Home | History | Annotate | Line # | Download | only in kern
subr_pool.c revision 1.158.2.4
      1  1.158.2.4      yamt /*	$NetBSD: subr_pool.c,v 1.158.2.4 2010/03/11 15:04:18 yamt Exp $	*/
      2        1.1        pk 
      3        1.1        pk /*-
      4  1.158.2.2      yamt  * Copyright (c) 1997, 1999, 2000, 2002, 2007, 2008 The NetBSD Foundation, Inc.
      5        1.1        pk  * All rights reserved.
      6        1.1        pk  *
      7        1.1        pk  * This code is derived from software contributed to The NetBSD Foundation
      8       1.20   thorpej  * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
      9      1.134        ad  * Simulation Facility, NASA Ames Research Center, and by Andrew Doran.
     10        1.1        pk  *
     11        1.1        pk  * Redistribution and use in source and binary forms, with or without
     12        1.1        pk  * modification, are permitted provided that the following conditions
     13        1.1        pk  * are met:
     14        1.1        pk  * 1. Redistributions of source code must retain the above copyright
     15        1.1        pk  *    notice, this list of conditions and the following disclaimer.
     16        1.1        pk  * 2. Redistributions in binary form must reproduce the above copyright
     17        1.1        pk  *    notice, this list of conditions and the following disclaimer in the
     18        1.1        pk  *    documentation and/or other materials provided with the distribution.
     19        1.1        pk  *
     20        1.1        pk  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21        1.1        pk  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22        1.1        pk  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23        1.1        pk  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24        1.1        pk  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25        1.1        pk  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26        1.1        pk  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27        1.1        pk  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28        1.1        pk  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29        1.1        pk  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30        1.1        pk  * POSSIBILITY OF SUCH DAMAGE.
     31        1.1        pk  */
     32       1.64     lukem 
     33       1.64     lukem #include <sys/cdefs.h>
     34  1.158.2.4      yamt __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.158.2.4 2010/03/11 15:04:18 yamt Exp $");
     35       1.24    scottr 
     36      1.141      yamt #include "opt_ddb.h"
     37       1.25   thorpej #include "opt_pool.h"
     38       1.24    scottr #include "opt_poollog.h"
     39       1.28   thorpej #include "opt_lockdebug.h"
     40        1.1        pk 
     41        1.1        pk #include <sys/param.h>
     42        1.1        pk #include <sys/systm.h>
     43      1.135      yamt #include <sys/bitops.h>
     44        1.1        pk #include <sys/proc.h>
     45        1.1        pk #include <sys/errno.h>
     46        1.1        pk #include <sys/kernel.h>
     47        1.1        pk #include <sys/malloc.h>
     48        1.1        pk #include <sys/pool.h>
     49       1.20   thorpej #include <sys/syslog.h>
     50      1.125        ad #include <sys/debug.h>
     51      1.134        ad #include <sys/lockdebug.h>
     52      1.134        ad #include <sys/xcall.h>
     53      1.134        ad #include <sys/cpu.h>
     54      1.145        ad #include <sys/atomic.h>
     55        1.3        pk 
     56        1.3        pk #include <uvm/uvm.h>
     57        1.3        pk 
     58        1.1        pk /*
     59        1.1        pk  * Pool resource management utility.
     60        1.3        pk  *
     61       1.88       chs  * Memory is allocated in pages which are split into pieces according to
     62       1.88       chs  * the pool item size. Each page is kept on one of three lists in the
     63       1.88       chs  * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
     64       1.88       chs  * for empty, full and partially-full pages respectively. The individual
     65       1.88       chs  * pool items are on a linked list headed by `ph_itemlist' in each page
     66       1.88       chs  * header. The memory for building the page list is either taken from
     67       1.88       chs  * the allocated pages themselves (for small pool items) or taken from
     68       1.88       chs  * an internal pool of page headers (`phpool').
     69        1.1        pk  */
     70        1.1        pk 
     71        1.3        pk /* List of all pools */
     72  1.158.2.3      yamt static TAILQ_HEAD(, pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
     73      1.134        ad 
     74        1.3        pk /* Private pool for page header structures */
     75       1.97      yamt #define	PHPOOL_MAX	8
     76       1.97      yamt static struct pool phpool[PHPOOL_MAX];
     77      1.135      yamt #define	PHPOOL_FREELIST_NELEM(idx) \
     78      1.135      yamt 	(((idx) == 0) ? 0 : BITMAP_SIZE * (1 << (idx)))
     79        1.3        pk 
     80       1.62     bjh21 #ifdef POOL_SUBPAGE
     81       1.62     bjh21 /* Pool of subpages for use by normal pools. */
     82       1.62     bjh21 static struct pool psppool;
     83       1.62     bjh21 #endif
     84       1.62     bjh21 
     85      1.117      yamt static SLIST_HEAD(, pool_allocator) pa_deferinitq =
     86      1.117      yamt     SLIST_HEAD_INITIALIZER(pa_deferinitq);
     87      1.117      yamt 
     88       1.98      yamt static void *pool_page_alloc_meta(struct pool *, int);
     89       1.98      yamt static void pool_page_free_meta(struct pool *, void *);
     90       1.98      yamt 
     91       1.98      yamt /* allocator for pool metadata */
     92      1.134        ad struct pool_allocator pool_allocator_meta = {
     93      1.117      yamt 	pool_page_alloc_meta, pool_page_free_meta,
     94      1.117      yamt 	.pa_backingmapptr = &kmem_map,
     95       1.98      yamt };
     96       1.98      yamt 
     97        1.3        pk /* # of seconds to retain page after last use */
     98        1.3        pk int pool_inactive_time = 10;
     99        1.3        pk 
    100        1.3        pk /* Next candidate for drainage (see pool_drain()) */
    101       1.23   thorpej static struct pool	*drainpp;
    102       1.23   thorpej 
    103      1.134        ad /* This lock protects both pool_head and drainpp. */
    104      1.134        ad static kmutex_t pool_head_lock;
    105      1.134        ad static kcondvar_t pool_busy;
    106        1.3        pk 
    107  1.158.2.4      yamt /* This lock protects initialization of a potentially shared pool allocator */
    108  1.158.2.4      yamt static kmutex_t pool_allocator_lock;
    109  1.158.2.4      yamt 
    110      1.135      yamt typedef uint32_t pool_item_bitmap_t;
    111      1.135      yamt #define	BITMAP_SIZE	(CHAR_BIT * sizeof(pool_item_bitmap_t))
    112      1.135      yamt #define	BITMAP_MASK	(BITMAP_SIZE - 1)
    113       1.99      yamt 
    114        1.3        pk struct pool_item_header {
    115        1.3        pk 	/* Page headers */
    116       1.88       chs 	LIST_ENTRY(pool_item_header)
    117        1.3        pk 				ph_pagelist;	/* pool page list */
    118       1.88       chs 	SPLAY_ENTRY(pool_item_header)
    119       1.88       chs 				ph_node;	/* Off-page page headers */
    120      1.128  christos 	void *			ph_page;	/* this page's address */
    121      1.151      yamt 	uint32_t		ph_time;	/* last referenced */
    122      1.135      yamt 	uint16_t		ph_nmissing;	/* # of chunks in use */
    123      1.141      yamt 	uint16_t		ph_off;		/* start offset in page */
    124       1.97      yamt 	union {
    125       1.97      yamt 		/* !PR_NOTOUCH */
    126       1.97      yamt 		struct {
    127      1.102       chs 			LIST_HEAD(, pool_item)
    128       1.97      yamt 				phu_itemlist;	/* chunk list for this page */
    129       1.97      yamt 		} phu_normal;
    130       1.97      yamt 		/* PR_NOTOUCH */
    131       1.97      yamt 		struct {
    132      1.141      yamt 			pool_item_bitmap_t phu_bitmap[1];
    133       1.97      yamt 		} phu_notouch;
    134       1.97      yamt 	} ph_u;
    135        1.3        pk };
    136       1.97      yamt #define	ph_itemlist	ph_u.phu_normal.phu_itemlist
    137      1.135      yamt #define	ph_bitmap	ph_u.phu_notouch.phu_bitmap
    138        1.3        pk 
    139        1.1        pk struct pool_item {
    140        1.3        pk #ifdef DIAGNOSTIC
    141       1.82   thorpej 	u_int pi_magic;
    142       1.33       chs #endif
    143      1.134        ad #define	PI_MAGIC 0xdeaddeadU
    144        1.3        pk 	/* Other entries use only this list entry */
    145      1.102       chs 	LIST_ENTRY(pool_item)	pi_list;
    146        1.3        pk };
    147        1.3        pk 
    148       1.53   thorpej #define	POOL_NEEDS_CATCHUP(pp)						\
    149       1.53   thorpej 	((pp)->pr_nitems < (pp)->pr_minitems)
    150       1.53   thorpej 
    151       1.43   thorpej /*
    152       1.43   thorpej  * Pool cache management.
    153       1.43   thorpej  *
    154       1.43   thorpej  * Pool caches provide a way for constructed objects to be cached by the
    155       1.43   thorpej  * pool subsystem.  This can lead to performance improvements by avoiding
    156       1.43   thorpej  * needless object construction/destruction; it is deferred until absolutely
    157       1.43   thorpej  * necessary.
    158       1.43   thorpej  *
    159      1.134        ad  * Caches are grouped into cache groups.  Each cache group references up
    160      1.134        ad  * to PCG_NUMOBJECTS constructed objects.  When a cache allocates an
    161      1.134        ad  * object from the pool, it calls the object's constructor and places it
    162      1.134        ad  * into a cache group.  When a cache group frees an object back to the
    163      1.134        ad  * pool, it first calls the object's destructor.  This allows the object
    164      1.134        ad  * to persist in constructed form while freed to the cache.
    165      1.134        ad  *
    166      1.134        ad  * The pool references each cache, so that when a pool is drained by the
    167      1.134        ad  * pagedaemon, it can drain each individual cache as well.  Each time a
    168      1.134        ad  * cache is drained, the most idle cache group is freed to the pool in
    169      1.134        ad  * its entirety.
    170       1.43   thorpej  *
    171       1.43   thorpej  * Pool caches are layed on top of pools.  By layering them, we can avoid
    172       1.43   thorpej  * the complexity of cache management for pools which would not benefit
    173       1.43   thorpej  * from it.
    174       1.43   thorpej  */
    175       1.43   thorpej 
    176      1.142        ad static struct pool pcg_normal_pool;
    177      1.142        ad static struct pool pcg_large_pool;
    178      1.134        ad static struct pool cache_pool;
    179      1.134        ad static struct pool cache_cpu_pool;
    180        1.3        pk 
    181      1.145        ad /* List of all caches. */
    182      1.145        ad TAILQ_HEAD(,pool_cache) pool_cache_head =
    183      1.145        ad     TAILQ_HEAD_INITIALIZER(pool_cache_head);
    184      1.145        ad 
    185  1.158.2.2      yamt int pool_cache_disable;		/* global disable for caching */
    186  1.158.2.2      yamt static const pcg_t pcg_dummy;	/* zero sized: always empty, yet always full */
    187      1.145        ad 
    188  1.158.2.2      yamt static bool	pool_cache_put_slow(pool_cache_cpu_t *, int,
    189  1.158.2.2      yamt 				    void *);
    190  1.158.2.2      yamt static bool	pool_cache_get_slow(pool_cache_cpu_t *, int,
    191  1.158.2.2      yamt 				    void **, paddr_t *, int);
    192      1.134        ad static void	pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
    193      1.134        ad static void	pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
    194  1.158.2.4      yamt static void	pool_cache_invalidate_cpu(pool_cache_t, u_int);
    195      1.134        ad static void	pool_cache_xcall(pool_cache_t);
    196        1.3        pk 
    197       1.42   thorpej static int	pool_catchup(struct pool *);
    198      1.128  christos static void	pool_prime_page(struct pool *, void *,
    199       1.55   thorpej 		    struct pool_item_header *);
    200       1.88       chs static void	pool_update_curpage(struct pool *);
    201       1.66   thorpej 
    202      1.113      yamt static int	pool_grow(struct pool *, int);
    203      1.117      yamt static void	*pool_allocator_alloc(struct pool *, int);
    204      1.117      yamt static void	pool_allocator_free(struct pool *, void *);
    205        1.3        pk 
    206       1.97      yamt static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
    207       1.88       chs 	void (*)(const char *, ...));
    208       1.42   thorpej static void pool_print1(struct pool *, const char *,
    209       1.42   thorpej 	void (*)(const char *, ...));
    210        1.3        pk 
    211       1.88       chs static int pool_chk_page(struct pool *, const char *,
    212       1.88       chs 			 struct pool_item_header *);
    213       1.88       chs 
    214        1.3        pk /*
    215       1.52   thorpej  * Pool log entry. An array of these is allocated in pool_init().
    216        1.3        pk  */
    217        1.3        pk struct pool_log {
    218        1.3        pk 	const char	*pl_file;
    219        1.3        pk 	long		pl_line;
    220        1.3        pk 	int		pl_action;
    221       1.25   thorpej #define	PRLOG_GET	1
    222       1.25   thorpej #define	PRLOG_PUT	2
    223        1.3        pk 	void		*pl_addr;
    224        1.1        pk };
    225        1.1        pk 
    226       1.86      matt #ifdef POOL_DIAGNOSTIC
    227        1.3        pk /* Number of entries in pool log buffers */
    228       1.17   thorpej #ifndef POOL_LOGSIZE
    229       1.17   thorpej #define	POOL_LOGSIZE	10
    230       1.17   thorpej #endif
    231       1.17   thorpej 
    232       1.17   thorpej int pool_logsize = POOL_LOGSIZE;
    233        1.1        pk 
    234      1.110     perry static inline void
    235       1.42   thorpej pr_log(struct pool *pp, void *v, int action, const char *file, long line)
    236        1.3        pk {
    237  1.158.2.4      yamt 	int n;
    238        1.3        pk 	struct pool_log *pl;
    239        1.3        pk 
    240       1.20   thorpej 	if ((pp->pr_roflags & PR_LOGGING) == 0)
    241        1.3        pk 		return;
    242        1.3        pk 
    243  1.158.2.4      yamt 	if (pp->pr_log == NULL) {
    244  1.158.2.4      yamt 		if (kmem_map != NULL)
    245  1.158.2.4      yamt 			pp->pr_log = malloc(
    246  1.158.2.4      yamt 				pool_logsize * sizeof(struct pool_log),
    247  1.158.2.4      yamt 				M_TEMP, M_NOWAIT | M_ZERO);
    248  1.158.2.4      yamt 		if (pp->pr_log == NULL)
    249  1.158.2.4      yamt 			return;
    250  1.158.2.4      yamt 		pp->pr_curlogentry = 0;
    251  1.158.2.4      yamt 		pp->pr_logsize = pool_logsize;
    252  1.158.2.4      yamt 	}
    253  1.158.2.4      yamt 
    254        1.3        pk 	/*
    255        1.3        pk 	 * Fill in the current entry. Wrap around and overwrite
    256        1.3        pk 	 * the oldest entry if necessary.
    257        1.3        pk 	 */
    258  1.158.2.4      yamt 	n = pp->pr_curlogentry;
    259        1.3        pk 	pl = &pp->pr_log[n];
    260        1.3        pk 	pl->pl_file = file;
    261        1.3        pk 	pl->pl_line = line;
    262        1.3        pk 	pl->pl_action = action;
    263        1.3        pk 	pl->pl_addr = v;
    264        1.3        pk 	if (++n >= pp->pr_logsize)
    265        1.3        pk 		n = 0;
    266        1.3        pk 	pp->pr_curlogentry = n;
    267        1.3        pk }
    268        1.3        pk 
    269        1.3        pk static void
    270       1.42   thorpej pr_printlog(struct pool *pp, struct pool_item *pi,
    271       1.42   thorpej     void (*pr)(const char *, ...))
    272        1.3        pk {
    273        1.3        pk 	int i = pp->pr_logsize;
    274        1.3        pk 	int n = pp->pr_curlogentry;
    275        1.3        pk 
    276  1.158.2.4      yamt 	if (pp->pr_log == NULL)
    277        1.3        pk 		return;
    278        1.3        pk 
    279        1.3        pk 	/*
    280        1.3        pk 	 * Print all entries in this pool's log.
    281        1.3        pk 	 */
    282        1.3        pk 	while (i-- > 0) {
    283        1.3        pk 		struct pool_log *pl = &pp->pr_log[n];
    284        1.3        pk 		if (pl->pl_action != 0) {
    285       1.25   thorpej 			if (pi == NULL || pi == pl->pl_addr) {
    286       1.25   thorpej 				(*pr)("\tlog entry %d:\n", i);
    287       1.25   thorpej 				(*pr)("\t\taction = %s, addr = %p\n",
    288       1.25   thorpej 				    pl->pl_action == PRLOG_GET ? "get" : "put",
    289       1.25   thorpej 				    pl->pl_addr);
    290       1.25   thorpej 				(*pr)("\t\tfile: %s at line %lu\n",
    291       1.25   thorpej 				    pl->pl_file, pl->pl_line);
    292       1.25   thorpej 			}
    293        1.3        pk 		}
    294        1.3        pk 		if (++n >= pp->pr_logsize)
    295        1.3        pk 			n = 0;
    296        1.3        pk 	}
    297        1.3        pk }
    298       1.25   thorpej 
    299      1.110     perry static inline void
    300       1.42   thorpej pr_enter(struct pool *pp, const char *file, long line)
    301       1.25   thorpej {
    302       1.25   thorpej 
    303       1.34   thorpej 	if (__predict_false(pp->pr_entered_file != NULL)) {
    304       1.25   thorpej 		printf("pool %s: reentrancy at file %s line %ld\n",
    305       1.25   thorpej 		    pp->pr_wchan, file, line);
    306       1.25   thorpej 		printf("         previous entry at file %s line %ld\n",
    307       1.25   thorpej 		    pp->pr_entered_file, pp->pr_entered_line);
    308       1.25   thorpej 		panic("pr_enter");
    309       1.25   thorpej 	}
    310       1.25   thorpej 
    311       1.25   thorpej 	pp->pr_entered_file = file;
    312       1.25   thorpej 	pp->pr_entered_line = line;
    313       1.25   thorpej }
    314       1.25   thorpej 
    315      1.110     perry static inline void
    316       1.42   thorpej pr_leave(struct pool *pp)
    317       1.25   thorpej {
    318       1.25   thorpej 
    319       1.34   thorpej 	if (__predict_false(pp->pr_entered_file == NULL)) {
    320       1.25   thorpej 		printf("pool %s not entered?\n", pp->pr_wchan);
    321       1.25   thorpej 		panic("pr_leave");
    322       1.25   thorpej 	}
    323       1.25   thorpej 
    324       1.25   thorpej 	pp->pr_entered_file = NULL;
    325       1.25   thorpej 	pp->pr_entered_line = 0;
    326       1.25   thorpej }
    327       1.25   thorpej 
    328      1.110     perry static inline void
    329       1.42   thorpej pr_enter_check(struct pool *pp, void (*pr)(const char *, ...))
    330       1.25   thorpej {
    331       1.25   thorpej 
    332       1.25   thorpej 	if (pp->pr_entered_file != NULL)
    333       1.25   thorpej 		(*pr)("\n\tcurrently entered from file %s line %ld\n",
    334       1.25   thorpej 		    pp->pr_entered_file, pp->pr_entered_line);
    335       1.25   thorpej }
    336        1.3        pk #else
    337       1.25   thorpej #define	pr_log(pp, v, action, file, line)
    338       1.25   thorpej #define	pr_printlog(pp, pi, pr)
    339       1.25   thorpej #define	pr_enter(pp, file, line)
    340       1.25   thorpej #define	pr_leave(pp)
    341       1.25   thorpej #define	pr_enter_check(pp, pr)
    342       1.59   thorpej #endif /* POOL_DIAGNOSTIC */
    343        1.3        pk 
    344      1.135      yamt static inline unsigned int
    345       1.97      yamt pr_item_notouch_index(const struct pool *pp, const struct pool_item_header *ph,
    346       1.97      yamt     const void *v)
    347       1.97      yamt {
    348       1.97      yamt 	const char *cp = v;
    349      1.135      yamt 	unsigned int idx;
    350       1.97      yamt 
    351       1.97      yamt 	KASSERT(pp->pr_roflags & PR_NOTOUCH);
    352      1.128  christos 	idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
    353       1.97      yamt 	KASSERT(idx < pp->pr_itemsperpage);
    354       1.97      yamt 	return idx;
    355       1.97      yamt }
    356       1.97      yamt 
    357      1.110     perry static inline void
    358       1.97      yamt pr_item_notouch_put(const struct pool *pp, struct pool_item_header *ph,
    359       1.97      yamt     void *obj)
    360       1.97      yamt {
    361      1.135      yamt 	unsigned int idx = pr_item_notouch_index(pp, ph, obj);
    362      1.135      yamt 	pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE);
    363      1.135      yamt 	pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
    364       1.97      yamt 
    365      1.135      yamt 	KASSERT((*bitmap & mask) == 0);
    366      1.135      yamt 	*bitmap |= mask;
    367       1.97      yamt }
    368       1.97      yamt 
    369      1.110     perry static inline void *
    370       1.97      yamt pr_item_notouch_get(const struct pool *pp, struct pool_item_header *ph)
    371       1.97      yamt {
    372      1.135      yamt 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
    373      1.135      yamt 	unsigned int idx;
    374      1.135      yamt 	int i;
    375       1.97      yamt 
    376      1.135      yamt 	for (i = 0; ; i++) {
    377      1.135      yamt 		int bit;
    378       1.97      yamt 
    379      1.135      yamt 		KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage);
    380      1.135      yamt 		bit = ffs32(bitmap[i]);
    381      1.135      yamt 		if (bit) {
    382      1.135      yamt 			pool_item_bitmap_t mask;
    383      1.135      yamt 
    384      1.135      yamt 			bit--;
    385      1.135      yamt 			idx = (i * BITMAP_SIZE) + bit;
    386      1.135      yamt 			mask = 1 << bit;
    387      1.135      yamt 			KASSERT((bitmap[i] & mask) != 0);
    388      1.135      yamt 			bitmap[i] &= ~mask;
    389      1.135      yamt 			break;
    390      1.135      yamt 		}
    391      1.135      yamt 	}
    392      1.135      yamt 	KASSERT(idx < pp->pr_itemsperpage);
    393      1.128  christos 	return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
    394       1.97      yamt }
    395       1.97      yamt 
    396      1.135      yamt static inline void
    397      1.141      yamt pr_item_notouch_init(const struct pool *pp, struct pool_item_header *ph)
    398      1.135      yamt {
    399      1.135      yamt 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
    400      1.135      yamt 	const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE);
    401      1.135      yamt 	int i;
    402      1.135      yamt 
    403      1.135      yamt 	for (i = 0; i < n; i++) {
    404      1.135      yamt 		bitmap[i] = (pool_item_bitmap_t)-1;
    405      1.135      yamt 	}
    406      1.135      yamt }
    407      1.135      yamt 
    408      1.110     perry static inline int
    409       1.88       chs phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
    410       1.88       chs {
    411      1.121      yamt 
    412      1.121      yamt 	/*
    413      1.121      yamt 	 * we consider pool_item_header with smaller ph_page bigger.
