif
2462 1.102 chs }
2463 1.43 thorpej
2464 1.125 ad FREECHECK_OUT(&pc->pc_freecheck, object);
2465 1.134 ad return NULL;
2466 1.43 thorpej }
2467 1.43 thorpej
2468 1.43 thorpej /*
2469 1.134 ad * pool_cache_get{,_paddr}:
2470 1.43 thorpej *
2471 1.134 ad * Get an object from a pool cache (optionally returning
2472 1.134 ad * the physical address of the object).
2473 1.43 thorpej */
2474 1.134 ad void *
2475 1.134 ad pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
2476 1.43 thorpej {
2477 1.134 ad pool_cache_cpu_t *cc;
2478 1.134 ad pcg_t *pcg;
2479 1.134 ad void *object;
2480 1.60 thorpej int s;
2481 1.43 thorpej
2482 1.134 ad #ifdef LOCKDEBUG
2483 1.134 ad if (flags & PR_WAITOK)
2484 1.134 ad ASSERT_SLEEPABLE(NULL, "pool_cache_get(PR_WAITOK)");
2485 1.134 ad #endif
2486 1.125 ad
2487 1.134 ad cc = pool_cache_cpu_enter(pc, &s);
2488 1.134 ad do {
2489 1.134 ad /* Try and allocate an object from the current group. */
2490 1.134 ad pcg = cc->cc_current;
2491 1.134 ad if (pcg != NULL && pcg->pcg_avail > 0) {
2492 1.134 ad object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;
2493 1.134 ad if (pap != NULL)
2494 1.134 ad *pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa;
2495 1.134 ad pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL;
2496 1.134 ad KASSERT(pcg->pcg_avail <= PCG_NOBJECTS);
2497 1.134 ad KASSERT(object != NULL);
2498 1.134 ad cc->cc_hits++;
2499 1.134 ad pool_cache_cpu_exit(cc, &s);
2500 1.134 ad FREECHECK_OUT(&pc->pc_freecheck, object);
2501 1.134 ad return object;
2502 1.43 thorpej }
2503 1.43 thorpej
2504 1.43 thorpej /*
2505 1.134 ad * That failed. If the previous group isn't empty, swap
2506 1.134 ad * it with the current group and allocate from there.
2507 1.43 thorpej */
2508 1.134 ad pcg = cc->cc_previous;
2509 1.134 ad if (pcg != NULL && pcg->pcg_avail > 0) {
2510 1.134 ad cc->cc_previous = cc->cc_current;
2511 1.134 ad cc->cc_current = pcg;
2512 1.134 ad continue;
2513 1.43 thorpej }
2514 1.43 thorpej
2515 1.134 ad /*
2516 1.134 ad * Can't allocate from either group: try the slow path.
2517 1.134 ad * If get_slow() allocated an object for us, or if
2518 1.134 ad * no more objects are available, it will return NULL.
2519 1.134 ad * Otherwise, we need to retry.
2520 1.134 ad */
2521 1.134 ad cc = pool_cache_get_slow(cc, &s, &object, pap, flags);
2522 1.134 ad } while (cc != NULL);
2523 1.43 thorpej
2524 1.134 ad return object;
2525 1.51 thorpej }
2526 1.51 thorpej
2527 1.134 ad #if __GNUC_PREREQ__(3, 0)
2528 1.134 ad __attribute ((noinline))
2529 1.134 ad #endif
2530 1.134 ad pool_cache_cpu_t *
2531 1.134 ad pool_cache_put_slow(pool_cache_cpu_t *cc, int *s, void *object, paddr_t pa)
2532 1.51 thorpej {
2533 1.134 ad pcg_t *pcg, *cur;
2534 1.134 ad uint64_t ncsw;
2535 1.134 ad pool_cache_t pc;
2536 1.51 thorpej
2537 1.134 ad pc = cc->cc_cache;
2538 1.134 ad cc->cc_misses++;
2539 1.43 thorpej
2540 1.134 ad /*
2541 1.134 ad * No free slots locally. Try to grab an empty, unused
2542 1.134 ad * group from the cache.
2543 1.134 ad */
2544 1.134 ad if (!mutex_tryenter(&pc->pc_lock)) {
2545 1.134 ad ncsw = curlwp->l_ncsw;
2546 1.134 ad mutex_enter(&pc->pc_lock);
2547 1.134 ad pc->pc_contended++;
2548 1.102 chs
2549 1.134 ad /*
2550 1.134 ad * If we context switched while locking, then
2551 1.134 ad * our view of the per-CPU data is invalid:
2552 1.134 ad * retry.
