Home | History | Annotate | Line # | Download | only in kern
subr_pool.c revision 1.160.2.1
      1  1.160.2.1  wrstuden /*	$NetBSD: subr_pool.c,v 1.160.2.1 2008/06/23 04:31:51 wrstuden Exp $	*/
      2        1.1        pk 
      3        1.1        pk /*-
      4  1.160.2.1  wrstuden  * Copyright (c) 1997, 1999, 2000, 2002, 2007, 2008 The NetBSD Foundation, Inc.
      5        1.1        pk  * All rights reserved.
      6        1.1        pk  *
      7        1.1        pk  * This code is derived from software contributed to The NetBSD Foundation
      8       1.20   thorpej  * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
      9      1.134        ad  * Simulation Facility, NASA Ames Research Center, and by Andrew Doran.
     10        1.1        pk  *
     11        1.1        pk  * Redistribution and use in source and binary forms, with or without
     12        1.1        pk  * modification, are permitted provided that the following conditions
     13        1.1        pk  * are met:
     14        1.1        pk  * 1. Redistributions of source code must retain the above copyright
     15        1.1        pk  *    notice, this list of conditions and the following disclaimer.
     16        1.1        pk  * 2. Redistributions in binary form must reproduce the above copyright
     17        1.1        pk  *    notice, this list of conditions and the following disclaimer in the
     18        1.1        pk  *    documentation and/or other materials provided with the distribution.
     19        1.1        pk  *
     20        1.1        pk  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21        1.1        pk  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22        1.1        pk  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23        1.1        pk  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24        1.1        pk  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25        1.1        pk  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26        1.1        pk  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27        1.1        pk  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28        1.1        pk  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29        1.1        pk  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30        1.1        pk  * POSSIBILITY OF SUCH DAMAGE.
     31        1.1        pk  */
     32       1.64     lukem 
     33       1.64     lukem #include <sys/cdefs.h>
     34  1.160.2.1  wrstuden __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.160.2.1 2008/06/23 04:31:51 wrstuden Exp $");
     35       1.24    scottr 
     36      1.141      yamt #include "opt_ddb.h"
     37       1.25   thorpej #include "opt_pool.h"
     38       1.24    scottr #include "opt_poollog.h"
     39       1.28   thorpej #include "opt_lockdebug.h"
     40        1.1        pk 
     41        1.1        pk #include <sys/param.h>
     42        1.1        pk #include <sys/systm.h>
     43      1.135      yamt #include <sys/bitops.h>
     44        1.1        pk #include <sys/proc.h>
     45        1.1        pk #include <sys/errno.h>
     46        1.1        pk #include <sys/kernel.h>
     47        1.1        pk #include <sys/malloc.h>
     48        1.1        pk #include <sys/pool.h>
     49       1.20   thorpej #include <sys/syslog.h>
     50      1.125        ad #include <sys/debug.h>
     51      1.134        ad #include <sys/lockdebug.h>
     52      1.134        ad #include <sys/xcall.h>
     53      1.134        ad #include <sys/cpu.h>
     54      1.145        ad #include <sys/atomic.h>
     55        1.3        pk 
     56        1.3        pk #include <uvm/uvm.h>
     57        1.3        pk 
     58        1.1        pk /*
     59        1.1        pk  * Pool resource management utility.
     60        1.3        pk  *
     61       1.88       chs  * Memory is allocated in pages which are split into pieces according to
     62       1.88       chs  * the pool item size. Each page is kept on one of three lists in the
     63       1.88       chs  * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
     64       1.88       chs  * for empty, full and partially-full pages respectively. The individual
     65       1.88       chs  * pool items are on a linked list headed by `ph_itemlist' in each page
     66       1.88       chs  * header. The memory for building the page list is either taken from
     67       1.88       chs  * the allocated pages themselves (for small pool items) or taken from
     68       1.88       chs  * an internal pool of page headers (`phpool').
     69        1.1        pk  */
     70        1.1        pk 
     71        1.3        pk /* List of all pools */
     72      1.145        ad TAILQ_HEAD(,pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
     73      1.134        ad 
     74        1.3        pk /* Private pool for page header structures */
     75       1.97      yamt #define	PHPOOL_MAX	8
     76       1.97      yamt static struct pool phpool[PHPOOL_MAX];
     77      1.135      yamt #define	PHPOOL_FREELIST_NELEM(idx) \
     78      1.135      yamt 	(((idx) == 0) ? 0 : BITMAP_SIZE * (1 << (idx)))
     79        1.3        pk 
     80       1.62     bjh21 #ifdef POOL_SUBPAGE
     81       1.62     bjh21 /* Pool of subpages for use by normal pools. */
     82       1.62     bjh21 static struct pool psppool;
     83       1.62     bjh21 #endif
     84       1.62     bjh21 
     85      1.117      yamt static SLIST_HEAD(, pool_allocator) pa_deferinitq =
     86      1.117      yamt     SLIST_HEAD_INITIALIZER(pa_deferinitq);
     87      1.117      yamt 
     88       1.98      yamt static void *pool_page_alloc_meta(struct pool *, int);
     89       1.98      yamt static void pool_page_free_meta(struct pool *, void *);
     90       1.98      yamt 
     91       1.98      yamt /* allocator for pool metadata */
     92      1.134        ad struct pool_allocator pool_allocator_meta = {
     93      1.117      yamt 	pool_page_alloc_meta, pool_page_free_meta,
     94      1.117      yamt 	.pa_backingmapptr = &kmem_map,
     95       1.98      yamt };
     96       1.98      yamt 
     97        1.3        pk /* # of seconds to retain page after last use */
     98        1.3        pk int pool_inactive_time = 10;
     99        1.3        pk 
    100        1.3        pk /* Next candidate for drainage (see pool_drain()) */
    101       1.23   thorpej static struct pool	*drainpp;
    102       1.23   thorpej 
    103      1.134        ad /* This lock protects both pool_head and drainpp. */
    104      1.134        ad static kmutex_t pool_head_lock;
    105      1.134        ad static kcondvar_t pool_busy;
    106        1.3        pk 
    107      1.135      yamt typedef uint32_t pool_item_bitmap_t;
    108      1.135      yamt #define	BITMAP_SIZE	(CHAR_BIT * sizeof(pool_item_bitmap_t))
    109      1.135      yamt #define	BITMAP_MASK	(BITMAP_SIZE - 1)
    110       1.99      yamt 
    111        1.3        pk struct pool_item_header {
    112        1.3        pk 	/* Page headers */
    113       1.88       chs 	LIST_ENTRY(pool_item_header)
    114        1.3        pk 				ph_pagelist;	/* pool page list */
    115       1.88       chs 	SPLAY_ENTRY(pool_item_header)
    116       1.88       chs 				ph_node;	/* Off-page page headers */
    117      1.128  christos 	void *			ph_page;	/* this page's address */
    118      1.151      yamt 	uint32_t		ph_time;	/* last referenced */
    119      1.135      yamt 	uint16_t		ph_nmissing;	/* # of chunks in use */
    120      1.141      yamt 	uint16_t		ph_off;		/* start offset in page */
    121       1.97      yamt 	union {
    122       1.97      yamt 		/* !PR_NOTOUCH */
    123       1.97      yamt 		struct {
    124      1.102       chs 			LIST_HEAD(, pool_item)
    125       1.97      yamt 				phu_itemlist;	/* chunk list for this page */
    126       1.97      yamt 		} phu_normal;
    127       1.97      yamt 		/* PR_NOTOUCH */
    128       1.97      yamt 		struct {
    129      1.141      yamt 			pool_item_bitmap_t phu_bitmap[1];
    130       1.97      yamt 		} phu_notouch;
    131       1.97      yamt 	} ph_u;
    132        1.3        pk };
    133       1.97      yamt #define	ph_itemlist	ph_u.phu_normal.phu_itemlist
    134      1.135      yamt #define	ph_bitmap	ph_u.phu_notouch.phu_bitmap
    135        1.3        pk 
    136        1.1        pk struct pool_item {
    137        1.3        pk #ifdef DIAGNOSTIC
    138       1.82   thorpej 	u_int pi_magic;
    139       1.33       chs #endif
    140      1.134        ad #define	PI_MAGIC 0xdeaddeadU
    141        1.3        pk 	/* Other entries use only this list entry */
    142      1.102       chs 	LIST_ENTRY(pool_item)	pi_list;
    143        1.3        pk };
    144        1.3        pk 
    145       1.53   thorpej #define	POOL_NEEDS_CATCHUP(pp)						\
    146       1.53   thorpej 	((pp)->pr_nitems < (pp)->pr_minitems)
    147       1.53   thorpej 
    148       1.43   thorpej /*
    149       1.43   thorpej  * Pool cache management.
    150       1.43   thorpej  *
    151       1.43   thorpej  * Pool caches provide a way for constructed objects to be cached by the
    152       1.43   thorpej  * pool subsystem.  This can lead to performance improvements by avoiding
    153       1.43   thorpej  * needless object construction/destruction; it is deferred until absolutely
    154       1.43   thorpej  * necessary.
    155       1.43   thorpej  *
    156      1.134        ad  * Caches are grouped into cache groups.  Each cache group references up
    157      1.134        ad  * to PCG_NUMOBJECTS constructed objects.  When a cache allocates an
    158      1.134        ad  * object from the pool, it calls the object's constructor and places it
    159      1.134        ad  * into a cache group.  When a cache group frees an object back to the
    160      1.134        ad  * pool, it first calls the object's destructor.  This allows the object
    161      1.134        ad  * to persist in constructed form while freed to the cache.
    162      1.134        ad  *
    163      1.134        ad  * The pool references each cache, so that when a pool is drained by the
    164      1.134        ad  * pagedaemon, it can drain each individual cache as well.  Each time a
    165      1.134        ad  * cache is drained, the most idle cache group is freed to the pool in
    166      1.134        ad  * its entirety.
    167       1.43   thorpej  *
    168       1.43   thorpej  * Pool caches are layed on top of pools.  By layering them, we can avoid
    169       1.43   thorpej  * the complexity of cache management for pools which would not benefit
    170       1.43   thorpej  * from it.
    171       1.43   thorpej  */
    172       1.43   thorpej 
    173      1.142        ad static struct pool pcg_normal_pool;
    174      1.142        ad static struct pool pcg_large_pool;
    175      1.134        ad static struct pool cache_pool;
    176      1.134        ad static struct pool cache_cpu_pool;
    177        1.3        pk 
    178      1.145        ad /* List of all caches. */
    179      1.145        ad TAILQ_HEAD(,pool_cache) pool_cache_head =
    180      1.145        ad     TAILQ_HEAD_INITIALIZER(pool_cache_head);
    181      1.145        ad 
    182      1.145        ad int pool_cache_disable;
    183      1.145        ad 
    184      1.145        ad 
    185      1.134        ad static pool_cache_cpu_t *pool_cache_put_slow(pool_cache_cpu_t *, int *,
    186      1.134        ad 					     void *, paddr_t);
    187      1.134        ad static pool_cache_cpu_t *pool_cache_get_slow(pool_cache_cpu_t *, int *,
    188      1.134        ad 					     void **, paddr_t *, int);
    189      1.134        ad static void	pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
    190      1.134        ad static void	pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
    191      1.134        ad static void	pool_cache_xcall(pool_cache_t);
    192        1.3        pk 
    193       1.42   thorpej static int	pool_catchup(struct pool *);
    194      1.128  christos static void	pool_prime_page(struct pool *, void *,
    195       1.55   thorpej 		    struct pool_item_header *);
    196       1.88       chs static void	pool_update_curpage(struct pool *);
    197       1.66   thorpej 
    198      1.113      yamt static int	pool_grow(struct pool *, int);
    199      1.117      yamt static void	*pool_allocator_alloc(struct pool *, int);
    200      1.117      yamt static void	pool_allocator_free(struct pool *, void *);
    201        1.3        pk 
    202       1.97      yamt static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
    203       1.88       chs 	void (*)(const char *, ...));
    204       1.42   thorpej static void pool_print1(struct pool *, const char *,
    205       1.42   thorpej 	void (*)(const char *, ...));
    206        1.3        pk 
    207       1.88       chs static int pool_chk_page(struct pool *, const char *,
    208       1.88       chs 			 struct pool_item_header *);
    209       1.88       chs 
    210        1.3        pk /*
    211       1.52   thorpej  * Pool log entry. An array of these is allocated in pool_init().
    212        1.3        pk  */
    213        1.3        pk struct pool_log {
    214        1.3        pk 	const char	*pl_file;
    215        1.3        pk 	long		pl_line;
    216        1.3        pk 	int		pl_action;
    217       1.25   thorpej #define	PRLOG_GET	1
    218       1.25   thorpej #define	PRLOG_PUT	2
    219        1.3        pk 	void		*pl_addr;
    220        1.1        pk };
    221        1.1        pk 
    222       1.86      matt #ifdef POOL_DIAGNOSTIC
    223        1.3        pk /* Number of entries in pool log buffers */
    224       1.17   thorpej #ifndef POOL_LOGSIZE
    225       1.17   thorpej #define	POOL_LOGSIZE	10
    226       1.17   thorpej #endif
    227       1.17   thorpej 
    228       1.17   thorpej int pool_logsize = POOL_LOGSIZE;
    229        1.1        pk 
    230      1.110     perry static inline void
    231       1.42   thorpej pr_log(struct pool *pp, void *v, int action, const char *file, long line)
    232        1.3        pk {
    233        1.3        pk 	int n = pp->pr_curlogentry;
    234        1.3        pk 	struct pool_log *pl;
    235        1.3        pk 
    236       1.20   thorpej 	if ((pp->pr_roflags & PR_LOGGING) == 0)
    237        1.3        pk 		return;
    238        1.3        pk 
    239        1.3        pk 	/*
    240        1.3        pk 	 * Fill in the current entry. Wrap around and overwrite
    241        1.3        pk 	 * the oldest entry if necessary.
    242        1.3        pk 	 */
    243        1.3        pk 	pl = &pp->pr_log[n];
    244        1.3        pk 	pl->pl_file = file;
    245        1.3        pk 	pl->pl_line = line;
    246        1.3        pk 	pl->pl_action = action;
    247        1.3        pk 	pl->pl_addr = v;
    248        1.3        pk 	if (++n >= pp->pr_logsize)
    249        1.3        pk 		n = 0;
    250        1.3        pk 	pp->pr_curlogentry = n;
    251        1.3        pk }
    252        1.3        pk 
    253        1.3        pk static void
    254       1.42   thorpej pr_printlog(struct pool *pp, struct pool_item *pi,
    255       1.42   thorpej     void (*pr)(const char *, ...))
    256        1.3        pk {
    257        1.3        pk 	int i = pp->pr_logsize;
    258        1.3        pk 	int n = pp->pr_curlogentry;
    259        1.3        pk 
    260       1.20   thorpej 	if ((pp->pr_roflags & PR_LOGGING) == 0)
    261        1.3        pk 		return;
    262        1.3        pk 
    263        1.3        pk 	/*
    264        1.3        pk 	 * Print all entries in this pool's log.
    265        1.3        pk 	 */
    266        1.3        pk 	while (i-- > 0) {
    267        1.3        pk 		struct pool_log *pl = &pp->pr_log[n];
    268        1.3        pk 		if (pl->pl_action != 0) {
    269       1.25   thorpej 			if (pi == NULL || pi == pl->pl_addr) {
    270       1.25   thorpej 				(*pr)("\tlog entry %d:\n", i);
    271       1.25   thorpej 				(*pr)("\t\taction = %s, addr = %p\n",
    272       1.25   thorpej 				    pl->pl_action == PRLOG_GET ? "get" : "put",
    273       1.25   thorpej 				    pl->pl_addr);
    274       1.25   thorpej 				(*pr)("\t\tfile: %s at line %lu\n",
    275       1.25   thorpej 				    pl->pl_file, pl->pl_line);
    276       1.25   thorpej 			}
    277        1.3        pk 		}
    278        1.3        pk 		if (++n >= pp->pr_logsize)
    279        1.3        pk 			n = 0;
    280        1.3        pk 	}
    281        1.3        pk }
    282       1.25   thorpej 
    283      1.110     perry static inline void
    284       1.42   thorpej pr_enter(struct pool *pp, const char *file, long line)
    285       1.25   thorpej {
    286       1.25   thorpej 
    287       1.34   thorpej 	if (__predict_false(pp->pr_entered_file != NULL)) {
    288       1.25   thorpej 		printf("pool %s: reentrancy at file %s line %ld\n",
    289       1.25   thorpej 		    pp->pr_wchan, file, line);
    290       1.25   thorpej 		printf("         previous entry at file %s line %ld\n",
    291       1.25   thorpej 		    pp->pr_entered_file, pp->pr_entered_line);
    292       1.25   thorpej 		panic("pr_enter");
    293       1.25   thorpej 	}
    294       1.25   thorpej 
    295       1.25   thorpej 	pp->pr_entered_file = file;
    296       1.25   thorpej 	pp->pr_entered_line = line;
    297       1.25   thorpej }
    298       1.25   thorpej 
    299      1.110     perry static inline void
    300       1.42   thorpej pr_leave(struct pool *pp)
    301       1.25   thorpej {
    302       1.25   thorpej 
    303       1.34   thorpej 	if (__predict_false(pp->pr_entered_file == NULL)) {
    304       1.25   thorpej 		printf("pool %s not entered?\n", pp->pr_wchan);
    305       1.25   thorpej 		panic("pr_leave");
    306       1.25   thorpej 	}
    307       1.25   thorpej 
    308       1.25   thorpej 	pp->pr_entered_file = NULL;
    309       1.25   thorpej 	pp->pr_entered_line = 0;
    310       1.25   thorpej }
    311       1.25   thorpej 
    312      1.110     perry static inline void
    313       1.42   thorpej pr_enter_check(struct pool *pp, void (*pr)(const char *, ...))
    314       1.25   thorpej {
    315       1.25   thorpej 
    316       1.25   thorpej 	if (pp->pr_entered_file != NULL)
    317       1.25   thorpej 		(*pr)("\n\tcurrently entered from file %s line %ld\n",
    318       1.25   thorpej 		    pp->pr_entered_file, pp->pr_entered_line);
    319       1.25   thorpej }
    320        1.3        pk #else
    321       1.25   thorpej #define	pr_log(pp, v, action, file, line)
    322       1.25   thorpej #define	pr_printlog(pp, pi, pr)
    323       1.25   thorpej #define	pr_enter(pp, file, line)
    324       1.25   thorpej #define	pr_leave(pp)
    325       1.25   thorpej #define	pr_enter_check(pp, pr)
    326       1.59   thorpej #endif /* POOL_DIAGNOSTIC */
    327        1.3        pk 
    328      1.135      yamt static inline unsigned int
    329       1.97      yamt pr_item_notouch_index(const struct pool *pp, const struct pool_item_header *ph,
    330       1.97      yamt     const void *v)
    331       1.97      yamt {
    332       1.97      yamt 	const char *cp = v;
    333      1.135      yamt 	unsigned int idx;
    334       1.97      yamt 
    335       1.97      yamt 	KASSERT(pp->pr_roflags & PR_NOTOUCH);
    336      1.128  christos 	idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
    337       1.97      yamt 	KASSERT(idx < pp->pr_itemsperpage);
    338       1.97      yamt 	return idx;
    339       1.97      yamt }
    340       1.97      yamt 
    341      1.110     perry static inline void
    342       1.97      yamt pr_item_notouch_put(const struct pool *pp, struct pool_item_header *ph,
    343       1.97      yamt     void *obj)
    344       1.97      yamt {
    345      1.135      yamt 	unsigned int idx = pr_item_notouch_index(pp, ph, obj);
    346      1.135      yamt 	pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE);
    347      1.135      yamt 	pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
    348       1.97      yamt 
    349      1.135      yamt 	KASSERT((*bitmap & mask) == 0);
    350      1.135      yamt 	*bitmap |= mask;
    351       1.97      yamt }
    352       1.97      yamt 
    353      1.110     perry static inline void *
    354       1.97      yamt pr_item_notouch_get(const struct pool *pp, struct pool_item_header *ph)
    355       1.97      yamt {
    356      1.135      yamt 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
    357      1.135      yamt 	unsigned int idx;
    358      1.135      yamt 	int i;
    359       1.97      yamt 
    360      1.135      yamt 	for (i = 0; ; i++) {
    361      1.135      yamt 		int bit;
    362       1.97      yamt 
    363      1.135      yamt 		KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage);
    364      1.135      yamt 		bit = ffs32(bitmap[i]);
    365      1.135      yamt 		if (bit) {
    366      1.135      yamt 			pool_item_bitmap_t mask;
    367      1.135      yamt 
    368      1.135      yamt 			bit--;
    369      1.135      yamt 			idx = (i * BITMAP_SIZE) + bit;
    370      1.135      yamt 			mask = 1 << bit;
    371      1.135      yamt 			KASSERT((bitmap[i] & mask) != 0);
    372      1.135      yamt 			bitmap[i] &= ~mask;
    373      1.135      yamt 			break;
    374      1.135      yamt 		}
    375      1.135      yamt 	}
    376      1.135      yamt 	KASSERT(idx < pp->pr_itemsperpage);
    377      1.128  christos 	return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
    378       1.97      yamt }
    379       1.97      yamt 
    380      1.135      yamt static inline void
    381      1.141      yamt pr_item_notouch_init(const struct pool *pp, struct pool_item_header *ph)
    382      1.135      yamt {
    383      1.135      yamt 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
    384      1.135      yamt 	const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE);
    385      1.135      yamt 	int i;
    386      1.135      yamt 
    387      1.135      yamt 	for (i = 0; i < n; i++) {
    388      1.135      yamt 		bitmap[i] = (pool_item_bitmap_t)-1;
    389      1.135      yamt 	}
    390      1.135      yamt }
    391      1.135      yamt 
    392      1.110     perry static inline int
    393       1.88       chs phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
    394       1.88       chs {
    395      1.121      yamt 
    396      1.121      yamt 	/*
    397      1.121      yamt 	 * we consider pool_item_header with smaller ph_page bigger.