    414      1.121      yamt 	 * (this unnatural ordering is for the benefit of pr_find_pagehead.)
    415      1.121      yamt 	 */
    416      1.121      yamt 
    417       1.88       chs 	if (a->ph_page < b->ph_page)
    418      1.121      yamt 		return (1);
    419      1.121      yamt 	else if (a->ph_page > b->ph_page)
    420       1.88       chs 		return (-1);
    421       1.88       chs 	else
    422       1.88       chs 		return (0);
    423       1.88       chs }
    424       1.88       chs 
    425       1.88       chs SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
    426       1.88       chs SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
    427       1.88       chs 
    428      1.141      yamt static inline struct pool_item_header *
    429      1.141      yamt pr_find_pagehead_noalign(struct pool *pp, void *v)
    430      1.141      yamt {
    431      1.141      yamt 	struct pool_item_header *ph, tmp;
    432      1.141      yamt 
    433      1.141      yamt 	tmp.ph_page = (void *)(uintptr_t)v;
    434      1.141      yamt 	ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
    435      1.141      yamt 	if (ph == NULL) {
    436      1.141      yamt 		ph = SPLAY_ROOT(&pp->pr_phtree);
    437      1.141      yamt 		if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
    438      1.141      yamt 			ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
    439      1.141      yamt 		}
    440      1.141      yamt 		KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
    441      1.141      yamt 	}
    442      1.141      yamt 
    443      1.141      yamt 	return ph;
    444      1.141      yamt }
    445      1.141      yamt 
    446        1.3        pk /*
    447      1.121      yamt  * Return the pool page header based on item address.
    448        1.3        pk  */
    449      1.110     perry static inline struct pool_item_header *
    450      1.121      yamt pr_find_pagehead(struct pool *pp, void *v)
    451        1.3        pk {
    452       1.88       chs 	struct pool_item_header *ph, tmp;
    453        1.3        pk 
    454      1.121      yamt 	if ((pp->pr_roflags & PR_NOALIGN) != 0) {
    455      1.141      yamt 		ph = pr_find_pagehead_noalign(pp, v);
    456      1.121      yamt 	} else {
    457      1.128  christos 		void *page =
    458      1.128  christos 		    (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask);
    459      1.121      yamt 
    460      1.121      yamt 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
    461      1.128  christos 			ph = (struct pool_item_header *)((char *)page + pp->pr_phoffset);
    462      1.121      yamt 		} else {
    463      1.121      yamt 			tmp.ph_page = page;
    464      1.121      yamt 			ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
    465      1.121      yamt 		}
    466      1.121      yamt 	}
    467        1.3        pk 
    468      1.121      yamt 	KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
    469      1.128  christos 	    ((char *)ph->ph_page <= (char *)v &&
    470      1.128  christos 	    (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
    471       1.88       chs 	return ph;
    472        1.3        pk }
    473        1.3        pk 
    474      1.101   thorpej static void
    475      1.101   thorpej pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
    476      1.101   thorpej {
    477      1.101   thorpej 	struct pool_item_header *ph;
    478      1.101   thorpej 
    479      1.101   thorpej 	while ((ph = LIST_FIRST(pq)) != NULL) {
    480      1.101   thorpej 		LIST_REMOVE(ph, ph_pagelist);
    481      1.101   thorpej 		pool_allocator_free(pp, ph->ph_page);
    482      1.134        ad 		if ((pp->pr_roflags & PR_PHINPAGE) == 0)
    483      1.101   thorpej 			pool_put(pp->pr_phpool, ph);
    484      1.101   thorpej 	}
    485      1.101   thorpej }
    486      1.101   thorpej 
    487        1.3        pk /*
    488        1.3        pk  * Remove a page from the pool.
    489        1.3        pk  */
    490      1.110     perry static inline void
    491       1.61       chs pr_rmpage(struct pool *pp, struct pool_item_header *ph,
    492       1.61       chs      struct pool_pagelist *pq)
    493        1.3        pk {
    494        1.3        pk 
    495      1.134        ad 	KASSERT(mutex_owned(&pp->pr_lock));
    496       1.91      yamt 
    497        1.3        pk 	/*
    498        1.7   thorpej 	 * If the page was idle, decrement the idle page count.
    499        1.3        pk 	 */
    500        1.6   thorpej 	if (ph->ph_nmissing == 0) {
    501        1.6   thorpej #ifdef DIAGNOSTIC
    502        1.6   thorpej 		if (pp->pr_nidle == 0)
    503        1.6   thorpej 			panic("pr_rmpage: nidle inconsistent");
    504       1.20   thorpej 		if (pp->pr_nitems < pp->pr_itemsperpage)
    505       1.20   thorpej 			panic("pr_rmpage: nitems inconsistent");
    506        1.6   thorpej #endif
    507        1.6   thorpej 		pp->pr_nidle--;
    508        1.6   thorpej 	}
    509        1.7   thorpej 
    510       1.20   thorpej 	pp->pr_nitems -= pp->pr_itemsperpage;
    511       1.20   thorpej 
    512        1.7   thorpej 	/*
    513      1.101   thorpej 	 * Unlink the page from the pool and queue it for release.
    514        1.7   thorpej 	 */
    515       1.88       chs 	LIST_REMOVE(ph, ph_pagelist);
    516       1.91      yamt 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
    517       1.91      yamt 		SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
    518      1.101   thorpej 	LIST_INSERT_HEAD(pq, ph, ph_pagelist);
    519      1.101   thorpej 
    520        1.7   thorpej 	pp->pr_npages--;
    521        1.7   thorpej 	pp->pr_npagefree++;
    522        1.6   thorpej 
    523       1.88       chs 	pool_update_curpage(pp);
    524        1.3        pk }
    525        1.3        pk 
    526      1.126   thorpej static bool
    527      1.117      yamt pa_starved_p(struct pool_allocator *pa)
    528      1.117      yamt {
    529      1.117      yamt 
    530      1.117      yamt 	if (pa->pa_backingmap != NULL) {
    531      1.117      yamt 		return vm_map_starved_p(pa->pa_backingmap);
    532      1.117      yamt 	}
    533      1.127   thorpej 	return false;
    534      1.117      yamt }
    535      1.117      yamt 
    536      1.117      yamt static int
    537      1.124      yamt pool_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
    538      1.117      yamt {
    539      1.117      yamt 	struct pool *pp = obj;
    540      1.117      yamt 	struct pool_allocator *pa = pp->pr_alloc;
    541      1.117      yamt 
    542      1.117      yamt 	KASSERT(&pp->pr_reclaimerentry == ce);
    543      1.117      yamt 	pool_reclaim(pp);
    544      1.117      yamt 	if (!pa_starved_p(pa)) {
    545      1.117      yamt 		return CALLBACK_CHAIN_ABORT;
    546      1.117      yamt 	}
    547      1.117      yamt 	return CALLBACK_CHAIN_CONTINUE;
    548      1.117      yamt }
    549      1.117      yamt 
    550      1.117      yamt static void
    551      1.117      yamt pool_reclaim_register(struct pool *pp)
    552      1.117      yamt {
    553      1.117      yamt 	struct vm_map *map = pp->pr_alloc->pa_backingmap;
    554      1.117      yamt 	int s;
    555      1.117      yamt 
    556      1.117      yamt 	if (map == NULL) {
    557      1.117      yamt 		return;
    558      1.117      yamt 	}
    559      1.117      yamt 
    560      1.117      yamt 	s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
    561      1.117      yamt 	callback_register(&vm_map_to_kernel(map)->vmk_reclaim_callback,
    562      1.117      yamt 	    &pp->pr_reclaimerentry, pp, pool_reclaim_callback);
    563      1.117      yamt 	splx(s);
    564      1.117      yamt }
    565      1.117      yamt 
    566      1.117      yamt static void
    567      1.117      yamt pool_reclaim_unregister(struct pool *pp)
    568      1.117      yamt {
    569      1.117      yamt 	struct vm_map *map = pp->pr_alloc->pa_backingmap;
    570      1.117      yamt 	int s;
    571      1.117      yamt 
    572      1.117      yamt 	if (map == NULL) {
    573      1.117      yamt 		return;
    574      1.117      yamt 	}
    575      1.117      yamt 
    576      1.117      yamt 	s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
    577      1.117      yamt 	callback_unregister(&vm_map_to_kernel(map)->vmk_reclaim_callback,
    578      1.117      yamt 	    &pp->pr_reclaimerentry);
    579      1.117      yamt 	splx(s);
    580      1.117      yamt }
    581      1.117      yamt 
    582      1.117      yamt static void
    583      1.117      yamt pa_reclaim_register(struct pool_allocator *pa)
    584      1.117      yamt {
    585      1.117      yamt 	struct vm_map *map = *pa->pa_backingmapptr;
    586      1.117      yamt 	struct pool *pp;
    587      1.117      yamt 
    588      1.117      yamt 	KASSERT(pa->pa_backingmap == NULL);
    589      1.117      yamt 	if (map == NULL) {
    590      1.117      yamt 		SLIST_INSERT_HEAD(&pa_deferinitq, pa, pa_q);
    591      1.117      yamt 		return;
    592      1.117      yamt 	}
    593      1.117      yamt 	pa->pa_backingmap = map;
    594      1.117      yamt 	TAILQ_FOREACH(pp, &pa->pa_list, pr_alloc_list) {
    595      1.117      yamt 		pool_reclaim_register(pp);
    596      1.117      yamt 	}
    597      1.117      yamt }
    598      1.117      yamt 
    599        1.3        pk /*
    600       1.94    simonb  * Initialize all the pools listed in the "pools" link set.
    601       1.94    simonb  */
    602       1.94    simonb void
    603      1.117      yamt pool_subsystem_init(void)
    604       1.94    simonb {
    605      1.117      yamt 	struct pool_allocator *pa;
    606       1.94    simonb 
    607      1.134        ad 	mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
    608  1.158.2.4      yamt 	mutex_init(&pool_allocator_lock, MUTEX_DEFAULT, IPL_NONE);
    609      1.134        ad 	cv_init(&pool_busy, "poolbusy");
    610      1.134        ad 
    611      1.117      yamt 	while ((pa = SLIST_FIRST(&pa_deferinitq)) != NULL) {
    612      1.117      yamt 		KASSERT(pa->pa_backingmapptr != NULL);
    613      1.117      yamt 		KASSERT(*pa->pa_backingmapptr != NULL);
    614      1.117      yamt 		SLIST_REMOVE_HEAD(&pa_deferinitq, pa_q);
    615      1.117      yamt 		pa_reclaim_register(pa);
    616      1.117      yamt 	}
    617      1.134        ad 
    618      1.156        ad 	pool_init(&cache_pool, sizeof(struct pool_cache), coherency_unit,
    619      1.134        ad 	    0, 0, "pcache", &pool_allocator_nointr, IPL_NONE);
    620      1.134        ad 
    621      1.156        ad 	pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), coherency_unit,
    622      1.134        ad 	    0, 0, "pcachecpu", &pool_allocator_nointr, IPL_NONE);
    623       1.94    simonb }
    624       1.94    simonb 
    625       1.94    simonb /*
    626        1.3        pk  * Initialize the given pool resource structure.
    627        1.3        pk  *
    628        1.3        pk  * We export this routine to allow other kernel parts to declare
    629        1.3        pk  * static pools that must be initialized before malloc() is available.
    630        1.3        pk  */
    631        1.3        pk void
    632       1.42   thorpej pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
    633      1.129        ad     const char *wchan, struct pool_allocator *palloc, int ipl)
    634        1.3        pk {
    635      1.116    simonb 	struct pool *pp1;
    636       1.92     enami 	size_t trysize, phsize;
    637      1.134        ad 	int off, slack;
    638        1.3        pk 
    639      1.116    simonb #ifdef DEBUG
    640      1.116    simonb 	/*
    641      1.116    simonb 	 * Check that the pool hasn't already been initialised and
    642      1.116    simonb 	 * added to the list of all pools.
    643      1.116    simonb 	 */
    644      1.145        ad 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
    645      1.116    simonb 		if (pp == pp1)
    646      1.116    simonb 			panic("pool_init: pool %s already initialised",
    647      1.116    simonb 			    wchan);
    648      1.116    simonb 	}
    649      1.116    simonb #endif
    650      1.116    simonb 
    651       1.25   thorpej #ifdef POOL_DIAGNOSTIC
    652       1.25   thorpej 	/*
    653       1.25   thorpej 	 * Always log if POOL_DIAGNOSTIC is defined.
    654       1.25   thorpej 	 */
    655       1.25   thorpej 	if (pool_logsize != 0)
    656       1.25   thorpej 		flags |= PR_LOGGING;
    657       1.25   thorpej #endif
    658       1.25   thorpej 
    659       1.66   thorpej 	if (palloc == NULL)
    660       1.66   thorpej 		palloc = &pool_allocator_kmem;
    661      1.112     bjh21 #ifdef POOL_SUBPAGE
    662      1.112     bjh21 	if (size > palloc->pa_pagesz) {
    663      1.112     bjh21 		if (palloc == &pool_allocator_kmem)
    664      1.112     bjh21 			palloc = &pool_allocator_kmem_fullpage;
    665      1.112     bjh21 		else if (palloc == &pool_allocator_nointr)
    666      1.112     bjh21 			palloc = &pool_allocator_nointr_fullpage;
    667      1.112     bjh21 	}
    668       1.66   thorpej #endif /* POOL_SUBPAGE */
    669  1.158.2.4      yamt 	if (!cold)
    670  1.158.2.4      yamt 		mutex_enter(&pool_allocator_lock);
    671  1.158.2.4      yamt 	if (palloc->pa_refcnt++ == 0) {
    672      1.112     bjh21 		if (palloc->pa_pagesz == 0)
    673       1.66   thorpej 			palloc->pa_pagesz = PAGE_SIZE;
    674       1.66   thorpej 
    675       1.66   thorpej 		TAILQ_INIT(&palloc->pa_list);
    676       1.66   thorpej 
    677      1.134        ad 		mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
    678       1.66   thorpej 		palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
    679       1.66   thorpej 		palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
    680      1.117      yamt 
    681      1.117      yamt 		if (palloc->pa_backingmapptr != NULL) {
    682      1.117      yamt 			pa_reclaim_register(palloc);
    683      1.117      yamt 		}
    684        1.4   thorpej 	}
    685  1.158.2.4      yamt 	if (!cold)
    686  1.158.2.4      yamt 		mutex_exit(&pool_allocator_lock);
    687        1.3        pk 
    688        1.3        pk 	if (align == 0)
    689        1.3        pk 		align = ALIGN(1);
    690       1.14   thorpej 
    691      1.120      yamt 	if ((flags & PR_NOTOUCH) == 0 && size < sizeof(struct pool_item))
    692       1.14   thorpej 		size = sizeof(struct pool_item);
    693        1.3        pk 
    694       1.78   thorpej 	size = roundup(size, align);
    695       1.66   thorpej #ifdef DIAGNOSTIC
    696       1.66   thorpej 	if (size > palloc->pa_pagesz)
    697      1.121      yamt 		panic("pool_init: pool item size (%zu) too large", size);
    698       1.66   thorpej #endif
    699       1.35        pk 
    700        1.3        pk 	/*
    701        1.3        pk 	 * Initialize the pool structure.
    702        1.3        pk 	 */
    703       1.88       chs 	LIST_INIT(&pp->pr_emptypages);
    704       1.88       chs 	LIST_INIT(&pp->pr_fullpages);
    705       1.88       chs 	LIST_INIT(&pp->pr_partpages);
    706      1.134        ad 	pp->pr_cache = NULL;
    707        1.3        pk 	pp->pr_curpage = NULL;
    708        1.3        pk 	pp->pr_npages = 0;
    709        1.3        pk 	pp->pr_minitems = 0;
    710        1.3        pk 	pp->pr_minpages = 0;
    711        1.3        pk 	pp->pr_maxpages = UINT_MAX;
    712       1.20   thorpej 	pp->pr_roflags = flags;
    713       1.20   thorpej 	pp->pr_flags = 0;
    714       1.35        pk 	pp->pr_size = size;
    715        1.3        pk 	pp->pr_align = align;
    716        1.3        pk 	pp->pr_wchan = wchan;
    717       1.66   thorpej 	pp->pr_alloc = palloc;
    718       1.20   thorpej 	pp->pr_nitems = 0;
    719       1.20   thorpej 	pp->pr_nout = 0;
    720       1.20   thorpej 	pp->pr_hardlimit = UINT_MAX;
    721       1.20   thorpej 	pp->pr_hardlimit_warning = NULL;
    722       1.31   thorpej 	pp->pr_hardlimit_ratecap.tv_sec = 0;
    723       1.31   thorpej 	pp->pr_hardlimit_ratecap.tv_usec = 0;
    724       1.31   thorpej 	pp->pr_hardlimit_warning_last.tv_sec = 0;
    725       1.31   thorpej 	pp->pr_hardlimit_warning_last.tv_usec = 0;
    726       1.68   thorpej 	pp->pr_drain_hook = NULL;
    727       1.68   thorpej 	pp->pr_drain_hook_arg = NULL;
    728      1.125        ad 	pp->pr_freecheck = NULL;
    729        1.3        pk 
    730        1.3        pk 	/*
    731        1.3        pk 	 * Decide whether to put the page header off page to avoid
    732       1.92     enami 	 * wasting too large a part of the page or too big item.
    733       1.92     enami 	 * Off-page page headers go on a hash table, so we can match
    734       1.92     enami 	 * a returned item with its header based on the page address.
    735       1.92     enami 	 * We use 1/16 of the page size and about 8 times of the item
    736       1.92     enami 	 * size as the threshold (XXX: tune)
    737       1.92     enami 	 *
    738       1.92     enami 	 * However, we'll put the header into the page if we can put
    739       1.92     enami 	 * it without wasting any items.
    740       1.92     enami 	 *
    741       1.92     enami 	 * Silently enforce `0 <= ioff < align'.
    742        1.3        pk 	 */
    743       1.92     enami 	pp->pr_itemoffset = ioff %= align;
    744       1.92     enami 	/* See the comment below about reserved bytes. */
    745       1.92     enami 	trysize = palloc->pa_pagesz - ((align - ioff) % align);
    746       1.92     enami 	phsize = ALIGN(sizeof(struct pool_item_header));
    747      1.121      yamt 	if ((pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) == 0 &&
    748       1.97      yamt 	    (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) ||
    749       1.97      yamt 	    trysize / pp->pr_size == (trysize - phsize) / pp->pr_size)) {
    750        1.3        pk 		/* Use the end of the page for the page header */
    751       1.20   thorpej 		pp->pr_roflags |= PR_PHINPAGE;
    752       1.92     enami 		pp->pr_phoffset = off = palloc->pa_pagesz - phsize;
    753        1.2        pk 	} else {
    754        1.3        pk 		/* The page header will be taken from our page header pool */
    755        1.3        pk 		pp->pr_phoffset = 0;
    756       1.66   thorpej 		off = palloc->pa_pagesz;
    757       1.88       chs 		SPLAY_INIT(&pp->pr_phtree);
    758        1.2        pk 	}
    759        1.1        pk 
    760        1.3        pk 	/*
    761        1.3        pk 	 * Alignment is to take place at `ioff' within the item. This means
    762        1.3        pk 	 * we must reserve up to `align - 1' bytes on the page to allow
    763        1.3        pk 	 * appropriate positioning of each item.