2553 1.134 ad */
2554 1.134 ad if (curlwp->l_ncsw != ncsw) {
2555 1.134 ad mutex_exit(&pc->pc_lock);
2556 1.134 ad pool_cache_cpu_exit(cc, s);
2557 1.134 ad return pool_cache_cpu_enter(pc, s);
2558 1.134 ad }
2559 1.134 ad }
2560 1.130 ad
2561 1.134 ad if ((pcg = pc->pc_emptygroups) != NULL) {
2562 1.134 ad /*
2563 1.134 ad * If there's a empty group, release our full
2564 1.134 ad * group back to the cache. Install the empty
2565 1.134 ad * group as cc_current and return.
2566 1.134 ad */
2567 1.134 ad if ((cur = cc->cc_current) != NULL) {
2568 1.134 ad KASSERT(cur->pcg_avail == PCG_NOBJECTS);
2569 1.134 ad cur->pcg_next = pc->pc_fullgroups;
2570 1.134 ad pc->pc_fullgroups = cur;
2571 1.134 ad pc->pc_nfull++;
2572 1.102 chs }
2573 1.134 ad KASSERT(pcg->pcg_avail == 0);
2574 1.134 ad cc->cc_current = pcg;
2575 1.134 ad pc->pc_emptygroups = pcg->pcg_next;
2576 1.134 ad pc->pc_hits++;
2577 1.134 ad pc->pc_nempty--;
2578 1.134 ad mutex_exit(&pc->pc_lock);
2579 1.134 ad return cc;
2580 1.102 chs }
2581 1.105 christos
2582 1.134 ad /*
2583 1.134 ad * Nothing available locally or in cache. Take the
2584 1.134 ad * slow path and try to allocate a new group that we
2585 1.134 ad * can release to.
2586 1.134 ad */
2587 1.134 ad pc->pc_misses++;
2588 1.134 ad mutex_exit(&pc->pc_lock);
2589 1.134 ad pool_cache_cpu_exit(cc, s);
2590 1.105 christos
2591 1.134 ad /*
2592 1.134 ad * If we can't allocate a new group, just throw the
2593 1.134 ad * object away.
2594 1.134 ad */
2595 1.134 ad pcg = pool_get(&pcgpool, PR_NOWAIT);
2596 1.134 ad if (pcg == NULL) {
2597 1.134 ad pool_cache_destruct_object(pc, object);
2598 1.134 ad return NULL;
2599 1.134 ad }
2600 1.134 ad #ifdef DIAGNOSTIC
2601 1.134 ad memset(pcg, 0, sizeof(*pcg));
2602 1.134 ad #else
2603 1.134 ad pcg->pcg_avail = 0;
2604 1.134 ad #endif
2605 1.105 christos
2606 1.134 ad /*
2607 1.134 ad * Add the empty group to the cache and try again.
2608 1.134 ad */
2609 1.134 ad mutex_enter(&pc->pc_lock);
2610 1.134 ad pcg->pcg_next = pc->pc_emptygroups;
2611 1.134 ad pc->pc_emptygroups = pcg;
2612 1.134 ad pc->pc_nempty++;
2613 1.134 ad mutex_exit(&pc->pc_lock);
2614 1.103 chs
2615 1.134 ad return pool_cache_cpu_enter(pc, s);
2616 1.134 ad }
2617 1.102 chs
2618 1.43 thorpej /*
2619 1.134 ad * pool_cache_put{,_paddr}:
2620 1.43 thorpej *
2621 1.134 ad * Put an object back to the pool cache (optionally caching the
2622 1.134 ad * physical address of the object).
2623 1.43 thorpej */
2624 1.101 thorpej void
2625 1.134 ad pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
2626 1.43 thorpej {
2627 1.134 ad pool_cache_cpu_t *cc;
2628 1.134 ad pcg_t *pcg;
2629 1.134 ad int s;
2630 1.101 thorpej
2631 1.134 ad FREECHECK_IN(&pc->pc_freecheck, object);
2632 1.101 thorpej
2633 1.134 ad cc = pool_cache_cpu_enter(pc, &s);
2634 1.134 ad do {
2635 1.134 ad /* If the current group isn't full, release it there. */
2636 1.134 ad pcg = cc->cc_current;
2637 1.134 ad if (pcg != NULL && pcg->pcg_avail < PCG_NOBJECTS) {
2638 1.134 ad KASSERT(pcg->pcg_objects[pcg->pcg_avail].pcgo_va
2639 1.134 ad == NULL);
2640 1.134 ad pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object;
2641 1.134 ad pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa;
2642 1.134 ad pcg->pcg_avail++;
2643 1.134 ad cc->cc_hits++;
2644 1.134 ad pool_cache_cpu_exit(cc, &s);
2645 1.134 ad return;
2646 1.134 ad }
2647 1.43 thorpej
2648 1.134 ad /*
2649 1.134 ad * That failed. If the previous group is empty, swap
2650 1.134 ad * it with the current group and try again.
