Home | History | Annotate | Line # | Download | only in kern
subr_pool.c revision 1.182.4.1
      1  1.182.4.1     rmind /*	$NetBSD: subr_pool.c,v 1.182.4.1 2010/05/30 05:17:58 rmind Exp $	*/
      2        1.1        pk 
      3        1.1        pk /*-
      4  1.182.4.1     rmind  * Copyright (c) 1997, 1999, 2000, 2002, 2007, 2008, 2010
      5  1.182.4.1     rmind  *     The NetBSD Foundation, Inc.
      6        1.1        pk  * All rights reserved.
      7        1.1        pk  *
      8        1.1        pk  * This code is derived from software contributed to The NetBSD Foundation
      9       1.20   thorpej  * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
     10      1.134        ad  * Simulation Facility, NASA Ames Research Center, and by Andrew Doran.
     11        1.1        pk  *
     12        1.1        pk  * Redistribution and use in source and binary forms, with or without
     13        1.1        pk  * modification, are permitted provided that the following conditions
     14        1.1        pk  * are met:
     15        1.1        pk  * 1. Redistributions of source code must retain the above copyright
     16        1.1        pk  *    notice, this list of conditions and the following disclaimer.
     17        1.1        pk  * 2. Redistributions in binary form must reproduce the above copyright
     18        1.1        pk  *    notice, this list of conditions and the following disclaimer in the
     19        1.1        pk  *    documentation and/or other materials provided with the distribution.
     20        1.1        pk  *
     21        1.1        pk  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     22        1.1        pk  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     23        1.1        pk  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     24        1.1        pk  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     25        1.1        pk  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     26        1.1        pk  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     27        1.1        pk  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     28        1.1        pk  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     29        1.1        pk  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     30        1.1        pk  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     31        1.1        pk  * POSSIBILITY OF SUCH DAMAGE.
     32        1.1        pk  */
     33       1.64     lukem 
     34       1.64     lukem #include <sys/cdefs.h>
     35  1.182.4.1     rmind __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.182.4.1 2010/05/30 05:17:58 rmind Exp $");
     36       1.24    scottr 
     37      1.141      yamt #include "opt_ddb.h"
     38       1.25   thorpej #include "opt_pool.h"
     39       1.24    scottr #include "opt_poollog.h"
     40       1.28   thorpej #include "opt_lockdebug.h"
     41        1.1        pk 
     42        1.1        pk #include <sys/param.h>
     43        1.1        pk #include <sys/systm.h>
     44      1.135      yamt #include <sys/bitops.h>
     45        1.1        pk #include <sys/proc.h>
     46        1.1        pk #include <sys/errno.h>
     47        1.1        pk #include <sys/kernel.h>
     48        1.1        pk #include <sys/malloc.h>
     49        1.1        pk #include <sys/pool.h>
     50       1.20   thorpej #include <sys/syslog.h>
     51      1.125        ad #include <sys/debug.h>
     52      1.134        ad #include <sys/lockdebug.h>
     53      1.134        ad #include <sys/xcall.h>
     54      1.134        ad #include <sys/cpu.h>
     55      1.145        ad #include <sys/atomic.h>
     56        1.3        pk 
     57        1.3        pk #include <uvm/uvm.h>
     58        1.3        pk 
     59        1.1        pk /*
     60        1.1        pk  * Pool resource management utility.
     61        1.3        pk  *
     62       1.88       chs  * Memory is allocated in pages which are split into pieces according to
     63       1.88       chs  * the pool item size. Each page is kept on one of three lists in the
     64       1.88       chs  * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
     65       1.88       chs  * for empty, full and partially-full pages respectively. The individual
     66       1.88       chs  * pool items are on a linked list headed by `ph_itemlist' in each page
     67       1.88       chs  * header. The memory for building the page list is either taken from
     68       1.88       chs  * the allocated pages themselves (for small pool items) or taken from
     69       1.88       chs  * an internal pool of page headers (`phpool').