    764        1.3        pk 	 */
    765        1.3        pk 	pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
    766       1.43   thorpej 	KASSERT(pp->pr_itemsperpage != 0);
    767       1.97      yamt 	if ((pp->pr_roflags & PR_NOTOUCH)) {
    768       1.97      yamt 		int idx;
    769       1.97      yamt 
    770       1.97      yamt 		for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
    771       1.97      yamt 		    idx++) {
    772       1.97      yamt 			/* nothing */
    773       1.97      yamt 		}
    774       1.97      yamt 		if (idx >= PHPOOL_MAX) {
    775       1.97      yamt 			/*
    776       1.97      yamt 			 * if you see this panic, consider to tweak
    777       1.97      yamt 			 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
    778       1.97      yamt 			 */
    779       1.97      yamt 			panic("%s: too large itemsperpage(%d) for PR_NOTOUCH",
    780       1.97      yamt 			    pp->pr_wchan, pp->pr_itemsperpage);
    781       1.97      yamt 		}
    782       1.97      yamt 		pp->pr_phpool = &phpool[idx];
    783       1.97      yamt 	} else if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
    784       1.97      yamt 		pp->pr_phpool = &phpool[0];
    785       1.97      yamt 	}
    786       1.97      yamt #if defined(DIAGNOSTIC)
    787       1.97      yamt 	else {
    788       1.97      yamt 		pp->pr_phpool = NULL;
    789       1.97      yamt 	}
    790       1.97      yamt #endif
    791        1.3        pk 
    792        1.3        pk 	/*
    793        1.3        pk 	 * Use the slack between the chunks and the page header
    794        1.3        pk 	 * for "cache coloring".
    795        1.3        pk 	 */
    796        1.3        pk 	slack = off - pp->pr_itemsperpage * pp->pr_size;
    797        1.3        pk 	pp->pr_maxcolor = (slack / align) * align;
    798        1.3        pk 	pp->pr_curcolor = 0;
    799        1.3        pk 
    800        1.3        pk 	pp->pr_nget = 0;
    801        1.3        pk 	pp->pr_nfail = 0;
    802        1.3        pk 	pp->pr_nput = 0;
    803        1.3        pk 	pp->pr_npagealloc = 0;
    804        1.3        pk 	pp->pr_npagefree = 0;
    805        1.1        pk 	pp->pr_hiwat = 0;
    806        1.8   thorpej 	pp->pr_nidle = 0;
    807      1.134        ad 	pp->pr_refcnt = 0;
    808        1.3        pk 
    809  1.158.2.4      yamt 	pp->pr_log = NULL;
    810       1.25   thorpej 
    811       1.25   thorpej 	pp->pr_entered_file = NULL;
    812       1.25   thorpej 	pp->pr_entered_line = 0;
    813        1.3        pk 
    814      1.157        ad 	mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
    815      1.134        ad 	cv_init(&pp->pr_cv, wchan);
    816      1.134        ad 	pp->pr_ipl = ipl;
    817        1.1        pk 
    818        1.3        pk 	/*
    819       1.43   thorpej 	 * Initialize private page header pool and cache magazine pool if we
    820       1.43   thorpej 	 * haven't done so yet.
    821       1.23   thorpej 	 * XXX LOCKING.
    822        1.3        pk 	 */
    823       1.97      yamt 	if (phpool[0].pr_size == 0) {
    824       1.97      yamt 		int idx;
    825       1.97      yamt 		for (idx = 0; idx < PHPOOL_MAX; idx++) {
    826       1.97      yamt 			static char phpool_names[PHPOOL_MAX][6+1+6+1];
    827       1.97      yamt 			int nelem;
    828       1.97      yamt 			size_t sz;
    829       1.97      yamt 
    830       1.97      yamt 			nelem = PHPOOL_FREELIST_NELEM(idx);
    831       1.97      yamt 			snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
    832       1.97      yamt 			    "phpool-%d", nelem);
    833       1.97      yamt 			sz = sizeof(struct pool_item_header);
    834       1.97      yamt 			if (nelem) {
    835      1.135      yamt 				sz = offsetof(struct pool_item_header,
    836      1.135      yamt 				    ph_bitmap[howmany(nelem, BITMAP_SIZE)]);
    837       1.97      yamt 			}
    838       1.97      yamt 			pool_init(&phpool[idx], sz, 0, 0, 0,
    839      1.129        ad 			    phpool_names[idx], &pool_allocator_meta, IPL_VM);
    840       1.97      yamt 		}
    841       1.62     bjh21 #ifdef POOL_SUBPAGE
    842       1.62     bjh21 		pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
    843      1.129        ad 		    PR_RECURSIVE, "psppool", &pool_allocator_meta, IPL_VM);
    844       1.62     bjh21 #endif
    845      1.142        ad 
    846      1.142        ad 		size = sizeof(pcg_t) +
    847      1.142        ad 		    (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t);
    848      1.156        ad 		pool_init(&pcg_normal_pool, size, coherency_unit, 0, 0,
    849      1.142        ad 		    "pcgnormal", &pool_allocator_meta, IPL_VM);
    850      1.142        ad 
    851      1.142        ad 		size = sizeof(pcg_t) +
    852      1.142        ad 		    (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t);
    853      1.156        ad 		pool_init(&pcg_large_pool, size, coherency_unit, 0, 0,
    854      1.142        ad 		    "pcglarge", &pool_allocator_meta, IPL_VM);
    855        1.1        pk 	}
    856        1.1        pk 
    857      1.145        ad 	/* Insert into the list of all pools. */
    858  1.158.2.4      yamt 	if (!cold)
    859      1.134        ad 		mutex_enter(&pool_head_lock);
    860      1.145        ad 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
    861      1.145        ad 		if (strcmp(pp1->pr_wchan, pp->pr_wchan) > 0)
    862      1.145        ad 			break;
    863      1.145        ad 	}
    864      1.145        ad 	if (pp1 == NULL)
    865      1.145        ad 		TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
    866      1.145        ad 	else
    867      1.145        ad 		TAILQ_INSERT_BEFORE(pp1, pp, pr_poollist);
    868  1.158.2.4      yamt 	if (!cold)
    869      1.134        ad 		mutex_exit(&pool_head_lock);
    870      1.134        ad 
    871  1.158.2.2      yamt 	/* Insert this into the list of pools using this allocator. */
    872  1.158.2.4      yamt 	if (!cold)
    873      1.134        ad 		mutex_enter(&palloc->pa_lock);
    874      1.145        ad 	TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
    875  1.158.2.4      yamt 	if (!cold)
    876      1.134        ad 		mutex_exit(&palloc->pa_lock);
    877       1.66   thorpej 
    878      1.117      yamt 	pool_reclaim_register(pp);
    879        1.1        pk }
    880        1.1        pk 
    881        1.1        pk /*
    882        1.1        pk  * De-commision a pool resource.
    883        1.1        pk  */
    884        1.1        pk void
    885       1.42   thorpej pool_destroy(struct pool *pp)
    886        1.1        pk {
    887      1.101   thorpej 	struct pool_pagelist pq;
    888        1.3        pk 	struct pool_item_header *ph;
    889       1.43   thorpej 
    890      1.101   thorpej 	/* Remove from global pool list */
    891      1.134        ad 	mutex_enter(&pool_head_lock);
    892      1.134        ad 	while (pp->pr_refcnt != 0)
    893      1.134        ad 		cv_wait(&pool_busy, &pool_head_lock);
    894      1.145        ad 	TAILQ_REMOVE(&pool_head, pp, pr_poollist);
    895      1.101   thorpej 	if (drainpp == pp)
    896      1.101   thorpej 		drainpp = NULL;
    897      1.134        ad 	mutex_exit(&pool_head_lock);
    898      1.101   thorpej 
    899      1.101   thorpej 	/* Remove this pool from its allocator's list of pools. */
    900      1.117      yamt 	pool_reclaim_unregister(pp);
    901      1.134        ad 	mutex_enter(&pp->pr_alloc->pa_lock);
    902       1.66   thorpej 	TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
    903      1.134        ad 	mutex_exit(&pp->pr_alloc->pa_lock);
    904       1.66   thorpej 
    905  1.158.2.4      yamt 	mutex_enter(&pool_allocator_lock);
    906  1.158.2.4      yamt 	if (--pp->pr_alloc->pa_refcnt == 0)
    907  1.158.2.4      yamt 		mutex_destroy(&pp->pr_alloc->pa_lock);
    908  1.158.2.4      yamt 	mutex_exit(&pool_allocator_lock);
    909  1.158.2.4      yamt 
    910      1.134        ad 	mutex_enter(&pp->pr_lock);
    911      1.101   thorpej 
    912      1.134        ad 	KASSERT(pp->pr_cache == NULL);
    913        1.3        pk 
    914        1.3        pk #ifdef DIAGNOSTIC
    915       1.20   thorpej 	if (pp->pr_nout != 0) {
    916       1.25   thorpej 		pr_printlog(pp, NULL, printf);
    917       1.80    provos 		panic("pool_destroy: pool busy: still out: %u",
    918       1.20   thorpej 		    pp->pr_nout);
    919        1.3        pk 	}
    920        1.3        pk #endif
    921        1.1        pk 
    922      1.101   thorpej 	KASSERT(LIST_EMPTY(&pp->pr_fullpages));
    923      1.101   thorpej 	KASSERT(LIST_EMPTY(&pp->pr_partpages));
    924      1.101   thorpej 
    925        1.3        pk 	/* Remove all pages */
    926      1.101   thorpej 	LIST_INIT(&pq);
    927       1.88       chs 	while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
    928      1.101   thorpej 		pr_rmpage(pp, ph, &pq);
    929      1.101   thorpej 
    930      1.134        ad 	mutex_exit(&pp->pr_lock);
    931        1.3        pk 
    932      1.101   thorpej 	pr_pagelist_free(pp, &pq);
    933        1.3        pk 
    934       1.59   thorpej #ifdef POOL_DIAGNOSTIC
    935  1.158.2.4      yamt 	if (pp->pr_log != NULL) {
    936        1.3        pk 		free(pp->pr_log, M_TEMP);
    937  1.158.2.4      yamt 		pp->pr_log = NULL;
    938  1.158.2.4      yamt 	}
    939       1.59   thorpej #endif
    940      1.134        ad 
    941      1.134        ad 	cv_destroy(&pp->pr_cv);
    942      1.134        ad 	mutex_destroy(&pp->pr_lock);
    943        1.1        pk }
    944        1.1        pk 
    945       1.68   thorpej void
    946       1.68   thorpej pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
    947       1.68   thorpej {
    948       1.68   thorpej 
    949       1.68   thorpej 	/* XXX no locking -- must be used just after pool_init() */
    950       1.68   thorpej #ifdef DIAGNOSTIC
    951       1.68   thorpej 	if (pp->pr_drain_hook != NULL)
    952       1.68   thorpej 		panic("pool_set_drain_hook(%s): already set", pp->pr_wchan);
    953       1.68   thorpej #endif
    954       1.68   thorpej 	pp->pr_drain_hook = fn;
    955       1.68   thorpej 	pp->pr_drain_hook_arg = arg;
    956       1.68   thorpej }
    957       1.68   thorpej 
    958       1.88       chs static struct pool_item_header *
    959      1.128  christos pool_alloc_item_header(struct pool *pp, void *storage, int flags)
    960       1.55   thorpej {
    961       1.55   thorpej 	struct pool_item_header *ph;
    962       1.55   thorpej 
    963       1.55   thorpej 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
    964      1.128  christos 		ph = (struct pool_item_header *) ((char *)storage + pp->pr_phoffset);
    965      1.134        ad 	else
    966       1.97      yamt 		ph = pool_get(pp->pr_phpool, flags);
    967       1.55   thorpej 
    968       1.55   thorpej 	return (ph);
    969       1.55   thorpej }
    970        1.1        pk 
    971        1.1        pk /*
    972      1.134        ad  * Grab an item from the pool.
    973        1.1        pk  */
    974        1.3        pk void *
    975       1.59   thorpej #ifdef POOL_DIAGNOSTIC
    976       1.42   thorpej _pool_get(struct pool *pp, int flags, const char *file, long line)
    977       1.56  sommerfe #else
    978       1.56  sommerfe pool_get(struct pool *pp, int flags)
    979       1.56  sommerfe #endif
    980        1.1        pk {
    981        1.1        pk 	struct pool_item *pi;
    982        1.3        pk 	struct pool_item_header *ph;
    983       1.55   thorpej 	void *v;
    984        1.1        pk 
    985        1.2        pk #ifdef DIAGNOSTIC
    986       1.95    atatat 	if (__predict_false(pp->pr_itemsperpage == 0))
    987       1.95    atatat 		panic("pool_get: pool %p: pr_itemsperpage is zero, "
    988       1.95    atatat 		    "pool not initialized?", pp);
    989       1.84   thorpej 	if (__predict_false(curlwp == NULL && doing_shutdown == 0 &&
    990       1.37  sommerfe 			    (flags & PR_WAITOK) != 0))
    991       1.77      matt 		panic("pool_get: %s: must have NOWAIT", pp->pr_wchan);
    992       1.58   thorpej 
    993      1.102       chs #endif /* DIAGNOSTIC */
    994       1.58   thorpej #ifdef LOCKDEBUG
    995      1.155        ad 	if (flags & PR_WAITOK) {
    996      1.154      yamt 		ASSERT_SLEEPABLE();
    997      1.155        ad 	}
    998       1.56  sommerfe #endif
    999        1.1        pk 
   1000      1.134        ad 	mutex_enter(&pp->pr_lock);
   1001       1.25   thorpej 	pr_enter(pp, file, line);
   1002       1.20   thorpej 
   1003       1.20   thorpej  startover:
   1004       1.20   thorpej 	/*
   1005       1.20   thorpej 	 * Check to see if we've reached the hard limit.  If we have,
   1006       1.20   thorpej 	 * and we can wait, then wait until an item has been returned to
   1007       1.20   thorpej 	 * the pool.
   1008       1.20   thorpej 	 */
   1009       1.20   thorpej #ifdef DIAGNOSTIC
   1010       1.34   thorpej 	if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
   1011       1.25   thorpej 		pr_leave(pp);
   1012      1.134        ad 		mutex_exit(&pp->pr_lock);
   1013       1.20   thorpej 		panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
   1014       1.20   thorpej 	}
   1015       1.20   thorpej #endif
   1016       1.34   thorpej 	if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
   1017       1.68   thorpej 		if (pp->pr_drain_hook != NULL) {
   1018       1.68   thorpej 			/*
   1019       1.68   thorpej 			 * Since the drain hook is going to free things
   1020       1.68   thorpej 			 * back to the pool, unlock, call the hook, re-lock,
   1021       1.68   thorpej 			 * and check the hardlimit condition again.
   1022       1.68   thorpej 			 */
   1023       1.68   thorpej 			pr_leave(pp);
   1024      1.134        ad 			mutex_exit(&pp->pr_lock);
   1025       1.68   thorpej 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
   1026      1.134        ad 			mutex_enter(&pp->pr_lock);
   1027       1.68   thorpej 			pr_enter(pp, file, line);
   1028       1.68   thorpej 			if (pp->pr_nout < pp->pr_hardlimit)
   1029       1.68   thorpej 				goto startover;
   1030       1.68   thorpej 		}
   1031       1.68   thorpej 
   1032       1.29  sommerfe 		if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
   1033       1.20   thorpej 			/*
   1034       1.20   thorpej 			 * XXX: A warning isn't logged in this case.  Should
   1035       1.20   thorpej 			 * it be?
   1036       1.20   thorpej 			 */
   1037       1.20   thorpej 			pp->pr_flags |= PR_WANTED;
   1038       1.25   thorpej 			pr_leave(pp);
   1039      1.134        ad 			cv_wait(&pp->pr_cv, &pp->pr_lock);
   1040       1.25   thorpej 			pr_enter(pp, file, line);
   1041       1.20   thorpej 			goto startover;
   1042       1.20   thorpej 		}
   1043       1.31   thorpej 
   1044       1.31   thorpej 		/*
   1045       1.31   thorpej 		 * Log a message that the hard limit has been hit.
   1046       1.31   thorpej 		 */
   1047       1.31   thorpej 		if (pp->pr_hardlimit_warning != NULL &&
   1048       1.31   thorpej 		    ratecheck(&pp->pr_hardlimit_warning_last,
   1049       1.31   thorpej 			      &pp->pr_hardlimit_ratecap))
   1050       1.31   thorpej 			log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
   1051       1.21   thorpej 
   1052       1.21   thorpej 		pp->pr_nfail++;
   1053       1.21   thorpej 
   1054       1.25   thorpej 		pr_leave(pp);
   1055      1.134        ad 		mutex_exit(&pp->pr_lock);
   1056       1.20   thorpej 		return (NULL);
   1057       1.20   thorpej 	}
   1058       1.20   thorpej 
   1059        1.3        pk 	/*
   1060        1.3        pk 	 * The convention we use is that if `curpage' is not NULL, then
   1061        1.3        pk 	 * it points at a non-empty bucket. In particular, `curpage'
   1062        1.3        pk 	 * never points at a page header which has PR_PHINPAGE set and
   1063        1.3        pk 	 * has no items in its bucket.
   1064        1.3        pk 	 */
   1065       1.20   thorpej 	if ((ph = pp->pr_curpage) == NULL) {
   1066      1.113      yamt 		int error;
   1067      1.113      yamt 
   1068       1.20   thorpej #ifdef DIAGNOSTIC
   1069       1.20   thorpej 		if (pp->pr_nitems != 0) {
   1070      1.134        ad 			mutex_exit(&pp->pr_lock);
   1071       1.20   thorpej 			printf("pool_get: %s: curpage NULL, nitems %u\n",
   1072       1.20   thorpej 			    pp->pr_wchan, pp->pr_nitems);
   1073       1.80    provos 			panic("pool_get: nitems inconsistent");
   1074       1.20   thorpej 		}
   1075       1.20   thorpej #endif
   1076       1.20   thorpej 
   1077       1.21   thorpej 		/*
   1078       1.21   thorpej 		 * Call the back-end page allocator for more memory.
   1079       1.21   thorpej 		 * Release the pool lock, as the back-end page allocator
   1080       1.21   thorpej 		 * may block.
   1081       1.21   thorpej 		 */
   1082       1.25   thorpej 		pr_leave(pp);
   1083      1.113      yamt 		error = pool_grow(pp, flags);
   1084      1.113      yamt 		pr_enter(pp, file, line);
   1085      1.113      yamt 		if (error != 0) {
   1086       1.21   thorpej 			/*
   1087       1.55   thorpej 			 * We were unable to allocate a page or item
   1088       1.55   thorpej 			 * header, but we released the lock during
   1089       1.55   thorpej 			 * allocation, so perhaps items were freed
   1090       1.55   thorpej 			 * back to the pool.  Check for this case.
   1091       1.21   thorpej 			 */
   1092       1.21   thorpej 			if (pp->pr_curpage != NULL)
   1093       1.21   thorpej 				goto startover;
   1094       1.15        pk 
   1095      1.117      yamt 			pp->pr_nfail++;
   1096       1.25   thorpej 			pr_leave(pp);
   1097      1.134        ad 			mutex_exit(&pp->pr_lock);
   1098      1.117      yamt 			return (NULL);
   1099        1.1        pk 		}
   1100        1.3        pk 
   1101       1.20   thorpej 		/* Start the allocation process over. */
   1102       1.20   thorpej 		goto startover;
   1103        1.3        pk 	}
   1104       1.97      yamt 	if (pp->pr_roflags & PR_NOTOUCH) {
   1105       1.97      yamt #ifdef DIAGNOSTIC
   1106       1.97      yamt 		if (__predict_false(ph->ph_nmissing == pp->pr_itemsperpage)) {
   1107       1.97      yamt 			pr_leave(pp);
   1108      1.134        ad 			mutex_exit(&pp->pr_lock);
   1109       1.97      yamt 			panic("pool_get: %s: page empty", pp->pr_wchan);
   1110       1.97      yamt 		}
   1111       1.97      yamt #endif
   1112       1.97      yamt 		v = pr_item_notouch_get(pp, ph);
   1113       1.97      yamt #ifdef POOL_DIAGNOSTIC
   1114       1.97      yamt 		pr_log(pp, v, PRLOG_GET, file, line);
   1115       1.97      yamt #endif
   1116       1.97      yamt 	} else {
   1117      1.102       chs 		v = pi = LIST_FIRST(&ph->ph_itemlist);
   1118       1.97      yamt 		if (__predict_false(v == NULL)) {
   1119       1.97      yamt 			pr_leave(pp);
   1120      1.134        ad 			mutex_exit(&pp->pr_lock);
   1121       1.97      yamt 			panic("pool_get: %s: page empty", pp->pr_wchan);
   1122       1.97      yamt 		}
   1123       1.20   thorpej #ifdef DIAGNOSTIC
   1124       1.97      yamt 		if (__predict_false(pp->pr_nitems == 0)) {
   1125       1.97      yamt 			pr_leave(pp);
   1126      1.134        ad 			mutex_exit(&pp->pr_lock);
   1127       1.97      yamt 			printf("pool_get: %s: items on itemlist, nitems %u\n",
   1128       1.97      yamt 			    pp->pr_wchan, pp->pr_nitems);
   1129       1.97      yamt 			panic("pool_get: nitems inconsistent");
   1130       1.97      yamt 		}
   1131       1.65     enami #endif
   1132       1.56  sommerfe 
   1133       1.65     enami #ifdef POOL_DIAGNOSTIC
   1134       1.97      yamt 		pr_log(pp, v, PRLOG_GET, file, line);
   1135       1.65     enami #endif
   1136        1.3        pk 
   1137       1.65     enami #ifdef DIAGNOSTIC
   1138       1.97      yamt 		if (__predict_false(pi->pi_magic != PI_MAGIC)) {
   1139       1.97      yamt 			pr_printlog(pp, pi, printf);
   1140       1.97      yamt 			panic("pool_get(%s): free list modified: "
   1141       1.97      yamt 			    "magic=%x; page %p; item addr %p\n",
   1142       1.97      yamt 			    pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
   1143       1.97      yamt 		}
   1144        1.3        pk #endif
   1145        1.3        pk 
   1146       1.97      yamt 		/*
   1147       1.97      yamt 		 * Remove from item list.