    398      1.121      yamt 	 * (this unnatural ordering is for the benefit of pr_find_pagehead.)
    399      1.121      yamt 	 */
    400      1.121      yamt 
    401       1.88       chs 	if (a->ph_page < b->ph_page)
    402      1.121      yamt 		return (1);
    403      1.121      yamt 	else if (a->ph_page > b->ph_page)
    404       1.88       chs 		return (-1);
    405       1.88       chs 	else
    406       1.88       chs 		return (0);
    407       1.88       chs }
    408       1.88       chs 
    409       1.88       chs SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
    410       1.88       chs SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
    411       1.88       chs 
    412      1.141      yamt static inline struct pool_item_header *
    413      1.141      yamt pr_find_pagehead_noalign(struct pool *pp, void *v)
    414      1.141      yamt {
    415      1.141      yamt 	struct pool_item_header *ph, tmp;
    416      1.141      yamt 
    417      1.141      yamt 	tmp.ph_page = (void *)(uintptr_t)v;
    418      1.141      yamt 	ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
    419      1.141      yamt 	if (ph == NULL) {
    420      1.141      yamt 		ph = SPLAY_ROOT(&pp->pr_phtree);
    421      1.141      yamt 		if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
    422      1.141      yamt 			ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
    423      1.141      yamt 		}
    424      1.141      yamt 		KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
    425      1.141      yamt 	}
    426      1.141      yamt 
    427      1.141      yamt 	return ph;
    428      1.141      yamt }
    429      1.141      yamt 
    430        1.3        pk /*
    431      1.121      yamt  * Return the pool page header based on item address.
    432        1.3        pk  */
    433      1.110     perry static inline struct pool_item_header *
    434      1.121      yamt pr_find_pagehead(struct pool *pp, void *v)
    435        1.3        pk {
    436       1.88       chs 	struct pool_item_header *ph, tmp;
    437        1.3        pk 
    438      1.121      yamt 	if ((pp->pr_roflags & PR_NOALIGN) != 0) {
    439      1.141      yamt 		ph = pr_find_pagehead_noalign(pp, v);
    440      1.121      yamt 	} else {
    441      1.128  christos 		void *page =
    442      1.128  christos 		    (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask);
    443      1.121      yamt 
    444      1.121      yamt 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
    445      1.128  christos 			ph = (struct pool_item_header *)((char *)page + pp->pr_phoffset);
    446      1.121      yamt 		} else {
    447      1.121      yamt 			tmp.ph_page = page;
    448      1.121      yamt 			ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
    449      1.121      yamt 		}
    450      1.121      yamt 	}
    451        1.3        pk 
    452      1.121      yamt 	KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
    453      1.128  christos 	    ((char *)ph->ph_page <= (char *)v &&
    454      1.128  christos 	    (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
    455       1.88       chs 	return ph;
    456        1.3        pk }
    457        1.3        pk 
    458      1.101   thorpej static void
    459      1.101   thorpej pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
    460      1.101   thorpej {
    461      1.101   thorpej 	struct pool_item_header *ph;
    462      1.101   thorpej 
    463      1.101   thorpej 	while ((ph = LIST_FIRST(pq)) != NULL) {
    464      1.101   thorpej 		LIST_REMOVE(ph, ph_pagelist);
    465      1.101   thorpej 		pool_allocator_free(pp, ph->ph_page);
    466      1.134        ad 		if ((pp->pr_roflags & PR_PHINPAGE) == 0)
    467      1.101   thorpej 			pool_put(pp->pr_phpool, ph);
    468      1.101   thorpej 	}
    469      1.101   thorpej }
    470      1.101   thorpej 
    471        1.3        pk /*
    472        1.3        pk  * Remove a page from the pool.
    473        1.3        pk  */
    474      1.110     perry static inline void
    475       1.61       chs pr_rmpage(struct pool *pp, struct pool_item_header *ph,
    476       1.61       chs      struct pool_pagelist *pq)
    477        1.3        pk {
    478        1.3        pk 
    479      1.134        ad 	KASSERT(mutex_owned(&pp->pr_lock));
    480       1.91      yamt 
    481        1.3        pk 	/*
    482        1.7   thorpej 	 * If the page was idle, decrement the idle page count.
    483        1.3        pk 	 */
    484        1.6   thorpej 	if (ph->ph_nmissing == 0) {
    485        1.6   thorpej #ifdef DIAGNOSTIC
    486        1.6   thorpej 		if (pp->pr_nidle == 0)
    487        1.6   thorpej 			panic("pr_rmpage: nidle inconsistent");
    488       1.20   thorpej 		if (pp->pr_nitems < pp->pr_itemsperpage)
    489       1.20   thorpej 			panic("pr_rmpage: nitems inconsistent");
    490        1.6   thorpej #endif
    491        1.6   thorpej 		pp->pr_nidle--;
    492        1.6   thorpej 	}
    493        1.7   thorpej 
    494       1.20   thorpej 	pp->pr_nitems -= pp->pr_itemsperpage;
    495       1.20   thorpej 
    496        1.7   thorpej 	/*
    497      1.101   thorpej 	 * Unlink the page from the pool and queue it for release.
    498        1.7   thorpej 	 */
    499       1.88       chs 	LIST_REMOVE(ph, ph_pagelist);
    500       1.91      yamt 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
    501       1.91      yamt 		SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
    502      1.101   thorpej 	LIST_INSERT_HEAD(pq, ph, ph_pagelist);
    503      1.101   thorpej 
    504        1.7   thorpej 	pp->pr_npages--;
    505        1.7   thorpej 	pp->pr_npagefree++;
    506        1.6   thorpej 
    507       1.88       chs 	pool_update_curpage(pp);
    508        1.3        pk }
    509        1.3        pk 
    510      1.126   thorpej static bool
    511      1.117      yamt pa_starved_p(struct pool_allocator *pa)
    512      1.117      yamt {
    513      1.117      yamt 
    514      1.117      yamt 	if (pa->pa_backingmap != NULL) {
    515      1.117      yamt 		return vm_map_starved_p(pa->pa_backingmap);
    516      1.117      yamt 	}
    517      1.127   thorpej 	return false;
    518      1.117      yamt }
    519      1.117      yamt 
    520      1.117      yamt static int
    521      1.124      yamt pool_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
    522      1.117      yamt {
    523      1.117      yamt 	struct pool *pp = obj;
    524      1.117      yamt 	struct pool_allocator *pa = pp->pr_alloc;
    525      1.117      yamt 
    526      1.117      yamt 	KASSERT(&pp->pr_reclaimerentry == ce);
    527      1.117      yamt 	pool_reclaim(pp);
    528      1.117      yamt 	if (!pa_starved_p(pa)) {
    529      1.117      yamt 		return CALLBACK_CHAIN_ABORT;
    530      1.117      yamt 	}
    531      1.117      yamt 	return CALLBACK_CHAIN_CONTINUE;
    532      1.117      yamt }
    533      1.117      yamt 
    534      1.117      yamt static void
    535      1.117      yamt pool_reclaim_register(struct pool *pp)
    536      1.117      yamt {
    537      1.117      yamt 	struct vm_map *map = pp->pr_alloc->pa_backingmap;
    538      1.117      yamt 	int s;
    539      1.117      yamt 
    540      1.117      yamt 	if (map == NULL) {
    541      1.117      yamt 		return;
    542      1.117      yamt 	}
    543      1.117      yamt 
    544      1.117      yamt 	s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
    545      1.117      yamt 	callback_register(&vm_map_to_kernel(map)->vmk_reclaim_callback,
    546      1.117      yamt 	    &pp->pr_reclaimerentry, pp, pool_reclaim_callback);
    547      1.117      yamt 	splx(s);
    548      1.117      yamt }
    549      1.117      yamt 
    550      1.117      yamt static void
    551      1.117      yamt pool_reclaim_unregister(struct pool *pp)
    552      1.117      yamt {
    553      1.117      yamt 	struct vm_map *map = pp->pr_alloc->pa_backingmap;
    554      1.117      yamt 	int s;
    555      1.117      yamt 
    556      1.117      yamt 	if (map == NULL) {
    557      1.117      yamt 		return;
    558      1.117      yamt 	}
    559      1.117      yamt 
    560      1.117      yamt 	s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
    561      1.117      yamt 	callback_unregister(&vm_map_to_kernel(map)->vmk_reclaim_callback,
    562      1.117      yamt 	    &pp->pr_reclaimerentry);
    563      1.117      yamt 	splx(s);
    564      1.117      yamt }
    565      1.117      yamt 
    566      1.117      yamt static void
    567      1.117      yamt pa_reclaim_register(struct pool_allocator *pa)
    568      1.117      yamt {
    569      1.117      yamt 	struct vm_map *map = *pa->pa_backingmapptr;
    570      1.117      yamt 	struct pool *pp;
    571      1.117      yamt 
    572      1.117      yamt 	KASSERT(pa->pa_backingmap == NULL);
    573      1.117      yamt 	if (map == NULL) {
    574      1.117      yamt 		SLIST_INSERT_HEAD(&pa_deferinitq, pa, pa_q);
    575      1.117      yamt 		return;
    576      1.117      yamt 	}
    577      1.117      yamt 	pa->pa_backingmap = map;
    578      1.117      yamt 	TAILQ_FOREACH(pp, &pa->pa_list, pr_alloc_list) {
    579      1.117      yamt 		pool_reclaim_register(pp);
    580      1.117      yamt 	}
    581      1.117      yamt }
    582      1.117      yamt 
    583        1.3        pk /*
    584       1.94    simonb  * Initialize all the pools listed in the "pools" link set.
    585       1.94    simonb  */
    586       1.94    simonb void
    587      1.117      yamt pool_subsystem_init(void)
    588       1.94    simonb {
    589      1.117      yamt 	struct pool_allocator *pa;
    590       1.94    simonb 	__link_set_decl(pools, struct link_pool_init);
    591       1.94    simonb 	struct link_pool_init * const *pi;
    592       1.94    simonb 
    593      1.134        ad 	mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
    594      1.134        ad 	cv_init(&pool_busy, "poolbusy");
    595      1.134        ad 
    596       1.94    simonb 	__link_set_foreach(pi, pools)
    597       1.94    simonb 		pool_init((*pi)->pp, (*pi)->size, (*pi)->align,
    598       1.94    simonb 		    (*pi)->align_offset, (*pi)->flags, (*pi)->wchan,
    599      1.129        ad 		    (*pi)->palloc, (*pi)->ipl);
    600      1.117      yamt 
    601      1.117      yamt 	while ((pa = SLIST_FIRST(&pa_deferinitq)) != NULL) {
    602      1.117      yamt 		KASSERT(pa->pa_backingmapptr != NULL);
    603      1.117      yamt 		KASSERT(*pa->pa_backingmapptr != NULL);
    604      1.117      yamt 		SLIST_REMOVE_HEAD(&pa_deferinitq, pa_q);
    605      1.117      yamt 		pa_reclaim_register(pa);
    606      1.117      yamt 	}
    607      1.134        ad 
    608      1.156        ad 	pool_init(&cache_pool, sizeof(struct pool_cache), coherency_unit,
    609      1.134        ad 	    0, 0, "pcache", &pool_allocator_nointr, IPL_NONE);
    610      1.134        ad 
    611      1.156        ad 	pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), coherency_unit,
    612      1.134        ad 	    0, 0, "pcachecpu", &pool_allocator_nointr, IPL_NONE);
    613       1.94    simonb }
    614       1.94    simonb 
    615       1.94    simonb /*
    616        1.3        pk  * Initialize the given pool resource structure.
    617        1.3        pk  *
    618        1.3        pk  * We export this routine to allow other kernel parts to declare
    619        1.3        pk  * static pools that must be initialized before malloc() is available.
    620        1.3        pk  */
    621        1.3        pk void
    622       1.42   thorpej pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
    623      1.129        ad     const char *wchan, struct pool_allocator *palloc, int ipl)
    624        1.3        pk {
    625      1.116    simonb 	struct pool *pp1;
    626       1.92     enami 	size_t trysize, phsize;
    627      1.134        ad 	int off, slack;
    628        1.3        pk 
    629      1.116    simonb #ifdef DEBUG
    630      1.116    simonb 	/*
    631      1.116    simonb 	 * Check that the pool hasn't already been initialised and
    632      1.116    simonb 	 * added to the list of all pools.
    633      1.116    simonb 	 */
    634      1.145        ad 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
    635      1.116    simonb 		if (pp == pp1)
    636      1.116    simonb 			panic("pool_init: pool %s already initialised",
    637      1.116    simonb 			    wchan);
    638      1.116    simonb 	}
    639      1.116    simonb #endif
    640      1.116    simonb 
    641       1.25   thorpej #ifdef POOL_DIAGNOSTIC
    642       1.25   thorpej 	/*
    643       1.25   thorpej 	 * Always log if POOL_DIAGNOSTIC is defined.
    644       1.25   thorpej 	 */
    645       1.25   thorpej 	if (pool_logsize != 0)
    646       1.25   thorpej 		flags |= PR_LOGGING;
    647       1.25   thorpej #endif
    648       1.25   thorpej 
    649       1.66   thorpej 	if (palloc == NULL)
    650       1.66   thorpej 		palloc = &pool_allocator_kmem;
    651      1.112     bjh21 #ifdef POOL_SUBPAGE
    652      1.112     bjh21 	if (size > palloc->pa_pagesz) {
    653      1.112     bjh21 		if (palloc == &pool_allocator_kmem)
    654      1.112     bjh21 			palloc = &pool_allocator_kmem_fullpage;
    655      1.112     bjh21 		else if (palloc == &pool_allocator_nointr)
    656      1.112     bjh21 			palloc = &pool_allocator_nointr_fullpage;
    657      1.112     bjh21 	}
    658       1.66   thorpej #endif /* POOL_SUBPAGE */
    659       1.66   thorpej 	if ((palloc->pa_flags & PA_INITIALIZED) == 0) {
    660      1.112     bjh21 		if (palloc->pa_pagesz == 0)
    661       1.66   thorpej 			palloc->pa_pagesz = PAGE_SIZE;
    662       1.66   thorpej 
    663       1.66   thorpej 		TAILQ_INIT(&palloc->pa_list);
    664       1.66   thorpej 
    665      1.134        ad 		mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
    666       1.66   thorpej 		palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
    667       1.66   thorpej 		palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
    668      1.117      yamt 
    669      1.117      yamt 		if (palloc->pa_backingmapptr != NULL) {
    670      1.117      yamt 			pa_reclaim_register(palloc);
    671      1.117      yamt 		}
    672       1.66   thorpej 		palloc->pa_flags |= PA_INITIALIZED;
    673        1.4   thorpej 	}
    674        1.3        pk 
    675        1.3        pk 	if (align == 0)
    676        1.3        pk 		align = ALIGN(1);
    677       1.14   thorpej 
    678      1.120      yamt 	if ((flags & PR_NOTOUCH) == 0 && size < sizeof(struct pool_item))
    679       1.14   thorpej 		size = sizeof(struct pool_item);
    680        1.3        pk 
    681       1.78   thorpej 	size = roundup(size, align);
    682       1.66   thorpej #ifdef DIAGNOSTIC
    683       1.66   thorpej 	if (size > palloc->pa_pagesz)
    684      1.121      yamt 		panic("pool_init: pool item size (%zu) too large", size);
    685       1.66   thorpej #endif
    686       1.35        pk 
    687        1.3        pk 	/*
    688        1.3        pk 	 * Initialize the pool structure.
    689        1.3        pk 	 */
    690       1.88       chs 	LIST_INIT(&pp->pr_emptypages);
    691       1.88       chs 	LIST_INIT(&pp->pr_fullpages);
    692       1.88       chs 	LIST_INIT(&pp->pr_partpages);
    693      1.134        ad 	pp->pr_cache = NULL;
    694        1.3        pk 	pp->pr_curpage = NULL;
    695        1.3        pk 	pp->pr_npages = 0;
    696        1.3        pk 	pp->pr_minitems = 0;
    697        1.3        pk 	pp->pr_minpages = 0;
    698        1.3        pk 	pp->pr_maxpages = UINT_MAX;
    699       1.20   thorpej 	pp->pr_roflags = flags;
    700       1.20   thorpej 	pp->pr_flags = 0;
    701       1.35        pk 	pp->pr_size = size;
    702        1.3        pk 	pp->pr_align = align;
    703        1.3        pk 	pp->pr_wchan = wchan;
    704       1.66   thorpej 	pp->pr_alloc = palloc;
    705       1.20   thorpej 	pp->pr_nitems = 0;
    706       1.20   thorpej 	pp->pr_nout = 0;
    707       1.20   thorpej 	pp->pr_hardlimit = UINT_MAX;
    708       1.20   thorpej 	pp->pr_hardlimit_warning = NULL;
    709       1.31   thorpej 	pp->pr_hardlimit_ratecap.tv_sec = 0;
    710       1.31   thorpej 	pp->pr_hardlimit_ratecap.tv_usec = 0;
    711       1.31   thorpej 	pp->pr_hardlimit_warning_last.tv_sec = 0;
    712       1.31   thorpej 	pp->pr_hardlimit_warning_last.tv_usec = 0;
    713       1.68   thorpej 	pp->pr_drain_hook = NULL;
    714       1.68   thorpej 	pp->pr_drain_hook_arg = NULL;
    715      1.125        ad 	pp->pr_freecheck = NULL;
    716        1.3        pk 
    717        1.3        pk 	/*
    718        1.3        pk 	 * Decide whether to put the page header off page to avoid
    719       1.92     enami 	 * wasting too large a part of the page or too big item.
    720       1.92     enami 	 * Off-page page headers go on a hash table, so we can match
    721       1.92     enami 	 * a returned item with its header based on the page address.
    722       1.92     enami 	 * We use 1/16 of the page size and about 8 times of the item
    723       1.92     enami 	 * size as the threshold (XXX: tune)
    724       1.92     enami 	 *
    725       1.92     enami 	 * However, we'll put the header into the page if we can put
    726       1.92     enami 	 * it without wasting any items.
    727       1.92     enami 	 *
    728       1.92     enami 	 * Silently enforce `0 <= ioff < align'.
    729        1.3        pk 	 */
    730       1.92     enami 	pp->pr_itemoffset = ioff %= align;
    731       1.92     enami 	/* See the comment below about reserved bytes. */
    732       1.92     enami 	trysize = palloc->pa_pagesz - ((align - ioff) % align);
    733       1.92     enami 	phsize = ALIGN(sizeof(struct pool_item_header));
    734      1.121      yamt 	if ((pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) == 0 &&
    735       1.97      yamt 	    (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) ||
    736       1.97      yamt 	    trysize / pp->pr_size == (trysize - phsize) / pp->pr_size)) {
    737        1.3        pk 		/* Use the end of the page for the page header */
    738       1.20   thorpej 		pp->pr_roflags |= PR_PHINPAGE;
    739       1.92     enami 		pp->pr_phoffset = off = palloc->pa_pagesz - phsize;
    740        1.2        pk 	} else {
    741        1.3        pk 		/* The page header will be taken from our page header pool */
    742        1.3        pk 		pp->pr_phoffset = 0;
    743       1.66   thorpej 		off = palloc->pa_pagesz;
    744       1.88       chs 		SPLAY_INIT(&pp->pr_phtree);
    745        1.2        pk 	}
    746        1.1        pk 
    747        1.3        pk 	/*
    748        1.3        pk 	 * Alignment is to take place at `ioff' within the item. This means
    749        1.3        pk 	 * we must reserve up to `align - 1' bytes on the page to allow
    750        1.3        pk 	 * appropriate positioning of each item.