     70        1.1        pk  */
     71        1.1        pk 
     72        1.3        pk /* List of all pools */
     73      1.173     rmind static TAILQ_HEAD(, pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
     74      1.134        ad 
     75        1.3        pk /* Private pool for page header structures */
     76       1.97      yamt #define	PHPOOL_MAX	8
     77       1.97      yamt static struct pool phpool[PHPOOL_MAX];
     78      1.135      yamt #define	PHPOOL_FREELIST_NELEM(idx) \
     79      1.135      yamt 	(((idx) == 0) ? 0 : BITMAP_SIZE * (1 << (idx)))
     80        1.3        pk 
     81       1.62     bjh21 #ifdef POOL_SUBPAGE
     82       1.62     bjh21 /* Pool of subpages for use by normal pools. */
     83       1.62     bjh21 static struct pool psppool;
     84       1.62     bjh21 #endif
     85       1.62     bjh21 
     86      1.117      yamt static SLIST_HEAD(, pool_allocator) pa_deferinitq =
     87      1.117      yamt     SLIST_HEAD_INITIALIZER(pa_deferinitq);
     88      1.117      yamt 
     89       1.98      yamt static void *pool_page_alloc_meta(struct pool *, int);
     90       1.98      yamt static void pool_page_free_meta(struct pool *, void *);
     91       1.98      yamt 
     92       1.98      yamt /* allocator for pool metadata */
     93      1.134        ad struct pool_allocator pool_allocator_meta = {
     94      1.117      yamt 	pool_page_alloc_meta, pool_page_free_meta,
     95      1.117      yamt 	.pa_backingmapptr = &kmem_map,
     96       1.98      yamt };
     97       1.98      yamt 
     98        1.3        pk /* # of seconds to retain page after last use */
     99        1.3        pk int pool_inactive_time = 10;
    100        1.3        pk 
    101        1.3        pk /* Next candidate for drainage (see pool_drain()) */
    102       1.23   thorpej static struct pool	*drainpp;
    103       1.23   thorpej 
    104      1.134        ad /* This lock protects both pool_head and drainpp. */
    105      1.134        ad static kmutex_t pool_head_lock;
    106      1.134        ad static kcondvar_t pool_busy;
    107        1.3        pk 
    108      1.178      elad /* This lock protects initialization of a potentially shared pool allocator */
    109      1.178      elad static kmutex_t pool_allocator_lock;
    110      1.178      elad 
    111      1.135      yamt typedef uint32_t pool_item_bitmap_t;
    112      1.135      yamt #define	BITMAP_SIZE	(CHAR_BIT * sizeof(pool_item_bitmap_t))
    113      1.135      yamt #define	BITMAP_MASK	(BITMAP_SIZE - 1)
    114       1.99      yamt 
    115        1.3        pk struct pool_item_header {
    116        1.3        pk 	/* Page headers */
    117       1.88       chs 	LIST_ENTRY(pool_item_header)
    118        1.3        pk 				ph_pagelist;	/* pool page list */
    119       1.88       chs 	SPLAY_ENTRY(pool_item_header)
    120       1.88       chs 				ph_node;	/* Off-page page headers */
    121      1.128  christos 	void *			ph_page;	/* this page's address */
    122      1.151      yamt 	uint32_t		ph_time;	/* last referenced */
    123      1.135      yamt 	uint16_t		ph_nmissing;	/* # of chunks in use */
    124      1.141      yamt 	uint16_t		ph_off;		/* start offset in page */
    125       1.97      yamt 	union {
    126       1.97      yamt 		/* !PR_NOTOUCH */
    127       1.97      yamt 		struct {
    128      1.102       chs 			LIST_HEAD(, pool_item)
    129       1.97      yamt 				phu_itemlist;	/* chunk list for this page */
    130       1.97      yamt 		} phu_normal;
    131       1.97      yamt 		/* PR_NOTOUCH */
    132       1.97      yamt 		struct {
    133      1.141      yamt 			pool_item_bitmap_t phu_bitmap[1];
    134       1.97      yamt 		} phu_notouch;
    135       1.97      yamt 	} ph_u;
    136        1.3        pk };
    137       1.97      yamt #define	ph_itemlist	ph_u.phu_normal.phu_itemlist