   1148       1.97      yamt 		 */
   1149      1.102       chs 		LIST_REMOVE(pi, pi_list);
   1150       1.97      yamt 	}
   1151       1.20   thorpej 	pp->pr_nitems--;
   1152       1.20   thorpej 	pp->pr_nout++;
   1153        1.6   thorpej 	if (ph->ph_nmissing == 0) {
   1154        1.6   thorpej #ifdef DIAGNOSTIC
   1155       1.34   thorpej 		if (__predict_false(pp->pr_nidle == 0))
   1156        1.6   thorpej 			panic("pool_get: nidle inconsistent");
   1157        1.6   thorpej #endif
   1158        1.6   thorpej 		pp->pr_nidle--;
   1159       1.88       chs 
   1160       1.88       chs 		/*
   1161       1.88       chs 		 * This page was previously empty.  Move it to the list of
   1162       1.88       chs 		 * partially-full pages.  This page is already curpage.
   1163       1.88       chs 		 */
   1164       1.88       chs 		LIST_REMOVE(ph, ph_pagelist);
   1165       1.88       chs 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
   1166        1.6   thorpej 	}
   1167        1.3        pk 	ph->ph_nmissing++;
   1168       1.97      yamt 	if (ph->ph_nmissing == pp->pr_itemsperpage) {
   1169       1.21   thorpej #ifdef DIAGNOSTIC
   1170       1.97      yamt 		if (__predict_false((pp->pr_roflags & PR_NOTOUCH) == 0 &&
   1171      1.102       chs 		    !LIST_EMPTY(&ph->ph_itemlist))) {
   1172       1.25   thorpej 			pr_leave(pp);
   1173      1.134        ad 			mutex_exit(&pp->pr_lock);
   1174       1.21   thorpej 			panic("pool_get: %s: nmissing inconsistent",
   1175       1.21   thorpej 			    pp->pr_wchan);
   1176       1.21   thorpej 		}
   1177       1.21   thorpej #endif
   1178        1.3        pk 		/*
   1179       1.88       chs 		 * This page is now full.  Move it to the full list
   1180       1.88       chs 		 * and select a new current page.
   1181        1.3        pk 		 */
   1182       1.88       chs 		LIST_REMOVE(ph, ph_pagelist);
   1183       1.88       chs 		LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
   1184       1.88       chs 		pool_update_curpage(pp);
   1185        1.1        pk 	}
   1186        1.3        pk 
   1187        1.3        pk 	pp->pr_nget++;
   1188      1.111  christos 	pr_leave(pp);
   1189       1.20   thorpej 
   1190       1.20   thorpej 	/*
   1191       1.20   thorpej 	 * If we have a low water mark and we are now below that low
   1192       1.20   thorpej 	 * water mark, add more items to the pool.
   1193       1.20   thorpej 	 */
   1194       1.53   thorpej 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
   1195       1.20   thorpej 		/*
   1196       1.20   thorpej 		 * XXX: Should we log a warning?  Should we set up a timeout
   1197       1.20   thorpej 		 * to try again in a second or so?  The latter could break
   1198       1.20   thorpej 		 * a caller's assumptions about interrupt protection, etc.
   1199       1.20   thorpej 		 */
   1200       1.20   thorpej 	}
   1201       1.20   thorpej 
   1202      1.134        ad 	mutex_exit(&pp->pr_lock);
   1203      1.125        ad 	KASSERT((((vaddr_t)v + pp->pr_itemoffset) & (pp->pr_align - 1)) == 0);
   1204      1.125        ad 	FREECHECK_OUT(&pp->pr_freecheck, v);
   1205        1.1        pk 	return (v);
   1206        1.1        pk }
   1207        1.1        pk 
   1208        1.1        pk /*
   1209       1.43   thorpej  * Internal version of pool_put().  Pool is already locked/entered.
   1210        1.1        pk  */
   1211       1.43   thorpej static void
   1212      1.101   thorpej pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
   1213        1.1        pk {
   1214        1.1        pk 	struct pool_item *pi = v;
   1215        1.3        pk 	struct pool_item_header *ph;
   1216        1.3        pk 
   1217      1.134        ad 	KASSERT(mutex_owned(&pp->pr_lock));
   1218      1.125        ad 	FREECHECK_IN(&pp->pr_freecheck, v);
   1219      1.134        ad 	LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
   1220       1.61       chs 
   1221       1.30   thorpej #ifdef DIAGNOSTIC
   1222       1.34   thorpej 	if (__predict_false(pp->pr_nout == 0)) {
   1223       1.30   thorpej 		printf("pool %s: putting with none out\n",
   1224       1.30   thorpej 		    pp->pr_wchan);
   1225       1.30   thorpej 		panic("pool_put");
   1226       1.30   thorpej 	}
   1227       1.30   thorpej #endif
   1228        1.3        pk 
   1229      1.121      yamt 	if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
   1230       1.25   thorpej 		pr_printlog(pp, NULL, printf);
   1231        1.3        pk 		panic("pool_put: %s: page header missing", pp->pr_wchan);
   1232        1.3        pk 	}
   1233       1.28   thorpej 
   1234        1.3        pk 	/*
   1235        1.3        pk 	 * Return to item list.
   1236        1.3        pk 	 */
   1237       1.97      yamt 	if (pp->pr_roflags & PR_NOTOUCH) {
   1238       1.97      yamt 		pr_item_notouch_put(pp, ph, v);
   1239       1.97      yamt 	} else {
   1240        1.2        pk #ifdef DIAGNOSTIC
   1241       1.97      yamt 		pi->pi_magic = PI_MAGIC;
   1242        1.3        pk #endif
   1243       1.32       chs #ifdef DEBUG
   1244       1.97      yamt 		{
   1245       1.97      yamt 			int i, *ip = v;
   1246       1.32       chs 
   1247       1.97      yamt 			for (i = 0; i < pp->pr_size / sizeof(int); i++) {
   1248       1.97      yamt 				*ip++ = PI_MAGIC;
   1249       1.97      yamt 			}
   1250       1.32       chs 		}
   1251       1.32       chs #endif
   1252       1.32       chs 
   1253      1.102       chs 		LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
   1254       1.97      yamt 	}
   1255       1.79   thorpej 	KDASSERT(ph->ph_nmissing != 0);
   1256        1.3        pk 	ph->ph_nmissing--;
   1257        1.3        pk 	pp->pr_nput++;
   1258       1.20   thorpej 	pp->pr_nitems++;
   1259       1.20   thorpej 	pp->pr_nout--;
   1260        1.3        pk 
   1261        1.3        pk 	/* Cancel "pool empty" condition if it exists */
   1262        1.3        pk 	if (pp->pr_curpage == NULL)
   1263        1.3        pk 		pp->pr_curpage = ph;
   1264        1.3        pk 
   1265        1.3        pk 	if (pp->pr_flags & PR_WANTED) {
   1266        1.3        pk 		pp->pr_flags &= ~PR_WANTED;
   1267      1.134        ad 		cv_broadcast(&pp->pr_cv);
   1268        1.3        pk 	}
   1269        1.3        pk 
   1270        1.3        pk 	/*
   1271       1.88       chs 	 * If this page is now empty, do one of two things:
   1272       1.21   thorpej 	 *
   1273       1.88       chs 	 *	(1) If we have more pages than the page high water mark,
   1274       1.96   thorpej 	 *	    free the page back to the system.  ONLY CONSIDER
   1275       1.90   thorpej 	 *	    FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
   1276       1.90   thorpej 	 *	    CLAIM.
   1277       1.21   thorpej 	 *
   1278       1.88       chs 	 *	(2) Otherwise, move the page to the empty page list.
   1279       1.88       chs 	 *
   1280       1.88       chs 	 * Either way, select a new current page (so we use a partially-full
   1281       1.88       chs 	 * page if one is available).
   1282        1.3        pk 	 */
   1283        1.3        pk 	if (ph->ph_nmissing == 0) {
   1284        1.6   thorpej 		pp->pr_nidle++;
   1285       1.90   thorpej 		if (pp->pr_npages > pp->pr_minpages &&
   1286      1.152      yamt 		    pp->pr_npages > pp->pr_maxpages) {
   1287      1.101   thorpej 			pr_rmpage(pp, ph, pq);
   1288        1.3        pk 		} else {
   1289       1.88       chs 			LIST_REMOVE(ph, ph_pagelist);
   1290       1.88       chs 			LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
   1291        1.3        pk 
   1292       1.21   thorpej 			/*
   1293       1.21   thorpej 			 * Update the timestamp on the page.  A page must
   1294       1.21   thorpej 			 * be idle for some period of time before it can
   1295       1.21   thorpej 			 * be reclaimed by the pagedaemon.  This minimizes
   1296       1.21   thorpej 			 * ping-pong'ing for memory.
   1297      1.151      yamt 			 *
   1298      1.151      yamt 			 * note for 64-bit time_t: truncating to 32-bit is not
   1299      1.151      yamt 			 * a problem for our usage.
   1300       1.21   thorpej 			 */
   1301      1.151      yamt 			ph->ph_time = time_uptime;
   1302        1.1        pk 		}
   1303       1.88       chs 		pool_update_curpage(pp);
   1304        1.1        pk 	}
   1305       1.88       chs 
   1306       1.21   thorpej 	/*
   1307       1.88       chs 	 * If the page was previously completely full, move it to the
   1308       1.88       chs 	 * partially-full list and make it the current page.  The next
   1309       1.88       chs 	 * allocation will get the item from this page, instead of
   1310       1.88       chs 	 * further fragmenting the pool.
   1311       1.21   thorpej 	 */
   1312       1.21   thorpej 	else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
   1313       1.88       chs 		LIST_REMOVE(ph, ph_pagelist);
   1314       1.88       chs 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
   1315       1.21   thorpej 		pp->pr_curpage = ph;
   1316       1.21   thorpej 	}
   1317       1.43   thorpej }
   1318       1.43   thorpej 
   1319       1.43   thorpej /*
   1320      1.134        ad  * Return resource to the pool.
   1321       1.43   thorpej  */
   1322       1.59   thorpej #ifdef POOL_DIAGNOSTIC
   1323       1.43   thorpej void
   1324       1.43   thorpej _pool_put(struct pool *pp, void *v, const char *file, long line)
   1325       1.43   thorpej {
   1326      1.101   thorpej 	struct pool_pagelist pq;
   1327      1.101   thorpej 
   1328      1.101   thorpej 	LIST_INIT(&pq);
   1329       1.43   thorpej 
   1330      1.134        ad 	mutex_enter(&pp->pr_lock);
   1331       1.43   thorpej 	pr_enter(pp, file, line);
   1332       1.43   thorpej 
   1333       1.56  sommerfe 	pr_log(pp, v, PRLOG_PUT, file, line);
   1334       1.56  sommerfe 
   1335      1.101   thorpej 	pool_do_put(pp, v, &pq);
   1336       1.21   thorpej 
   1337       1.25   thorpej 	pr_leave(pp);
   1338      1.134        ad 	mutex_exit(&pp->pr_lock);
   1339      1.101   thorpej 
   1340      1.102       chs 	pr_pagelist_free(pp, &pq);
   1341        1.1        pk }
   1342       1.57  sommerfe #undef pool_put
   1343       1.59   thorpej #endif /* POOL_DIAGNOSTIC */
   1344        1.1        pk 
   1345       1.56  sommerfe void
   1346       1.56  sommerfe pool_put(struct pool *pp, void *v)
   1347       1.56  sommerfe {
   1348      1.101   thorpej 	struct pool_pagelist pq;
   1349      1.101   thorpej 
   1350      1.101   thorpej 	LIST_INIT(&pq);
   1351       1.56  sommerfe 
   1352      1.134        ad 	mutex_enter(&pp->pr_lock);
   1353      1.101   thorpej 	pool_do_put(pp, v, &pq);
   1354      1.134        ad 	mutex_exit(&pp->pr_lock);
   1355       1.56  sommerfe 
   1356      1.102       chs 	pr_pagelist_free(pp, &pq);
   1357       1.56  sommerfe }
   1358       1.57  sommerfe 
   1359       1.59   thorpej #ifdef POOL_DIAGNOSTIC
   1360       1.57  sommerfe #define		pool_put(h, v)	_pool_put((h), (v), __FILE__, __LINE__)
   1361       1.56  sommerfe #endif
   1362       1.74   thorpej 
   1363       1.74   thorpej /*
   1364      1.113      yamt  * pool_grow: grow a pool by a page.
   1365      1.113      yamt  *
   1366      1.113      yamt  * => called with pool locked.
   1367      1.113      yamt  * => unlock and relock the pool.
   1368      1.113      yamt  * => return with pool locked.
   1369      1.113      yamt  */
   1370      1.113      yamt 
   1371      1.113      yamt static int
   1372      1.113      yamt pool_grow(struct pool *pp, int flags)
   1373      1.113      yamt {
   1374      1.113      yamt 	struct pool_item_header *ph = NULL;
   1375      1.113      yamt 	char *cp;
   1376      1.113      yamt 
   1377      1.134        ad 	mutex_exit(&pp->pr_lock);
   1378      1.113      yamt 	cp = pool_allocator_alloc(pp, flags);
   1379      1.113      yamt 	if (__predict_true(cp != NULL)) {
   1380      1.113      yamt 		ph = pool_alloc_item_header(pp, cp, flags);
   1381      1.113      yamt 	}
   1382      1.113      yamt 	if (__predict_false(cp == NULL || ph == NULL)) {
   1383      1.113      yamt 		if (cp != NULL) {
   1384      1.113      yamt 			pool_allocator_free(pp, cp);
   1385      1.113      yamt 		}
   1386      1.134        ad 		mutex_enter(&pp->pr_lock);
   1387      1.113      yamt 		return ENOMEM;
   1388      1.113      yamt 	}
   1389      1.113      yamt 
   1390      1.134        ad 	mutex_enter(&pp->pr_lock);
   1391      1.113      yamt 	pool_prime_page(pp, cp, ph);
   1392      1.113      yamt 	pp->pr_npagealloc++;
   1393      1.113      yamt 	return 0;
   1394      1.113      yamt }
   1395      1.113      yamt 
   1396      1.113      yamt /*
   1397       1.74   thorpej  * Add N items to the pool.
   1398       1.74   thorpej  */
   1399       1.74   thorpej int
   1400       1.74   thorpej pool_prime(struct pool *pp, int n)
   1401       1.74   thorpej {
   1402       1.75    simonb 	int newpages;
   1403      1.113      yamt 	int error = 0;
   1404       1.74   thorpej 
   1405      1.134        ad 	mutex_enter(&pp->pr_lock);
   1406       1.74   thorpej 
   1407       1.74   thorpej 	newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1408       1.74   thorpej 
   1409       1.74   thorpej 	while (newpages-- > 0) {
   1410      1.113      yamt 		error = pool_grow(pp, PR_NOWAIT);
   1411      1.113      yamt 		if (error) {
   1412       1.74   thorpej 			break;
   1413       1.74   thorpej 		}
   1414       1.74   thorpej 		pp->pr_minpages++;
   1415       1.74   thorpej 	}
   1416       1.74   thorpej 
   1417       1.74   thorpej 	if (pp->pr_minpages >= pp->pr_maxpages)
   1418       1.74   thorpej 		pp->pr_maxpages = pp->pr_minpages + 1;	/* XXX */
   1419       1.74   thorpej 
   1420      1.134        ad 	mutex_exit(&pp->pr_lock);
   1421      1.113      yamt 	return error;
   1422       1.74   thorpej }
   1423       1.55   thorpej 
   1424       1.55   thorpej /*
   1425        1.3        pk  * Add a page worth of items to the pool.
   1426       1.21   thorpej  *
   1427       1.21   thorpej  * Note, we must be called with the pool descriptor LOCKED.
   1428        1.3        pk  */
   1429       1.55   thorpej static void
   1430      1.128  christos pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
   1431        1.3        pk {
   1432        1.3        pk 	struct pool_item *pi;
   1433      1.128  christos 	void *cp = storage;
   1434      1.125        ad 	const unsigned int align = pp->pr_align;
   1435      1.125        ad 	const unsigned int ioff = pp->pr_itemoffset;
   1436       1.55   thorpej 	int n;
   1437       1.36        pk 
   1438      1.134        ad 	KASSERT(mutex_owned(&pp->pr_lock));
   1439       1.91      yamt 
   1440       1.66   thorpej #ifdef DIAGNOSTIC
   1441      1.121      yamt 	if ((pp->pr_roflags & PR_NOALIGN) == 0 &&
   1442      1.150     skrll 	    ((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) != 0)
   1443       1.36        pk 		panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
   1444       1.66   thorpej #endif
   1445        1.3        pk 
   1446        1.3        pk 	/*
   1447        1.3        pk 	 * Insert page header.
   1448        1.3        pk 	 */
   1449       1.88       chs 	LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
   1450      1.102       chs 	LIST_INIT(&ph->ph_itemlist);
   1451        1.3        pk 	ph->ph_page = storage;
   1452        1.3        pk 	ph->ph_nmissing = 0;
   1453      1.151      yamt 	ph->ph_time = time_uptime;
   1454       1.88       chs 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
   1455       1.88       chs 		SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
   1456        1.3        pk 
   1457        1.6   thorpej 	pp->pr_nidle++;
   1458        1.6   thorpej 
   1459        1.3        pk 	/*
   1460        1.3        pk 	 * Color this page.
   1461        1.3        pk 	 */
   1462      1.141      yamt 	ph->ph_off = pp->pr_curcolor;
   1463      1.141      yamt 	cp = (char *)cp + ph->ph_off;
   1464        1.3        pk 	if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
   1465        1.3        pk 		pp->pr_curcolor = 0;
   1466        1.3        pk 
   1467        1.3        pk 	/*
   1468        1.3        pk 	 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
   1469        1.3        pk 	 */
   1470        1.3        pk 	if (ioff != 0)
   1471      1.128  christos 		cp = (char *)cp + align - ioff;
   1472        1.3        pk 
   1473      1.125        ad 	KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
   1474      1.125        ad 
   1475        1.3        pk 	/*
   1476        1.3        pk 	 * Insert remaining chunks on the bucket list.
   1477        1.3        pk 	 */
   1478        1.3        pk 	n = pp->pr_itemsperpage;
   1479       1.20   thorpej 	pp->pr_nitems += n;
   1480        1.3        pk 
   1481       1.97      yamt 	if (pp->pr_roflags & PR_NOTOUCH) {
   1482      1.141      yamt 		pr_item_notouch_init(pp, ph);
   1483       1.97      yamt 	} else {
   1484       1.97      yamt 		while (n--) {
   1485       1.97      yamt 			pi = (struct pool_item *)cp;
   1486       1.78   thorpej 
   1487       1.97      yamt 			KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0);
   1488        1.3        pk 
   1489       1.97      yamt 			/* Insert on page list */
   1490      1.102       chs 			LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
   1491        1.3        pk #ifdef DIAGNOSTIC
   1492       1.97      yamt 			pi->pi_magic = PI_MAGIC;
   1493        1.3        pk #endif
   1494      1.128  christos 			cp = (char *)cp + pp->pr_size;
   1495      1.125        ad 
   1496      1.125        ad 			KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
   1497       1.97      yamt 		}
   1498        1.3        pk 	}
   1499        1.3        pk 
   1500        1.3        pk 	/*
   1501        1.3        pk 	 * If the pool was depleted, point at the new page.
   1502        1.3        pk 	 */
   1503        1.3        pk 	if (pp->pr_curpage == NULL)
   1504        1.3        pk 		pp->pr_curpage = ph;
   1505        1.3        pk 
   1506        1.3        pk 	if (++pp->pr_npages > pp->pr_hiwat)
   1507        1.3        pk 		pp->pr_hiwat = pp->pr_npages;
   1508        1.3        pk }
   1509        1.3        pk 
   1510       1.20   thorpej /*
   1511       1.52   thorpej  * Used by pool_get() when nitems drops below the low water mark.  This
   1512       1.88       chs  * is used to catch up pr_nitems with the low water mark.
   1513       1.20   thorpej  *
   1514       1.21   thorpej  * Note 1, we never wait for memory here, we let the caller decide what to do.
   1515       1.20   thorpej  *
   1516       1.73   thorpej  * Note 2, we must be called with the pool already locked, and we return
   1517       1.20   thorpej  * with it locked.
   1518       1.20   thorpej  */
   1519       1.20   thorpej static int
   1520       1.42   thorpej pool_catchup(struct pool *pp)
   1521       1.20   thorpej {
   1522       1.20   thorpej 	int error = 0;
   1523       1.20   thorpej 
   1524       1.54   thorpej 	while (POOL_NEEDS_CATCHUP(pp)) {
   1525      1.113      yamt 		error = pool_grow(pp, PR_NOWAIT);
   1526      1.113      yamt 		if (error) {
   1527       1.20   thorpej 			break;
   1528       1.20   thorpej 		}
   1529       1.20   thorpej 	}
   1530      1.113      yamt 	return error;
   1531       1.20   thorpej }
   1532       1.20   thorpej 
   1533       1.88       chs static void
   1534       1.88       chs pool_update_curpage(struct pool *pp)
   1535       1.88       chs {
   1536       1.88       chs 
   1537       1.88       chs 	pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
   1538       1.88       chs 	if (pp->pr_curpage == NULL) {
   1539       1.88       chs 		pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
   1540       1.88       chs 	}
   1541  1.158.2.2      yamt 	KASSERT((pp->pr_curpage == NULL && pp->pr_nitems == 0) ||
   1542  1.158.2.2      yamt 	    (pp->pr_curpage != NULL && pp->pr_nitems > 0));
   1543       1.88       chs }
   1544       1.88       chs 
   1545        1.3        pk void
   1546       1.42   thorpej pool_setlowat(struct pool *pp, int n)
   1547        1.3        pk {
   1548       1.15        pk 
   1549      1.134        ad 	mutex_enter(&pp->pr_lock);
   1550       1.21   thorpej 
   1551        1.3        pk 	pp->pr_minitems = n;
   1552       1.15        pk 	pp->pr_minpages = (n == 0)
   1553       1.15        pk 		? 0
   1554       1.18   thorpej 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1555       1.20   thorpej 
   1556       1.20   thorpej 	/* Make sure we're caught up with the newly-set low water mark. */
   1557       1.75    simonb 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
   1558       1.20   thorpej 		/*
   1559       1.20   thorpej 		 * XXX: Should we log a warning?  Should we set up a timeout
   1560       1.20   thorpej 		 * to try again in a second or so?  The latter could break
   1561       1.20   thorpej 		 * a caller's assumptions about interrupt protection, etc.