    751        1.3        pk 	 */
    752        1.3        pk 	pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
    753       1.43   thorpej 	KASSERT(pp->pr_itemsperpage != 0);
    754       1.97      yamt 	if ((pp->pr_roflags & PR_NOTOUCH)) {
    755       1.97      yamt 		int idx;
    756       1.97      yamt 
    757       1.97      yamt 		for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
    758       1.97      yamt 		    idx++) {
    759       1.97      yamt 			/* nothing */
    760       1.97      yamt 		}
    761       1.97      yamt 		if (idx >= PHPOOL_MAX) {
    762       1.97      yamt 			/*
    763       1.97      yamt 			 * if you see this panic, consider to tweak
    764       1.97      yamt 			 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
    765       1.97      yamt 			 */
    766       1.97      yamt 			panic("%s: too large itemsperpage(%d) for PR_NOTOUCH",
    767       1.97      yamt 			    pp->pr_wchan, pp->pr_itemsperpage);
    768       1.97      yamt 		}
    769       1.97      yamt 		pp->pr_phpool = &phpool[idx];
    770       1.97      yamt 	} else if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
    771       1.97      yamt 		pp->pr_phpool = &phpool[0];
    772       1.97      yamt 	}
    773       1.97      yamt #if defined(DIAGNOSTIC)
    774       1.97      yamt 	else {
    775       1.97      yamt 		pp->pr_phpool = NULL;
    776       1.97      yamt 	}
    777       1.97      yamt #endif
    778        1.3        pk 
    779        1.3        pk 	/*
    780        1.3        pk 	 * Use the slack between the chunks and the page header
    781        1.3        pk 	 * for "cache coloring".
    782        1.3        pk 	 */
    783        1.3        pk 	slack = off - pp->pr_itemsperpage * pp->pr_size;
    784        1.3        pk 	pp->pr_maxcolor = (slack / align) * align;
    785        1.3        pk 	pp->pr_curcolor = 0;
    786        1.3        pk 
    787        1.3        pk 	pp->pr_nget = 0;
    788        1.3        pk 	pp->pr_nfail = 0;
    789        1.3        pk 	pp->pr_nput = 0;
    790        1.3        pk 	pp->pr_npagealloc = 0;
    791        1.3        pk 	pp->pr_npagefree = 0;
    792        1.1        pk 	pp->pr_hiwat = 0;
    793        1.8   thorpej 	pp->pr_nidle = 0;
    794      1.134        ad 	pp->pr_refcnt = 0;
    795        1.3        pk 
    796       1.59   thorpej #ifdef POOL_DIAGNOSTIC
    797       1.25   thorpej 	if (flags & PR_LOGGING) {
    798       1.25   thorpej 		if (kmem_map == NULL ||
    799       1.25   thorpej 		    (pp->pr_log = malloc(pool_logsize * sizeof(struct pool_log),
    800       1.25   thorpej 		     M_TEMP, M_NOWAIT)) == NULL)
    801       1.20   thorpej 			pp->pr_roflags &= ~PR_LOGGING;
    802        1.3        pk 		pp->pr_curlogentry = 0;
    803        1.3        pk 		pp->pr_logsize = pool_logsize;
    804        1.3        pk 	}
    805       1.59   thorpej #endif
    806       1.25   thorpej 
    807       1.25   thorpej 	pp->pr_entered_file = NULL;
    808       1.25   thorpej 	pp->pr_entered_line = 0;
    809        1.3        pk 
    810      1.157        ad 	mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
    811      1.134        ad 	cv_init(&pp->pr_cv, wchan);
    812      1.134        ad 	pp->pr_ipl = ipl;
    813        1.1        pk 
    814        1.3        pk 	/*
    815       1.43   thorpej 	 * Initialize private page header pool and cache magazine pool if we
    816       1.43   thorpej 	 * haven't done so yet.
    817       1.23   thorpej 	 * XXX LOCKING.
    818        1.3        pk 	 */
    819       1.97      yamt 	if (phpool[0].pr_size == 0) {
    820       1.97      yamt 		int idx;
    821       1.97      yamt 		for (idx = 0; idx < PHPOOL_MAX; idx++) {
    822       1.97      yamt 			static char phpool_names[PHPOOL_MAX][6+1+6+1];
    823       1.97      yamt 			int nelem;
    824       1.97      yamt 			size_t sz;
    825       1.97      yamt 
    826       1.97      yamt 			nelem = PHPOOL_FREELIST_NELEM(idx);
    827       1.97      yamt 			snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
    828       1.97      yamt 			    "phpool-%d", nelem);
    829       1.97      yamt 			sz = sizeof(struct pool_item_header);
    830       1.97      yamt 			if (nelem) {
    831      1.135      yamt 				sz = offsetof(struct pool_item_header,
    832      1.135      yamt 				    ph_bitmap[howmany(nelem, BITMAP_SIZE)]);
    833       1.97      yamt 			}
    834       1.97      yamt 			pool_init(&phpool[idx], sz, 0, 0, 0,
    835      1.129        ad 			    phpool_names[idx], &pool_allocator_meta, IPL_VM);
    836       1.97      yamt 		}
    837       1.62     bjh21 #ifdef POOL_SUBPAGE
    838       1.62     bjh21 		pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
    839      1.129        ad 		    PR_RECURSIVE, "psppool", &pool_allocator_meta, IPL_VM);
    840       1.62     bjh21 #endif
    841      1.142        ad 
    842      1.142        ad 		size = sizeof(pcg_t) +
    843      1.142        ad 		    (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t);
    844      1.156        ad 		pool_init(&pcg_normal_pool, size, coherency_unit, 0, 0,
    845      1.142        ad 		    "pcgnormal", &pool_allocator_meta, IPL_VM);
    846      1.142        ad 
    847      1.142        ad 		size = sizeof(pcg_t) +
    848      1.142        ad 		    (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t);
    849      1.156        ad 		pool_init(&pcg_large_pool, size, coherency_unit, 0, 0,
    850      1.142        ad 		    "pcglarge", &pool_allocator_meta, IPL_VM);
    851        1.1        pk 	}
    852        1.1        pk 
    853      1.145        ad 	/* Insert into the list of all pools. */
    854      1.145        ad 	if (__predict_true(!cold))
    855      1.134        ad 		mutex_enter(&pool_head_lock);
    856      1.145        ad 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
    857      1.145        ad 		if (strcmp(pp1->pr_wchan, pp->pr_wchan) > 0)
    858      1.145        ad 			break;
    859      1.145        ad 	}
    860      1.145        ad 	if (pp1 == NULL)
    861      1.145        ad 		TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
    862      1.145        ad 	else
    863      1.145        ad 		TAILQ_INSERT_BEFORE(pp1, pp, pr_poollist);
    864      1.145        ad 	if (__predict_true(!cold))
    865      1.134        ad 		mutex_exit(&pool_head_lock);
    866      1.134        ad 
    867      1.134        ad 		/* Insert this into the list of pools using this allocator. */
    868      1.145        ad 	if (__predict_true(!cold))
    869      1.134        ad 		mutex_enter(&palloc->pa_lock);
    870      1.145        ad 	TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
    871      1.145        ad 	if (__predict_true(!cold))
    872      1.134        ad 		mutex_exit(&palloc->pa_lock);
    873       1.66   thorpej 
    874      1.117      yamt 	pool_reclaim_register(pp);
    875        1.1        pk }
    876        1.1        pk 
    877        1.1        pk /*
    878        1.1        pk  * De-commision a pool resource.
    879        1.1        pk  */
    880        1.1        pk void
    881       1.42   thorpej pool_destroy(struct pool *pp)
    882        1.1        pk {
    883      1.101   thorpej 	struct pool_pagelist pq;
    884        1.3        pk 	struct pool_item_header *ph;
    885       1.43   thorpej 
    886      1.101   thorpej 	/* Remove from global pool list */
    887      1.134        ad 	mutex_enter(&pool_head_lock);
    888      1.134        ad 	while (pp->pr_refcnt != 0)
    889      1.134        ad 		cv_wait(&pool_busy, &pool_head_lock);
    890      1.145        ad 	TAILQ_REMOVE(&pool_head, pp, pr_poollist);
    891      1.101   thorpej 	if (drainpp == pp)
    892      1.101   thorpej 		drainpp = NULL;
    893      1.134        ad 	mutex_exit(&pool_head_lock);
    894      1.101   thorpej 
    895      1.101   thorpej 	/* Remove this pool from its allocator's list of pools. */
    896      1.117      yamt 	pool_reclaim_unregister(pp);
    897      1.134        ad 	mutex_enter(&pp->pr_alloc->pa_lock);
    898       1.66   thorpej 	TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
    899      1.134        ad 	mutex_exit(&pp->pr_alloc->pa_lock);
    900       1.66   thorpej 
    901      1.134        ad 	mutex_enter(&pp->pr_lock);
    902      1.101   thorpej 
    903      1.134        ad 	KASSERT(pp->pr_cache == NULL);
    904        1.3        pk 
    905        1.3        pk #ifdef DIAGNOSTIC
    906       1.20   thorpej 	if (pp->pr_nout != 0) {
    907       1.25   thorpej 		pr_printlog(pp, NULL, printf);
    908       1.80    provos 		panic("pool_destroy: pool busy: still out: %u",
    909       1.20   thorpej 		    pp->pr_nout);
    910        1.3        pk 	}
    911        1.3        pk #endif
    912        1.1        pk 
    913      1.101   thorpej 	KASSERT(LIST_EMPTY(&pp->pr_fullpages));
    914      1.101   thorpej 	KASSERT(LIST_EMPTY(&pp->pr_partpages));
    915      1.101   thorpej 
    916        1.3        pk 	/* Remove all pages */
    917      1.101   thorpej 	LIST_INIT(&pq);
    918       1.88       chs 	while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
    919      1.101   thorpej 		pr_rmpage(pp, ph, &pq);
    920      1.101   thorpej 
    921      1.134        ad 	mutex_exit(&pp->pr_lock);
    922        1.3        pk 
    923      1.101   thorpej 	pr_pagelist_free(pp, &pq);
    924        1.3        pk 
    925       1.59   thorpej #ifdef POOL_DIAGNOSTIC
    926       1.20   thorpej 	if ((pp->pr_roflags & PR_LOGGING) != 0)
    927        1.3        pk 		free(pp->pr_log, M_TEMP);
    928       1.59   thorpej #endif
    929      1.134        ad 
    930      1.134        ad 	cv_destroy(&pp->pr_cv);
    931      1.134        ad 	mutex_destroy(&pp->pr_lock);
    932        1.1        pk }
    933        1.1        pk 
    934       1.68   thorpej void
    935       1.68   thorpej pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
    936       1.68   thorpej {
    937       1.68   thorpej 
    938       1.68   thorpej 	/* XXX no locking -- must be used just after pool_init() */
    939       1.68   thorpej #ifdef DIAGNOSTIC
    940       1.68   thorpej 	if (pp->pr_drain_hook != NULL)
    941       1.68   thorpej 		panic("pool_set_drain_hook(%s): already set", pp->pr_wchan);
    942       1.68   thorpej #endif
    943       1.68   thorpej 	pp->pr_drain_hook = fn;
    944       1.68   thorpej 	pp->pr_drain_hook_arg = arg;
    945       1.68   thorpej }
    946       1.68   thorpej 
    947       1.88       chs static struct pool_item_header *
    948      1.128  christos pool_alloc_item_header(struct pool *pp, void *storage, int flags)
    949       1.55   thorpej {
    950       1.55   thorpej 	struct pool_item_header *ph;
    951       1.55   thorpej 
    952       1.55   thorpej 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
    953      1.128  christos 		ph = (struct pool_item_header *) ((char *)storage + pp->pr_phoffset);
    954      1.134        ad 	else
    955       1.97      yamt 		ph = pool_get(pp->pr_phpool, flags);
    956       1.55   thorpej 
    957       1.55   thorpej 	return (ph);
    958       1.55   thorpej }
    959        1.1        pk 
    960        1.1        pk /*
    961      1.134        ad  * Grab an item from the pool.
    962        1.1        pk  */
    963        1.3        pk void *
    964       1.59   thorpej #ifdef POOL_DIAGNOSTIC
    965       1.42   thorpej _pool_get(struct pool *pp, int flags, const char *file, long line)
    966       1.56  sommerfe #else
    967       1.56  sommerfe pool_get(struct pool *pp, int flags)
    968       1.56  sommerfe #endif
    969        1.1        pk {
    970        1.1        pk 	struct pool_item *pi;
    971        1.3        pk 	struct pool_item_header *ph;
    972       1.55   thorpej 	void *v;
    973        1.1        pk 
    974        1.2        pk #ifdef DIAGNOSTIC
    975       1.95    atatat 	if (__predict_false(pp->pr_itemsperpage == 0))
    976       1.95    atatat 		panic("pool_get: pool %p: pr_itemsperpage is zero, "
    977       1.95    atatat 		    "pool not initialized?", pp);
    978       1.84   thorpej 	if (__predict_false(curlwp == NULL && doing_shutdown == 0 &&
    979       1.37  sommerfe 			    (flags & PR_WAITOK) != 0))
    980       1.77      matt 		panic("pool_get: %s: must have NOWAIT", pp->pr_wchan);
    981       1.58   thorpej 
    982      1.102       chs #endif /* DIAGNOSTIC */
    983       1.58   thorpej #ifdef LOCKDEBUG
    984      1.155        ad 	if (flags & PR_WAITOK) {
    985      1.154      yamt 		ASSERT_SLEEPABLE();
    986      1.155        ad 	}
    987       1.56  sommerfe #endif
    988        1.1        pk 
    989      1.134        ad 	mutex_enter(&pp->pr_lock);
    990       1.25   thorpej 	pr_enter(pp, file, line);
    991       1.20   thorpej 
    992       1.20   thorpej  startover:
    993       1.20   thorpej 	/*
    994       1.20   thorpej 	 * Check to see if we've reached the hard limit.  If we have,
    995       1.20   thorpej 	 * and we can wait, then wait until an item has been returned to
    996       1.20   thorpej 	 * the pool.
    997       1.20   thorpej 	 */
    998       1.20   thorpej #ifdef DIAGNOSTIC
    999       1.34   thorpej 	if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
   1000       1.25   thorpej 		pr_leave(pp);
   1001      1.134        ad 		mutex_exit(&pp->pr_lock);
   1002       1.20   thorpej 		panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
   1003       1.20   thorpej 	}
   1004       1.20   thorpej #endif
   1005       1.34   thorpej 	if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
   1006       1.68   thorpej 		if (pp->pr_drain_hook != NULL) {
   1007       1.68   thorpej 			/*
   1008       1.68   thorpej 			 * Since the drain hook is going to free things
   1009       1.68   thorpej 			 * back to the pool, unlock, call the hook, re-lock,
   1010       1.68   thorpej 			 * and check the hardlimit condition again.
   1011       1.68   thorpej 			 */
   1012       1.68   thorpej 			pr_leave(pp);
   1013      1.134        ad 			mutex_exit(&pp->pr_lock);
   1014       1.68   thorpej 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
   1015      1.134        ad 			mutex_enter(&pp->pr_lock);
   1016       1.68   thorpej 			pr_enter(pp, file, line);
   1017       1.68   thorpej 			if (pp->pr_nout < pp->pr_hardlimit)
   1018       1.68   thorpej 				goto startover;
   1019       1.68   thorpej 		}
   1020       1.68   thorpej 
   1021       1.29  sommerfe 		if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
   1022       1.20   thorpej 			/*
   1023       1.20   thorpej 			 * XXX: A warning isn't logged in this case.  Should
   1024       1.20   thorpej 			 * it be?
   1025       1.20   thorpej 			 */
   1026       1.20   thorpej 			pp->pr_flags |= PR_WANTED;
   1027       1.25   thorpej 			pr_leave(pp);
   1028      1.134        ad 			cv_wait(&pp->pr_cv, &pp->pr_lock);
   1029       1.25   thorpej 			pr_enter(pp, file, line);
   1030       1.20   thorpej 			goto startover;
   1031       1.20   thorpej 		}
   1032       1.31   thorpej 
   1033       1.31   thorpej 		/*
   1034       1.31   thorpej 		 * Log a message that the hard limit has been hit.
   1035       1.31   thorpej 		 */
   1036       1.31   thorpej 		if (pp->pr_hardlimit_warning != NULL &&
   1037       1.31   thorpej 		    ratecheck(&pp->pr_hardlimit_warning_last,
   1038       1.31   thorpej 			      &pp->pr_hardlimit_ratecap))
   1039       1.31   thorpej 			log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
   1040       1.21   thorpej 
   1041       1.21   thorpej 		pp->pr_nfail++;
   1042       1.21   thorpej 
   1043       1.25   thorpej 		pr_leave(pp);
   1044      1.134        ad 		mutex_exit(&pp->pr_lock);
   1045       1.20   thorpej 		return (NULL);
   1046       1.20   thorpej 	}
   1047       1.20   thorpej 
   1048        1.3        pk 	/*
   1049        1.3        pk 	 * The convention we use is that if `curpage' is not NULL, then
   1050        1.3        pk 	 * it points at a non-empty bucket. In particular, `curpage'
   1051        1.3        pk 	 * never points at a page header which has PR_PHINPAGE set and
   1052        1.3        pk 	 * has no items in its bucket.
   1053        1.3        pk 	 */
   1054       1.20   thorpej 	if ((ph = pp->pr_curpage) == NULL) {
   1055      1.113      yamt 		int error;
   1056      1.113      yamt 
   1057       1.20   thorpej #ifdef DIAGNOSTIC
   1058       1.20   thorpej 		if (pp->pr_nitems != 0) {
   1059      1.134        ad 			mutex_exit(&pp->pr_lock);
   1060       1.20   thorpej 			printf("pool_get: %s: curpage NULL, nitems %u\n",
   1061       1.20   thorpej 			    pp->pr_wchan, pp->pr_nitems);
   1062       1.80    provos 			panic("pool_get: nitems inconsistent");
   1063       1.20   thorpej 		}
   1064       1.20   thorpej #endif
   1065       1.20   thorpej 
   1066       1.21   thorpej 		/*
   1067       1.21   thorpej 		 * Call the back-end page allocator for more memory.
   1068       1.21   thorpej 		 * Release the pool lock, as the back-end page allocator
   1069       1.21   thorpej 		 * may block.
   1070       1.21   thorpej 		 */
   1071       1.25   thorpej 		pr_leave(pp);
   1072      1.113      yamt 		error = pool_grow(pp, flags);
   1073      1.113      yamt 		pr_enter(pp, file, line);
   1074      1.113      yamt 		if (error != 0) {
   1075       1.21   thorpej 			/*
   1076       1.55   thorpej 			 * We were unable to allocate a page or item
   1077       1.55   thorpej 			 * header, but we released the lock during
   1078       1.55   thorpej 			 * allocation, so perhaps items were freed
   1079       1.55   thorpej 			 * back to the pool.  Check for this case.
   1080       1.21   thorpej 			 */
   1081       1.21   thorpej 			if (pp->pr_curpage != NULL)
   1082       1.21   thorpej 				goto startover;
   1083       1.15        pk 
   1084      1.117      yamt 			pp->pr_nfail++;
   1085       1.25   thorpej 			pr_leave(pp);
   1086      1.134        ad 			mutex_exit(&pp->pr_lock);
   1087      1.117      yamt 			return (NULL);
   1088        1.1        pk 		}
   1089        1.3        pk 
   1090       1.20   thorpej 		/* Start the allocation process over. */
   1091       1.20   thorpej 		goto startover;
   1092        1.3        pk 	}
   1093       1.97      yamt 	if (pp->pr_roflags & PR_NOTOUCH) {
   1094       1.97      yamt #ifdef DIAGNOSTIC
   1095       1.97      yamt 		if (__predict_false(ph->ph_nmissing == pp->pr_itemsperpage)) {
   1096       1.97      yamt 			pr_leave(pp);
   1097      1.134        ad 			mutex_exit(&pp->pr_lock);
   1098       1.97      yamt 			panic("pool_get: %s: page empty", pp->pr_wchan);
   1099       1.97      yamt 		}
   1100       1.97      yamt #endif
   1101       1.97      yamt 		v = pr_item_notouch_get(pp, ph);
   1102       1.97      yamt #ifdef POOL_DIAGNOSTIC
   1103       1.97      yamt 		pr_log(pp, v, PRLOG_GET, file, line);
   1104       1.97      yamt #endif
   1105       1.97      yamt 	} else {
   1106      1.102       chs 		v = pi = LIST_FIRST(&ph->ph_itemlist);
   1107       1.97      yamt 		if (__predict_false(v == NULL)) {
   1108       1.97      yamt 			pr_leave(pp);
   1109      1.134        ad 			mutex_exit(&pp->pr_lock);
   1110       1.97      yamt 			panic("pool_get: %s: page empty", pp->pr_wchan);
   1111       1.97      yamt 		}
   1112       1.20   thorpej #ifdef DIAGNOSTIC
   1113       1.97      yamt 		if (__predict_false(pp->pr_nitems == 0)) {
   1114       1.97      yamt 			pr_leave(pp);
   1115      1.134        ad 			mutex_exit(&pp->pr_lock);
   1116       1.97      yamt 			printf("pool_get: %s: items on itemlist, nitems %u\n",
   1117       1.97      yamt 			    pp->pr_wchan, pp->pr_nitems);
   1118       1.97      yamt 			panic("pool_get: nitems inconsistent");
   1119       1.97      yamt 		}
   1120       1.65     enami #endif
   1121       1.56  sommerfe 
   1122       1.65     enami #ifdef POOL_DIAGNOSTIC
   1123       1.97      yamt 		pr_log(pp, v, PRLOG_GET, file, line);
   1124       1.65     enami #endif
   1125        1.3        pk 
   1126       1.65     enami #ifdef DIAGNOSTIC
   1127       1.97      yamt 		if (__predict_false(pi->pi_magic != PI_MAGIC)) {
   1128       1.97      yamt 			pr_printlog(pp, pi, printf);
   1129       1.97      yamt 			panic("pool_get(%s): free list modified: "
   1130       1.97      yamt 			    "magic=%x; page %p; item addr %p\n",
   1131       1.97      yamt 			    pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
   1132       1.97      yamt 		}
   1133        1.3        pk #endif
   1134        1.3        pk 
   1135       1.97      yamt 		/*
   1136       1.97      yamt 		 * Remove from item list.