2651 1.134 ad */
2652 1.134 ad pcg = cc->cc_previous;
2653 1.134 ad if (pcg != NULL && pcg->pcg_avail == 0) {
2654 1.134 ad cc->cc_previous = cc->cc_current;
2655 1.134 ad cc->cc_current = pcg;
2656 1.134 ad continue;
2657 1.134 ad }
2658 1.43 thorpej
2659 1.134 ad /*
2660 1.134 ad * Can't free to either group: try the slow path.
2661 1.134 ad * If put_slow() releases the object for us, it
2662 1.134 ad * will return NULL. Otherwise we need to retry.
2663 1.134 ad */
2664 1.134 ad cc = pool_cache_put_slow(cc, &s, object, pa);
2665 1.134 ad } while (cc != NULL);
2666 1.43 thorpej }
2667 1.43 thorpej
2668 1.43 thorpej /*
2669 1.134 ad * pool_cache_xcall:
2670 1.43 thorpej *
2671 1.134 ad * Transfer objects from the per-CPU cache to the global cache.
2672 1.134 ad * Run within a cross-call thread.
2673 1.43 thorpej */
2674 1.43 thorpej static void
2675 1.134 ad pool_cache_xcall(pool_cache_t pc)
2676 1.43 thorpej {
2677 1.134 ad pool_cache_cpu_t *cc;
2678 1.134 ad pcg_t *prev, *cur, **list;
2679 1.134 ad int s = 0; /* XXXgcc */
2680 1.134 ad
2681 1.134 ad cc = pool_cache_cpu_enter(pc, &s);
2682 1.134 ad cur = cc->cc_current;
2683 1.134 ad cc->cc_current = NULL;
2684 1.134 ad prev = cc->cc_previous;
2685 1.134 ad cc->cc_previous = NULL;
2686 1.134 ad pool_cache_cpu_exit(cc, &s);
2687 1.134 ad
2688 1.134 ad /*
2689 1.134 ad * XXXSMP Go to splvm to prevent kernel_lock from being taken,
2690 1.134 ad * because locks at IPL_SOFTXXX are still spinlocks. Does not
2691 1.134 ad * apply to IPL_SOFTBIO. Cross-call threads do not take the
2692 1.134 ad * kernel_lock.
2693 1.101 thorpej */
2694 1.134 ad s = splvm();
2695 1.134 ad mutex_enter(&pc->pc_lock);
2696 1.134 ad if (cur != NULL) {
2697 1.134 ad if (cur->pcg_avail == PCG_NOBJECTS) {
2698 1.134 ad list = &pc->pc_fullgroups;
2699 1.134 ad pc->pc_nfull++;
2700 1.134 ad } else if (cur->pcg_avail == 0) {
2701 1.134 ad list = &pc->pc_emptygroups;
2702 1.134 ad pc->pc_nempty++;
2703 1.134 ad } else {
2704 1.134 ad list = &pc->pc_partgroups;
2705 1.134 ad pc->pc_npart++;
2706 1.134 ad }
2707 1.134 ad cur->pcg_next = *list;
2708 1.134 ad *list = cur;
2709 1.134 ad }
2710 1.134 ad if (prev != NULL) {
2711 1.134 ad if (prev->pcg_avail == PCG_NOBJECTS) {
2712 1.134 ad list = &pc->pc_fullgroups;
2713 1.134 ad pc->pc_nfull++;
2714 1.134 ad } else if (prev->pcg_avail == 0) {
2715 1.134 ad list = &pc->pc_emptygroups;
2716 1.134 ad pc->pc_nempty++;
2717 1.134 ad } else {
2718 1.134 ad list = &pc->pc_partgroups;
2719 1.134 ad pc->pc_npart++;
2720 1.134 ad }
2721 1.134 ad prev->pcg_next = *list;
2722 1.134 ad *list = prev;
2723 1.134 ad }
2724 1.134 ad mutex_exit(&pc->pc_lock);
2725 1.134 ad splx(s);
2726 1.3 pk }
2727 1.66 thorpej
2728 1.66 thorpej /*
2729 1.66 thorpej * Pool backend allocators.