   1562       1.20   thorpej 		 */
   1563       1.20   thorpej 	}
   1564       1.21   thorpej 
   1565      1.134        ad 	mutex_exit(&pp->pr_lock);
   1566        1.3        pk }
   1567        1.3        pk 
   1568        1.3        pk void
   1569       1.42   thorpej pool_sethiwat(struct pool *pp, int n)
   1570        1.3        pk {
   1571       1.15        pk 
   1572      1.134        ad 	mutex_enter(&pp->pr_lock);
   1573       1.21   thorpej 
   1574       1.15        pk 	pp->pr_maxpages = (n == 0)
   1575       1.15        pk 		? 0
   1576       1.18   thorpej 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1577       1.21   thorpej 
   1578      1.134        ad 	mutex_exit(&pp->pr_lock);
   1579        1.3        pk }
   1580        1.3        pk 
   1581       1.20   thorpej void
   1582       1.42   thorpej pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
   1583       1.20   thorpej {
   1584       1.20   thorpej 
   1585      1.134        ad 	mutex_enter(&pp->pr_lock);
   1586       1.20   thorpej 
   1587       1.20   thorpej 	pp->pr_hardlimit = n;
   1588       1.20   thorpej 	pp->pr_hardlimit_warning = warnmess;
   1589       1.31   thorpej 	pp->pr_hardlimit_ratecap.tv_sec = ratecap;
   1590       1.31   thorpej 	pp->pr_hardlimit_warning_last.tv_sec = 0;
   1591       1.31   thorpej 	pp->pr_hardlimit_warning_last.tv_usec = 0;
   1592       1.20   thorpej 
   1593       1.20   thorpej 	/*
   1594       1.21   thorpej 	 * In-line version of pool_sethiwat(), because we don't want to
   1595       1.21   thorpej 	 * release the lock.
   1596       1.20   thorpej 	 */
   1597       1.20   thorpej 	pp->pr_maxpages = (n == 0)
   1598       1.20   thorpej 		? 0
   1599       1.20   thorpej 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1600       1.21   thorpej 
   1601      1.134        ad 	mutex_exit(&pp->pr_lock);
   1602       1.20   thorpej }
   1603        1.3        pk 
   1604        1.3        pk /*
   1605        1.3        pk  * Release all complete pages that have not been used recently.
   1606        1.3        pk  */
   1607       1.66   thorpej int
   1608       1.59   thorpej #ifdef POOL_DIAGNOSTIC
   1609       1.42   thorpej _pool_reclaim(struct pool *pp, const char *file, long line)
   1610       1.56  sommerfe #else
   1611       1.56  sommerfe pool_reclaim(struct pool *pp)
   1612       1.56  sommerfe #endif
   1613        1.3        pk {
   1614        1.3        pk 	struct pool_item_header *ph, *phnext;
   1615       1.61       chs 	struct pool_pagelist pq;
   1616      1.151      yamt 	uint32_t curtime;
   1617      1.134        ad 	bool klock;
   1618      1.134        ad 	int rv;
   1619        1.3        pk 
   1620       1.68   thorpej 	if (pp->pr_drain_hook != NULL) {
   1621       1.68   thorpej 		/*
   1622       1.68   thorpej 		 * The drain hook must be called with the pool unlocked.
   1623       1.68   thorpej 		 */
   1624       1.68   thorpej 		(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
   1625       1.68   thorpej 	}
   1626       1.68   thorpej 
   1627      1.134        ad 	/*
   1628      1.157        ad 	 * XXXSMP Because we do not want to cause non-MPSAFE code
   1629      1.157        ad 	 * to block.
   1630      1.134        ad 	 */
   1631      1.134        ad 	if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK ||
   1632      1.134        ad 	    pp->pr_ipl == IPL_SOFTSERIAL) {
   1633      1.134        ad 		KERNEL_LOCK(1, NULL);
   1634      1.134        ad 		klock = true;
   1635      1.134        ad 	} else
   1636      1.134        ad 		klock = false;
   1637      1.134        ad 
   1638      1.134        ad 	/* Reclaim items from the pool's cache (if any). */
   1639      1.134        ad 	if (pp->pr_cache != NULL)
   1640      1.134        ad 		pool_cache_invalidate(pp->pr_cache);
   1641      1.134        ad 
   1642      1.134        ad 	if (mutex_tryenter(&pp->pr_lock) == 0) {
   1643      1.134        ad 		if (klock) {
   1644      1.134        ad 			KERNEL_UNLOCK_ONE(NULL);
   1645      1.134        ad 		}
   1646       1.66   thorpej 		return (0);
   1647      1.134        ad 	}
   1648       1.25   thorpej 	pr_enter(pp, file, line);
   1649       1.68   thorpej 
   1650       1.88       chs 	LIST_INIT(&pq);
   1651       1.43   thorpej 
   1652      1.151      yamt 	curtime = time_uptime;
   1653       1.21   thorpej 
   1654       1.88       chs 	for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
   1655       1.88       chs 		phnext = LIST_NEXT(ph, ph_pagelist);
   1656        1.3        pk 
   1657        1.3        pk 		/* Check our minimum page claim */
   1658        1.3        pk 		if (pp->pr_npages <= pp->pr_minpages)
   1659        1.3        pk 			break;
   1660        1.3        pk 
   1661       1.88       chs 		KASSERT(ph->ph_nmissing == 0);
   1662      1.151      yamt 		if (curtime - ph->ph_time < pool_inactive_time
   1663      1.117      yamt 		    && !pa_starved_p(pp->pr_alloc))
   1664       1.88       chs 			continue;
   1665       1.21   thorpej 
   1666       1.88       chs 		/*
   1667       1.88       chs 		 * If freeing this page would put us below
   1668       1.88       chs 		 * the low water mark, stop now.
   1669       1.88       chs 		 */
   1670       1.88       chs 		if ((pp->pr_nitems - pp->pr_itemsperpage) <
   1671       1.88       chs 		    pp->pr_minitems)
   1672       1.88       chs 			break;
   1673       1.21   thorpej 
   1674       1.88       chs 		pr_rmpage(pp, ph, &pq);
   1675        1.3        pk 	}
   1676        1.3        pk 
   1677       1.25   thorpej 	pr_leave(pp);
   1678      1.134        ad 	mutex_exit(&pp->pr_lock);
   1679      1.134        ad 
   1680      1.134        ad 	if (LIST_EMPTY(&pq))
   1681      1.134        ad 		rv = 0;
   1682      1.134        ad 	else {
   1683      1.134        ad 		pr_pagelist_free(pp, &pq);
   1684      1.134        ad 		rv = 1;
   1685      1.134        ad 	}
   1686      1.134        ad 
   1687      1.134        ad 	if (klock) {
   1688      1.134        ad 		KERNEL_UNLOCK_ONE(NULL);
   1689      1.134        ad 	}
   1690       1.66   thorpej 
   1691      1.134        ad 	return (rv);
   1692        1.3        pk }
   1693        1.3        pk 
   1694        1.3        pk /*
   1695      1.134        ad  * Drain pools, one at a time.  This is a two stage process;
   1696      1.134        ad  * drain_start kicks off a cross call to drain CPU-level caches
   1697      1.134        ad  * if the pool has an associated pool_cache.  drain_end waits
   1698      1.134        ad  * for those cross calls to finish, and then drains the cache
   1699      1.134        ad  * (if any) and pool.
   1700      1.131        ad  *
   1701      1.134        ad  * Note, must never be called from interrupt context.
   1702        1.3        pk  */
   1703        1.3        pk void
   1704      1.134        ad pool_drain_start(struct pool **ppp, uint64_t *wp)
   1705        1.3        pk {
   1706        1.3        pk 	struct pool *pp;
   1707      1.134        ad 
   1708      1.145        ad 	KASSERT(!TAILQ_EMPTY(&pool_head));
   1709        1.3        pk 
   1710       1.61       chs 	pp = NULL;
   1711      1.134        ad 
   1712      1.134        ad 	/* Find next pool to drain, and add a reference. */
   1713      1.134        ad 	mutex_enter(&pool_head_lock);
   1714      1.134        ad 	do {
   1715      1.134        ad 		if (drainpp == NULL) {
   1716      1.145        ad 			drainpp = TAILQ_FIRST(&pool_head);
   1717      1.134        ad 		}
   1718      1.134        ad 		if (drainpp != NULL) {
   1719      1.134        ad 			pp = drainpp;
   1720      1.145        ad 			drainpp = TAILQ_NEXT(pp, pr_poollist);
   1721      1.134        ad 		}
   1722      1.134        ad 		/*
   1723      1.134        ad 		 * Skip completely idle pools.  We depend on at least
   1724      1.134        ad 		 * one pool in the system being active.
   1725      1.134        ad 		 */
   1726      1.134        ad 	} while (pp == NULL || pp->pr_npages == 0);
   1727      1.134        ad 	pp->pr_refcnt++;
   1728      1.134        ad 	mutex_exit(&pool_head_lock);
   1729      1.134        ad 
   1730      1.134        ad 	/* If there is a pool_cache, drain CPU level caches. */
   1731      1.134        ad 	*ppp = pp;
   1732      1.134        ad 	if (pp->pr_cache != NULL) {
   1733      1.134        ad 		*wp = xc_broadcast(0, (xcfunc_t)pool_cache_xcall,
   1734      1.134        ad 		    pp->pr_cache, NULL);
   1735      1.134        ad 	}
   1736      1.134        ad }
   1737      1.134        ad 
   1738      1.134        ad void
   1739      1.134        ad pool_drain_end(struct pool *pp, uint64_t where)
   1740      1.134        ad {
   1741      1.134        ad 
   1742      1.134        ad 	if (pp == NULL)
   1743      1.134        ad 		return;
   1744      1.134        ad 
   1745      1.134        ad 	KASSERT(pp->pr_refcnt > 0);
   1746      1.134        ad 
   1747      1.134        ad 	/* Wait for remote draining to complete. */
   1748      1.134        ad 	if (pp->pr_cache != NULL)
   1749      1.134        ad 		xc_wait(where);
   1750      1.134        ad 
   1751      1.134        ad 	/* Drain the cache (if any) and pool.. */
   1752      1.134        ad 	pool_reclaim(pp);
   1753      1.134        ad 
   1754      1.134        ad 	/* Finally, unlock the pool. */
   1755      1.134        ad 	mutex_enter(&pool_head_lock);
   1756      1.134        ad 	pp->pr_refcnt--;
   1757      1.134        ad 	cv_broadcast(&pool_busy);
   1758      1.134        ad 	mutex_exit(&pool_head_lock);
   1759        1.3        pk }
   1760        1.3        pk 
   1761        1.3        pk /*
   1762        1.3        pk  * Diagnostic helpers.
   1763        1.3        pk  */
   1764        1.3        pk void
   1765       1.42   thorpej pool_print(struct pool *pp, const char *modif)
   1766       1.21   thorpej {
   1767       1.21   thorpej 
   1768       1.25   thorpej 	pool_print1(pp, modif, printf);
   1769       1.21   thorpej }
   1770       1.21   thorpej 
   1771       1.25   thorpej void
   1772      1.108      yamt pool_printall(const char *modif, void (*pr)(const char *, ...))
   1773      1.108      yamt {
   1774      1.108      yamt 	struct pool *pp;
   1775      1.108      yamt 
   1776      1.145        ad 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   1777      1.108      yamt 		pool_printit(pp, modif, pr);
   1778      1.108      yamt 	}
   1779      1.108      yamt }
   1780      1.108      yamt 
   1781      1.108      yamt void
   1782       1.42   thorpej pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1783       1.25   thorpej {
   1784       1.25   thorpej 
   1785       1.25   thorpej 	if (pp == NULL) {
   1786       1.25   thorpej 		(*pr)("Must specify a pool to print.\n");
   1787       1.25   thorpej 		return;
   1788       1.25   thorpej 	}
   1789       1.25   thorpej 
   1790       1.25   thorpej 	pool_print1(pp, modif, pr);
   1791       1.25   thorpej }
   1792       1.25   thorpej 
   1793       1.21   thorpej static void
   1794      1.124      yamt pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
   1795       1.97      yamt     void (*pr)(const char *, ...))
   1796       1.88       chs {
   1797       1.88       chs 	struct pool_item_header *ph;
   1798       1.88       chs #ifdef DIAGNOSTIC
   1799       1.88       chs 	struct pool_item *pi;
   1800       1.88       chs #endif
   1801       1.88       chs 
   1802       1.88       chs 	LIST_FOREACH(ph, pl, ph_pagelist) {
   1803      1.151      yamt 		(*pr)("\t\tpage %p, nmissing %d, time %" PRIu32 "\n",
   1804      1.151      yamt 		    ph->ph_page, ph->ph_nmissing, ph->ph_time);
   1805       1.88       chs #ifdef DIAGNOSTIC
   1806       1.97      yamt 		if (!(pp->pr_roflags & PR_NOTOUCH)) {
   1807      1.102       chs 			LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
   1808       1.97      yamt 				if (pi->pi_magic != PI_MAGIC) {
   1809       1.97      yamt 					(*pr)("\t\t\titem %p, magic 0x%x\n",
   1810       1.97      yamt 					    pi, pi->pi_magic);
   1811       1.97      yamt 				}
   1812       1.88       chs 			}
   1813       1.88       chs 		}
   1814       1.88       chs #endif
   1815       1.88       chs 	}
   1816       1.88       chs }
   1817       1.88       chs 
   1818       1.88       chs static void
   1819       1.42   thorpej pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1820        1.3        pk {
   1821       1.25   thorpej 	struct pool_item_header *ph;
   1822      1.134        ad 	pool_cache_t pc;
   1823      1.134        ad 	pcg_t *pcg;
   1824      1.134        ad 	pool_cache_cpu_t *cc;
   1825      1.134        ad 	uint64_t cpuhit, cpumiss;
   1826       1.44   thorpej 	int i, print_log = 0, print_pagelist = 0, print_cache = 0;
   1827       1.25   thorpej 	char c;
   1828       1.25   thorpej 
   1829       1.25   thorpej 	while ((c = *modif++) != '\0') {
   1830       1.25   thorpej 		if (c == 'l')
   1831       1.25   thorpej 			print_log = 1;
   1832       1.25   thorpej 		if (c == 'p')
   1833       1.25   thorpej 			print_pagelist = 1;
   1834       1.44   thorpej 		if (c == 'c')
   1835       1.44   thorpej 			print_cache = 1;
   1836       1.25   thorpej 	}
   1837       1.25   thorpej 
   1838      1.134        ad 	if ((pc = pp->pr_cache) != NULL) {
   1839      1.134        ad 		(*pr)("POOL CACHE");
   1840      1.134        ad 	} else {
   1841      1.134        ad 		(*pr)("POOL");
   1842      1.134        ad 	}
   1843      1.134        ad 
   1844      1.134        ad 	(*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
   1845       1.25   thorpej 	    pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
   1846       1.25   thorpej 	    pp->pr_roflags);
   1847       1.66   thorpej 	(*pr)("\talloc %p\n", pp->pr_alloc);
   1848       1.25   thorpej 	(*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
   1849       1.25   thorpej 	    pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
   1850       1.25   thorpej 	(*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
   1851       1.25   thorpej 	    pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
   1852       1.25   thorpej 
   1853      1.134        ad 	(*pr)("\tnget %lu, nfail %lu, nput %lu\n",
   1854       1.25   thorpej 	    pp->pr_nget, pp->pr_nfail, pp->pr_nput);
   1855       1.25   thorpej 	(*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
   1856       1.25   thorpej 	    pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
   1857       1.25   thorpej 
   1858       1.25   thorpej 	if (print_pagelist == 0)
   1859       1.25   thorpej 		goto skip_pagelist;
   1860       1.25   thorpej 
   1861       1.88       chs 	if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
   1862       1.88       chs 		(*pr)("\n\tempty page list:\n");
   1863       1.97      yamt 	pool_print_pagelist(pp, &pp->pr_emptypages, pr);
   1864       1.88       chs 	if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
   1865       1.88       chs 		(*pr)("\n\tfull page list:\n");
   1866       1.97      yamt 	pool_print_pagelist(pp, &pp->pr_fullpages, pr);
   1867       1.88       chs 	if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
   1868       1.88       chs 		(*pr)("\n\tpartial-page list:\n");
   1869       1.97      yamt 	pool_print_pagelist(pp, &pp->pr_partpages, pr);
   1870       1.88       chs 
   1871       1.25   thorpej 	if (pp->pr_curpage == NULL)
   1872       1.25   thorpej 		(*pr)("\tno current page\n");
   1873       1.25   thorpej 	else
   1874       1.25   thorpej 		(*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
   1875       1.25   thorpej 
   1876       1.25   thorpej  skip_pagelist:
   1877       1.25   thorpej 	if (print_log == 0)
   1878       1.25   thorpej 		goto skip_log;
   1879       1.25   thorpej 
   1880       1.25   thorpej 	(*pr)("\n");
   1881       1.25   thorpej 	if ((pp->pr_roflags & PR_LOGGING) == 0)
   1882       1.25   thorpej 		(*pr)("\tno log\n");
   1883      1.122  christos 	else {
   1884       1.25   thorpej 		pr_printlog(pp, NULL, pr);
   1885      1.122  christos 	}
   1886        1.3        pk 
   1887       1.25   thorpej  skip_log:
   1888       1.44   thorpej 
   1889      1.102       chs #define PR_GROUPLIST(pcg)						\
   1890      1.102       chs 	(*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail);		\
   1891      1.142        ad 	for (i = 0; i < pcg->pcg_size; i++) {				\
   1892      1.102       chs 		if (pcg->pcg_objects[i].pcgo_pa !=			\
   1893      1.102       chs 		    POOL_PADDR_INVALID) {				\
   1894      1.102       chs 			(*pr)("\t\t\t%p, 0x%llx\n",			\
   1895      1.102       chs 			    pcg->pcg_objects[i].pcgo_va,		\
   1896      1.102       chs 			    (unsigned long long)			\
   1897      1.102       chs 			    pcg->pcg_objects[i].pcgo_pa);		\
   1898      1.102       chs 		} else {						\
   1899      1.102       chs 			(*pr)("\t\t\t%p\n",				\
   1900      1.102       chs 			    pcg->pcg_objects[i].pcgo_va);		\
   1901      1.102       chs 		}							\
   1902      1.102       chs 	}
   1903      1.102       chs 
   1904      1.134        ad 	if (pc != NULL) {
   1905      1.134        ad 		cpuhit = 0;
   1906      1.134        ad 		cpumiss = 0;
   1907      1.134        ad 		for (i = 0; i < MAXCPUS; i++) {
   1908      1.134        ad 			if ((cc = pc->pc_cpus[i]) == NULL)
   1909      1.134        ad 				continue;
   1910      1.134        ad 			cpuhit += cc->cc_hits;
   1911      1.134        ad 			cpumiss += cc->cc_misses;
   1912      1.134        ad 		}
   1913      1.134        ad 		(*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
   1914      1.134        ad 		(*pr)("\tcache layer hits %llu misses %llu\n",
   1915      1.134        ad 		    pc->pc_hits, pc->pc_misses);
   1916      1.134        ad 		(*pr)("\tcache layer entry uncontended %llu contended %llu\n",
   1917      1.134        ad 		    pc->pc_hits + pc->pc_misses - pc->pc_contended,
   1918      1.134        ad 		    pc->pc_contended);
   1919      1.134        ad 		(*pr)("\tcache layer empty groups %u full groups %u\n",
   1920      1.134        ad 		    pc->pc_nempty, pc->pc_nfull);
   1921      1.134        ad 		if (print_cache) {
   1922      1.134        ad 			(*pr)("\tfull cache groups:\n");
   1923      1.134        ad 			for (pcg = pc->pc_fullgroups; pcg != NULL;
   1924      1.134        ad 			    pcg = pcg->pcg_next) {
   1925      1.134        ad 				PR_GROUPLIST(pcg);
   1926      1.134        ad 			}
   1927      1.134        ad 			(*pr)("\tempty cache groups:\n");
   1928      1.134        ad 			for (pcg = pc->pc_emptygroups; pcg != NULL;
   1929      1.134        ad 			    pcg = pcg->pcg_next) {
   1930      1.134        ad 				PR_GROUPLIST(pcg);
   1931      1.134        ad 			}
   1932      1.103       chs 		}
   1933       1.44   thorpej 	}
   1934      1.102       chs #undef PR_GROUPLIST
   1935       1.44   thorpej 
   1936       1.88       chs 	pr_enter_check(pp, pr);
   1937       1.88       chs }
   1938       1.88       chs 
   1939       1.88       chs static int
   1940       1.88       chs pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
   1941       1.88       chs {
   1942       1.88       chs 	struct pool_item *pi;
   1943      1.128  christos 	void *page;
   1944       1.88       chs 	int n;
   1945       1.88       chs 
   1946      1.121      yamt 	if ((pp->pr_roflags & PR_NOALIGN) == 0) {
   1947      1.128  christos 		page = (void *)((uintptr_t)ph & pp->pr_alloc->pa_pagemask);
   1948      1.121      yamt 		if (page != ph->ph_page &&
   1949      1.121      yamt 		    (pp->pr_roflags & PR_PHINPAGE) != 0) {
   1950      1.121      yamt 			if (label != NULL)
   1951      1.121      yamt 				printf("%s: ", label);
   1952      1.121      yamt 			printf("pool(%p:%s): page inconsistency: page %p;"
   1953      1.121      yamt 			       " at page head addr %p (p %p)\n", pp,
   1954      1.121      yamt 				pp->pr_wchan, ph->ph_page,
   1955      1.121      yamt 				ph, page);
   1956      1.121      yamt 			return 1;
   1957      1.121      yamt 		}
   1958       1.88       chs 	}
   1959        1.3        pk 
   1960       1.97      yamt 	if ((pp->pr_roflags & PR_NOTOUCH) != 0)
   1961       1.97      yamt 		return 0;
   1962       1.97      yamt 
   1963      1.102       chs 	for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
   1964       1.88       chs 	     pi != NULL;
   1965      1.102       chs 	     pi = LIST_NEXT(pi,pi_list), n++) {
   1966       1.88       chs 
   1967       1.88       chs #ifdef DIAGNOSTIC
   1968       1.88       chs 		if (pi->pi_magic != PI_MAGIC) {
   1969       1.88       chs 			if (label != NULL)
   1970       1.88       chs 				printf("%s: ", label);
   1971       1.88       chs 			printf("pool(%s): free list modified: magic=%x;"
   1972      1.121      yamt 			       " page %p; item ordinal %d; addr %p\n",
   1973       1.88       chs 				pp->pr_wchan, pi->pi_magic, ph->ph_page,
   1974      1.121      yamt 				n, pi);
   1975       1.88       chs 			panic("pool");
   1976       1.88       chs 		}
   1977       1.88       chs #endif
   1978      1.121      yamt 		if ((pp->pr_roflags & PR_NOALIGN) != 0) {
   1979      1.121      yamt 			continue;
   1980      1.121      yamt 		}
   1981      1.128  christos 		page = (void *)((uintptr_t)pi & pp->pr_alloc->pa_pagemask);
   1982       1.88       chs 		if (page == ph->ph_page)
   1983       1.88       chs 			continue;
   1984       1.88       chs 
   1985       1.88       chs 		if (label != NULL)
   1986       1.88       chs 			printf("%s: ", label);
   1987       1.88       chs 		printf("pool(%p:%s): page inconsistency: page %p;"
   1988       1.88       chs 		       " item ordinal %d; addr %p (p %p)\n", pp,
   1989       1.88       chs 			pp->pr_wchan, ph->ph_page,
   1990       1.88       chs 			n, pi, page);
   1991       1.88       chs 		return 1;
   1992       1.88       chs 	}
   1993       1.88       chs 	return 0;
   1994        1.3        pk }
   1995        1.3        pk 
   1996       1.88       chs 
   1997        1.3        pk int
   1998       1.42   thorpej pool_chk(struct pool *pp, const char *label)
   1999        1.3        pk {
   2000        1.3        pk 	struct pool_item_header *ph;
   2001        1.3        pk 	int r = 0;
   2002        1.3        pk 
   2003      1.134        ad 	mutex_enter(&pp->pr_lock);
   2004       1.88       chs 	LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
   2005       1.88       chs 		r = pool_chk_page(pp, label, ph);
   2006       1.88       chs 		if (r) {
   2007       1.88       chs 			goto out;
   2008       1.88       chs 		}
   2009       1.88       chs 	}
   2010       1.88       chs 	LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
   2011       1.88       chs 		r = pool_chk_page(pp, label, ph);
   2012       1.88       chs 		if (r) {
   2013        1.3        pk 			goto out;
   2014        1.3        pk 		}
   2015       1.88       chs 	}
   2016       1.88       chs 	LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
   2017       1.88       chs 		r = pool_chk_page(pp, label, ph);
   2018       1.88       chs 		if (r) {
   2019        1.3        pk 			goto out;
   2020        1.3        pk 		}
   2021        1.3        pk 	}
   2022       1.88       chs 
   2023        1.3        pk out:
   2024      1.134        ad 	mutex_exit(&pp->pr_lock);
   2025        1.3        pk 	return (r);
   2026       1.43   thorpej }
   2027       1.43   thorpej 
   2028       1.43   thorpej /*
   2029       1.43   thorpej  * pool_cache_init:
   2030       1.43   thorpej  *
   2031       1.43   thorpej  *	Initialize a pool cache.