   1137       1.97      yamt 		 */
   1138      1.102       chs 		LIST_REMOVE(pi, pi_list);
   1139       1.97      yamt 	}
   1140       1.20   thorpej 	pp->pr_nitems--;
   1141       1.20   thorpej 	pp->pr_nout++;
   1142        1.6   thorpej 	if (ph->ph_nmissing == 0) {
   1143        1.6   thorpej #ifdef DIAGNOSTIC
   1144       1.34   thorpej 		if (__predict_false(pp->pr_nidle == 0))
   1145        1.6   thorpej 			panic("pool_get: nidle inconsistent");
   1146        1.6   thorpej #endif
   1147        1.6   thorpej 		pp->pr_nidle--;
   1148       1.88       chs 
   1149       1.88       chs 		/*
   1150       1.88       chs 		 * This page was previously empty.  Move it to the list of
   1151       1.88       chs 		 * partially-full pages.  This page is already curpage.
   1152       1.88       chs 		 */
   1153       1.88       chs 		LIST_REMOVE(ph, ph_pagelist);
   1154       1.88       chs 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
   1155        1.6   thorpej 	}
   1156        1.3        pk 	ph->ph_nmissing++;
   1157       1.97      yamt 	if (ph->ph_nmissing == pp->pr_itemsperpage) {
   1158       1.21   thorpej #ifdef DIAGNOSTIC
   1159       1.97      yamt 		if (__predict_false((pp->pr_roflags & PR_NOTOUCH) == 0 &&
   1160      1.102       chs 		    !LIST_EMPTY(&ph->ph_itemlist))) {
   1161       1.25   thorpej 			pr_leave(pp);
   1162      1.134        ad 			mutex_exit(&pp->pr_lock);
   1163       1.21   thorpej 			panic("pool_get: %s: nmissing inconsistent",
   1164       1.21   thorpej 			    pp->pr_wchan);
   1165       1.21   thorpej 		}
   1166       1.21   thorpej #endif
   1167        1.3        pk 		/*
   1168       1.88       chs 		 * This page is now full.  Move it to the full list
   1169       1.88       chs 		 * and select a new current page.
   1170        1.3        pk 		 */
   1171       1.88       chs 		LIST_REMOVE(ph, ph_pagelist);
   1172       1.88       chs 		LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
   1173       1.88       chs 		pool_update_curpage(pp);
   1174        1.1        pk 	}
   1175        1.3        pk 
   1176        1.3        pk 	pp->pr_nget++;
   1177      1.111  christos 	pr_leave(pp);
   1178       1.20   thorpej 
   1179       1.20   thorpej 	/*
   1180       1.20   thorpej 	 * If we have a low water mark and we are now below that low
   1181       1.20   thorpej 	 * water mark, add more items to the pool.
   1182       1.20   thorpej 	 */
   1183       1.53   thorpej 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
   1184       1.20   thorpej 		/*
   1185       1.20   thorpej 		 * XXX: Should we log a warning?  Should we set up a timeout
   1186       1.20   thorpej 		 * to try again in a second or so?  The latter could break
   1187       1.20   thorpej 		 * a caller's assumptions about interrupt protection, etc.
   1188       1.20   thorpej 		 */
   1189       1.20   thorpej 	}
   1190       1.20   thorpej 
   1191      1.134        ad 	mutex_exit(&pp->pr_lock);
   1192      1.125        ad 	KASSERT((((vaddr_t)v + pp->pr_itemoffset) & (pp->pr_align - 1)) == 0);
   1193      1.125        ad 	FREECHECK_OUT(&pp->pr_freecheck, v);
   1194        1.1        pk 	return (v);
   1195        1.1        pk }
   1196        1.1        pk 
   1197        1.1        pk /*
   1198       1.43   thorpej  * Internal version of pool_put().  Pool is already locked/entered.
   1199        1.1        pk  */
   1200       1.43   thorpej static void
   1201      1.101   thorpej pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
   1202        1.1        pk {
   1203        1.1        pk 	struct pool_item *pi = v;
   1204        1.3        pk 	struct pool_item_header *ph;
   1205        1.3        pk 
   1206      1.134        ad 	KASSERT(mutex_owned(&pp->pr_lock));
   1207      1.125        ad 	FREECHECK_IN(&pp->pr_freecheck, v);
   1208      1.134        ad 	LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
   1209       1.61       chs 
   1210       1.30   thorpej #ifdef DIAGNOSTIC
   1211       1.34   thorpej 	if (__predict_false(pp->pr_nout == 0)) {
   1212       1.30   thorpej 		printf("pool %s: putting with none out\n",
   1213       1.30   thorpej 		    pp->pr_wchan);
   1214       1.30   thorpej 		panic("pool_put");
   1215       1.30   thorpej 	}
   1216       1.30   thorpej #endif
   1217        1.3        pk 
   1218      1.121      yamt 	if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
   1219       1.25   thorpej 		pr_printlog(pp, NULL, printf);
   1220        1.3        pk 		panic("pool_put: %s: page header missing", pp->pr_wchan);
   1221        1.3        pk 	}
   1222       1.28   thorpej 
   1223        1.3        pk 	/*
   1224        1.3        pk 	 * Return to item list.
   1225        1.3        pk 	 */
   1226       1.97      yamt 	if (pp->pr_roflags & PR_NOTOUCH) {
   1227       1.97      yamt 		pr_item_notouch_put(pp, ph, v);
   1228       1.97      yamt 	} else {
   1229        1.2        pk #ifdef DIAGNOSTIC
   1230       1.97      yamt 		pi->pi_magic = PI_MAGIC;
   1231        1.3        pk #endif
   1232       1.32       chs #ifdef DEBUG
   1233       1.97      yamt 		{
   1234       1.97      yamt 			int i, *ip = v;
   1235       1.32       chs 
   1236       1.97      yamt 			for (i = 0; i < pp->pr_size / sizeof(int); i++) {
   1237       1.97      yamt 				*ip++ = PI_MAGIC;
   1238       1.97      yamt 			}
   1239       1.32       chs 		}
   1240       1.32       chs #endif
   1241       1.32       chs 
   1242      1.102       chs 		LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
   1243       1.97      yamt 	}
   1244       1.79   thorpej 	KDASSERT(ph->ph_nmissing != 0);
   1245        1.3        pk 	ph->ph_nmissing--;
   1246        1.3        pk 	pp->pr_nput++;
   1247       1.20   thorpej 	pp->pr_nitems++;
   1248       1.20   thorpej 	pp->pr_nout--;
   1249        1.3        pk 
   1250        1.3        pk 	/* Cancel "pool empty" condition if it exists */
   1251        1.3        pk 	if (pp->pr_curpage == NULL)
   1252        1.3        pk 		pp->pr_curpage = ph;
   1253        1.3        pk 
   1254        1.3        pk 	if (pp->pr_flags & PR_WANTED) {
   1255        1.3        pk 		pp->pr_flags &= ~PR_WANTED;
   1256       1.15        pk 		if (ph->ph_nmissing == 0)
   1257       1.15        pk 			pp->pr_nidle++;
   1258      1.134        ad 		cv_broadcast(&pp->pr_cv);
   1259        1.3        pk 		return;
   1260        1.3        pk 	}
   1261        1.3        pk 
   1262        1.3        pk 	/*
   1263       1.88       chs 	 * If this page is now empty, do one of two things:
   1264       1.21   thorpej 	 *
   1265       1.88       chs 	 *	(1) If we have more pages than the page high water mark,
   1266       1.96   thorpej 	 *	    free the page back to the system.  ONLY CONSIDER
   1267       1.90   thorpej 	 *	    FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
   1268       1.90   thorpej 	 *	    CLAIM.
   1269       1.21   thorpej 	 *
   1270       1.88       chs 	 *	(2) Otherwise, move the page to the empty page list.
   1271       1.88       chs 	 *
   1272       1.88       chs 	 * Either way, select a new current page (so we use a partially-full
   1273       1.88       chs 	 * page if one is available).
   1274        1.3        pk 	 */
   1275        1.3        pk 	if (ph->ph_nmissing == 0) {
   1276        1.6   thorpej 		pp->pr_nidle++;
   1277       1.90   thorpej 		if (pp->pr_npages > pp->pr_minpages &&
   1278      1.152      yamt 		    pp->pr_npages > pp->pr_maxpages) {
   1279      1.101   thorpej 			pr_rmpage(pp, ph, pq);
   1280        1.3        pk 		} else {
   1281       1.88       chs 			LIST_REMOVE(ph, ph_pagelist);
   1282       1.88       chs 			LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
   1283        1.3        pk 
   1284       1.21   thorpej 			/*
   1285       1.21   thorpej 			 * Update the timestamp on the page.  A page must
   1286       1.21   thorpej 			 * be idle for some period of time before it can
   1287       1.21   thorpej 			 * be reclaimed by the pagedaemon.  This minimizes
   1288       1.21   thorpej 			 * ping-pong'ing for memory.
   1289      1.151      yamt 			 *
   1290      1.151      yamt 			 * note for 64-bit time_t: truncating to 32-bit is not
   1291      1.151      yamt 			 * a problem for our usage.
   1292       1.21   thorpej 			 */
   1293      1.151      yamt 			ph->ph_time = time_uptime;
   1294        1.1        pk 		}
   1295       1.88       chs 		pool_update_curpage(pp);
   1296        1.1        pk 	}
   1297       1.88       chs 
   1298       1.21   thorpej 	/*
   1299       1.88       chs 	 * If the page was previously completely full, move it to the
   1300       1.88       chs 	 * partially-full list and make it the current page.  The next
   1301       1.88       chs 	 * allocation will get the item from this page, instead of
   1302       1.88       chs 	 * further fragmenting the pool.
   1303       1.21   thorpej 	 */
   1304       1.21   thorpej 	else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
   1305       1.88       chs 		LIST_REMOVE(ph, ph_pagelist);
   1306       1.88       chs 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
   1307       1.21   thorpej 		pp->pr_curpage = ph;
   1308       1.21   thorpej 	}
   1309       1.43   thorpej }
   1310       1.43   thorpej 
   1311       1.43   thorpej /*
   1312      1.134        ad  * Return resource to the pool.
   1313       1.43   thorpej  */
   1314       1.59   thorpej #ifdef POOL_DIAGNOSTIC
   1315       1.43   thorpej void
   1316       1.43   thorpej _pool_put(struct pool *pp, void *v, const char *file, long line)
   1317       1.43   thorpej {
   1318      1.101   thorpej 	struct pool_pagelist pq;
   1319      1.101   thorpej 
   1320      1.101   thorpej 	LIST_INIT(&pq);
   1321       1.43   thorpej 
   1322      1.134        ad 	mutex_enter(&pp->pr_lock);
   1323       1.43   thorpej 	pr_enter(pp, file, line);
   1324       1.43   thorpej 
   1325       1.56  sommerfe 	pr_log(pp, v, PRLOG_PUT, file, line);
   1326       1.56  sommerfe 
   1327      1.101   thorpej 	pool_do_put(pp, v, &pq);
   1328       1.21   thorpej 
   1329       1.25   thorpej 	pr_leave(pp);
   1330      1.134        ad 	mutex_exit(&pp->pr_lock);
   1331      1.101   thorpej 
   1332      1.102       chs 	pr_pagelist_free(pp, &pq);
   1333        1.1        pk }
   1334       1.57  sommerfe #undef pool_put
   1335       1.59   thorpej #endif /* POOL_DIAGNOSTIC */
   1336        1.1        pk 
   1337       1.56  sommerfe void
   1338       1.56  sommerfe pool_put(struct pool *pp, void *v)
   1339       1.56  sommerfe {
   1340      1.101   thorpej 	struct pool_pagelist pq;
   1341      1.101   thorpej 
   1342      1.101   thorpej 	LIST_INIT(&pq);
   1343       1.56  sommerfe 
   1344      1.134        ad 	mutex_enter(&pp->pr_lock);
   1345      1.101   thorpej 	pool_do_put(pp, v, &pq);
   1346      1.134        ad 	mutex_exit(&pp->pr_lock);
   1347       1.56  sommerfe 
   1348      1.102       chs 	pr_pagelist_free(pp, &pq);
   1349       1.56  sommerfe }
   1350       1.57  sommerfe 
   1351       1.59   thorpej #ifdef POOL_DIAGNOSTIC
   1352       1.57  sommerfe #define		pool_put(h, v)	_pool_put((h), (v), __FILE__, __LINE__)
   1353       1.56  sommerfe #endif
   1354       1.74   thorpej 
   1355       1.74   thorpej /*
   1356      1.113      yamt  * pool_grow: grow a pool by a page.
   1357      1.113      yamt  *
   1358      1.113      yamt  * => called with pool locked.
   1359      1.113      yamt  * => unlock and relock the pool.
   1360      1.113      yamt  * => return with pool locked.
   1361      1.113      yamt  */
   1362      1.113      yamt 
   1363      1.113      yamt static int
   1364      1.113      yamt pool_grow(struct pool *pp, int flags)
   1365      1.113      yamt {
   1366      1.113      yamt 	struct pool_item_header *ph = NULL;
   1367      1.113      yamt 	char *cp;
   1368      1.113      yamt 
   1369      1.134        ad 	mutex_exit(&pp->pr_lock);
   1370      1.113      yamt 	cp = pool_allocator_alloc(pp, flags);
   1371      1.113      yamt 	if (__predict_true(cp != NULL)) {
   1372      1.113      yamt 		ph = pool_alloc_item_header(pp, cp, flags);
   1373      1.113      yamt 	}
   1374      1.113      yamt 	if (__predict_false(cp == NULL || ph == NULL)) {
   1375      1.113      yamt 		if (cp != NULL) {
   1376      1.113      yamt 			pool_allocator_free(pp, cp);
   1377      1.113      yamt 		}
   1378      1.134        ad 		mutex_enter(&pp->pr_lock);
   1379      1.113      yamt 		return ENOMEM;
   1380      1.113      yamt 	}
   1381      1.113      yamt 
   1382      1.134        ad 	mutex_enter(&pp->pr_lock);
   1383      1.113      yamt 	pool_prime_page(pp, cp, ph);
   1384      1.113      yamt 	pp->pr_npagealloc++;
   1385      1.113      yamt 	return 0;
   1386      1.113      yamt }
   1387      1.113      yamt 
   1388      1.113      yamt /*
   1389       1.74   thorpej  * Add N items to the pool.
   1390       1.74   thorpej  */
   1391       1.74   thorpej int
   1392       1.74   thorpej pool_prime(struct pool *pp, int n)
   1393       1.74   thorpej {
   1394       1.75    simonb 	int newpages;
   1395      1.113      yamt 	int error = 0;
   1396       1.74   thorpej 
   1397      1.134        ad 	mutex_enter(&pp->pr_lock);
   1398       1.74   thorpej 
   1399       1.74   thorpej 	newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1400       1.74   thorpej 
   1401       1.74   thorpej 	while (newpages-- > 0) {
   1402      1.113      yamt 		error = pool_grow(pp, PR_NOWAIT);
   1403      1.113      yamt 		if (error) {
   1404       1.74   thorpej 			break;
   1405       1.74   thorpej 		}
   1406       1.74   thorpej 		pp->pr_minpages++;
   1407       1.74   thorpej 	}
   1408       1.74   thorpej 
   1409       1.74   thorpej 	if (pp->pr_minpages >= pp->pr_maxpages)
   1410       1.74   thorpej 		pp->pr_maxpages = pp->pr_minpages + 1;	/* XXX */
   1411       1.74   thorpej 
   1412      1.134        ad 	mutex_exit(&pp->pr_lock);
   1413      1.113      yamt 	return error;
   1414       1.74   thorpej }
   1415       1.55   thorpej 
   1416       1.55   thorpej /*
   1417        1.3        pk  * Add a page worth of items to the pool.
   1418       1.21   thorpej  *
   1419       1.21   thorpej  * Note, we must be called with the pool descriptor LOCKED.
   1420        1.3        pk  */
   1421       1.55   thorpej static void
   1422      1.128  christos pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
   1423        1.3        pk {
   1424        1.3        pk 	struct pool_item *pi;
   1425      1.128  christos 	void *cp = storage;
   1426      1.125        ad 	const unsigned int align = pp->pr_align;
   1427      1.125        ad 	const unsigned int ioff = pp->pr_itemoffset;
   1428       1.55   thorpej 	int n;
   1429       1.36        pk 
   1430      1.134        ad 	KASSERT(mutex_owned(&pp->pr_lock));
   1431       1.91      yamt 
   1432       1.66   thorpej #ifdef DIAGNOSTIC
   1433      1.121      yamt 	if ((pp->pr_roflags & PR_NOALIGN) == 0 &&
   1434      1.150     skrll 	    ((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) != 0)
   1435       1.36        pk 		panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
   1436       1.66   thorpej #endif
   1437        1.3        pk 
   1438        1.3        pk 	/*
   1439        1.3        pk 	 * Insert page header.
   1440        1.3        pk 	 */
   1441       1.88       chs 	LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
   1442      1.102       chs 	LIST_INIT(&ph->ph_itemlist);
   1443        1.3        pk 	ph->ph_page = storage;
   1444        1.3        pk 	ph->ph_nmissing = 0;
   1445      1.151      yamt 	ph->ph_time = time_uptime;
   1446       1.88       chs 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
   1447       1.88       chs 		SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
   1448        1.3        pk 
   1449        1.6   thorpej 	pp->pr_nidle++;
   1450        1.6   thorpej 
   1451        1.3        pk 	/*
   1452        1.3        pk 	 * Color this page.
   1453        1.3        pk 	 */
   1454      1.141      yamt 	ph->ph_off = pp->pr_curcolor;
   1455      1.141      yamt 	cp = (char *)cp + ph->ph_off;
   1456        1.3        pk 	if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
   1457        1.3        pk 		pp->pr_curcolor = 0;
   1458        1.3        pk 
   1459        1.3        pk 	/*
   1460        1.3        pk 	 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
   1461        1.3        pk 	 */
   1462        1.3        pk 	if (ioff != 0)
   1463      1.128  christos 		cp = (char *)cp + align - ioff;
   1464        1.3        pk 
   1465      1.125        ad 	KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
   1466      1.125        ad 
   1467        1.3        pk 	/*
   1468        1.3        pk 	 * Insert remaining chunks on the bucket list.
   1469        1.3        pk 	 */
   1470        1.3        pk 	n = pp->pr_itemsperpage;
   1471       1.20   thorpej 	pp->pr_nitems += n;
   1472        1.3        pk 
   1473       1.97      yamt 	if (pp->pr_roflags & PR_NOTOUCH) {
   1474      1.141      yamt 		pr_item_notouch_init(pp, ph);
   1475       1.97      yamt 	} else {
   1476       1.97      yamt 		while (n--) {
   1477       1.97      yamt 			pi = (struct pool_item *)cp;
   1478       1.78   thorpej 
   1479       1.97      yamt 			KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0);
   1480        1.3        pk 
   1481       1.97      yamt 			/* Insert on page list */
   1482      1.102       chs 			LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
   1483        1.3        pk #ifdef DIAGNOSTIC
   1484       1.97      yamt 			pi->pi_magic = PI_MAGIC;
   1485        1.3        pk #endif
   1486      1.128  christos 			cp = (char *)cp + pp->pr_size;
   1487      1.125        ad 
   1488      1.125        ad 			KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
   1489       1.97      yamt 		}
   1490        1.3        pk 	}
   1491        1.3        pk 
   1492        1.3        pk 	/*
   1493        1.3        pk 	 * If the pool was depleted, point at the new page.
   1494        1.3        pk 	 */
   1495        1.3        pk 	if (pp->pr_curpage == NULL)
   1496        1.3        pk 		pp->pr_curpage = ph;
   1497        1.3        pk 
   1498        1.3        pk 	if (++pp->pr_npages > pp->pr_hiwat)
   1499        1.3        pk 		pp->pr_hiwat = pp->pr_npages;
   1500        1.3        pk }
   1501        1.3        pk 
   1502       1.20   thorpej /*
   1503       1.52   thorpej  * Used by pool_get() when nitems drops below the low water mark.  This
   1504       1.88       chs  * is used to catch up pr_nitems with the low water mark.
   1505       1.20   thorpej  *
   1506       1.21   thorpej  * Note 1, we never wait for memory here, we let the caller decide what to do.
   1507       1.20   thorpej  *
   1508       1.73   thorpej  * Note 2, we must be called with the pool already locked, and we return
   1509       1.20   thorpej  * with it locked.