    138      1.135      yamt #define	ph_bitmap	ph_u.phu_notouch.phu_bitmap
    139        1.3        pk 
    140        1.1        pk struct pool_item {
    141        1.3        pk #ifdef DIAGNOSTIC
    142       1.82   thorpej 	u_int pi_magic;
    143       1.33       chs #endif
    144      1.134        ad #define	PI_MAGIC 0xdeaddeadU
    145        1.3        pk 	/* Other entries use only this list entry */
    146      1.102       chs 	LIST_ENTRY(pool_item)	pi_list;
    147        1.3        pk };
    148        1.3        pk 
    149       1.53   thorpej #define	POOL_NEEDS_CATCHUP(pp)						\
    150       1.53   thorpej 	((pp)->pr_nitems < (pp)->pr_minitems)
    151       1.53   thorpej 
    152       1.43   thorpej /*
    153       1.43   thorpej  * Pool cache management.
    154       1.43   thorpej  *
    155       1.43   thorpej  * Pool caches provide a way for constructed objects to be cached by the
    156       1.43   thorpej  * pool subsystem.  This can lead to performance improvements by avoiding
    157       1.43   thorpej  * needless object construction/destruction; it is deferred until absolutely
    158       1.43   thorpej  * necessary.
    159       1.43   thorpej  *
    160      1.134        ad  * Caches are grouped into cache groups.  Each cache group references up
    161      1.134        ad  * to PCG_NUMOBJECTS constructed objects.  When a cache allocates an
    162      1.134        ad  * object from the pool, it calls the object's constructor and places it
    163      1.134        ad  * into a cache group.  When a cache group frees an object back to the
    164      1.134        ad  * pool, it first calls the object's destructor.  This allows the object
    165      1.134        ad  * to persist in constructed form while freed to the cache.
    166      1.134        ad  *
    167      1.134        ad  * The pool references each cache, so that when a pool is drained by the
    168      1.134        ad  * pagedaemon, it can drain each individual cache as well.  Each time a
    169      1.134        ad  * cache is drained, the most idle cache group is freed to the pool in
    170      1.134        ad  * its entirety.
    171       1.43   thorpej  *
    172       1.43   thorpej  * Pool caches are layed on top of pools.  By layering them, we can avoid
    173       1.43   thorpej  * the complexity of cache management for pools which would not benefit
    174       1.43   thorpej  * from it.
    175       1.43   thorpej  */
    176       1.43   thorpej 
    177      1.142        ad static struct pool pcg_normal_pool;
    178      1.142        ad static struct pool pcg_large_pool;
    179      1.134        ad static struct pool cache_pool;
    180      1.134        ad static struct pool cache_cpu_pool;
    181        1.3        pk 
    182      1.145        ad /* List of all caches. */
    183      1.145        ad TAILQ_HEAD(,pool_cache) pool_cache_head =
    184      1.145        ad     TAILQ_HEAD_INITIALIZER(pool_cache_head);
    185      1.145        ad 
    186      1.162        ad int pool_cache_disable;		/* global disable for caching */
    187      1.169      yamt static const pcg_t pcg_dummy;	/* zero sized: always empty, yet always full */
    188      1.145        ad 
    189      1.162        ad static bool	pool_cache_put_slow(pool_cache_cpu_t *, int,
    190      1.162        ad 				    void *);
    191      1.162        ad static bool	pool_cache_get_slow(pool_cache_cpu_t *, int,
    192      1.162        ad 				    void **, paddr_t *, int);
    193      1.134        ad static void	pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
    194      1.134        ad static void	pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
    195      1.175       jym static void	pool_cache_invalidate_cpu(pool_cache_t, u_int);
    196      1.134        ad static void	pool_cache_xcall(pool_cache_t);
    197        1.3        pk 