   2032      1.134        ad  */
   2033      1.134        ad pool_cache_t
   2034      1.134        ad pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
   2035      1.134        ad     const char *wchan, struct pool_allocator *palloc, int ipl,
   2036      1.134        ad     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
   2037      1.134        ad {
   2038      1.134        ad 	pool_cache_t pc;
   2039      1.134        ad 
   2040      1.134        ad 	pc = pool_get(&cache_pool, PR_WAITOK);
   2041      1.134        ad 	if (pc == NULL)
   2042      1.134        ad 		return NULL;
   2043      1.134        ad 
   2044      1.134        ad 	pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
   2045      1.134        ad 	   palloc, ipl, ctor, dtor, arg);
   2046      1.134        ad 
   2047      1.134        ad 	return pc;
   2048      1.134        ad }
   2049      1.134        ad 
   2050      1.134        ad /*
   2051      1.134        ad  * pool_cache_bootstrap:
   2052       1.43   thorpej  *
   2053      1.134        ad  *	Kernel-private version of pool_cache_init().  The caller
   2054      1.134        ad  *	provides initial storage.
   2055       1.43   thorpej  */
   2056       1.43   thorpej void
   2057      1.134        ad pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
   2058      1.134        ad     u_int align_offset, u_int flags, const char *wchan,
   2059      1.134        ad     struct pool_allocator *palloc, int ipl,
   2060      1.134        ad     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
   2061       1.43   thorpej     void *arg)
   2062       1.43   thorpej {
   2063      1.134        ad 	CPU_INFO_ITERATOR cii;
   2064      1.145        ad 	pool_cache_t pc1;
   2065      1.134        ad 	struct cpu_info *ci;
   2066      1.134        ad 	struct pool *pp;
   2067      1.134        ad 
   2068      1.134        ad 	pp = &pc->pc_pool;
   2069      1.134        ad 	if (palloc == NULL && ipl == IPL_NONE)
   2070      1.134        ad 		palloc = &pool_allocator_nointr;
   2071      1.134        ad 	pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl);
   2072      1.157        ad 	mutex_init(&pc->pc_lock, MUTEX_DEFAULT, ipl);
   2073       1.43   thorpej 
   2074      1.134        ad 	if (ctor == NULL) {
   2075      1.134        ad 		ctor = (int (*)(void *, void *, int))nullop;
   2076      1.134        ad 	}
   2077      1.134        ad 	if (dtor == NULL) {
   2078      1.134        ad 		dtor = (void (*)(void *, void *))nullop;
   2079      1.134        ad 	}
   2080       1.43   thorpej 
   2081      1.134        ad 	pc->pc_emptygroups = NULL;
   2082      1.134        ad 	pc->pc_fullgroups = NULL;
   2083      1.134        ad 	pc->pc_partgroups = NULL;
   2084       1.43   thorpej 	pc->pc_ctor = ctor;
   2085       1.43   thorpej 	pc->pc_dtor = dtor;
   2086       1.43   thorpej 	pc->pc_arg  = arg;
   2087      1.134        ad 	pc->pc_hits  = 0;
   2088       1.48   thorpej 	pc->pc_misses = 0;
   2089      1.134        ad 	pc->pc_nempty = 0;
   2090      1.134        ad 	pc->pc_npart = 0;
   2091      1.134        ad 	pc->pc_nfull = 0;
   2092      1.134        ad 	pc->pc_contended = 0;
   2093      1.134        ad 	pc->pc_refcnt = 0;
   2094      1.136      yamt 	pc->pc_freecheck = NULL;
   2095      1.134        ad 
   2096      1.142        ad 	if ((flags & PR_LARGECACHE) != 0) {
   2097      1.142        ad 		pc->pc_pcgsize = PCG_NOBJECTS_LARGE;
   2098  1.158.2.2      yamt 		pc->pc_pcgpool = &pcg_large_pool;
   2099      1.142        ad 	} else {
   2100      1.142        ad 		pc->pc_pcgsize = PCG_NOBJECTS_NORMAL;
   2101  1.158.2.2      yamt 		pc->pc_pcgpool = &pcg_normal_pool;
   2102      1.142        ad 	}
   2103      1.142        ad 
   2104      1.134        ad 	/* Allocate per-CPU caches. */
   2105      1.134        ad 	memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
   2106      1.134        ad 	pc->pc_ncpu = 0;
   2107      1.139        ad 	if (ncpu < 2) {
   2108      1.137        ad 		/* XXX For sparc: boot CPU is not attached yet. */
   2109      1.137        ad 		pool_cache_cpu_init1(curcpu(), pc);
   2110      1.137        ad 	} else {
   2111      1.137        ad 		for (CPU_INFO_FOREACH(cii, ci)) {
   2112      1.137        ad 			pool_cache_cpu_init1(ci, pc);
   2113      1.137        ad 		}
   2114      1.134        ad 	}
   2115      1.145        ad 
   2116      1.145        ad 	/* Add to list of all pools. */
   2117      1.145        ad 	if (__predict_true(!cold))
   2118      1.134        ad 		mutex_enter(&pool_head_lock);
   2119      1.145        ad 	TAILQ_FOREACH(pc1, &pool_cache_head, pc_cachelist) {
   2120      1.145        ad 		if (strcmp(pc1->pc_pool.pr_wchan, pc->pc_pool.pr_wchan) > 0)
   2121      1.145        ad 			break;
   2122      1.145        ad 	}
   2123      1.145        ad 	if (pc1 == NULL)
   2124      1.145        ad 		TAILQ_INSERT_TAIL(&pool_cache_head, pc, pc_cachelist);
   2125      1.145        ad 	else
   2126      1.145        ad 		TAILQ_INSERT_BEFORE(pc1, pc, pc_cachelist);
   2127      1.145        ad 	if (__predict_true(!cold))
   2128      1.134        ad 		mutex_exit(&pool_head_lock);
   2129      1.145        ad 
   2130      1.145        ad 	membar_sync();
   2131      1.145        ad 	pp->pr_cache = pc;
   2132       1.43   thorpej }
   2133       1.43   thorpej 
   2134       1.43   thorpej /*
   2135       1.43   thorpej  * pool_cache_destroy:
   2136       1.43   thorpej  *
   2137       1.43   thorpej  *	Destroy a pool cache.
   2138       1.43   thorpej  */
   2139       1.43   thorpej void
   2140      1.134        ad pool_cache_destroy(pool_cache_t pc)
   2141       1.43   thorpej {
   2142      1.134        ad 	struct pool *pp = &pc->pc_pool;
   2143  1.158.2.4      yamt 	u_int i;
   2144      1.134        ad 
   2145      1.134        ad 	/* Remove it from the global list. */
   2146      1.134        ad 	mutex_enter(&pool_head_lock);
   2147      1.134        ad 	while (pc->pc_refcnt != 0)
   2148      1.134        ad 		cv_wait(&pool_busy, &pool_head_lock);
   2149      1.145        ad 	TAILQ_REMOVE(&pool_cache_head, pc, pc_cachelist);
   2150      1.134        ad 	mutex_exit(&pool_head_lock);
   2151       1.43   thorpej 
   2152       1.43   thorpej 	/* First, invalidate the entire cache. */
   2153       1.43   thorpej 	pool_cache_invalidate(pc);
   2154       1.43   thorpej 
   2155      1.134        ad 	/* Disassociate it from the pool. */
   2156      1.134        ad 	mutex_enter(&pp->pr_lock);
   2157      1.134        ad 	pp->pr_cache = NULL;
   2158      1.134        ad 	mutex_exit(&pp->pr_lock);
   2159      1.134        ad 
   2160      1.134        ad 	/* Destroy per-CPU data */
   2161  1.158.2.4      yamt 	for (i = 0; i < MAXCPUS; i++)
   2162  1.158.2.4      yamt 		pool_cache_invalidate_cpu(pc, i);
   2163      1.134        ad 
   2164      1.134        ad 	/* Finally, destroy it. */
   2165      1.134        ad 	mutex_destroy(&pc->pc_lock);
   2166      1.134        ad 	pool_destroy(pp);
   2167      1.134        ad 	pool_put(&cache_pool, pc);
   2168      1.134        ad }
   2169      1.134        ad 
   2170      1.134        ad /*
   2171      1.134        ad  * pool_cache_cpu_init1:
   2172      1.134        ad  *
   2173      1.134        ad  *	Called for each pool_cache whenever a new CPU is attached.
   2174      1.134        ad  */
   2175      1.134        ad static void
   2176      1.134        ad pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
   2177      1.134        ad {
   2178      1.134        ad 	pool_cache_cpu_t *cc;
   2179      1.137        ad 	int index;
   2180      1.134        ad 
   2181      1.137        ad 	index = ci->ci_index;
   2182      1.137        ad 
   2183      1.137        ad 	KASSERT(index < MAXCPUS);
   2184      1.134        ad 
   2185      1.137        ad 	if ((cc = pc->pc_cpus[index]) != NULL) {
   2186      1.137        ad 		KASSERT(cc->cc_cpuindex == index);
   2187      1.134        ad 		return;
   2188      1.134        ad 	}
   2189      1.134        ad 
   2190      1.134        ad 	/*
   2191      1.134        ad 	 * The first CPU is 'free'.  This needs to be the case for
   2192      1.134        ad 	 * bootstrap - we may not be able to allocate yet.
   2193      1.134        ad 	 */
   2194      1.134        ad 	if (pc->pc_ncpu == 0) {
   2195      1.134        ad 		cc = &pc->pc_cpu0;
   2196      1.134        ad 		pc->pc_ncpu = 1;
   2197      1.134        ad 	} else {
   2198      1.134        ad 		mutex_enter(&pc->pc_lock);
   2199      1.134        ad 		pc->pc_ncpu++;
   2200      1.134        ad 		mutex_exit(&pc->pc_lock);
   2201      1.134        ad 		cc = pool_get(&cache_cpu_pool, PR_WAITOK);
   2202      1.134        ad 	}
   2203      1.134        ad 
   2204      1.134        ad 	cc->cc_ipl = pc->pc_pool.pr_ipl;
   2205      1.134        ad 	cc->cc_iplcookie = makeiplcookie(cc->cc_ipl);
   2206      1.134        ad 	cc->cc_cache = pc;
   2207      1.137        ad 	cc->cc_cpuindex = index;
   2208      1.134        ad 	cc->cc_hits = 0;
   2209      1.134        ad 	cc->cc_misses = 0;
   2210  1.158.2.2      yamt 	cc->cc_current = __UNCONST(&pcg_dummy);
   2211  1.158.2.2      yamt 	cc->cc_previous = __UNCONST(&pcg_dummy);
   2212      1.134        ad 
   2213      1.137        ad 	pc->pc_cpus[index] = cc;
   2214       1.43   thorpej }
   2215       1.43   thorpej 
   2216      1.134        ad /*
   2217      1.134        ad  * pool_cache_cpu_init:
   2218      1.134        ad  *
   2219      1.134        ad  *	Called whenever a new CPU is attached.
   2220      1.134        ad  */
   2221      1.134        ad void
   2222      1.134        ad pool_cache_cpu_init(struct cpu_info *ci)
   2223       1.43   thorpej {
   2224      1.134        ad 	pool_cache_t pc;
   2225      1.134        ad 
   2226      1.134        ad 	mutex_enter(&pool_head_lock);
   2227      1.145        ad 	TAILQ_FOREACH(pc, &pool_cache_head, pc_cachelist) {
   2228      1.134        ad 		pc->pc_refcnt++;
   2229      1.134        ad 		mutex_exit(&pool_head_lock);
   2230       1.43   thorpej 
   2231      1.134        ad 		pool_cache_cpu_init1(ci, pc);
   2232       1.43   thorpej 
   2233      1.134        ad 		mutex_enter(&pool_head_lock);
   2234      1.134        ad 		pc->pc_refcnt--;
   2235      1.134        ad 		cv_broadcast(&pool_busy);
   2236      1.134        ad 	}
   2237      1.134        ad 	mutex_exit(&pool_head_lock);
   2238       1.43   thorpej }
   2239       1.43   thorpej 
   2240      1.134        ad /*
   2241      1.134        ad  * pool_cache_reclaim:
   2242      1.134        ad  *
   2243      1.134        ad  *	Reclaim memory from a pool cache.
   2244      1.134        ad  */
   2245      1.134        ad bool
   2246      1.134        ad pool_cache_reclaim(pool_cache_t pc)
   2247       1.43   thorpej {
   2248       1.43   thorpej 
   2249      1.134        ad 	return pool_reclaim(&pc->pc_pool);
   2250      1.134        ad }
   2251       1.43   thorpej 
   2252      1.136      yamt static void
   2253      1.136      yamt pool_cache_destruct_object1(pool_cache_t pc, void *object)
   2254      1.136      yamt {
   2255      1.136      yamt 
   2256      1.136      yamt 	(*pc->pc_dtor)(pc->pc_arg, object);
   2257      1.136      yamt 	pool_put(&pc->pc_pool, object);
   2258      1.136      yamt }
   2259      1.136      yamt 
   2260      1.134        ad /*
   2261      1.134        ad  * pool_cache_destruct_object:
   2262      1.134        ad  *
   2263      1.134        ad  *	Force destruction of an object and its release back into
   2264      1.134        ad  *	the pool.
   2265      1.134        ad  */
   2266      1.134        ad void
   2267      1.134        ad pool_cache_destruct_object(pool_cache_t pc, void *object)
   2268      1.134        ad {
   2269      1.134        ad 
   2270      1.136      yamt 	FREECHECK_IN(&pc->pc_freecheck, object);
   2271      1.136      yamt 
   2272      1.136      yamt 	pool_cache_destruct_object1(pc, object);
   2273       1.43   thorpej }
   2274       1.43   thorpej 
   2275      1.134        ad /*
   2276      1.134        ad  * pool_cache_invalidate_groups:
   2277      1.134        ad  *
   2278      1.134        ad  *	Invalidate a chain of groups and destruct all objects.
   2279      1.134        ad  */
   2280      1.102       chs static void
   2281      1.134        ad pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
   2282      1.102       chs {
   2283      1.134        ad 	void *object;
   2284      1.134        ad 	pcg_t *next;
   2285      1.134        ad 	int i;
   2286      1.134        ad 
   2287      1.134        ad 	for (; pcg != NULL; pcg = next) {
   2288      1.134        ad 		next = pcg->pcg_next;
   2289      1.134        ad 
   2290      1.134        ad 		for (i = 0; i < pcg->pcg_avail; i++) {
   2291      1.134        ad 			object = pcg->pcg_objects[i].pcgo_va;
   2292      1.136      yamt 			pool_cache_destruct_object1(pc, object);
   2293      1.134        ad 		}
   2294      1.102       chs 
   2295      1.142        ad 		if (pcg->pcg_size == PCG_NOBJECTS_LARGE) {
   2296      1.142        ad 			pool_put(&pcg_large_pool, pcg);
   2297      1.142        ad 		} else {
   2298      1.142        ad 			KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL);
   2299      1.142        ad 			pool_put(&pcg_normal_pool, pcg);
   2300      1.142        ad 		}
   2301      1.102       chs 	}
   2302      1.102       chs }
   2303      1.102       chs 
   2304       1.43   thorpej /*
   2305      1.134        ad  * pool_cache_invalidate:
   2306       1.43   thorpej  *
   2307      1.134        ad  *	Invalidate a pool cache (destruct and release all of the
   2308      1.134        ad  *	cached objects).  Does not reclaim objects from the pool.
   2309  1.158.2.4      yamt  *
   2310  1.158.2.4      yamt  *	Note: For pool caches that provide constructed objects, there
   2311  1.158.2.4      yamt  *	is an assumption that another level of synchronization is occurring
   2312  1.158.2.4      yamt  *	between the input to the constructor and the cache invalidation.
   2313       1.43   thorpej  */
   2314      1.134        ad void
   2315      1.134        ad pool_cache_invalidate(pool_cache_t pc)
   2316      1.134        ad {
   2317      1.134        ad 	pcg_t *full, *empty, *part;
   2318  1.158.2.4      yamt #if 0
   2319  1.158.2.4      yamt 	uint64_t where;
   2320      1.134        ad 
   2321  1.158.2.4      yamt 	if (ncpu < 2 || !mp_online) {
   2322  1.158.2.4      yamt 		/*
   2323  1.158.2.4      yamt 		 * We might be called early enough in the boot process
   2324  1.158.2.4      yamt 		 * for the CPU data structures to not be fully initialized.
   2325  1.158.2.4      yamt 		 * In this case, simply gather the local CPU's cache now
   2326  1.158.2.4      yamt 		 * since it will be the only one running.