   1510       1.20   thorpej  */
   1511       1.20   thorpej static int
   1512       1.42   thorpej pool_catchup(struct pool *pp)
   1513       1.20   thorpej {
   1514       1.20   thorpej 	int error = 0;
   1515       1.20   thorpej 
   1516       1.54   thorpej 	while (POOL_NEEDS_CATCHUP(pp)) {
   1517      1.113      yamt 		error = pool_grow(pp, PR_NOWAIT);
   1518      1.113      yamt 		if (error) {
   1519       1.20   thorpej 			break;
   1520       1.20   thorpej 		}
   1521       1.20   thorpej 	}
   1522      1.113      yamt 	return error;
   1523       1.20   thorpej }
   1524       1.20   thorpej 
   1525       1.88       chs static void
   1526       1.88       chs pool_update_curpage(struct pool *pp)
   1527       1.88       chs {
   1528       1.88       chs 
   1529       1.88       chs 	pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
   1530       1.88       chs 	if (pp->pr_curpage == NULL) {
   1531       1.88       chs 		pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
   1532       1.88       chs 	}
   1533       1.88       chs }
   1534       1.88       chs 
   1535        1.3        pk void
   1536       1.42   thorpej pool_setlowat(struct pool *pp, int n)
   1537        1.3        pk {
   1538       1.15        pk 
   1539      1.134        ad 	mutex_enter(&pp->pr_lock);
   1540       1.21   thorpej 
   1541        1.3        pk 	pp->pr_minitems = n;
   1542       1.15        pk 	pp->pr_minpages = (n == 0)
   1543       1.15        pk 		? 0
   1544       1.18   thorpej 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1545       1.20   thorpej 
   1546       1.20   thorpej 	/* Make sure we're caught up with the newly-set low water mark. */
   1547       1.75    simonb 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
   1548       1.20   thorpej 		/*
   1549       1.20   thorpej 		 * XXX: Should we log a warning?  Should we set up a timeout
   1550       1.20   thorpej 		 * to try again in a second or so?  The latter could break
   1551       1.20   thorpej 		 * a caller's assumptions about interrupt protection, etc.
   1552       1.20   thorpej 		 */
   1553       1.20   thorpej 	}
   1554       1.21   thorpej 
   1555      1.134        ad 	mutex_exit(&pp->pr_lock);
   1556        1.3        pk }
   1557        1.3        pk 
   1558        1.3        pk void
   1559       1.42   thorpej pool_sethiwat(struct pool *pp, int n)
   1560        1.3        pk {
   1561       1.15        pk 
   1562      1.134        ad 	mutex_enter(&pp->pr_lock);
   1563       1.21   thorpej 
   1564       1.15        pk 	pp->pr_maxpages = (n == 0)
   1565       1.15        pk 		? 0
   1566       1.18   thorpej 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1567       1.21   thorpej 
   1568      1.134        ad 	mutex_exit(&pp->pr_lock);
   1569        1.3        pk }
   1570        1.3        pk 
   1571       1.20   thorpej void
   1572       1.42   thorpej pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
   1573       1.20   thorpej {
   1574       1.20   thorpej 
   1575      1.134        ad 	mutex_enter(&pp->pr_lock);
   1576       1.20   thorpej 
   1577       1.20   thorpej 	pp->pr_hardlimit = n;
   1578       1.20   thorpej 	pp->pr_hardlimit_warning = warnmess;
   1579       1.31   thorpej 	pp->pr_hardlimit_ratecap.tv_sec = ratecap;
   1580       1.31   thorpej 	pp->pr_hardlimit_warning_last.tv_sec = 0;
   1581       1.31   thorpej 	pp->pr_hardlimit_warning_last.tv_usec = 0;
   1582       1.20   thorpej 
   1583       1.20   thorpej 	/*
   1584       1.21   thorpej 	 * In-line version of pool_sethiwat(), because we don't want to
   1585       1.21   thorpej 	 * release the lock.
   1586       1.20   thorpej 	 */
   1587       1.20   thorpej 	pp->pr_maxpages = (n == 0)
   1588       1.20   thorpej 		? 0
   1589       1.20   thorpej 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1590       1.21   thorpej 
   1591      1.134        ad 	mutex_exit(&pp->pr_lock);
   1592       1.20   thorpej }
   1593        1.3        pk 
   1594        1.3        pk /*
   1595        1.3        pk  * Release all complete pages that have not been used recently.
   1596        1.3        pk  */
   1597       1.66   thorpej int
   1598       1.59   thorpej #ifdef POOL_DIAGNOSTIC
   1599       1.42   thorpej _pool_reclaim(struct pool *pp, const char *file, long line)
   1600       1.56  sommerfe #else
   1601       1.56  sommerfe pool_reclaim(struct pool *pp)
   1602       1.56  sommerfe #endif
   1603        1.3        pk {
   1604        1.3        pk 	struct pool_item_header *ph, *phnext;
   1605       1.61       chs 	struct pool_pagelist pq;
   1606      1.151      yamt 	uint32_t curtime;
   1607      1.134        ad 	bool klock;
   1608      1.134        ad 	int rv;
   1609        1.3        pk 
   1610       1.68   thorpej 	if (pp->pr_drain_hook != NULL) {
   1611       1.68   thorpej 		/*
   1612       1.68   thorpej 		 * The drain hook must be called with the pool unlocked.
   1613       1.68   thorpej 		 */
   1614       1.68   thorpej 		(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
   1615       1.68   thorpej 	}
   1616       1.68   thorpej 
   1617      1.134        ad 	/*
   1618      1.157        ad 	 * XXXSMP Because we do not want to cause non-MPSAFE code
   1619      1.157        ad 	 * to block.
   1620      1.134        ad 	 */
   1621      1.134        ad 	if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK ||
   1622      1.134        ad 	    pp->pr_ipl == IPL_SOFTSERIAL) {
   1623      1.134        ad 		KERNEL_LOCK(1, NULL);
   1624      1.134        ad 		klock = true;
   1625      1.134        ad 	} else
   1626      1.134        ad 		klock = false;
   1627      1.134        ad 
   1628      1.134        ad 	/* Reclaim items from the pool's cache (if any). */
   1629      1.134        ad 	if (pp->pr_cache != NULL)
   1630      1.134        ad 		pool_cache_invalidate(pp->pr_cache);
   1631      1.134        ad 
   1632      1.134        ad 	if (mutex_tryenter(&pp->pr_lock) == 0) {
   1633      1.134        ad 		if (klock) {
   1634      1.134        ad 			KERNEL_UNLOCK_ONE(NULL);
   1635      1.134        ad 		}
   1636       1.66   thorpej 		return (0);
   1637      1.134        ad 	}
   1638       1.25   thorpej 	pr_enter(pp, file, line);
   1639       1.68   thorpej 
   1640       1.88       chs 	LIST_INIT(&pq);
   1641       1.43   thorpej 
   1642      1.151      yamt 	curtime = time_uptime;
   1643       1.21   thorpej 
   1644       1.88       chs 	for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
   1645       1.88       chs 		phnext = LIST_NEXT(ph, ph_pagelist);
   1646        1.3        pk 
   1647        1.3        pk 		/* Check our minimum page claim */
   1648        1.3        pk 		if (pp->pr_npages <= pp->pr_minpages)
   1649        1.3        pk 			break;
   1650        1.3        pk 
   1651       1.88       chs 		KASSERT(ph->ph_nmissing == 0);
   1652      1.151      yamt 		if (curtime - ph->ph_time < pool_inactive_time
   1653      1.117      yamt 		    && !pa_starved_p(pp->pr_alloc))
   1654       1.88       chs 			continue;
   1655       1.21   thorpej 
   1656       1.88       chs 		/*
   1657       1.88       chs 		 * If freeing this page would put us below
   1658       1.88       chs 		 * the low water mark, stop now.
   1659       1.88       chs 		 */
   1660       1.88       chs 		if ((pp->pr_nitems - pp->pr_itemsperpage) <
   1661       1.88       chs 		    pp->pr_minitems)
   1662       1.88       chs 			break;
   1663       1.21   thorpej 
   1664       1.88       chs 		pr_rmpage(pp, ph, &pq);
   1665        1.3        pk 	}
   1666        1.3        pk 
   1667       1.25   thorpej 	pr_leave(pp);
   1668      1.134        ad 	mutex_exit(&pp->pr_lock);
   1669      1.134        ad 
   1670      1.134        ad 	if (LIST_EMPTY(&pq))
   1671      1.134        ad 		rv = 0;
   1672      1.134        ad 	else {
   1673      1.134        ad 		pr_pagelist_free(pp, &pq);
   1674      1.134        ad 		rv = 1;
   1675      1.134        ad 	}
   1676      1.134        ad 
   1677      1.134        ad 	if (klock) {
   1678      1.134        ad 		KERNEL_UNLOCK_ONE(NULL);
   1679      1.134        ad 	}
   1680       1.66   thorpej 
   1681      1.134        ad 	return (rv);
   1682        1.3        pk }
   1683        1.3        pk 
   1684        1.3        pk /*
   1685      1.134        ad  * Drain pools, one at a time.  This is a two stage process;
   1686      1.134        ad  * drain_start kicks off a cross call to drain CPU-level caches
   1687      1.134        ad  * if the pool has an associated pool_cache.  drain_end waits
   1688      1.134        ad  * for those cross calls to finish, and then drains the cache
   1689      1.134        ad  * (if any) and pool.
   1690      1.131        ad  *
   1691      1.134        ad  * Note, must never be called from interrupt context.
   1692        1.3        pk  */
   1693        1.3        pk void
   1694      1.134        ad pool_drain_start(struct pool **ppp, uint64_t *wp)
   1695        1.3        pk {
   1696        1.3        pk 	struct pool *pp;
   1697      1.134        ad 
   1698      1.145        ad 	KASSERT(!TAILQ_EMPTY(&pool_head));
   1699        1.3        pk 
   1700       1.61       chs 	pp = NULL;
   1701      1.134        ad 
   1702      1.134        ad 	/* Find next pool to drain, and add a reference. */
   1703      1.134        ad 	mutex_enter(&pool_head_lock);
   1704      1.134        ad 	do {
   1705      1.134        ad 		if (drainpp == NULL) {
   1706      1.145        ad 			drainpp = TAILQ_FIRST(&pool_head);
   1707      1.134        ad 		}
   1708      1.134        ad 		if (drainpp != NULL) {
   1709      1.134        ad 			pp = drainpp;
   1710      1.145        ad 			drainpp = TAILQ_NEXT(pp, pr_poollist);
   1711      1.134        ad 		}
   1712      1.134        ad 		/*
   1713      1.134        ad 		 * Skip completely idle pools.  We depend on at least
   1714      1.134        ad 		 * one pool in the system being active.
   1715      1.134        ad 		 */
   1716      1.134        ad 	} while (pp == NULL || pp->pr_npages == 0);
   1717      1.134        ad 	pp->pr_refcnt++;
   1718      1.134        ad 	mutex_exit(&pool_head_lock);
   1719      1.134        ad 
   1720      1.134        ad 	/* If there is a pool_cache, drain CPU level caches. */
   1721      1.134        ad 	*ppp = pp;
   1722      1.134        ad 	if (pp->pr_cache != NULL) {
   1723      1.134        ad 		*wp = xc_broadcast(0, (xcfunc_t)pool_cache_xcall,
   1724      1.134        ad 		    pp->pr_cache, NULL);
   1725      1.134        ad 	}
   1726      1.134        ad }
   1727      1.134        ad 
   1728      1.134        ad void
   1729      1.134        ad pool_drain_end(struct pool *pp, uint64_t where)
   1730      1.134        ad {
   1731      1.134        ad 
   1732      1.134        ad 	if (pp == NULL)
   1733      1.134        ad 		return;
   1734      1.134        ad 
   1735      1.134        ad 	KASSERT(pp->pr_refcnt > 0);
   1736      1.134        ad 
   1737      1.134        ad 	/* Wait for remote draining to complete. */
   1738      1.134        ad 	if (pp->pr_cache != NULL)
   1739      1.134        ad 		xc_wait(where);
   1740      1.134        ad 
   1741      1.134        ad 	/* Drain the cache (if any) and pool.. */
   1742      1.134        ad 	pool_reclaim(pp);
   1743      1.134        ad 
   1744      1.134        ad 	/* Finally, unlock the pool. */
   1745      1.134        ad 	mutex_enter(&pool_head_lock);
   1746      1.134        ad 	pp->pr_refcnt--;
   1747      1.134        ad 	cv_broadcast(&pool_busy);
   1748      1.134        ad 	mutex_exit(&pool_head_lock);
   1749        1.3        pk }
   1750        1.3        pk 
   1751        1.3        pk /*
   1752        1.3        pk  * Diagnostic helpers.
   1753        1.3        pk  */
   1754        1.3        pk void
   1755       1.42   thorpej pool_print(struct pool *pp, const char *modif)
   1756       1.21   thorpej {
   1757       1.21   thorpej 
   1758       1.25   thorpej 	pool_print1(pp, modif, printf);
   1759       1.21   thorpej }
   1760       1.21   thorpej 
   1761       1.25   thorpej void
   1762      1.108      yamt pool_printall(const char *modif, void (*pr)(const char *, ...))
   1763      1.108      yamt {
   1764      1.108      yamt 	struct pool *pp;
   1765      1.108      yamt 
   1766      1.145        ad 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   1767      1.108      yamt 		pool_printit(pp, modif, pr);
   1768      1.108      yamt 	}
   1769      1.108      yamt }
   1770      1.108      yamt 
   1771      1.108      yamt void
   1772       1.42   thorpej pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1773       1.25   thorpej {
   1774       1.25   thorpej 
   1775       1.25   thorpej 	if (pp == NULL) {
   1776       1.25   thorpej 		(*pr)("Must specify a pool to print.\n");
   1777       1.25   thorpej 		return;
   1778       1.25   thorpej 	}
   1779       1.25   thorpej 
   1780       1.25   thorpej 	pool_print1(pp, modif, pr);
   1781       1.25   thorpej }
   1782       1.25   thorpej 
   1783       1.21   thorpej static void
   1784      1.124      yamt pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
   1785       1.97      yamt     void (*pr)(const char *, ...))
   1786       1.88       chs {
   1787       1.88       chs 	struct pool_item_header *ph;
   1788       1.88       chs #ifdef DIAGNOSTIC
   1789       1.88       chs 	struct pool_item *pi;
   1790       1.88       chs #endif
   1791       1.88       chs 
   1792       1.88       chs 	LIST_FOREACH(ph, pl, ph_pagelist) {
   1793      1.151      yamt 		(*pr)("\t\tpage %p, nmissing %d, time %" PRIu32 "\n",
   1794      1.151      yamt 		    ph->ph_page, ph->ph_nmissing, ph->ph_time);
   1795       1.88       chs #ifdef DIAGNOSTIC
   1796       1.97      yamt 		if (!(pp->pr_roflags & PR_NOTOUCH)) {
   1797      1.102       chs 			LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
   1798       1.97      yamt 				if (pi->pi_magic != PI_MAGIC) {
   1799       1.97      yamt 					(*pr)("\t\t\titem %p, magic 0x%x\n",
   1800       1.97      yamt 					    pi, pi->pi_magic);
   1801       1.97      yamt 				}
   1802       1.88       chs 			}
   1803       1.88       chs 		}
   1804       1.88       chs #endif
   1805       1.88       chs 	}
   1806       1.88       chs }
   1807       1.88       chs 
   1808       1.88       chs static void
   1809       1.42   thorpej pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1810        1.3        pk {
   1811       1.25   thorpej 	struct pool_item_header *ph;
   1812      1.134        ad 	pool_cache_t pc;
   1813      1.134        ad 	pcg_t *pcg;
   1814      1.134        ad 	pool_cache_cpu_t *cc;
   1815      1.134        ad 	uint64_t cpuhit, cpumiss;
   1816       1.44   thorpej 	int i, print_log = 0, print_pagelist = 0, print_cache = 0;
   1817       1.25   thorpej 	char c;
   1818       1.25   thorpej 
   1819       1.25   thorpej 	while ((c = *modif++) != '\0') {
   1820       1.25   thorpej 		if (c == 'l')
   1821       1.25   thorpej 			print_log = 1;
   1822       1.25   thorpej 		if (c == 'p')
   1823       1.25   thorpej 			print_pagelist = 1;
   1824       1.44   thorpej 		if (c == 'c')
   1825       1.44   thorpej 			print_cache = 1;
   1826       1.25   thorpej 	}
   1827       1.25   thorpej 
   1828      1.134        ad 	if ((pc = pp->pr_cache) != NULL) {
   1829      1.134        ad 		(*pr)("POOL CACHE");
   1830      1.134        ad 	} else {
   1831      1.134        ad 		(*pr)("POOL");
   1832      1.134        ad 	}
   1833      1.134        ad 
   1834      1.134        ad 	(*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
   1835       1.25   thorpej 	    pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
   1836       1.25   thorpej 	    pp->pr_roflags);
   1837       1.66   thorpej 	(*pr)("\talloc %p\n", pp->pr_alloc);
   1838       1.25   thorpej 	(*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
   1839       1.25   thorpej 	    pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
   1840       1.25   thorpej 	(*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
   1841       1.25   thorpej 	    pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
   1842       1.25   thorpej 
   1843      1.134        ad 	(*pr)("\tnget %lu, nfail %lu, nput %lu\n",
   1844       1.25   thorpej 	    pp->pr_nget, pp->pr_nfail, pp->pr_nput);
   1845       1.25   thorpej 	(*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
   1846       1.25   thorpej 	    pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
   1847       1.25   thorpej 
   1848       1.25   thorpej 	if (print_pagelist == 0)
   1849       1.25   thorpej 		goto skip_pagelist;
   1850       1.25   thorpej 
   1851       1.88       chs 	if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
   1852       1.88       chs 		(*pr)("\n\tempty page list:\n");
   1853       1.97      yamt 	pool_print_pagelist(pp, &pp->pr_emptypages, pr);
   1854       1.88       chs 	if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
   1855       1.88       chs 		(*pr)("\n\tfull page list:\n");
   1856       1.97      yamt 	pool_print_pagelist(pp, &pp->pr_fullpages, pr);
   1857       1.88       chs 	if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
   1858       1.88       chs 		(*pr)("\n\tpartial-page list:\n");
   1859       1.97      yamt 	pool_print_pagelist(pp, &pp->pr_partpages, pr);
   1860       1.88       chs 
   1861       1.25   thorpej 	if (pp->pr_curpage == NULL)
   1862       1.25   thorpej 		(*pr)("\tno current page\n");
   1863       1.25   thorpej 	else
   1864       1.25   thorpej 		(*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
   1865       1.25   thorpej 
   1866       1.25   thorpej  skip_pagelist:
   1867       1.25   thorpej 	if (print_log == 0)
   1868       1.25   thorpej 		goto skip_log;
   1869       1.25   thorpej 
   1870       1.25   thorpej 	(*pr)("\n");
   1871       1.25   thorpej 	if ((pp->pr_roflags & PR_LOGGING) == 0)
   1872       1.25   thorpej 		(*pr)("\tno log\n");
   1873      1.122  christos 	else {
   1874       1.25   thorpej 		pr_printlog(pp, NULL, pr);
   1875      1.122  christos 	}
   1876        1.3        pk 
   1877       1.25   thorpej  skip_log:
   1878       1.44   thorpej 
   1879      1.102       chs #define PR_GROUPLIST(pcg)						\
   1880      1.102       chs 	(*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail);		\
   1881      1.142        ad 	for (i = 0; i < pcg->pcg_size; i++) {				\
   1882      1.102       chs 		if (pcg->pcg_objects[i].pcgo_pa !=			\
   1883      1.102       chs 		    POOL_PADDR_INVALID) {				\
   1884      1.102       chs 			(*pr)("\t\t\t%p, 0x%llx\n",			\
   1885      1.102       chs 			    pcg->pcg_objects[i].pcgo_va,		\
   1886      1.102       chs 			    (unsigned long long)			\
   1887      1.102       chs 			    pcg->pcg_objects[i].pcgo_pa);		\
   1888      1.102       chs 		} else {						\
   1889      1.102       chs 			(*pr)("\t\t\t%p\n",				\
   1890      1.102       chs 			    pcg->pcg_objects[i].pcgo_va);		\
   1891      1.102       chs 		}							\
   1892      1.102       chs 	}
   1893      1.102       chs 
   1894      1.134        ad 	if (pc != NULL) {
   1895      1.134        ad 		cpuhit = 0;
   1896      1.134        ad 		cpumiss = 0;
   1897      1.134        ad 		for (i = 0; i < MAXCPUS; i++) {
   1898      1.134        ad 			if ((cc = pc->pc_cpus[i]) == NULL)
   1899      1.134        ad 				continue;
   1900      1.134        ad 			cpuhit += cc->cc_hits;
   1901      1.134        ad 			cpumiss += cc->cc_misses;
   1902      1.134        ad 		}
   1903      1.134        ad 		(*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
   1904      1.134        ad 		(*pr)("\tcache layer hits %llu misses %llu\n",
   1905      1.134        ad 		    pc->pc_hits, pc->pc_misses);
   1906      1.134        ad 		(*pr)("\tcache layer entry uncontended %llu contended %llu\n",
   1907      1.134        ad 		    pc->pc_hits + pc->pc_misses - pc->pc_contended,
   1908      1.134        ad 		    pc->pc_contended);
   1909      1.134        ad 		(*pr)("\tcache layer empty groups %u full groups %u\n",
   1910      1.134        ad 		    pc->pc_nempty, pc->pc_nfull);
   1911      1.134        ad 		if (print_cache) {
   1912      1.134        ad 			(*pr)("\tfull cache groups:\n");
   1913      1.134        ad 			for (pcg = pc->pc_fullgroups; pcg != NULL;
   1914      1.134        ad 			    pcg = pcg->pcg_next) {
   1915      1.134        ad 				PR_GROUPLIST(pcg);
   1916      1.134        ad 			}
   1917      1.134        ad 			(*pr)("\tempty cache groups:\n");
   1918      1.134        ad 			for (pcg = pc->pc_emptygroups; pcg != NULL;
   1919      1.134        ad 			    pcg = pcg->pcg_next) {
   1920      1.134        ad 				PR_GROUPLIST(pcg);
   1921      1.134        ad 			}
   1922      1.103       chs 		}
   1923       1.44   thorpej 	}
   1924      1.102       chs #undef PR_GROUPLIST
   1925       1.44   thorpej 
   1926       1.88       chs 	pr_enter_check(pp, pr);
   1927       1.88       chs }
   1928       1.88       chs 
   1929       1.88       chs static int
   1930       1.88       chs pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
   1931       1.88       chs {
   1932       1.88       chs 	struct pool_item *pi;
   1933      1.128  christos 	void *page;
   1934       1.88       chs 	int n;
   1935       1.88       chs 
   1936      1.121      yamt 	if ((pp->pr_roflags & PR_NOALIGN) == 0) {
   1937      1.128  christos 		page = (void *)((uintptr_t)ph & pp->pr_alloc->pa_pagemask);
   1938      1.121      yamt 		if (page != ph->ph_page &&
   1939      1.121      yamt 		    (pp->pr_roflags & PR_PHINPAGE) != 0) {
   1940      1.121      yamt 			if (label != NULL)
   1941      1.121      yamt 				printf("%s: ", label);
   1942      1.121      yamt 			printf("pool(%p:%s): page inconsistency: page %p;"
   1943      1.121      yamt 			       " at page head addr %p (p %p)\n", pp,
   1944      1.121      yamt 				pp->pr_wchan, ph->ph_page,
   1945      1.121      yamt 				ph, page);
   1946      1.121      yamt 			return 1;
   1947      1.121      yamt 		}
   1948       1.88       chs 	}
   1949        1.3        pk 
   1950       1.97      yamt 	if ((pp->pr_roflags & PR_NOTOUCH) != 0)
   1951       1.97      yamt 		return 0;
   1952       1.97      yamt 
   1953      1.102       chs 	for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
   1954       1.88       chs 	     pi != NULL;
   1955      1.102       chs 	     pi = LIST_NEXT(pi,pi_list), n++) {
   1956       1.88       chs 
   1957       1.88       chs #ifdef DIAGNOSTIC
   1958       1.88       chs 		if (pi->pi_magic != PI_MAGIC) {
   1959       1.88       chs 			if (label != NULL)
   1960       1.88       chs 				printf("%s: ", label);
   1961       1.88       chs 			printf("pool(%s): free list modified: magic=%x;"
   1962      1.121      yamt 			       " page %p; item ordinal %d; addr %p\n",
   1963       1.88       chs 				pp->pr_wchan, pi->pi_magic, ph->ph_page,
   1964      1.121      yamt 				n, pi);
   1965       1.88       chs 			panic("pool");
   1966       1.88       chs 		}
   1967       1.88       chs #endif
   1968      1.121      yamt 		if ((pp->pr_roflags & PR_NOALIGN) != 0) {
   1969      1.121      yamt 			continue;
   1970      1.121      yamt 		}
   1971      1.128  christos 		page = (void *)((uintptr_t)pi & pp->pr_alloc->pa_pagemask);
   1972       1.88       chs 		if (page == ph->ph_page)
   1973       1.88       chs 			continue;
   1974       1.88       chs 
   1975       1.88       chs 		if (label != NULL)
   1976       1.88       chs 			printf("%s: ", label);
   1977       1.88       chs 		printf("pool(%p:%s): page inconsistency: page %p;"
   1978       1.88       chs 		       " item ordinal %d; addr %p (p %p)\n", pp,
   1979       1.88       chs 			pp->pr_wchan, ph->ph_page,
   1980       1.88       chs 			n, pi, page);
   1981       1.88       chs 		return 1;
   1982       1.88       chs 	}
   1983       1.88       chs 	return 0;
   1984        1.3        pk }
   1985        1.3        pk 
   1986       1.88       chs 
   1987        1.3        pk int
   1988       1.42   thorpej pool_chk(struct pool *pp, const char *label)
   1989        1.3        pk {
   1990        1.3        pk 	struct pool_item_header *ph;
   1991        1.3        pk 	int r = 0;
   1992        1.3        pk 
   1993      1.134        ad 	mutex_enter(&pp->pr_lock);
   1994       1.88       chs 	LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
   1995       1.88       chs 		r = pool_chk_page(pp, label, ph);
   1996       1.88       chs 		if (r) {
   1997       1.88       chs 			goto out;
   1998       1.88       chs 		}
   1999       1.88       chs 	}
   2000       1.88       chs 	LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
   2001       1.88       chs 		r = pool_chk_page(pp, label, ph);
   2002       1.88       chs 		if (r) {
   2003        1.3        pk 			goto out;
   2004        1.3        pk 		}
   2005       1.88       chs 	}
   2006       1.88       chs 	LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
   2007       1.88       chs 		r = pool_chk_page(pp, label, ph);
   2008       1.88       chs 		if (r) {
   2009        1.3        pk 			goto out;
   2010        1.3        pk 		}
   2011        1.3        pk 	}
   2012       1.88       chs 
   2013        1.3        pk out:
   2014      1.134        ad 	mutex_exit(&pp->pr_lock);
   2015        1.3        pk 	return (r);
   2016       1.43   thorpej }
   2017       1.43   thorpej 
   2018       1.43   thorpej /*
   2019       1.43   thorpej  * pool_cache_init:
   2020       1.43   thorpej  *
   2021       1.43   thorpej  *	Initialize a pool cache.