    198       1.42   thorpej static int	pool_catchup(struct pool *);
    199      1.128  christos static void	pool_prime_page(struct pool *, void *,
    200       1.55   thorpej 		    struct pool_item_header *);
    201       1.88       chs static void	pool_update_curpage(struct pool *);
    202       1.66   thorpej 
    203      1.113      yamt static int	pool_grow(struct pool *, int);
    204      1.117      yamt static void	*pool_allocator_alloc(struct pool *, int);
    205      1.117      yamt static void	pool_allocator_free(struct pool *, void *);
    206        1.3        pk 
    207       1.97      yamt static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
    208       1.88       chs 	void (*)(const char *, ...));
    209       1.42   thorpej static void pool_print1(struct pool *, const char *,
    210       1.42   thorpej 	void (*)(const char *, ...));
    211        1.3        pk 
    212       1.88       chs static int pool_chk_page(struct pool *, const char *,
    213       1.88       chs 			 struct pool_item_header *);
    214       1.88       chs 
    215        1.3        pk /*
    216       1.52   thorpej  * Pool log entry. An array of these is allocated in pool_init().
    217        1.3        pk  */
    218        1.3        pk struct pool_log {
    219        1.3        pk 	const char	*pl_file;
    220        1.3        pk 	long		pl_line;
    221        1.3        pk 	int		pl_action;
    222       1.25   thorpej #define	PRLOG_GET	1
    223       1.25   thorpej #define	PRLOG_PUT	2
    224        1.3        pk 	void		*pl_addr;
    225        1.1        pk };
    226        1.1        pk 
    227       1.86      matt #ifdef POOL_DIAGNOSTIC
    228        1.3        pk /* Number of entries in pool log buffers */
    229       1.17   thorpej #ifndef POOL_LOGSIZE
    230       1.17   thorpej #define	POOL_LOGSIZE	10
    231       1.17   thorpej #endif
    232       1.17   thorpej 
    233       1.17   thorpej int pool_logsize = POOL_LOGSIZE;
    234        1.1        pk 
    235      1.110     perry static inline void
    236       1.42   thorpej pr_log(struct pool *pp, void *v, int action, const char *file, long line)
    237        1.3        pk {
    238      1.179   mlelstv 	int n;
    239        1.3        pk 	struct pool_log *pl;
    240        1.3        pk 
    241       1.20   thorpej 	if ((pp->pr_roflags & PR_LOGGING) == 0)
    242        1.3        pk 		return;
    243        1.3        pk 
    244      1.179   mlelstv 	if (pp->pr_log == NULL) {
    245      1.179   mlelstv 		if (kmem_map != NULL)
    246      1.179   mlelstv 			pp->pr_log = malloc(
    247      1.179   mlelstv 				pool_logsize * sizeof(struct pool_log),
    248      1.179   mlelstv 				M_TEMP, M_NOWAIT | M_ZERO);
    249      1.179   mlelstv 		if (pp->pr_log == NULL)
    250      1.179   mlelstv 			return;
    251      1.179   mlelstv 		pp->pr_curlogentry = 0;
    252      1.179   mlelstv 		pp->pr_logsize = pool_logsize;
    253      1.179   mlelstv 	}
    254      1.179   mlelstv 
    255        1.3        pk 	/*
    256        1.3        pk 	 * Fill in the current entry. Wrap around and overwrite
    257        1.3        pk 	 * the oldest entry if necessary.
    258        1.3        pk 	 */
    259      1.179   mlelstv 	n = pp->pr_curlogentry;
    260        1.3        pk 	pl = &pp->pr_log[n];
    261        1.3        pk 	pl->pl_file = file;
    262        1.3        pk 	pl->pl_line = line;
    263        1.3        pk 	pl->pl_action = action;
    264        1.3        pk 	pl->pl_addr = v;
    265        1.3        pk 	if (++n >= pp->pr_logsize)
    266        1.3        pk 		n = 0;
    267        1.3        pk 	pp->pr_curlogentry = n;
    268        1.3        pk }
    269        1.3        pk 
    270        1.3        pk static void
    271       1.42   thorpej pr_printlog(struct pool *pp, struct pool_item *pi,
    272       1.42   thorpej     void (*pr)(const char *, ...))