   2327  1.158.2.4      yamt 		 */
   2328  1.158.2.4      yamt 		pool_cache_xcall(pc);
   2329  1.158.2.4      yamt 	} else {
   2330  1.158.2.4      yamt 		/*
   2331  1.158.2.4      yamt 		 * Gather all of the CPU-specific caches into the
   2332  1.158.2.4      yamt 		 * global cache.
   2333  1.158.2.4      yamt 		 */
   2334  1.158.2.4      yamt 		where = xc_broadcast(0, (xcfunc_t)pool_cache_xcall, pc, NULL);
   2335  1.158.2.4      yamt 		xc_wait(where);
   2336  1.158.2.4      yamt 	}
   2337  1.158.2.4      yamt #endif
   2338      1.134        ad 	mutex_enter(&pc->pc_lock);
   2339      1.134        ad 	full = pc->pc_fullgroups;
   2340      1.134        ad 	empty = pc->pc_emptygroups;
   2341      1.134        ad 	part = pc->pc_partgroups;
   2342      1.134        ad 	pc->pc_fullgroups = NULL;
   2343      1.134        ad 	pc->pc_emptygroups = NULL;
   2344      1.134        ad 	pc->pc_partgroups = NULL;
   2345      1.134        ad 	pc->pc_nfull = 0;
   2346      1.134        ad 	pc->pc_nempty = 0;
   2347      1.134        ad 	pc->pc_npart = 0;
   2348      1.134        ad 	mutex_exit(&pc->pc_lock);
   2349      1.134        ad 
   2350      1.134        ad 	pool_cache_invalidate_groups(pc, full);
   2351      1.134        ad 	pool_cache_invalidate_groups(pc, empty);
   2352      1.134        ad 	pool_cache_invalidate_groups(pc, part);
   2353      1.134        ad }
   2354      1.134        ad 
   2355  1.158.2.4      yamt /*
   2356  1.158.2.4      yamt  * pool_cache_invalidate_cpu:
   2357  1.158.2.4      yamt  *
   2358  1.158.2.4      yamt  *	Invalidate all CPU-bound cached objects in pool cache, the CPU being
   2359  1.158.2.4      yamt  *	identified by its associated index.
   2360  1.158.2.4      yamt  *	It is caller's responsibility to ensure that no operation is
   2361  1.158.2.4      yamt  *	taking place on this pool cache while doing this invalidation.
   2362  1.158.2.4      yamt  *	WARNING: as no inter-CPU locking is enforced, trying to invalidate
   2363  1.158.2.4      yamt  *	pool cached objects from a CPU different from the one currently running
   2364  1.158.2.4      yamt  *	may result in an undefined behaviour.
   2365  1.158.2.4      yamt  */
   2366  1.158.2.4      yamt static void
   2367  1.158.2.4      yamt pool_cache_invalidate_cpu(pool_cache_t pc, u_int index)
   2368  1.158.2.4      yamt {
   2369  1.158.2.4      yamt 
   2370  1.158.2.4      yamt 	pool_cache_cpu_t *cc;
   2371  1.158.2.4      yamt 	pcg_t *pcg;
   2372  1.158.2.4      yamt 
   2373  1.158.2.4      yamt 	if ((cc = pc->pc_cpus[index]) == NULL)
   2374  1.158.2.4      yamt 		return;
   2375  1.158.2.4      yamt 
   2376  1.158.2.4      yamt 	if ((pcg = cc->cc_current) != &pcg_dummy) {
   2377  1.158.2.4      yamt 		pcg->pcg_next = NULL;
   2378  1.158.2.4      yamt 		pool_cache_invalidate_groups(pc, pcg);
   2379  1.158.2.4      yamt 	}
   2380  1.158.2.4      yamt 	if ((pcg = cc->cc_previous) != &pcg_dummy) {
   2381  1.158.2.4      yamt 		pcg->pcg_next = NULL;
   2382  1.158.2.4      yamt 		pool_cache_invalidate_groups(pc, pcg);
   2383  1.158.2.4      yamt 	}
   2384  1.158.2.4      yamt 	if (cc != &pc->pc_cpu0)
   2385  1.158.2.4      yamt 		pool_put(&cache_cpu_pool, cc);
   2386  1.158.2.4      yamt 
   2387  1.158.2.4      yamt }
   2388  1.158.2.4      yamt 
   2389      1.134        ad void
   2390      1.134        ad pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
   2391      1.134        ad {
   2392      1.134        ad 
   2393      1.134        ad 	pool_set_drain_hook(&pc->pc_pool, fn, arg);
   2394      1.134        ad }
   2395      1.134        ad 
   2396      1.134        ad void
   2397      1.134        ad pool_cache_setlowat(pool_cache_t pc, int n)
   2398      1.134        ad {
   2399      1.134        ad 
   2400      1.134        ad 	pool_setlowat(&pc->pc_pool, n);
   2401      1.134        ad }
   2402      1.134        ad 
   2403      1.134        ad void
   2404      1.134        ad pool_cache_sethiwat(pool_cache_t pc, int n)
   2405      1.134        ad {
   2406      1.134        ad 
   2407      1.134        ad 	pool_sethiwat(&pc->pc_pool, n);
   2408      1.134        ad }
   2409      1.134        ad 
   2410      1.134        ad void
   2411      1.134        ad pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
   2412      1.134        ad {
   2413      1.134        ad 
   2414      1.134        ad 	pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
   2415      1.134        ad }
   2416      1.134        ad 
   2417  1.158.2.2      yamt static bool __noinline
   2418  1.158.2.2      yamt pool_cache_get_slow(pool_cache_cpu_t *cc, int s, void **objectp,
   2419      1.134        ad 		    paddr_t *pap, int flags)
   2420       1.43   thorpej {
   2421      1.134        ad 	pcg_t *pcg, *cur;
   2422      1.134        ad 	uint64_t ncsw;
   2423      1.134        ad 	pool_cache_t pc;
   2424       1.43   thorpej 	void *object;
   2425       1.58   thorpej 
   2426  1.158.2.2      yamt 	KASSERT(cc->cc_current->pcg_avail == 0);
   2427  1.158.2.2      yamt 	KASSERT(cc->cc_previous->pcg_avail == 0);
   2428  1.158.2.2      yamt 
   2429      1.134        ad 	pc = cc->cc_cache;
   2430      1.134        ad 	cc->cc_misses++;
   2431       1.43   thorpej 
   2432      1.134        ad 	/*
   2433      1.134        ad 	 * Nothing was available locally.  Try and grab a group
   2434      1.134        ad 	 * from the cache.
   2435      1.134        ad 	 */
   2436  1.158.2.2      yamt 	if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
   2437      1.134        ad 		ncsw = curlwp->l_ncsw;
   2438      1.134        ad 		mutex_enter(&pc->pc_lock);
   2439      1.134        ad 		pc->pc_contended++;
   2440       1.43   thorpej 
   2441      1.134        ad 		/*
   2442      1.134        ad 		 * If we context switched while locking, then
   2443      1.134        ad 		 * our view of the per-CPU data is invalid:
   2444      1.134        ad 		 * retry.
   2445      1.134        ad 		 */
   2446      1.134        ad 		if (curlwp->l_ncsw != ncsw) {
   2447      1.134        ad 			mutex_exit(&pc->pc_lock);
   2448  1.158.2.2      yamt 			return true;
   2449       1.43   thorpej 		}
   2450      1.102       chs 	}
   2451       1.43   thorpej 
   2452  1.158.2.2      yamt 	if (__predict_true((pcg = pc->pc_fullgroups) != NULL)) {
   2453       1.43   thorpej 		/*
   2454      1.134        ad 		 * If there's a full group, release our empty
   2455      1.134        ad 		 * group back to the cache.  Install the full
   2456      1.134        ad 		 * group as cc_current and return.
   2457       1.43   thorpej 		 */
   2458  1.158.2.2      yamt 		if (__predict_true((cur = cc->cc_current) != &pcg_dummy)) {
   2459      1.134        ad 			KASSERT(cur->pcg_avail == 0);
   2460      1.134        ad 			cur->pcg_next = pc->pc_emptygroups;
   2461      1.134        ad 			pc->pc_emptygroups = cur;
   2462      1.134        ad 			pc->pc_nempty++;
   2463       1.87   thorpej 		}
   2464      1.142        ad 		KASSERT(pcg->pcg_avail == pcg->pcg_size);
   2465      1.134        ad 		cc->cc_current = pcg;
   2466      1.134        ad 		pc->pc_fullgroups = pcg->pcg_next;
   2467      1.134        ad 		pc->pc_hits++;
   2468      1.134        ad 		pc->pc_nfull--;
   2469      1.134        ad 		mutex_exit(&pc->pc_lock);
   2470  1.158.2.2      yamt 		return true;
   2471      1.134        ad 	}
   2472      1.134        ad 
   2473      1.134        ad 	/*
   2474      1.134        ad 	 * Nothing available locally or in cache.  Take the slow
   2475      1.134        ad 	 * path: fetch a new object from the pool and construct
   2476      1.134        ad 	 * it.
   2477      1.134        ad 	 */
   2478      1.134        ad 	pc->pc_misses++;
   2479      1.134        ad 	mutex_exit(&pc->pc_lock);
   2480  1.158.2.2      yamt 	splx(s);
   2481      1.134        ad 
   2482      1.134        ad 	object = pool_get(&pc->pc_pool, flags);
   2483      1.134        ad 	*objectp = object;
   2484  1.158.2.2      yamt 	if (__predict_false(object == NULL))
   2485  1.158.2.2      yamt 		return false;
   2486      1.125        ad 
   2487  1.158.2.2      yamt 	if (__predict_false((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0)) {
   2488      1.134        ad 		pool_put(&pc->pc_pool, object);
   2489      1.134        ad 		*objectp = NULL;
   2490  1.158.2.2      yamt 		return false;
   2491       1.43   thorpej 	}
   2492       1.43   thorpej 
   2493      1.134        ad 	KASSERT((((vaddr_t)object + pc->pc_pool.pr_itemoffset) &
   2494      1.134        ad 	    (pc->pc_pool.pr_align - 1)) == 0);
   2495       1.43   thorpej 
   2496      1.134        ad 	if (pap != NULL) {
   2497      1.134        ad #ifdef POOL_VTOPHYS
   2498      1.134        ad 		*pap = POOL_VTOPHYS(object);
   2499      1.134        ad #else
   2500      1.134        ad 		*pap = POOL_PADDR_INVALID;
   2501      1.134        ad #endif
   2502      1.102       chs 	}
   2503       1.43   thorpej 
   2504      1.125        ad 	FREECHECK_OUT(&pc->pc_freecheck, object);
   2505  1.158.2.2      yamt 	return false;
   2506       1.43   thorpej }
   2507       1.43   thorpej 
   2508       1.43   thorpej /*
   2509      1.134        ad  * pool_cache_get{,_paddr}:
   2510       1.43   thorpej  *
   2511      1.134        ad  *	Get an object from a pool cache (optionally returning
   2512      1.134        ad  *	the physical address of the object).
   2513       1.43   thorpej  */
   2514      1.134        ad void *
   2515      1.134        ad pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
   2516       1.43   thorpej {
   2517      1.134        ad 	pool_cache_cpu_t *cc;
   2518      1.134        ad 	pcg_t *pcg;
   2519      1.134        ad 	void *object;
   2520       1.60   thorpej 	int s;
   2521       1.43   thorpej 
   2522      1.134        ad #ifdef LOCKDEBUG
   2523      1.155        ad 	if (flags & PR_WAITOK) {
   2524      1.154      yamt 		ASSERT_SLEEPABLE();
   2525      1.155        ad 	}
   2526      1.134        ad #endif
   2527      1.125        ad 
   2528  1.158.2.2      yamt 	/* Lock out interrupts and disable preemption. */
   2529  1.158.2.2      yamt 	s = splvm();
   2530  1.158.2.2      yamt 	while (/* CONSTCOND */ true) {
   2531      1.134        ad 		/* Try and allocate an object from the current group. */
   2532  1.158.2.2      yamt 		cc = pc->pc_cpus[curcpu()->ci_index];
   2533  1.158.2.2      yamt 		KASSERT(cc->cc_cache == pc);
   2534      1.134        ad 	 	pcg = cc->cc_current;
   2535  1.158.2.2      yamt 		if (__predict_true(pcg->pcg_avail > 0)) {
   2536      1.134        ad 			object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;
   2537  1.158.2.2      yamt 			if (__predict_false(pap != NULL))
   2538      1.134        ad 				*pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa;
   2539      1.148      yamt #if defined(DIAGNOSTIC)
   2540      1.134        ad 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL;
   2541  1.158.2.2      yamt 			KASSERT(pcg->pcg_avail < pcg->pcg_size);
   2542      1.134        ad 			KASSERT(object != NULL);
   2543  1.158.2.2      yamt #endif
   2544      1.134        ad 			cc->cc_hits++;
   2545  1.158.2.2      yamt 			splx(s);
   2546      1.134        ad 			FREECHECK_OUT(&pc->pc_freecheck, object);
   2547      1.134        ad 			return object;
   2548       1.43   thorpej 		}
   2549       1.43   thorpej 
   2550       1.43   thorpej 		/*
   2551      1.134        ad 		 * That failed.  If the previous group isn't empty, swap
   2552      1.134        ad 		 * it with the current group and allocate from there.
   2553       1.43   thorpej 		 */
   2554      1.134        ad 		pcg = cc->cc_previous;
   2555  1.158.2.2      yamt 		if (__predict_true(pcg->pcg_avail > 0)) {
   2556      1.134        ad 			cc->cc_previous = cc->cc_current;
   2557      1.134        ad 			cc->cc_current = pcg;
   2558      1.134        ad 			continue;
   2559       1.43   thorpej 		}
   2560       1.43   thorpej 
   2561      1.134        ad 		/*
   2562      1.134        ad 		 * Can't allocate from either group: try the slow path.
   2563      1.134        ad 		 * If get_slow() allocated an object for us, or if
   2564  1.158.2.2      yamt 		 * no more objects are available, it will return false.
   2565      1.134        ad 		 * Otherwise, we need to retry.
   2566      1.134        ad 		 */
   2567  1.158.2.2      yamt 		if (!pool_cache_get_slow(cc, s, &object, pap, flags))
   2568  1.158.2.2      yamt 			break;
   2569  1.158.2.2      yamt 	}
   2570       1.43   thorpej 
   2571      1.134        ad 	return object;
   2572       1.51   thorpej }
   2573       1.51   thorpej 
   2574  1.158.2.2      yamt static bool __noinline
   2575  1.158.2.2      yamt pool_cache_put_slow(pool_cache_cpu_t *cc, int s, void *object)
   2576       1.51   thorpej {
   2577      1.134        ad 	pcg_t *pcg, *cur;
   2578      1.134        ad 	uint64_t ncsw;
   2579      1.134        ad 	pool_cache_t pc;
   2580  1.158.2.2      yamt 
   2581  1.158.2.2      yamt 	KASSERT(cc->cc_current->pcg_avail == cc->cc_current->pcg_size);
   2582  1.158.2.2      yamt 	KASSERT(cc->cc_previous->pcg_avail == cc->cc_previous->pcg_size);
   2583       1.51   thorpej 
   2584      1.134        ad 	pc = cc->cc_cache;
   2585  1.158.2.2      yamt 	pcg = NULL;
   2586      1.134        ad 	cc->cc_misses++;
   2587       1.43   thorpej 
   2588      1.134        ad 	/*
   2589  1.158.2.2      yamt 	 * If there are no empty groups in the cache then allocate one
   2590  1.158.2.2      yamt 	 * while still unlocked.
   2591      1.134        ad 	 */
   2592  1.158.2.2      yamt 	if (__predict_false(pc->pc_emptygroups == NULL)) {
   2593  1.158.2.2      yamt 		if (__predict_true(!pool_cache_disable)) {
   2594  1.158.2.2      yamt 			pcg = pool_get(pc->pc_pcgpool, PR_NOWAIT);
   2595  1.158.2.2      yamt 		}
   2596  1.158.2.2      yamt 		if (__predict_true(pcg != NULL)) {
   2597  1.158.2.2      yamt 			pcg->pcg_avail = 0;
   2598  1.158.2.2      yamt 			pcg->pcg_size = pc->pc_pcgsize;
   2599  1.158.2.2      yamt 		}
   2600  1.158.2.2      yamt 	}
   2601  1.158.2.2      yamt 
   2602  1.158.2.2      yamt 	/* Lock the cache. */
   2603  1.158.2.2      yamt 	if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
   2604      1.134        ad 		ncsw = curlwp->l_ncsw;
   2605      1.134        ad 		mutex_enter(&pc->pc_lock);
   2606      1.134        ad 		pc->pc_contended++;
   2607      1.102       chs 
   2608      1.134        ad 		/*
   2609  1.158.2.2      yamt 		 * If we context switched while locking, then our view of
   2610  1.158.2.2      yamt 		 * the per-CPU data is invalid: retry.
   2611      1.134        ad 		 */
   2612  1.158.2.2      yamt 		if (__predict_false(curlwp->l_ncsw != ncsw)) {
   2613      1.134        ad 			mutex_exit(&pc->pc_lock);
   2614  1.158.2.2      yamt 			if (pcg != NULL) {
   2615  1.158.2.2      yamt 				pool_put(pc->pc_pcgpool, pcg);
   2616  1.158.2.2      yamt 			}
   2617  1.158.2.2      yamt 			return true;
   2618      1.134        ad 		}
   2619      1.134        ad 	}
   2620      1.130        ad 
   2621  1.158.2.2      yamt 	/* If there are no empty groups in the cache then allocate one. */
   2622  1.158.2.2      yamt 	if (pcg == NULL && pc->pc_emptygroups != NULL) {
   2623  1.158.2.2      yamt 		pcg = pc->pc_emptygroups;
   2624      1.134        ad 		pc->pc_emptygroups = pcg->pcg_next;
   2625  1.158.2.2      yamt 		pc->pc_nempty--;
   2626  1.158.2.2      yamt 	}
   2627  1.158.2.2      yamt 
   2628  1.158.2.2      yamt 	/*
   2629  1.158.2.2      yamt 	 * If there's a empty group, release our full group back
   2630  1.158.2.2      yamt 	 * to the cache.  Install the empty group to the local CPU
   2631  1.158.2.2      yamt 	 * and return.
   2632  1.158.2.2      yamt 	 */
   2633  1.158.2.2      yamt 	if (pcg != NULL) {
   2634  1.158.2.2      yamt 		KASSERT(pcg->pcg_avail == 0);
   2635  1.158.2.2      yamt 		if (__predict_false(cc->cc_previous == &pcg_dummy)) {
   2636      1.146        ad 			cc->cc_previous = pcg;
   2637      1.146        ad 		} else {
   2638  1.158.2.2      yamt 			cur = cc->cc_current;
   2639  1.158.2.2      yamt 			if (__predict_true(cur != &pcg_dummy)) {
   2640  1.158.2.2      yamt 				KASSERT(cur->pcg_avail == cur->pcg_size);
   2641      1.146        ad 				cur->pcg_next = pc->pc_fullgroups;
   2642      1.146        ad 				pc->pc_fullgroups = cur;
   2643      1.146        ad 				pc->pc_nfull++;
   2644      1.146        ad 			}
   2645      1.146        ad 			cc->cc_current = pcg;
   2646      1.146        ad 		}
   2647      1.134        ad 		pc->pc_hits++;
   2648      1.134        ad 		mutex_exit(&pc->pc_lock);
   2649  1.158.2.2      yamt 		return true;
   2650      1.102       chs 	}
   2651      1.105  christos 
   2652      1.134        ad 	/*
   2653  1.158.2.2      yamt 	 * Nothing available locally or in cache, and we didn't
   2654  1.158.2.2      yamt 	 * allocate an empty group.  Take the slow path and destroy
   2655  1.158.2.2      yamt 	 * the object here and now.
   2656      1.134        ad 	 */
   2657      1.134        ad 	pc->pc_misses++;
   2658      1.134        ad 	mutex_exit(&pc->pc_lock);
   2659  1.158.2.2      yamt 	splx(s);
   2660  1.158.2.2      yamt 	pool_cache_destruct_object(pc, object);
   2661      1.103       chs 
   2662  1.158.2.2      yamt 	return false;
   2663      1.134        ad }
   2664      1.102       chs 
   2665       1.43   thorpej /*
   2666      1.134        ad  * pool_cache_put{,_paddr}:
   2667       1.43   thorpej  *
   2668      1.134        ad  *	Put an object back to the pool cache (optionally caching the
   2669      1.134        ad  *	physical address of the object).
   2670       1.43   thorpej  */
   2671      1.101   thorpej void
   2672      1.134        ad pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
   2673       1.43   thorpej {
   2674      1.134        ad 	pool_cache_cpu_t *cc;
   2675      1.134        ad 	pcg_t *pcg;
   2676      1.134        ad 	int s;
   2677      1.101   thorpej 
   2678  1.158.2.2      yamt 	KASSERT(object != NULL);
   2679      1.134        ad 	FREECHECK_IN(&pc->pc_freecheck, object);
   2680      1.101   thorpej 
   2681  1.158.2.2      yamt 	/* Lock out interrupts and disable preemption. */
   2682  1.158.2.2      yamt 	s = splvm();
   2683  1.158.2.2      yamt 	while (/* CONSTCOND */ true) {
   2684      1.134        ad 		/* If the current group isn't full, release it there. */
   2685  1.158.2.2      yamt 		cc = pc->pc_cpus[curcpu()->ci_index];
   2686  1.158.2.2      yamt 		KASSERT(cc->cc_cache == pc);
   2687      1.134        ad 	 	pcg = cc->cc_current;
   2688  1.158.2.2      yamt 		if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
   2689      1.134        ad 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object;
   2690      1.134        ad 			pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa;
   2691      1.134        ad 			pcg->pcg_avail++;
   2692      1.134        ad 			cc->cc_hits++;
   2693  1.158.2.2      yamt 			splx(s);
   2694      1.134        ad 			return;
   2695      1.134        ad 		}
   2696       1.43   thorpej 
   2697      1.134        ad 		/*
   2698  1.158.2.2      yamt 		 * That failed.  If the previous group isn't full, swap
   2699      1.134        ad 		 * it with the current group and try again.