2730 1.66 thorpej *
2731 1.66 thorpej * Each pool has a backend allocator that handles allocation, deallocation,
2732 1.66 thorpej * and any additional draining that might be needed.
2733 1.66 thorpej *
2734 1.66 thorpej * We provide two standard allocators:
2735 1.66 thorpej *
2736 1.66 thorpej * pool_allocator_kmem - the default when no allocator is specified
2737 1.66 thorpej *
2738 1.66 thorpej * pool_allocator_nointr - used for pools that will not be accessed
2739 1.66 thorpej * in interrupt context.
2740 1.66 thorpej */
2741 1.66 thorpej void *pool_page_alloc(struct pool *, int);
2742 1.66 thorpej void pool_page_free(struct pool *, void *);
2743 1.66 thorpej
2744 1.112 bjh21 #ifdef POOL_SUBPAGE
2745 1.112 bjh21 struct pool_allocator pool_allocator_kmem_fullpage = {
2746 1.112 bjh21 pool_page_alloc, pool_page_free, 0,
2747 1.117 yamt .pa_backingmapptr = &kmem_map,
2748 1.112 bjh21 };
2749 1.112 bjh21 #else
2750 1.66 thorpej struct pool_allocator pool_allocator_kmem = {
2751 1.66 thorpej pool_page_alloc, pool_page_free, 0,
2752 1.117 yamt .pa_backingmapptr = &kmem_map,
2753 1.66 thorpej };
2754 1.112 bjh21 #endif
2755 1.66 thorpej
2756 1.66 thorpej void *pool_page_alloc_nointr(struct pool *, int);
2757 1.66 thorpej void pool_page_free_nointr(struct pool *, void *);
2758 1.66 thorpej
2759 1.112 bjh21 #ifdef POOL_SUBPAGE
2760 1.112 bjh21 struct pool_allocator pool_allocator_nointr_fullpage = {
2761 1.112 bjh21 pool_page_alloc_nointr, pool_page_free_nointr, 0,
2762 1.117 yamt .pa_backingmapptr = &kernel_map,
2763 1.112 bjh21 };
2764 1.112 bjh21 #else
2765 1.66 thorpej struct pool_allocator pool_allocator_nointr = {
2766 1.66 thorpej pool_page_alloc_nointr, pool_page_free_nointr, 0,
2767 1.117 yamt .pa_backingmapptr = &kernel_map,
2768 1.66 thorpej };
2769 1.112 bjh21 #endif
2770 1.66 thorpej
2771 1.66 thorpej #ifdef POOL_SUBPAGE
2772 1.66 thorpej void *pool_subpage_alloc(struct pool *, int);
2773 1.66 thorpej void pool_subpage_free(struct pool *, void *);
2774 1.66 thorpej
2775 1.112 bjh21 struct pool_allocator pool_allocator_kmem = {
2776 1.112 bjh21 pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
2777 1.117 yamt .pa_backingmapptr = &kmem_map,
2778 1.112 bjh21 };
2779 1.112 bjh21
2780 1.112 bjh21 void *pool_subpage_alloc_nointr(struct pool *, int);
2781 1.112 bjh21 void pool_subpage_free_nointr(struct pool *, void *);
2782 1.112 bjh21
2783 1.112 bjh21 struct pool_allocator pool_allocator_nointr = {
2784 1.112 bjh21 pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
2785 1.117 yamt .pa_backingmapptr = &kmem_map,
2786 1.66 thorpej };
2787 1.66 thorpej #endif /* POOL_SUBPAGE */
2788 1.66 thorpej
2789 1.117 yamt static void *
2790 1.117 yamt pool_allocator_alloc(struct pool *pp, int flags)
2791 1.66 thorpej {
2792 1.117 yamt struct pool_allocator *pa = pp->pr_alloc;
2793 1.66 thorpej void *res;
2794 1.66 thorpej
2795 1.117 yamt res = (*pa->pa_alloc)(pp, flags);
2796 1.117 yamt if (res == NULL && (flags & PR_WAITOK) == 0) {
2797 1.66 thorpej /*
2798 1.117 yamt * We only run the drain hook here if PR_NOWAIT.
2799 1.117 yamt * In other cases, the hook will be run in
2800 1.117 yamt * pool_reclaim().