   2022      1.134        ad  */
   2023      1.134        ad pool_cache_t
   2024      1.134        ad pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
   2025      1.134        ad     const char *wchan, struct pool_allocator *palloc, int ipl,
   2026      1.134        ad     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
   2027      1.134        ad {
   2028      1.134        ad 	pool_cache_t pc;
   2029      1.134        ad 
   2030      1.134        ad 	pc = pool_get(&cache_pool, PR_WAITOK);
   2031      1.134        ad 	if (pc == NULL)
   2032      1.134        ad 		return NULL;
   2033      1.134        ad 
   2034      1.134        ad 	pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
   2035      1.134        ad 	   palloc, ipl, ctor, dtor, arg);
   2036      1.134        ad 
   2037      1.134        ad 	return pc;
   2038      1.134        ad }
   2039      1.134        ad 
   2040      1.134        ad /*
   2041      1.134        ad  * pool_cache_bootstrap:
   2042       1.43   thorpej  *
   2043      1.134        ad  *	Kernel-private version of pool_cache_init().  The caller
   2044      1.134        ad  *	provides initial storage.
   2045       1.43   thorpej  */
   2046       1.43   thorpej void
   2047      1.134        ad pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
   2048      1.134        ad     u_int align_offset, u_int flags, const char *wchan,
   2049      1.134        ad     struct pool_allocator *palloc, int ipl,
   2050      1.134        ad     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
   2051       1.43   thorpej     void *arg)
   2052       1.43   thorpej {
   2053      1.134        ad 	CPU_INFO_ITERATOR cii;
   2054      1.145        ad 	pool_cache_t pc1;
   2055      1.134        ad 	struct cpu_info *ci;
   2056      1.134        ad 	struct pool *pp;
   2057      1.134        ad 
   2058      1.134        ad 	pp = &pc->pc_pool;
   2059      1.134        ad 	if (palloc == NULL && ipl == IPL_NONE)
   2060      1.134        ad 		palloc = &pool_allocator_nointr;
   2061      1.134        ad 	pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl);
   2062      1.157        ad 	mutex_init(&pc->pc_lock, MUTEX_DEFAULT, ipl);
   2063       1.43   thorpej 
   2064      1.134        ad 	if (ctor == NULL) {
   2065      1.134        ad 		ctor = (int (*)(void *, void *, int))nullop;
   2066      1.134        ad 	}
   2067      1.134        ad 	if (dtor == NULL) {
   2068      1.134        ad 		dtor = (void (*)(void *, void *))nullop;
   2069      1.134        ad 	}
   2070       1.43   thorpej 
   2071      1.134        ad 	pc->pc_emptygroups = NULL;
   2072      1.134        ad 	pc->pc_fullgroups = NULL;
   2073      1.134        ad 	pc->pc_partgroups = NULL;
   2074       1.43   thorpej 	pc->pc_ctor = ctor;
   2075       1.43   thorpej 	pc->pc_dtor = dtor;
   2076       1.43   thorpej 	pc->pc_arg  = arg;
   2077      1.134        ad 	pc->pc_hits  = 0;
   2078       1.48   thorpej 	pc->pc_misses = 0;
   2079      1.134        ad 	pc->pc_nempty = 0;
   2080      1.134        ad 	pc->pc_npart = 0;
   2081      1.134        ad 	pc->pc_nfull = 0;
   2082      1.134        ad 	pc->pc_contended = 0;
   2083      1.134        ad 	pc->pc_refcnt = 0;
   2084      1.136      yamt 	pc->pc_freecheck = NULL;
   2085      1.134        ad 
   2086      1.142        ad 	if ((flags & PR_LARGECACHE) != 0) {
   2087      1.142        ad 		pc->pc_pcgsize = PCG_NOBJECTS_LARGE;
   2088      1.142        ad 	} else {
   2089      1.142        ad 		pc->pc_pcgsize = PCG_NOBJECTS_NORMAL;
   2090      1.142        ad 	}
   2091      1.142        ad 
   2092      1.134        ad 	/* Allocate per-CPU caches. */
   2093      1.134        ad 	memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
   2094      1.134        ad 	pc->pc_ncpu = 0;
   2095      1.139        ad 	if (ncpu < 2) {
   2096      1.137        ad 		/* XXX For sparc: boot CPU is not attached yet. */
   2097      1.137        ad 		pool_cache_cpu_init1(curcpu(), pc);
   2098      1.137        ad 	} else {
   2099      1.137        ad 		for (CPU_INFO_FOREACH(cii, ci)) {
   2100      1.137        ad 			pool_cache_cpu_init1(ci, pc);
   2101      1.137        ad 		}
   2102      1.134        ad 	}
   2103      1.145        ad 
   2104      1.145        ad 	/* Add to list of all pools. */
   2105      1.145        ad 	if (__predict_true(!cold))
   2106      1.134        ad 		mutex_enter(&pool_head_lock);
   2107      1.145        ad 	TAILQ_FOREACH(pc1, &pool_cache_head, pc_cachelist) {
   2108      1.145        ad 		if (strcmp(pc1->pc_pool.pr_wchan, pc->pc_pool.pr_wchan) > 0)
   2109      1.145        ad 			break;
   2110      1.145        ad 	}
   2111      1.145        ad 	if (pc1 == NULL)
   2112      1.145        ad 		TAILQ_INSERT_TAIL(&pool_cache_head, pc, pc_cachelist);
   2113      1.145        ad 	else
   2114      1.145        ad 		TAILQ_INSERT_BEFORE(pc1, pc, pc_cachelist);
   2115      1.145        ad 	if (__predict_true(!cold))
   2116      1.134        ad 		mutex_exit(&pool_head_lock);
   2117      1.145        ad 
   2118      1.145        ad 	membar_sync();
   2119      1.145        ad 	pp->pr_cache = pc;
   2120       1.43   thorpej }
   2121       1.43   thorpej 
   2122       1.43   thorpej /*
   2123       1.43   thorpej  * pool_cache_destroy:
   2124       1.43   thorpej  *
   2125       1.43   thorpej  *	Destroy a pool cache.
   2126       1.43   thorpej  */
   2127       1.43   thorpej void
   2128      1.134        ad pool_cache_destroy(pool_cache_t pc)
   2129       1.43   thorpej {
   2130      1.134        ad 	struct pool *pp = &pc->pc_pool;
   2131      1.134        ad 	pool_cache_cpu_t *cc;
   2132      1.134        ad 	pcg_t *pcg;
   2133      1.134        ad 	int i;
   2134      1.134        ad 
   2135      1.134        ad 	/* Remove it from the global list. */
   2136      1.134        ad 	mutex_enter(&pool_head_lock);
   2137      1.134        ad 	while (pc->pc_refcnt != 0)
   2138      1.134        ad 		cv_wait(&pool_busy, &pool_head_lock);
   2139      1.145        ad 	TAILQ_REMOVE(&pool_cache_head, pc, pc_cachelist);
   2140      1.134        ad 	mutex_exit(&pool_head_lock);
   2141       1.43   thorpej 
   2142       1.43   thorpej 	/* First, invalidate the entire cache. */
   2143       1.43   thorpej 	pool_cache_invalidate(pc);
   2144       1.43   thorpej 
   2145      1.134        ad 	/* Disassociate it from the pool. */
   2146      1.134        ad 	mutex_enter(&pp->pr_lock);
   2147      1.134        ad 	pp->pr_cache = NULL;
   2148      1.134        ad 	mutex_exit(&pp->pr_lock);
   2149      1.134        ad 
   2150      1.134        ad 	/* Destroy per-CPU data */
   2151      1.134        ad 	for (i = 0; i < MAXCPUS; i++) {
   2152      1.134        ad 		if ((cc = pc->pc_cpus[i]) == NULL)
   2153      1.134        ad 			continue;
   2154      1.134        ad 		if ((pcg = cc->cc_current) != NULL) {
   2155      1.134        ad 			pcg->pcg_next = NULL;
   2156      1.134        ad 			pool_cache_invalidate_groups(pc, pcg);
   2157      1.134        ad 		}
   2158      1.134        ad 		if ((pcg = cc->cc_previous) != NULL) {
   2159      1.134        ad 			pcg->pcg_next = NULL;
   2160      1.134        ad 			pool_cache_invalidate_groups(pc, pcg);
   2161      1.134        ad 		}
   2162      1.134        ad 		if (cc != &pc->pc_cpu0)
   2163      1.134        ad 			pool_put(&cache_cpu_pool, cc);
   2164      1.134        ad 	}
   2165      1.134        ad 
   2166      1.134        ad 	/* Finally, destroy it. */
   2167      1.134        ad 	mutex_destroy(&pc->pc_lock);
   2168      1.134        ad 	pool_destroy(pp);
   2169      1.134        ad 	pool_put(&cache_pool, pc);
   2170      1.134        ad }
   2171      1.134        ad 
   2172      1.134        ad /*
   2173      1.134        ad  * pool_cache_cpu_init1:
   2174      1.134        ad  *
   2175      1.134        ad  *	Called for each pool_cache whenever a new CPU is attached.
   2176      1.134        ad  */
   2177      1.134        ad static void
   2178      1.134        ad pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
   2179      1.134        ad {
   2180      1.134        ad 	pool_cache_cpu_t *cc;
   2181      1.137        ad 	int index;
   2182      1.134        ad 
   2183      1.137        ad 	index = ci->ci_index;
   2184      1.137        ad 
   2185      1.137        ad 	KASSERT(index < MAXCPUS);
   2186      1.134        ad 
   2187      1.137        ad 	if ((cc = pc->pc_cpus[index]) != NULL) {
   2188      1.137        ad 		KASSERT(cc->cc_cpuindex == index);
   2189      1.134        ad 		return;
   2190      1.134        ad 	}
   2191      1.134        ad 
   2192      1.134        ad 	/*
   2193      1.134        ad 	 * The first CPU is 'free'.  This needs to be the case for
   2194      1.134        ad 	 * bootstrap - we may not be able to allocate yet.
   2195      1.134        ad 	 */
   2196      1.134        ad 	if (pc->pc_ncpu == 0) {
   2197      1.134        ad 		cc = &pc->pc_cpu0;
   2198      1.134        ad 		pc->pc_ncpu = 1;
   2199      1.134        ad 	} else {
   2200      1.134        ad 		mutex_enter(&pc->pc_lock);
   2201      1.134        ad 		pc->pc_ncpu++;
   2202      1.134        ad 		mutex_exit(&pc->pc_lock);
   2203      1.134        ad 		cc = pool_get(&cache_cpu_pool, PR_WAITOK);
   2204      1.134        ad 	}
   2205      1.134        ad 
   2206      1.134        ad 	cc->cc_ipl = pc->pc_pool.pr_ipl;
   2207      1.134        ad 	cc->cc_iplcookie = makeiplcookie(cc->cc_ipl);
   2208      1.134        ad 	cc->cc_cache = pc;
   2209      1.137        ad 	cc->cc_cpuindex = index;
   2210      1.134        ad 	cc->cc_hits = 0;
   2211      1.134        ad 	cc->cc_misses = 0;
   2212      1.134        ad 	cc->cc_current = NULL;
   2213      1.134        ad 	cc->cc_previous = NULL;
   2214      1.134        ad 
   2215      1.137        ad 	pc->pc_cpus[index] = cc;
   2216       1.43   thorpej }
   2217       1.43   thorpej 
   2218      1.134        ad /*
   2219      1.134        ad  * pool_cache_cpu_init:
   2220      1.134        ad  *
   2221      1.134        ad  *	Called whenever a new CPU is attached.
   2222      1.134        ad  */
   2223      1.134        ad void
   2224      1.134        ad pool_cache_cpu_init(struct cpu_info *ci)
   2225       1.43   thorpej {
   2226      1.134        ad 	pool_cache_t pc;
   2227      1.134        ad 
   2228      1.134        ad 	mutex_enter(&pool_head_lock);
   2229      1.145        ad 	TAILQ_FOREACH(pc, &pool_cache_head, pc_cachelist) {
   2230      1.134        ad 		pc->pc_refcnt++;
   2231      1.134        ad 		mutex_exit(&pool_head_lock);
   2232       1.43   thorpej 
   2233      1.134        ad 		pool_cache_cpu_init1(ci, pc);
   2234       1.43   thorpej 
   2235      1.134        ad 		mutex_enter(&pool_head_lock);
   2236      1.134        ad 		pc->pc_refcnt--;
   2237      1.134        ad 		cv_broadcast(&pool_busy);
   2238      1.134        ad 	}
   2239      1.134        ad 	mutex_exit(&pool_head_lock);
   2240       1.43   thorpej }
   2241       1.43   thorpej 
   2242      1.134        ad /*
   2243      1.134        ad  * pool_cache_reclaim:
   2244      1.134        ad  *
   2245      1.134        ad  *	Reclaim memory from a pool cache.
   2246      1.134        ad  */
   2247      1.134        ad bool
   2248      1.134        ad pool_cache_reclaim(pool_cache_t pc)
   2249       1.43   thorpej {
   2250       1.43   thorpej 
   2251      1.134        ad 	return pool_reclaim(&pc->pc_pool);
   2252      1.134        ad }
   2253       1.43   thorpej 
   2254      1.136      yamt static void
   2255      1.136      yamt pool_cache_destruct_object1(pool_cache_t pc, void *object)
   2256      1.136      yamt {
   2257      1.136      yamt 
   2258      1.136      yamt 	(*pc->pc_dtor)(pc->pc_arg, object);
   2259      1.136      yamt 	pool_put(&pc->pc_pool, object);
   2260      1.136      yamt }
   2261      1.136      yamt 
   2262      1.134        ad /*
   2263      1.134        ad  * pool_cache_destruct_object:
   2264      1.134        ad  *
   2265      1.134        ad  *	Force destruction of an object and its release back into
   2266      1.134        ad  *	the pool.
   2267      1.134        ad  */
   2268      1.134        ad void
   2269      1.134        ad pool_cache_destruct_object(pool_cache_t pc, void *object)
   2270      1.134        ad {
   2271      1.134        ad 
   2272      1.136      yamt 	FREECHECK_IN(&pc->pc_freecheck, object);
   2273      1.136      yamt 
   2274      1.136      yamt 	pool_cache_destruct_object1(pc, object);
   2275       1.43   thorpej }
   2276       1.43   thorpej 
   2277      1.134        ad /*
   2278      1.134        ad  * pool_cache_invalidate_groups:
   2279      1.134        ad  *
   2280      1.134        ad  *	Invalidate a chain of groups and destruct all objects.