   2700      1.134        ad 		 */
   2701      1.134        ad 		pcg = cc->cc_previous;
   2702  1.158.2.2      yamt 		if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
   2703      1.134        ad 			cc->cc_previous = cc->cc_current;
   2704      1.134        ad 			cc->cc_current = pcg;
   2705      1.134        ad 			continue;
   2706      1.134        ad 		}
   2707       1.43   thorpej 
   2708      1.134        ad 		/*
   2709      1.134        ad 		 * Can't free to either group: try the slow path.
   2710      1.134        ad 		 * If put_slow() releases the object for us, it
   2711  1.158.2.2      yamt 		 * will return false.  Otherwise we need to retry.
   2712      1.134        ad 		 */
   2713  1.158.2.2      yamt 		if (!pool_cache_put_slow(cc, s, object))
   2714  1.158.2.2      yamt 			break;
   2715  1.158.2.2      yamt 	}
   2716       1.43   thorpej }
   2717       1.43   thorpej 
   2718       1.43   thorpej /*
   2719      1.134        ad  * pool_cache_xcall:
   2720       1.43   thorpej  *
   2721      1.134        ad  *	Transfer objects from the per-CPU cache to the global cache.
   2722      1.134        ad  *	Run within a cross-call thread.
   2723       1.43   thorpej  */
   2724       1.43   thorpej static void
   2725      1.134        ad pool_cache_xcall(pool_cache_t pc)
   2726       1.43   thorpej {
   2727      1.134        ad 	pool_cache_cpu_t *cc;
   2728      1.134        ad 	pcg_t *prev, *cur, **list;
   2729  1.158.2.2      yamt 	int s;
   2730      1.134        ad 
   2731      1.134        ad 	s = splvm();
   2732      1.134        ad 	mutex_enter(&pc->pc_lock);
   2733  1.158.2.2      yamt 	cc = pc->pc_cpus[curcpu()->ci_index];
   2734  1.158.2.2      yamt 	cur = cc->cc_current;
   2735  1.158.2.2      yamt 	cc->cc_current = __UNCONST(&pcg_dummy);
   2736  1.158.2.2      yamt 	prev = cc->cc_previous;
   2737  1.158.2.2      yamt 	cc->cc_previous = __UNCONST(&pcg_dummy);
   2738  1.158.2.2      yamt 	if (cur != &pcg_dummy) {
   2739      1.142        ad 		if (cur->pcg_avail == cur->pcg_size) {
   2740      1.134        ad 			list = &pc->pc_fullgroups;
   2741      1.134        ad 			pc->pc_nfull++;
   2742      1.134        ad 		} else if (cur->pcg_avail == 0) {
   2743      1.134        ad 			list = &pc->pc_emptygroups;
   2744      1.134        ad 			pc->pc_nempty++;
   2745      1.134        ad 		} else {
   2746      1.134        ad 			list = &pc->pc_partgroups;
   2747      1.134        ad 			pc->pc_npart++;
   2748      1.134        ad 		}
   2749      1.134        ad 		cur->pcg_next = *list;
   2750      1.134        ad 		*list = cur;
   2751      1.134        ad 	}
   2752  1.158.2.2      yamt 	if (prev != &pcg_dummy) {
   2753      1.142        ad 		if (prev->pcg_avail == prev->pcg_size) {
   2754      1.134        ad 			list = &pc->pc_fullgroups;
   2755      1.134        ad 			pc->pc_nfull++;
   2756      1.134        ad 		} else if (prev->pcg_avail == 0) {
   2757      1.134        ad 			list = &pc->pc_emptygroups;
   2758      1.134        ad 			pc->pc_nempty++;
   2759      1.134        ad 		} else {
   2760      1.134        ad 			list = &pc->pc_partgroups;
   2761      1.134        ad 			pc->pc_npart++;
   2762      1.134        ad 		}
   2763      1.134        ad 		prev->pcg_next = *list;
   2764      1.134        ad 		*list = prev;
   2765      1.134        ad 	}
   2766      1.134        ad 	mutex_exit(&pc->pc_lock);
   2767      1.134        ad 	splx(s);
   2768        1.3        pk }
   2769       1.66   thorpej 
   2770       1.66   thorpej /*
   2771       1.66   thorpej  * Pool backend allocators.
   2772       1.66   thorpej  *
   2773       1.66   thorpej  * Each pool has a backend allocator that handles allocation, deallocation,
   2774       1.66   thorpej  * and any additional draining that might be needed.
   2775       1.66   thorpej  *
   2776       1.66   thorpej  * We provide two standard allocators:
   2777       1.66   thorpej  *
   2778       1.66   thorpej  *	pool_allocator_kmem - the default when no allocator is specified
   2779       1.66   thorpej  *
   2780       1.66   thorpej  *	pool_allocator_nointr - used for pools that will not be accessed
   2781       1.66   thorpej  *	in interrupt context.
   2782       1.66   thorpej  */
   2783       1.66   thorpej void	*pool_page_alloc(struct pool *, int);
   2784       1.66   thorpej void	pool_page_free(struct pool *, void *);
   2785       1.66   thorpej 
   2786      1.112     bjh21 #ifdef POOL_SUBPAGE
   2787      1.112     bjh21 struct pool_allocator pool_allocator_kmem_fullpage = {
   2788      1.112     bjh21 	pool_page_alloc, pool_page_free, 0,
   2789      1.117      yamt 	.pa_backingmapptr = &kmem_map,
   2790      1.112     bjh21 };
   2791      1.112     bjh21 #else
   2792       1.66   thorpej struct pool_allocator pool_allocator_kmem = {
   2793       1.66   thorpej 	pool_page_alloc, pool_page_free, 0,
   2794      1.117      yamt 	.pa_backingmapptr = &kmem_map,
   2795       1.66   thorpej };
   2796      1.112     bjh21 #endif
   2797       1.66   thorpej 
   2798       1.66   thorpej void	*pool_page_alloc_nointr(struct pool *, int);
   2799       1.66   thorpej void	pool_page_free_nointr(struct pool *, void *);
   2800       1.66   thorpej 
   2801      1.112     bjh21 #ifdef POOL_SUBPAGE
   2802      1.112     bjh21 struct pool_allocator pool_allocator_nointr_fullpage = {
   2803      1.112     bjh21 	pool_page_alloc_nointr, pool_page_free_nointr, 0,
   2804      1.117      yamt 	.pa_backingmapptr = &kernel_map,
   2805      1.112     bjh21 };
   2806      1.112     bjh21 #else
   2807       1.66   thorpej struct pool_allocator pool_allocator_nointr = {
   2808       1.66   thorpej 	pool_page_alloc_nointr, pool_page_free_nointr, 0,
   2809      1.117      yamt 	.pa_backingmapptr = &kernel_map,
   2810       1.66   thorpej };
   2811      1.112     bjh21 #endif
   2812       1.66   thorpej 
   2813       1.66   thorpej #ifdef POOL_SUBPAGE
   2814       1.66   thorpej void	*pool_subpage_alloc(struct pool *, int);
   2815       1.66   thorpej void	pool_subpage_free(struct pool *, void *);
   2816       1.66   thorpej 
   2817      1.112     bjh21 struct pool_allocator pool_allocator_kmem = {
   2818      1.112     bjh21 	pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
   2819      1.117      yamt 	.pa_backingmapptr = &kmem_map,
   2820      1.112     bjh21 };
   2821      1.112     bjh21 
   2822      1.112     bjh21 void	*pool_subpage_alloc_nointr(struct pool *, int);
   2823      1.112     bjh21 void	pool_subpage_free_nointr(struct pool *, void *);
   2824      1.112     bjh21 
   2825      1.112     bjh21 struct pool_allocator pool_allocator_nointr = {
   2826      1.112     bjh21 	pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
   2827      1.117      yamt 	.pa_backingmapptr = &kmem_map,
   2828       1.66   thorpej };
   2829       1.66   thorpej #endif /* POOL_SUBPAGE */
   2830       1.66   thorpej 
   2831      1.117      yamt static void *
   2832      1.117      yamt pool_allocator_alloc(struct pool *pp, int flags)
   2833       1.66   thorpej {
   2834      1.117      yamt 	struct pool_allocator *pa = pp->pr_alloc;
   2835       1.66   thorpej 	void *res;
   2836       1.66   thorpej 
   2837      1.117      yamt 	res = (*pa->pa_alloc)(pp, flags);
   2838      1.117      yamt 	if (res == NULL && (flags & PR_WAITOK) == 0) {
   2839       1.66   thorpej 		/*
   2840      1.117      yamt 		 * We only run the drain hook here if PR_NOWAIT.
   2841      1.117      yamt 		 * In other cases, the hook will be run in
   2842      1.117      yamt 		 * pool_reclaim().
   2843       1.66   thorpej 		 */
   2844      1.117      yamt 		if (pp->pr_drain_hook != NULL) {
   2845      1.117      yamt 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
   2846      1.117      yamt 			res = (*pa->pa_alloc)(pp, flags);
   2847       1.66   thorpej 		}
   2848      1.117      yamt 	}
   2849      1.117      yamt 	return res;
   2850       1.66   thorpej }
   2851       1.66   thorpej 
   2852      1.117      yamt static void
   2853       1.66   thorpej pool_allocator_free(struct pool *pp, void *v)
   2854       1.66   thorpej {
   2855       1.66   thorpej 	struct pool_allocator *pa = pp->pr_alloc;
   2856       1.66   thorpej 
   2857       1.66   thorpej 	(*pa->pa_free)(pp, v);
   2858       1.66   thorpej }
   2859       1.66   thorpej 
   2860       1.66   thorpej void *
   2861      1.124      yamt pool_page_alloc(struct pool *pp, int flags)
   2862       1.66   thorpej {
   2863      1.127   thorpej 	bool waitok = (flags & PR_WAITOK) ? true : false;
   2864       1.66   thorpej 
   2865      1.100      yamt 	return ((void *) uvm_km_alloc_poolpage_cache(kmem_map, waitok));
   2866       1.66   thorpej }
   2867       1.66   thorpej 
   2868       1.66   thorpej void
   2869      1.124      yamt pool_page_free(struct pool *pp, void *v)
   2870       1.66   thorpej {
   2871       1.66   thorpej 
   2872       1.98      yamt 	uvm_km_free_poolpage_cache(kmem_map, (vaddr_t) v);
   2873       1.98      yamt }
   2874       1.98      yamt 
   2875       1.98      yamt static void *
   2876      1.124      yamt pool_page_alloc_meta(struct pool *pp, int flags)
   2877       1.98      yamt {
   2878      1.127   thorpej 	bool waitok = (flags & PR_WAITOK) ? true : false;
   2879       1.98      yamt 
   2880      1.100      yamt 	return ((void *) uvm_km_alloc_poolpage(kmem_map, waitok));
   2881       1.98      yamt }
   2882       1.98      yamt 
   2883       1.98      yamt static void
   2884      1.124      yamt pool_page_free_meta(struct pool *pp, void *v)
   2885       1.98      yamt {
   2886       1.98      yamt 
   2887      1.100      yamt 	uvm_km_free_poolpage(kmem_map, (vaddr_t) v);
   2888       1.66   thorpej }
   2889       1.66   thorpej 
   2890       1.66   thorpej #ifdef POOL_SUBPAGE
   2891       1.66   thorpej /* Sub-page allocator, for machines with large hardware pages. */
   2892       1.66   thorpej void *
   2893       1.66   thorpej pool_subpage_alloc(struct pool *pp, int flags)
   2894       1.66   thorpej {
   2895      1.134        ad 	return pool_get(&psppool, flags);
   2896       1.66   thorpej }
   2897       1.66   thorpej 
   2898       1.66   thorpej void
   2899       1.66   thorpej pool_subpage_free(struct pool *pp, void *v)
   2900       1.66   thorpej {
   2901       1.66   thorpej 	pool_put(&psppool, v);
   2902       1.66   thorpej }
   2903       1.66   thorpej 
   2904       1.66   thorpej /* We don't provide a real nointr allocator.  Maybe later. */
   2905       1.66   thorpej void *
   2906      1.112     bjh21 pool_subpage_alloc_nointr(struct pool *pp, int flags)
   2907       1.66   thorpej {
   2908       1.66   thorpej 
   2909       1.66   thorpej 	return (pool_subpage_alloc(pp, flags));
   2910       1.66   thorpej }
   2911       1.66   thorpej 
   2912       1.66   thorpej void
   2913      1.112     bjh21 pool_subpage_free_nointr(struct pool *pp, void *v)
   2914       1.66   thorpej {
   2915       1.66   thorpej 
   2916       1.66   thorpej 	pool_subpage_free(pp, v);
   2917       1.66   thorpej }
   2918      1.112     bjh21 #endif /* POOL_SUBPAGE */
   2919       1.66   thorpej void *
   2920      1.124      yamt pool_page_alloc_nointr(struct pool *pp, int flags)
   2921       1.66   thorpej {
   2922      1.127   thorpej 	bool waitok = (flags & PR_WAITOK) ? true : false;
   2923       1.66   thorpej 
   2924      1.100      yamt 	return ((void *) uvm_km_alloc_poolpage_cache(kernel_map, waitok));
   2925       1.66   thorpej }
   2926       1.66   thorpej 
   2927       1.66   thorpej void
   2928      1.124      yamt pool_page_free_nointr(struct pool *pp, void *v)
   2929       1.66   thorpej {
   2930       1.66   thorpej 
   2931       1.98      yamt 	uvm_km_free_poolpage_cache(kernel_map, (vaddr_t) v);
   2932       1.66   thorpej }
   2933      1.141      yamt 
   2934      1.141      yamt #if defined(DDB)
   2935      1.141      yamt static bool
   2936      1.141      yamt pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
   2937      1.141      yamt {
   2938      1.141      yamt 
   2939      1.141      yamt 	return (uintptr_t)ph->ph_page <= addr &&
   2940      1.141      yamt 	    addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz;
   2941      1.141      yamt }
   2942      1.141      yamt 
   2943      1.143      yamt static bool
   2944      1.143      yamt pool_in_item(struct pool *pp, void *item, uintptr_t addr)
   2945      1.143      yamt {
   2946      1.143      yamt 
   2947      1.143      yamt 	return (uintptr_t)item <= addr && addr < (uintptr_t)item + pp->pr_size;
   2948      1.143      yamt }
   2949      1.143      yamt 
   2950      1.143      yamt static bool
   2951      1.143      yamt pool_in_cg(struct pool *pp, struct pool_cache_group *pcg, uintptr_t addr)
   2952      1.143      yamt {
   2953      1.143      yamt 	int i;
   2954      1.143      yamt 
   2955      1.143      yamt 	if (pcg == NULL) {
   2956      1.143      yamt 		return false;
   2957      1.143      yamt 	}
   2958      1.144      yamt 	for (i = 0; i < pcg->pcg_avail; i++) {
   2959      1.143      yamt 		if (pool_in_item(pp, pcg->pcg_objects[i].pcgo_va, addr)) {
   2960      1.143      yamt 			return true;
   2961      1.143      yamt 		}
   2962      1.143      yamt 	}
   2963      1.143      yamt 	return false;
   2964      1.143      yamt }
   2965      1.143      yamt 
   2966      1.143      yamt static bool
   2967      1.143      yamt pool_allocated(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
   2968      1.143      yamt {
   2969      1.143      yamt 
   2970      1.143      yamt 	if ((pp->pr_roflags & PR_NOTOUCH) != 0) {
   2971      1.143      yamt 		unsigned int idx = pr_item_notouch_index(pp, ph, (void *)addr);
   2972      1.143      yamt 		pool_item_bitmap_t *bitmap =
   2973      1.143      yamt 		    ph->ph_bitmap + (idx / BITMAP_SIZE);
   2974      1.143      yamt 		pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
   2975      1.143      yamt 
   2976      1.143      yamt 		return (*bitmap & mask) == 0;
   2977      1.143      yamt 	} else {
   2978      1.143      yamt 		struct pool_item *pi;
   2979      1.143      yamt 
   2980      1.143      yamt 		LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
   2981      1.143      yamt 			if (pool_in_item(pp, pi, addr)) {
   2982      1.143      yamt 				return false;
   2983      1.143      yamt 			}
   2984      1.143      yamt 		}
   2985      1.143      yamt 		return true;
   2986      1.143      yamt 	}
   2987      1.143      yamt }
   2988      1.143      yamt 
   2989      1.141      yamt void
   2990      1.141      yamt pool_whatis(uintptr_t addr, void (*pr)(const char *, ...))
   2991      1.141      yamt {
   2992      1.141      yamt 	struct pool *pp;
   2993      1.141      yamt 
   2994      1.145        ad 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   2995      1.141      yamt 		struct pool_item_header *ph;
   2996      1.141      yamt 		uintptr_t item;
   2997      1.143      yamt 		bool allocated = true;
   2998      1.143      yamt 		bool incache = false;
   2999      1.143      yamt 		bool incpucache = false;
   3000      1.143      yamt 		char cpucachestr[32];
   3001      1.141      yamt 
   3002      1.141      yamt 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
   3003      1.141      yamt 			LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
   3004      1.141      yamt 				if (pool_in_page(pp, ph, addr)) {
   3005      1.141      yamt 					goto found;
   3006      1.141      yamt 				}
   3007      1.141      yamt 			}
   3008      1.141      yamt 			LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
   3009      1.141      yamt 				if (pool_in_page(pp, ph, addr)) {
   3010      1.143      yamt 					allocated =
   3011      1.143      yamt 					    pool_allocated(pp, ph, addr);
   3012      1.143      yamt 					goto found;
   3013      1.143      yamt 				}
   3014      1.143      yamt 			}
   3015      1.143      yamt 			LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
   3016      1.143      yamt 				if (pool_in_page(pp, ph, addr)) {
   3017      1.143      yamt 					allocated = false;
   3018      1.141      yamt 					goto found;
   3019      1.141      yamt 				}
   3020      1.141      yamt 			}
   3021      1.141      yamt 			continue;
   3022      1.141      yamt 		} else {
   3023      1.141      yamt 			ph = pr_find_pagehead_noalign(pp, (void *)addr);
   3024      1.141      yamt 			if (ph == NULL || !pool_in_page(pp, ph, addr)) {
   3025      1.141      yamt 				continue;
   3026      1.141      yamt 			}
   3027      1.143      yamt 			allocated = pool_allocated(pp, ph, addr);
   3028      1.141      yamt 		}
   3029      1.141      yamt found:
   3030      1.143      yamt 		if (allocated && pp->pr_cache) {
   3031      1.143      yamt 			pool_cache_t pc = pp->pr_cache;
   3032      1.143      yamt 			struct pool_cache_group *pcg;
   3033      1.143      yamt 			int i;
   3034      1.143      yamt 
   3035      1.143      yamt 			for (pcg = pc->pc_fullgroups; pcg != NULL;
   3036      1.143      yamt 			    pcg = pcg->pcg_next) {
   3037      1.143      yamt 				if (pool_in_cg(pp, pcg, addr)) {
   3038      1.143      yamt 					incache = true;
   3039      1.143      yamt 					goto print;
   3040      1.143      yamt 				}
   3041      1.143      yamt 			}
   3042      1.143      yamt 			for (i = 0; i < MAXCPUS; i++) {
   3043      1.143      yamt 				pool_cache_cpu_t *cc;
   3044      1.143      yamt 
   3045      1.143      yamt 				if ((cc = pc->pc_cpus[i]) == NULL) {
   3046      1.143      yamt 					continue;
   3047      1.143      yamt 				}
   3048      1.143      yamt 				if (pool_in_cg(pp, cc->cc_current, addr) ||
   3049      1.143      yamt 				    pool_in_cg(pp, cc->cc_previous, addr)) {
   3050      1.143      yamt 					struct cpu_info *ci =
   3051  1.158.2.2      yamt 					    cpu_lookup(i);
   3052      1.143      yamt 
   3053      1.143      yamt 					incpucache = true;
   3054      1.143      yamt 					snprintf(cpucachestr,
   3055      1.143      yamt 					    sizeof(cpucachestr),
   3056      1.143      yamt 					    "cached by CPU %u",
   3057      1.153    martin 					    ci->ci_index);
   3058      1.143      yamt 					goto print;
   3059      1.143      yamt 				}
   3060      1.143      yamt 			}
   3061      1.143      yamt 		}
   3062      1.143      yamt print:
   3063      1.141      yamt 		item = (uintptr_t)ph->ph_page + ph->ph_off;
   3064      1.141      yamt 		item = item + rounddown(addr - item, pp->pr_size);
   3065      1.143      yamt 		(*pr)("%p is %p+%zu in POOL '%s' (%s)\n",
   3066      1.141      yamt 		    (void *)addr, item, (size_t)(addr - item),
   3067      1.143      yamt 		    pp->pr_wchan,
   3068      1.143      yamt 		    incpucache ? cpucachestr :
   3069      1.143      yamt 		    incache ? "cached" : allocated ? "allocated" : "free");
   3070      1.141      yamt 	}
   3071      1.141      yamt }
   3072      1.141      yamt #endif /* defined(DDB) */
   3073