    273        1.3        pk {
    274        1.3        pk 	int i = pp->pr_logsize;
    275        1.3        pk 	int n = pp->pr_curlogentry;
    276        1.3        pk 
    277      1.179   mlelstv 	if (pp->pr_log == NULL)
    278        1.3        pk 		return;
    279        1.3        pk 
    280        1.3        pk 	/*
    281        1.3        pk 	 * Print all entries in this pool's log.
    282        1.3        pk 	 */
    283        1.3        pk 	while (i-- > 0) {
    284        1.3        pk 		struct pool_log *pl = &pp->pr_log[n];
    285        1.3        pk 		if (pl->pl_action != 0) {
    286       1.25   thorpej 			if (pi == NULL || pi == pl->pl_addr) {
    287       1.25   thorpej 				(*pr)("\tlog entry %d:\n", i);
    288       1.25   thorpej 				(*pr)("\t\taction = %s, addr = %p\n",
    289       1.25   thorpej 				    pl->pl_action == PRLOG_GET ? "get" : "put",
    290       1.25   thorpej 				    pl->pl_addr);
    291       1.25   thorpej 				(*pr)("\t\tfile: %s at line %lu\n",
    292       1.25   thorpej 				    pl->pl_file, pl->pl_line);
    293       1.25   thorpej 			}
    294        1.3        pk 		}
    295        1.3        pk 		if (++n >= pp->pr_logsize)
    296        1.3        pk 			n = 0;
    297        1.3        pk 	}
    298        1.3        pk }
    299       1.25   thorpej 
    300      1.110     perry static inline void
    301       1.42   thorpej pr_enter(struct pool *pp, const char *file, long line)
    302       1.25   thorpej {
    303       1.25   thorpej 
    304       1.34   thorpej 	if (__predict_false(pp->pr_entered_file != NULL)) {
    305       1.25   thorpej 		printf("pool %s: reentrancy at file %s line %ld\n",
    306       1.25   thorpej 		    pp->pr_wchan, file, line);
    307       1.25   thorpej 		printf("         previous entry at file %s line %ld\n",
    308       1.25   thorpej 		    pp->pr_entered_file, pp->pr_entered_line);
    309       1.25   thorpej 		panic("pr_enter");
    310       1.25   thorpej 	}
    311       1.25   thorpej 
    312       1.25   thorpej 	pp->pr_entered_file = file;
    313       1.25   thorpej 	pp->pr_entered_line = line;
    314       1.25   thorpej }
    315       1.25   thorpej 
    316      1.110     perry static inline void
    317       1.42   thorpej pr_leave(struct pool *pp)
    318       1.25   thorpej {
    319       1.25   thorpej 
    320       1.34   thorpej 	if (__predict_false(pp->pr_entered_file == NULL)) {
    321       1.25   thorpej 		printf("pool %s not entered?\n", pp->pr_wchan);
    322       1.25   thorpej 		panic("pr_leave");
    323       1.25   thorpej 	}
    324       1.25   thorpej 
    325       1.25   thorpej 	pp->pr_entered_file = NULL;
    326       1.25   thorpej 	pp->pr_entered_line = 0;
    327       1.25   thorpej }
    328       1.25   thorpej 
    329      1.110     perry static inline void
    330       1.42   thorpej pr_enter_check(struct pool *pp, void (*pr)(const char *, ...))