   2281      1.134        ad  */
   2282      1.102       chs static void
   2283      1.134        ad pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
   2284      1.102       chs {
   2285      1.134        ad 	void *object;
   2286      1.134        ad 	pcg_t *next;
   2287      1.134        ad 	int i;
   2288      1.134        ad 
   2289      1.134        ad 	for (; pcg != NULL; pcg = next) {
   2290      1.134        ad 		next = pcg->pcg_next;
   2291      1.134        ad 
   2292      1.134        ad 		for (i = 0; i < pcg->pcg_avail; i++) {
   2293      1.134        ad 			object = pcg->pcg_objects[i].pcgo_va;
   2294      1.136      yamt 			pool_cache_destruct_object1(pc, object);
   2295      1.134        ad 		}
   2296      1.102       chs 
   2297      1.142        ad 		if (pcg->pcg_size == PCG_NOBJECTS_LARGE) {
   2298      1.142        ad 			pool_put(&pcg_large_pool, pcg);
   2299      1.142        ad 		} else {
   2300      1.142        ad 			KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL);
   2301      1.142        ad 			pool_put(&pcg_normal_pool, pcg);
   2302      1.142        ad 		}
   2303      1.102       chs 	}
   2304      1.102       chs }
   2305      1.102       chs 
   2306       1.43   thorpej /*
   2307      1.134        ad  * pool_cache_invalidate:
   2308       1.43   thorpej  *
   2309      1.134        ad  *	Invalidate a pool cache (destruct and release all of the
   2310      1.134        ad  *	cached objects).  Does not reclaim objects from the pool.
   2311       1.43   thorpej  */
   2312      1.134        ad void
   2313      1.134        ad pool_cache_invalidate(pool_cache_t pc)
   2314      1.134        ad {
   2315      1.134        ad 	pcg_t *full, *empty, *part;
   2316      1.134        ad 
   2317      1.134        ad 	mutex_enter(&pc->pc_lock);
   2318      1.134        ad 	full = pc->pc_fullgroups;
   2319      1.134        ad 	empty = pc->pc_emptygroups;
   2320      1.134        ad 	part = pc->pc_partgroups;
   2321      1.134        ad 	pc->pc_fullgroups = NULL;
   2322      1.134        ad 	pc->pc_emptygroups = NULL;
   2323      1.134        ad 	pc->pc_partgroups = NULL;
   2324      1.134        ad 	pc->pc_nfull = 0;
   2325      1.134        ad 	pc->pc_nempty = 0;
   2326      1.134        ad 	pc->pc_npart = 0;
   2327      1.134        ad 	mutex_exit(&pc->pc_lock);
   2328      1.134        ad 
   2329      1.134        ad 	pool_cache_invalidate_groups(pc, full);
   2330      1.134        ad 	pool_cache_invalidate_groups(pc, empty);
   2331      1.134        ad 	pool_cache_invalidate_groups(pc, part);
   2332      1.134        ad }
   2333      1.134        ad 
   2334      1.134        ad void
   2335      1.134        ad pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
   2336      1.134        ad {
   2337      1.134        ad 
   2338      1.134        ad 	pool_set_drain_hook(&pc->pc_pool, fn, arg);
   2339      1.134        ad }
   2340      1.134        ad 
   2341      1.134        ad void
   2342      1.134        ad pool_cache_setlowat(pool_cache_t pc, int n)
   2343      1.134        ad {
   2344      1.134        ad 
   2345      1.134        ad 	pool_setlowat(&pc->pc_pool, n);
   2346      1.134        ad }
   2347      1.134        ad 
   2348      1.134        ad void
   2349      1.134        ad pool_cache_sethiwat(pool_cache_t pc, int n)
   2350      1.134        ad {
   2351      1.134        ad 
   2352      1.134        ad 	pool_sethiwat(&pc->pc_pool, n);
   2353      1.134        ad }
   2354      1.134        ad 
   2355      1.134        ad void
   2356      1.134        ad pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
   2357      1.134        ad {
   2358      1.134        ad 
   2359      1.134        ad 	pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
   2360      1.134        ad }
   2361      1.134        ad 
   2362      1.134        ad static inline pool_cache_cpu_t *
   2363      1.134        ad pool_cache_cpu_enter(pool_cache_t pc, int *s)
   2364      1.134        ad {
   2365      1.134        ad 	pool_cache_cpu_t *cc;
   2366      1.134        ad 
   2367      1.134        ad 	/*
   2368      1.134        ad 	 * Prevent other users of the cache from accessing our
   2369      1.134        ad 	 * CPU-local data.  To avoid touching shared state, we
   2370      1.134        ad 	 * pull the neccessary information from CPU local data.
   2371      1.134        ad 	 */
   2372      1.159        ad 	KPREEMPT_DISABLE(curlwp);
   2373      1.137        ad 	cc = pc->pc_cpus[curcpu()->ci_index];
   2374      1.134        ad 	KASSERT(cc->cc_cache == pc);
   2375      1.137        ad 	if (cc->cc_ipl != IPL_NONE) {
   2376      1.134        ad 		*s = splraiseipl(cc->cc_iplcookie);
   2377      1.134        ad 	}
   2378      1.134        ad 
   2379      1.134        ad 	return cc;
   2380      1.134        ad }
   2381      1.134        ad 
   2382      1.134        ad static inline void
   2383      1.134        ad pool_cache_cpu_exit(pool_cache_cpu_t *cc, int *s)
   2384      1.134        ad {
   2385      1.134        ad 
   2386      1.134        ad 	/* No longer need exclusive access to the per-CPU data. */
   2387      1.137        ad 	if (cc->cc_ipl != IPL_NONE) {
   2388      1.134        ad 		splx(*s);
   2389      1.134        ad 	}
   2390      1.159        ad 	KPREEMPT_ENABLE(curlwp);
   2391      1.134        ad }
   2392      1.134        ad 
   2393  1.160.2.1  wrstuden pool_cache_cpu_t * __noinline
   2394      1.134        ad pool_cache_get_slow(pool_cache_cpu_t *cc, int *s, void **objectp,
   2395      1.134        ad 		    paddr_t *pap, int flags)
   2396       1.43   thorpej {
   2397      1.134        ad 	pcg_t *pcg, *cur;
   2398      1.134        ad 	uint64_t ncsw;
   2399      1.134        ad 	pool_cache_t pc;
   2400       1.43   thorpej 	void *object;
   2401       1.58   thorpej 
   2402      1.134        ad 	pc = cc->cc_cache;
   2403      1.134        ad 	cc->cc_misses++;
   2404       1.43   thorpej 
   2405      1.134        ad 	/*
   2406      1.134        ad 	 * Nothing was available locally.  Try and grab a group
   2407      1.134        ad 	 * from the cache.
   2408      1.134        ad 	 */
   2409      1.134        ad 	if (!mutex_tryenter(&pc->pc_lock)) {
   2410      1.134        ad 		ncsw = curlwp->l_ncsw;
   2411      1.134        ad 		mutex_enter(&pc->pc_lock);
   2412      1.134        ad 		pc->pc_contended++;
   2413       1.43   thorpej 
   2414      1.134        ad 		/*
   2415      1.134        ad 		 * If we context switched while locking, then
   2416      1.134        ad 		 * our view of the per-CPU data is invalid:
   2417      1.134        ad 		 * retry.
   2418      1.134        ad 		 */
   2419      1.134        ad 		if (curlwp->l_ncsw != ncsw) {
   2420      1.134        ad 			mutex_exit(&pc->pc_lock);
   2421      1.134        ad 			pool_cache_cpu_exit(cc, s);
   2422      1.134        ad 			return pool_cache_cpu_enter(pc, s);
   2423       1.43   thorpej 		}
   2424      1.102       chs 	}
   2425       1.43   thorpej 
   2426      1.134        ad 	if ((pcg = pc->pc_fullgroups) != NULL) {
   2427       1.43   thorpej 		/*
   2428      1.134        ad 		 * If there's a full group, release our empty
   2429      1.134        ad 		 * group back to the cache.  Install the full
   2430      1.134        ad 		 * group as cc_current and return.
   2431       1.43   thorpej 		 */
   2432      1.134        ad 		if ((cur = cc->cc_current) != NULL) {
   2433      1.134        ad 			KASSERT(cur->pcg_avail == 0);
   2434      1.134        ad 			cur->pcg_next = pc->pc_emptygroups;
   2435      1.134        ad 			pc->pc_emptygroups = cur;
   2436      1.134        ad 			pc->pc_nempty++;
   2437       1.87   thorpej 		}
   2438      1.142        ad 		KASSERT(pcg->pcg_avail == pcg->pcg_size);
   2439      1.134        ad 		cc->cc_current = pcg;
   2440      1.134        ad 		pc->pc_fullgroups = pcg->pcg_next;
   2441      1.134        ad 		pc->pc_hits++;
   2442      1.134        ad 		pc->pc_nfull--;
   2443      1.134        ad 		mutex_exit(&pc->pc_lock);
   2444      1.134        ad 		return cc;
   2445      1.134        ad 	}
   2446      1.134        ad 
   2447      1.134        ad 	/*
   2448      1.134        ad 	 * Nothing available locally or in cache.  Take the slow
   2449      1.134        ad 	 * path: fetch a new object from the pool and construct
   2450      1.134        ad 	 * it.
   2451      1.134        ad 	 */
   2452      1.134        ad 	pc->pc_misses++;
   2453      1.134        ad 	mutex_exit(&pc->pc_lock);
   2454      1.134        ad 	pool_cache_cpu_exit(cc, s);
   2455      1.134        ad 
   2456      1.134        ad 	object = pool_get(&pc->pc_pool, flags);
   2457      1.134        ad 	*objectp = object;
   2458      1.134        ad 	if (object == NULL)
   2459      1.134        ad 		return NULL;
   2460      1.125        ad 
   2461      1.134        ad 	if ((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0) {
   2462      1.134        ad 		pool_put(&pc->pc_pool, object);
   2463      1.134        ad 		*objectp = NULL;
   2464      1.134        ad 		return NULL;
   2465       1.43   thorpej 	}
   2466       1.43   thorpej 
   2467      1.134        ad 	KASSERT((((vaddr_t)object + pc->pc_pool.pr_itemoffset) &
   2468      1.134        ad 	    (pc->pc_pool.pr_align - 1)) == 0);
   2469       1.43   thorpej 
   2470      1.134        ad 	if (pap != NULL) {
   2471      1.134        ad #ifdef POOL_VTOPHYS
   2472      1.134        ad 		*pap = POOL_VTOPHYS(object);
   2473      1.134        ad #else
   2474      1.134        ad 		*pap = POOL_PADDR_INVALID;
   2475      1.134        ad #endif
   2476      1.102       chs 	}
   2477       1.43   thorpej 
   2478      1.125        ad 	FREECHECK_OUT(&pc->pc_freecheck, object);
   2479      1.134        ad 	return NULL;
   2480       1.43   thorpej }
   2481       1.43   thorpej 
   2482       1.43   thorpej /*
   2483      1.134        ad  * pool_cache_get{,_paddr}:
   2484       1.43   thorpej  *
   2485      1.134        ad  *	Get an object from a pool cache (optionally returning
   2486      1.134        ad  *	the physical address of the object).
   2487       1.43   thorpej  */
   2488      1.134        ad void *
   2489      1.134        ad pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
   2490       1.43   thorpej {
   2491      1.134        ad 	pool_cache_cpu_t *cc;
   2492      1.134        ad 	pcg_t *pcg;
   2493      1.134        ad 	void *object;
   2494       1.60   thorpej 	int s;
   2495       1.43   thorpej 
   2496      1.134        ad #ifdef LOCKDEBUG
   2497      1.155        ad 	if (flags & PR_WAITOK) {
   2498      1.154      yamt 		ASSERT_SLEEPABLE();
   2499      1.155        ad 	}
   2500      1.134        ad #endif
   2501      1.125        ad 
   2502      1.134        ad 	cc = pool_cache_cpu_enter(pc, &s);
   2503      1.134        ad 	do {
   2504      1.134        ad 		/* Try and allocate an object from the current group. */
   2505      1.134        ad 	 	pcg = cc->cc_current;
   2506      1.134        ad 		if (pcg != NULL && pcg->pcg_avail > 0) {
   2507      1.134        ad 			object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;
   2508      1.134        ad 			if (pap != NULL)
   2509      1.134        ad 				*pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa;
   2510      1.148      yamt #if defined(DIAGNOSTIC)
   2511      1.134        ad 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL;
   2512      1.148      yamt #endif /* defined(DIAGNOSTIC) */
   2513      1.142        ad 			KASSERT(pcg->pcg_avail <= pcg->pcg_size);
   2514      1.134        ad 			KASSERT(object != NULL);
   2515      1.134        ad 			cc->cc_hits++;
   2516      1.134        ad 			pool_cache_cpu_exit(cc, &s);
   2517      1.134        ad 			FREECHECK_OUT(&pc->pc_freecheck, object);
   2518      1.134        ad 			return object;
   2519       1.43   thorpej 		}
   2520       1.43   thorpej 
   2521       1.43   thorpej 		/*
   2522      1.134        ad 		 * That failed.  If the previous group isn't empty, swap
   2523      1.134        ad 		 * it with the current group and allocate from there.
   2524       1.43   thorpej 		 */
   2525      1.134        ad 		pcg = cc->cc_previous;
   2526      1.134        ad 		if (pcg != NULL && pcg->pcg_avail > 0) {
   2527      1.134        ad 			cc->cc_previous = cc->cc_current;
   2528      1.134        ad 			cc->cc_current = pcg;
   2529      1.134        ad 			continue;
   2530       1.43   thorpej 		}
   2531       1.43   thorpej 
   2532      1.134        ad 		/*
   2533      1.134        ad 		 * Can't allocate from either group: try the slow path.
   2534      1.134        ad 		 * If get_slow() allocated an object for us, or if
   2535      1.134        ad 		 * no more objects are available, it will return NULL.
   2536      1.134        ad 		 * Otherwise, we need to retry.
   2537      1.134        ad 		 */
   2538      1.134        ad 		cc = pool_cache_get_slow(cc, &s, &object, pap, flags);
   2539      1.134        ad 	} while (cc != NULL);
   2540       1.43   thorpej 
   2541      1.134        ad 	return object;
   2542       1.51   thorpej }
   2543       1.51   thorpej 
   2544  1.160.2.1  wrstuden pool_cache_cpu_t * __noinline
   2545      1.134        ad pool_cache_put_slow(pool_cache_cpu_t *cc, int *s, void *object, paddr_t pa)
   2546       1.51   thorpej {
   2547      1.134        ad 	pcg_t *pcg, *cur;
   2548      1.134        ad 	uint64_t ncsw;
   2549      1.134        ad 	pool_cache_t pc;
   2550      1.142        ad 	u_int nobj;
   2551       1.51   thorpej 
   2552      1.134        ad 	pc = cc->cc_cache;
   2553      1.134        ad 	cc->cc_misses++;
   2554       1.43   thorpej 
   2555      1.134        ad 	/*
   2556      1.134        ad 	 * No free slots locally.  Try to grab an empty, unused
   2557      1.134        ad 	 * group from the cache.
   2558      1.134        ad 	 */
   2559      1.134        ad 	if (!mutex_tryenter(&pc->pc_lock)) {
   2560      1.134        ad 		ncsw = curlwp->l_ncsw;
   2561      1.134        ad 		mutex_enter(&pc->pc_lock);
   2562      1.134        ad 		pc->pc_contended++;
   2563      1.102       chs 
   2564      1.134        ad 		/*
   2565      1.134        ad 		 * If we context switched while locking, then
   2566      1.134        ad 		 * our view of the per-CPU data is invalid:
   2567      1.134        ad 		 * retry.
   2568      1.134        ad 		 */
   2569      1.134        ad 		if (curlwp->l_ncsw != ncsw) {
   2570      1.134        ad 			mutex_exit(&pc->pc_lock);
   2571      1.134        ad 			pool_cache_cpu_exit(cc, s);
   2572      1.134        ad 			return pool_cache_cpu_enter(pc, s);
   2573      1.134        ad 		}
   2574      1.134        ad 	}
   2575      1.130        ad 
   2576      1.134        ad 	if ((pcg = pc->pc_emptygroups) != NULL) {
   2577      1.134        ad 		/*
   2578      1.134        ad 		 * If there's a empty group, release our full
   2579      1.134        ad 		 * group back to the cache.  Install the empty
   2580      1.146        ad 		 * group and return.
   2581      1.134        ad 		 */
   2582      1.134        ad 		KASSERT(pcg->pcg_avail == 0);
   2583      1.134        ad 		pc->pc_emptygroups = pcg->pcg_next;
   2584      1.146        ad 		if (cc->cc_previous == NULL) {
   2585      1.146        ad 			cc->cc_previous = pcg;
   2586      1.146        ad 		} else {
   2587      1.146        ad 			if ((cur = cc->cc_current) != NULL) {
   2588      1.146        ad 				KASSERT(cur->pcg_avail == pcg->pcg_size);
   2589      1.146        ad 				cur->pcg_next = pc->pc_fullgroups;
   2590      1.146        ad 				pc->pc_fullgroups = cur;
   2591      1.146        ad 				pc->pc_nfull++;
   2592      1.146        ad 			}
   2593      1.146        ad 			cc->cc_current = pcg;
   2594      1.146        ad 		}
   2595      1.134        ad 		pc->pc_hits++;
   2596      1.134        ad 		pc->pc_nempty--;
   2597      1.134        ad 		mutex_exit(&pc->pc_lock);
   2598      1.134        ad 		return cc;
   2599      1.102       chs 	}
   2600      1.105  christos 
   2601      1.134        ad 	/*
   2602      1.134        ad 	 * Nothing available locally or in cache.  Take the
   2603      1.134        ad 	 * slow path and try to allocate a new group that we
   2604      1.134        ad 	 * can release to.
   2605      1.134        ad 	 */
   2606      1.134        ad 	pc->pc_misses++;
   2607      1.134        ad 	mutex_exit(&pc->pc_lock);
   2608      1.134        ad 	pool_cache_cpu_exit(cc, s);
   2609      1.105  christos 
   2610      1.134        ad 	/*
   2611      1.134        ad 	 * If we can't allocate a new group, just throw the
   2612      1.134        ad 	 * object away.
   2613      1.134        ad 	 */
   2614      1.142        ad 	nobj = pc->pc_pcgsize;
   2615      1.146        ad 	if (pool_cache_disable) {
   2616      1.146        ad 		pcg = NULL;
   2617      1.146        ad 	} else if (nobj == PCG_NOBJECTS_LARGE) {
   2618      1.142        ad 		pcg = pool_get(&pcg_large_pool, PR_NOWAIT);
   2619      1.142        ad 	} else {
   2620      1.142        ad 		pcg = pool_get(&pcg_normal_pool, PR_NOWAIT);
   2621      1.142        ad 	}
   2622      1.134        ad 	if (pcg == NULL) {
   2623      1.134        ad 		pool_cache_destruct_object(pc, object);
   2624      1.134        ad 		return NULL;
   2625      1.134        ad 	}
   2626      1.134        ad 	pcg->pcg_avail = 0;
   2627      1.142        ad 	pcg->pcg_size = nobj;
   2628      1.105  christos 
   2629      1.134        ad 	/*
   2630      1.134        ad 	 * Add the empty group to the cache and try again.
   2631      1.134        ad 	 */
   2632      1.134        ad 	mutex_enter(&pc->pc_lock);
   2633      1.134        ad 	pcg->pcg_next = pc->pc_emptygroups;
   2634      1.134        ad 	pc->pc_emptygroups = pcg;
   2635      1.134        ad 	pc->pc_nempty++;
   2636      1.134        ad 	mutex_exit(&pc->pc_lock);
   2637      1.103       chs 
   2638      1.134        ad 	return pool_cache_cpu_enter(pc, s);
   2639      1.134        ad }
   2640      1.102       chs 
   2641       1.43   thorpej /*
   2642      1.134        ad  * pool_cache_put{,_paddr}:
   2643       1.43   thorpej  *
   2644      1.134        ad  *	Put an object back to the pool cache (optionally caching the
   2645      1.134        ad  *	physical address of the object).
   2646       1.43   thorpej  */
   2647      1.101   thorpej void
   2648      1.134        ad pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
   2649       1.43   thorpej {
   2650      1.134        ad 	pool_cache_cpu_t *cc;
   2651      1.134        ad 	pcg_t *pcg;
   2652      1.134        ad 	int s;
   2653      1.101   thorpej 
   2654      1.134        ad 	FREECHECK_IN(&pc->pc_freecheck, object);
   2655      1.101   thorpej 
   2656      1.134        ad 	cc = pool_cache_cpu_enter(pc, &s);
   2657      1.134        ad 	do {
   2658      1.134        ad 		/* If the current group isn't full, release it there. */
   2659      1.134        ad 	 	pcg = cc->cc_current;
   2660      1.142        ad 		if (pcg != NULL && pcg->pcg_avail < pcg->pcg_size) {
   2661      1.134        ad 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object;
   2662      1.134        ad 			pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa;
   2663      1.134        ad 			pcg->pcg_avail++;
   2664      1.134        ad 			cc->cc_hits++;
   2665      1.134        ad 			pool_cache_cpu_exit(cc, &s);
   2666      1.134        ad 			return;
   2667      1.134        ad 		}
   2668       1.43   thorpej 
   2669      1.134        ad 		/*
   2670      1.134        ad 		 * That failed.  If the previous group is empty, swap
   2671      1.134        ad 		 * it with the current group and try again.