2801 1.66 thorpej */
2802 1.117 yamt if (pp->pr_drain_hook != NULL) {
2803 1.117 yamt (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
2804 1.117 yamt res = (*pa->pa_alloc)(pp, flags);
2805 1.66 thorpej }
2806 1.117 yamt }
2807 1.117 yamt return res;
2808 1.66 thorpej }
2809 1.66 thorpej
2810 1.117 yamt static void
2811 1.66 thorpej pool_allocator_free(struct pool *pp, void *v)
2812 1.66 thorpej {
2813 1.66 thorpej struct pool_allocator *pa = pp->pr_alloc;
2814 1.66 thorpej
2815 1.66 thorpej (*pa->pa_free)(pp, v);
2816 1.66 thorpej }
2817 1.66 thorpej
2818 1.66 thorpej void *
2819 1.124 yamt pool_page_alloc(struct pool *pp, int flags)
2820 1.66 thorpej {
2821 1.127 thorpej bool waitok = (flags & PR_WAITOK) ? true : false;
2822 1.66 thorpej
2823 1.100 yamt return ((void *) uvm_km_alloc_poolpage_cache(kmem_map, waitok));
2824 1.66 thorpej }
2825 1.66 thorpej
2826 1.66 thorpej void
2827 1.124 yamt pool_page_free(struct pool *pp, void *v)
2828 1.66 thorpej {
2829 1.66 thorpej
2830 1.98 yamt uvm_km_free_poolpage_cache(kmem_map, (vaddr_t) v);
2831 1.98 yamt }
2832 1.98 yamt
2833 1.98 yamt static void *
2834 1.124 yamt pool_page_alloc_meta(struct pool *pp, int flags)
2835 1.98 yamt {
2836 1.127 thorpej bool waitok = (flags & PR_WAITOK) ? true : false;
2837 1.98 yamt
2838 1.100 yamt return ((void *) uvm_km_alloc_poolpage(kmem_map, waitok));
2839 1.98 yamt }
2840 1.98 yamt
2841 1.98 yamt static void
2842 1.124 yamt pool_page_free_meta(struct pool *pp, void *v)
2843 1.98 yamt {
2844 1.98 yamt
2845 1.100 yamt uvm_km_free_poolpage(kmem_map, (vaddr_t) v);
2846 1.66 thorpej }
2847 1.66 thorpej
2848 1.66 thorpej #ifdef POOL_SUBPAGE
2849 1.66 thorpej /* Sub-page allocator, for machines with large hardware pages. */
2850 1.66 thorpej void *
2851 1.66 thorpej pool_subpage_alloc(struct pool *pp, int flags)
2852 1.66 thorpej {
2853 1.134 ad return pool_get(&psppool, flags);
2854 1.66 thorpej }
2855 1.66 thorpej
2856 1.66 thorpej void
2857 1.66 thorpej pool_subpage_free(struct pool *pp, void *v)
2858 1.66 thorpej {
2859 1.66 thorpej pool_put(&psppool, v);
2860 1.66 thorpej }
2861 1.66 thorpej
2862 1.66 thorpej /* We don't provide a real nointr allocator. Maybe later. */
2863 1.66 thorpej void *
2864 1.112 bjh21 pool_subpage_alloc_nointr(struct pool *pp, int flags)
2865 1.66 thorpej {
2866 1.66 thorpej
2867 1.66 thorpej return (pool_subpage_alloc(pp, flags));
2868 1.66 thorpej }
2869 1.66 thorpej
2870 1.66 thorpej void
2871 1.112 bjh21 pool_subpage_free_nointr(struct pool *pp, void *v)
2872 1.66 thorpej {
2873 1.66 thorpej
2874 1.66 thorpej pool_subpage_free(pp, v);
2875 1.66 thorpej }
2876 1.112 bjh21 #endif /* POOL_SUBPAGE */
2877 1.66 thorpej void *
2878 1.124 yamt pool_page_alloc_nointr(struct pool *pp, int flags)
2879 1.66 thorpej {
2880 1.127 thorpej bool waitok = (flags & PR_WAITOK) ? true : false;
2881 1.66 thorpej
2882 1.100 yamt return ((void *) uvm_km_alloc_poolpage_cache(kernel_map, waitok));
2883 1.66 thorpej }
2884 1.66 thorpej
2885 1.66 thorpej void
2886 1.124 yamt pool_page_free_nointr(struct pool *pp, void *v)
2887 1.66 thorpej {
2888 1.66 thorpej
2889 1.98 yamt uvm_km_free_poolpage_cache(kernel_map, (vaddr_t) v);
2890 1.66 thorpej }
2891