   2672      1.134        ad 		 */
   2673      1.134        ad 		pcg = cc->cc_previous;
   2674      1.134        ad 		if (pcg != NULL && pcg->pcg_avail == 0) {
   2675      1.134        ad 			cc->cc_previous = cc->cc_current;
   2676      1.134        ad 			cc->cc_current = pcg;
   2677      1.134        ad 			continue;
   2678      1.134        ad 		}
   2679       1.43   thorpej 
   2680      1.134        ad 		/*
   2681      1.134        ad 		 * Can't free to either group: try the slow path.
   2682      1.134        ad 		 * If put_slow() releases the object for us, it
   2683      1.134        ad 		 * will return NULL.  Otherwise we need to retry.
   2684      1.134        ad 		 */
   2685      1.134        ad 		cc = pool_cache_put_slow(cc, &s, object, pa);
   2686      1.134        ad 	} while (cc != NULL);
   2687       1.43   thorpej }
   2688       1.43   thorpej 
   2689       1.43   thorpej /*
   2690      1.134        ad  * pool_cache_xcall:
   2691       1.43   thorpej  *
   2692      1.134        ad  *	Transfer objects from the per-CPU cache to the global cache.
   2693      1.134        ad  *	Run within a cross-call thread.
   2694       1.43   thorpej  */
   2695       1.43   thorpej static void
   2696      1.134        ad pool_cache_xcall(pool_cache_t pc)
   2697       1.43   thorpej {
   2698      1.134        ad 	pool_cache_cpu_t *cc;
   2699      1.134        ad 	pcg_t *prev, *cur, **list;
   2700      1.134        ad 	int s = 0; /* XXXgcc */
   2701      1.134        ad 
   2702      1.134        ad 	cc = pool_cache_cpu_enter(pc, &s);
   2703      1.134        ad 	cur = cc->cc_current;
   2704      1.134        ad 	cc->cc_current = NULL;
   2705      1.134        ad 	prev = cc->cc_previous;
   2706      1.134        ad 	cc->cc_previous = NULL;
   2707      1.134        ad 	pool_cache_cpu_exit(cc, &s);
   2708      1.134        ad 
   2709      1.134        ad 	/*
   2710      1.134        ad 	 * XXXSMP Go to splvm to prevent kernel_lock from being taken,
   2711      1.134        ad 	 * because locks at IPL_SOFTXXX are still spinlocks.  Does not
   2712      1.134        ad 	 * apply to IPL_SOFTBIO.  Cross-call threads do not take the
   2713      1.134        ad 	 * kernel_lock.
   2714      1.101   thorpej 	 */
   2715      1.134        ad 	s = splvm();
   2716      1.134        ad 	mutex_enter(&pc->pc_lock);
   2717      1.134        ad 	if (cur != NULL) {
   2718      1.142        ad 		if (cur->pcg_avail == cur->pcg_size) {
   2719      1.134        ad 			list = &pc->pc_fullgroups;
   2720      1.134        ad 			pc->pc_nfull++;
   2721      1.134        ad 		} else if (cur->pcg_avail == 0) {
   2722      1.134        ad 			list = &pc->pc_emptygroups;
   2723      1.134        ad 			pc->pc_nempty++;
   2724      1.134        ad 		} else {
   2725      1.134        ad 			list = &pc->pc_partgroups;
   2726      1.134        ad 			pc->pc_npart++;
   2727      1.134        ad 		}
   2728      1.134        ad 		cur->pcg_next = *list;
   2729      1.134        ad 		*list = cur;
   2730      1.134        ad 	}
   2731      1.134        ad 	if (prev != NULL) {
   2732      1.142        ad 		if (prev->pcg_avail == prev->pcg_size) {
   2733      1.134        ad 			list = &pc->pc_fullgroups;
   2734      1.134        ad 			pc->pc_nfull++;
   2735      1.134        ad 		} else if (prev->pcg_avail == 0) {
   2736      1.134        ad 			list = &pc->pc_emptygroups;
   2737      1.134        ad 			pc->pc_nempty++;
   2738      1.134        ad 		} else {
   2739      1.134        ad 			list = &pc->pc_partgroups;
   2740      1.134        ad 			pc->pc_npart++;
   2741      1.134        ad 		}
   2742      1.134        ad 		prev->pcg_next = *list;
   2743      1.134        ad 		*list = prev;
   2744      1.134        ad 	}
   2745      1.134        ad 	mutex_exit(&pc->pc_lock);
   2746      1.134        ad 	splx(s);
   2747        1.3        pk }
   2748       1.66   thorpej 
   2749       1.66   thorpej /*
   2750       1.66   thorpej  * Pool backend allocators.
   2751       1.66   thorpej  *
   2752       1.66   thorpej  * Each pool has a backend allocator that handles allocation, deallocation,
   2753       1.66   thorpej  * and any additional draining that might be needed.
   2754       1.66   thorpej  *
   2755       1.66   thorpej  * We provide two standard allocators:
   2756       1.66   thorpej  *
   2757       1.66   thorpej  *	pool_allocator_kmem - the default when no allocator is specified
   2758       1.66   thorpej  *
   2759       1.66   thorpej  *	pool_allocator_nointr - used for pools that will not be accessed
   2760       1.66   thorpej  *	in interrupt context.
   2761       1.66   thorpej  */
   2762       1.66   thorpej void	*pool_page_alloc(struct pool *, int);
   2763       1.66   thorpej void	pool_page_free(struct pool *, void *);
   2764       1.66   thorpej 
   2765      1.112     bjh21 #ifdef POOL_SUBPAGE
   2766      1.112     bjh21 struct pool_allocator pool_allocator_kmem_fullpage = {
   2767      1.112     bjh21 	pool_page_alloc, pool_page_free, 0,
   2768      1.117      yamt 	.pa_backingmapptr = &kmem_map,
   2769      1.112     bjh21 };
   2770      1.112     bjh21 #else
   2771       1.66   thorpej struct pool_allocator pool_allocator_kmem = {
   2772       1.66   thorpej 	pool_page_alloc, pool_page_free, 0,
   2773      1.117      yamt 	.pa_backingmapptr = &kmem_map,
   2774       1.66   thorpej };
   2775      1.112     bjh21 #endif
   2776       1.66   thorpej 
   2777       1.66   thorpej void	*pool_page_alloc_nointr(struct pool *, int);
   2778       1.66   thorpej void	pool_page_free_nointr(struct pool *, void *);
   2779       1.66   thorpej 
   2780      1.112     bjh21 #ifdef POOL_SUBPAGE
   2781      1.112     bjh21 struct pool_allocator pool_allocator_nointr_fullpage = {
   2782      1.112     bjh21 	pool_page_alloc_nointr, pool_page_free_nointr, 0,
   2783      1.117      yamt 	.pa_backingmapptr = &kernel_map,
   2784      1.112     bjh21 };
   2785      1.112     bjh21 #else
   2786       1.66   thorpej struct pool_allocator pool_allocator_nointr = {
   2787       1.66   thorpej 	pool_page_alloc_nointr, pool_page_free_nointr, 0,
   2788      1.117      yamt 	.pa_backingmapptr = &kernel_map,
   2789       1.66   thorpej };
   2790      1.112     bjh21 #endif
   2791       1.66   thorpej 
   2792       1.66   thorpej #ifdef POOL_SUBPAGE
   2793       1.66   thorpej void	*pool_subpage_alloc(struct pool *, int);
   2794       1.66   thorpej void	pool_subpage_free(struct pool *, void *);
   2795       1.66   thorpej 
   2796      1.112     bjh21 struct pool_allocator pool_allocator_kmem = {
   2797      1.112     bjh21 	pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
   2798      1.117      yamt 	.pa_backingmapptr = &kmem_map,
   2799      1.112     bjh21 };
   2800      1.112     bjh21 
   2801      1.112     bjh21 void	*pool_subpage_alloc_nointr(struct pool *, int);
   2802      1.112     bjh21 void	pool_subpage_free_nointr(struct pool *, void *);
   2803      1.112     bjh21 
   2804      1.112     bjh21 struct pool_allocator pool_allocator_nointr = {
   2805      1.112     bjh21 	pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
   2806      1.117      yamt 	.pa_backingmapptr = &kmem_map,
   2807       1.66   thorpej };
   2808       1.66   thorpej #endif /* POOL_SUBPAGE */
   2809       1.66   thorpej 
   2810      1.117      yamt static void *
   2811      1.117      yamt pool_allocator_alloc(struct pool *pp, int flags)
   2812       1.66   thorpej {
   2813      1.117      yamt 	struct pool_allocator *pa = pp->pr_alloc;
   2814       1.66   thorpej 	void *res;
   2815       1.66   thorpej 
   2816      1.117      yamt 	res = (*pa->pa_alloc)(pp, flags);
   2817      1.117      yamt 	if (res == NULL && (flags & PR_WAITOK) == 0) {
   2818       1.66   thorpej 		/*
   2819      1.117      yamt 		 * We only run the drain hook here if PR_NOWAIT.
   2820      1.117      yamt 		 * In other cases, the hook will be run in
   2821      1.117      yamt 		 * pool_reclaim().
   2822       1.66   thorpej 		 */
   2823      1.117      yamt 		if (pp->pr_drain_hook != NULL) {
   2824      1.117      yamt 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
   2825      1.117      yamt 			res = (*pa->pa_alloc)(pp, flags);
   2826       1.66   thorpej 		}
   2827      1.117      yamt 	}
   2828      1.117      yamt 	return res;
   2829       1.66   thorpej }
   2830       1.66   thorpej 
   2831      1.117      yamt static void
   2832       1.66   thorpej pool_allocator_free(struct pool *pp, void *v)
   2833       1.66   thorpej {
   2834       1.66   thorpej 	struct pool_allocator *pa = pp->pr_alloc;
   2835       1.66   thorpej 
   2836       1.66   thorpej 	(*pa->pa_free)(pp, v);
   2837       1.66   thorpej }
   2838       1.66   thorpej 
   2839       1.66   thorpej void *
   2840      1.124      yamt pool_page_alloc(struct pool *pp, int flags)
   2841       1.66   thorpej {
   2842      1.127   thorpej 	bool waitok = (flags & PR_WAITOK) ? true : false;
   2843       1.66   thorpej 
   2844      1.100      yamt 	return ((void *) uvm_km_alloc_poolpage_cache(kmem_map, waitok));
   2845       1.66   thorpej }
   2846       1.66   thorpej 
   2847       1.66   thorpej void
   2848      1.124      yamt pool_page_free(struct pool *pp, void *v)
   2849       1.66   thorpej {
   2850       1.66   thorpej 
   2851       1.98      yamt 	uvm_km_free_poolpage_cache(kmem_map, (vaddr_t) v);
   2852       1.98      yamt }
   2853       1.98      yamt 
   2854       1.98      yamt static void *
   2855      1.124      yamt pool_page_alloc_meta(struct pool *pp, int flags)
   2856       1.98      yamt {
   2857      1.127   thorpej 	bool waitok = (flags & PR_WAITOK) ? true : false;
   2858       1.98      yamt 
   2859      1.100      yamt 	return ((void *) uvm_km_alloc_poolpage(kmem_map, waitok));
   2860       1.98      yamt }
   2861       1.98      yamt 
   2862       1.98      yamt static void
   2863      1.124      yamt pool_page_free_meta(struct pool *pp, void *v)
   2864       1.98      yamt {
   2865       1.98      yamt 
   2866      1.100      yamt 	uvm_km_free_poolpage(kmem_map, (vaddr_t) v);
   2867       1.66   thorpej }
   2868       1.66   thorpej 
   2869       1.66   thorpej #ifdef POOL_SUBPAGE
   2870       1.66   thorpej /* Sub-page allocator, for machines with large hardware pages. */
   2871       1.66   thorpej void *
   2872       1.66   thorpej pool_subpage_alloc(struct pool *pp, int flags)
   2873       1.66   thorpej {
   2874      1.134        ad 	return pool_get(&psppool, flags);
   2875       1.66   thorpej }
   2876       1.66   thorpej 
   2877       1.66   thorpej void
   2878       1.66   thorpej pool_subpage_free(struct pool *pp, void *v)
   2879       1.66   thorpej {
   2880       1.66   thorpej 	pool_put(&psppool, v);
   2881       1.66   thorpej }
   2882       1.66   thorpej 
   2883       1.66   thorpej /* We don't provide a real nointr allocator.  Maybe later. */
   2884       1.66   thorpej void *
   2885      1.112     bjh21 pool_subpage_alloc_nointr(struct pool *pp, int flags)
   2886       1.66   thorpej {
   2887       1.66   thorpej 
   2888       1.66   thorpej 	return (pool_subpage_alloc(pp, flags));
   2889       1.66   thorpej }
   2890       1.66   thorpej 
   2891       1.66   thorpej void
   2892      1.112     bjh21 pool_subpage_free_nointr(struct pool *pp, void *v)
   2893       1.66   thorpej {
   2894       1.66   thorpej 
   2895       1.66   thorpej 	pool_subpage_free(pp, v);
   2896       1.66   thorpej }
   2897      1.112     bjh21 #endif /* POOL_SUBPAGE */
   2898       1.66   thorpej void *
   2899      1.124      yamt pool_page_alloc_nointr(struct pool *pp, int flags)
   2900       1.66   thorpej {
   2901      1.127   thorpej 	bool waitok = (flags & PR_WAITOK) ? true : false;
   2902       1.66   thorpej 
   2903      1.100      yamt 	return ((void *) uvm_km_alloc_poolpage_cache(kernel_map, waitok));
   2904       1.66   thorpej }
   2905       1.66   thorpej 
   2906       1.66   thorpej void
   2907      1.124      yamt pool_page_free_nointr(struct pool *pp, void *v)
   2908       1.66   thorpej {
   2909       1.66   thorpej 
   2910       1.98      yamt 	uvm_km_free_poolpage_cache(kernel_map, (vaddr_t) v);
   2911       1.66   thorpej }
   2912      1.141      yamt 
   2913      1.141      yamt #if defined(DDB)
   2914      1.141      yamt static bool
   2915      1.141      yamt pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
   2916      1.141      yamt {
   2917      1.141      yamt 
   2918      1.141      yamt 	return (uintptr_t)ph->ph_page <= addr &&
   2919      1.141      yamt 	    addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz;
   2920      1.141      yamt }
   2921      1.141      yamt 
   2922      1.143      yamt static bool
   2923      1.143      yamt pool_in_item(struct pool *pp, void *item, uintptr_t addr)
   2924      1.143      yamt {
   2925      1.143      yamt 
   2926      1.143      yamt 	return (uintptr_t)item <= addr && addr < (uintptr_t)item + pp->pr_size;
   2927      1.143      yamt }
   2928      1.143      yamt 
   2929      1.143      yamt static bool
   2930      1.143      yamt pool_in_cg(struct pool *pp, struct pool_cache_group *pcg, uintptr_t addr)
   2931      1.143      yamt {
   2932      1.143      yamt 	int i;
   2933      1.143      yamt 
   2934      1.143      yamt 	if (pcg == NULL) {
   2935      1.143      yamt 		return false;
   2936      1.143      yamt 	}
   2937      1.144      yamt 	for (i = 0; i < pcg->pcg_avail; i++) {
   2938      1.143      yamt 		if (pool_in_item(pp, pcg->pcg_objects[i].pcgo_va, addr)) {
   2939      1.143      yamt 			return true;
   2940      1.143      yamt 		}
   2941      1.143      yamt 	}
   2942      1.143      yamt 	return false;
   2943      1.143      yamt }
   2944      1.143      yamt 
   2945      1.143      yamt static bool
   2946      1.143      yamt pool_allocated(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
   2947      1.143      yamt {
   2948      1.143      yamt 
   2949      1.143      yamt 	if ((pp->pr_roflags & PR_NOTOUCH) != 0) {
   2950      1.143      yamt 		unsigned int idx = pr_item_notouch_index(pp, ph, (void *)addr);
   2951      1.143      yamt 		pool_item_bitmap_t *bitmap =
   2952      1.143      yamt 		    ph->ph_bitmap + (idx / BITMAP_SIZE);
   2953      1.143      yamt 		pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
   2954      1.143      yamt 
   2955      1.143      yamt 		return (*bitmap & mask) == 0;
   2956      1.143      yamt 	} else {
   2957      1.143      yamt 		struct pool_item *pi;
   2958      1.143      yamt 
   2959      1.143      yamt 		LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
   2960      1.143      yamt 			if (pool_in_item(pp, pi, addr)) {
   2961      1.143      yamt 				return false;
   2962      1.143      yamt 			}
   2963      1.143      yamt 		}
   2964      1.143      yamt 		return true;
   2965      1.143      yamt 	}
   2966      1.143      yamt }
   2967      1.143      yamt 
   2968      1.141      yamt void
   2969      1.141      yamt pool_whatis(uintptr_t addr, void (*pr)(const char *, ...))
   2970      1.141      yamt {
   2971      1.141      yamt 	struct pool *pp;
   2972      1.141      yamt 
   2973      1.145        ad 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   2974      1.141      yamt 		struct pool_item_header *ph;
   2975      1.141      yamt 		uintptr_t item;
   2976      1.143      yamt 		bool allocated = true;
   2977      1.143      yamt 		bool incache = false;
   2978      1.143      yamt 		bool incpucache = false;
   2979      1.143      yamt 		char cpucachestr[32];
   2980      1.141      yamt 
   2981      1.141      yamt 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
   2982      1.141      yamt 			LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
   2983      1.141      yamt 				if (pool_in_page(pp, ph, addr)) {
   2984      1.141      yamt 					goto found;
   2985      1.141      yamt 				}
   2986      1.141      yamt 			}
   2987      1.141      yamt 			LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
   2988      1.141      yamt 				if (pool_in_page(pp, ph, addr)) {
   2989      1.143      yamt 					allocated =
   2990      1.143      yamt 					    pool_allocated(pp, ph, addr);
   2991      1.143      yamt 					goto found;
   2992      1.143      yamt 				}
   2993      1.143      yamt 			}
   2994      1.143      yamt 			LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
   2995      1.143      yamt 				if (pool_in_page(pp, ph, addr)) {
   2996      1.143      yamt 					allocated = false;
   2997      1.141      yamt 					goto found;
   2998      1.141      yamt 				}
   2999      1.141      yamt 			}
   3000      1.141      yamt 			continue;
   3001      1.141      yamt 		} else {
   3002      1.141      yamt 			ph = pr_find_pagehead_noalign(pp, (void *)addr);
   3003      1.141      yamt 			if (ph == NULL || !pool_in_page(pp, ph, addr)) {
   3004      1.141      yamt 				continue;
   3005      1.141      yamt 			}
   3006      1.143      yamt 			allocated = pool_allocated(pp, ph, addr);
   3007      1.141      yamt 		}
   3008      1.141      yamt found:
   3009      1.143      yamt 		if (allocated && pp->pr_cache) {
   3010      1.143      yamt 			pool_cache_t pc = pp->pr_cache;
   3011      1.143      yamt 			struct pool_cache_group *pcg;
   3012      1.143      yamt 			int i;
   3013      1.143      yamt 
   3014      1.143      yamt 			for (pcg = pc->pc_fullgroups; pcg != NULL;
   3015      1.143      yamt 			    pcg = pcg->pcg_next) {
   3016      1.143      yamt 				if (pool_in_cg(pp, pcg, addr)) {
   3017      1.143      yamt 					incache = true;
   3018      1.143      yamt 					goto print;
   3019      1.143      yamt 				}
   3020      1.143      yamt 			}
   3021      1.143      yamt 			for (i = 0; i < MAXCPUS; i++) {
   3022      1.143      yamt 				pool_cache_cpu_t *cc;
   3023      1.143      yamt 
   3024      1.143      yamt 				if ((cc = pc->pc_cpus[i]) == NULL) {
   3025      1.143      yamt 					continue;
   3026      1.143      yamt 				}
   3027      1.143      yamt 				if (pool_in_cg(pp, cc->cc_current, addr) ||
   3028      1.143      yamt 				    pool_in_cg(pp, cc->cc_previous, addr)) {
   3029      1.143      yamt 					struct cpu_info *ci =
   3030      1.143      yamt 					    cpu_lookup_byindex(i);
   3031      1.143      yamt 
   3032      1.143      yamt 					incpucache = true;
   3033      1.143      yamt 					snprintf(cpucachestr,
   3034      1.143      yamt 					    sizeof(cpucachestr),
   3035      1.143      yamt 					    "cached by CPU %u",
   3036      1.153    martin 					    ci->ci_index);
   3037      1.143      yamt 					goto print;
   3038      1.143      yamt 				}
   3039      1.143      yamt 			}
   3040      1.143      yamt 		}
   3041      1.143      yamt print:
   3042      1.141      yamt 		item = (uintptr_t)ph->ph_page + ph->ph_off;
   3043      1.141      yamt 		item = item + rounddown(addr - item, pp->pr_size);
   3044      1.143      yamt 		(*pr)("%p is %p+%zu in POOL '%s' (%s)\n",
   3045      1.141      yamt 		    (void *)addr, item, (size_t)(addr - item),
   3046      1.143      yamt 		    pp->pr_wchan,
   3047      1.143      yamt 		    incpucache ? cpucachestr :
   3048      1.143      yamt 		    incache ? "cached" : allocated ? "allocated" : "free");
   3049      1.141      yamt 	}
   3050      1.141      yamt }
   3051      1.141      yamt #endif /* defined(DDB) */
   3052