    331       1.25   thorpej {
    332       1.25   thorpej 
    333       1.25   thorpej 	if (pp->pr_entered_file != NULL)
    334       1.25   thorpej 		(*pr)("\n\tcurrently entered from file %s line %ld\n",
    335       1.25   thorpej 		    pp->pr_entered_file, pp->pr_entered_line);
    336       1.25   thorpej }
    337        1.3        pk #else
    338       1.25   thorpej #define	pr_log(pp, v, action, file, line)
    339       1.25   thorpej #define	pr_printlog(pp, pi, pr)
    340       1.25   thorpej #define	pr_enter(pp, file, line)
    341       1.25   thorpej #define	pr_leave(pp)
    342       1.25   thorpej #define	pr_enter_check(pp, pr)
    343       1.59   thorpej #endif /* POOL_DIAGNOSTIC */
    344        1.3        pk 
    345      1.135      yamt static inline unsigned int
    346       1.97      yamt pr_item_notouch_index(const struct pool *pp, const struct pool_item_header *ph,
    347       1.97      yamt     const void *v)
    348       1.97      yamt {
    349       1.97      yamt 	const char *cp = v;
    350      1.135      yamt 	unsigned int idx;
    351       1.97      yamt 
    352       1.97      yamt 	KASSERT(pp->pr_roflags & PR_NOTOUCH);
    353      1.128  christos 	idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
    354       1.97      yamt 	KASSERT(idx < pp->pr_itemsperpage);
    355       1.97      yamt 	return idx;
    356       1.97      yamt }
    357       1.97      yamt 
    358      1.110     perry static inline void
    359       1.97      yamt pr_item_notouch_put(const struct pool *pp, struct pool_item_header *ph,
    360       1.97      yamt     void *obj)
    361       1.97      yamt {
    362      1.135      yamt 	unsigned int idx = pr_item_notouch_index(pp, ph, obj);
    363      1.135      yamt 	pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE);
    364      1.135      yamt 	pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
    365       1.97      yamt 
    366      1.135      yamt 	KASSERT((*bitmap & mask) == 0);
    367      1.135      yamt 	*bitmap |= mask;
    368       1.97      yamt }
    369       1.97      yamt 
    370      1.110     perry static inline void *
    371       1.97      yamt pr_item_notouch_get(const struct pool *pp, struct pool_item_header *ph)
    372       1.97      yamt {
    373      1.135      yamt 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
    374      1.135      yamt 	unsigned int idx;
    375      1.135      yamt 	int i;
    376       1.97      yamt 
    377      1.135      yamt 	for (i = 0; ; i++) {
    378      1.135      yamt 		int bit;
    379       1.97      yamt 
    380      1.135      yamt 		KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage);
    381      1.135      yamt 		bit = ffs32(bitmap[i]);
    382      1.135      yamt 		if (bit) {
    383      1.135      yamt 			pool_item_bitmap_t mask;
    384      1.135      yamt 
    385      1.135      yamt 			bit--;
    386      1.135      yamt 			idx = (i * BITMAP_SIZE) + bit;
    387      1.135      yamt 			mask = 1 << bit;
    388      1.135      yamt 			KASSERT((bitmap[i] & mask) != 0);
    389      1.135      yamt 			bitmap[i] &= ~mask;
    390      1.135      yamt 			break;
    391      1.135      yamt 		}
    392      1.135      yamt 	}
    393      1.135      yamt 	KASSERT(idx < pp->pr_itemsperpage);
    394      1.128  christos 	return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
    395       1.97      yamt }
    396       1.97      yamt 
    397      1.135      yamt static inline void
    398      1.141      yamt pr_item_notouch_init(const struct pool *pp, struct pool_item_header *ph)
    399      1.135      yamt {
    400      1.135      yamt 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
    401      1.135      yamt 	const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE);
    402      1.135      yamt 	int i;
    403      1.135      yamt 
    404      1.135      yamt 	for (i = 0; i < n; i++) {
    405      1.135      yamt 		bitmap[i] = (pool_item_bitmap_t)-1;
    406      1.135      yamt 	}
    407      1.135      yamt }
    408      1.135      yamt 
    409      1.110     perry static inline int
    410       1.88       chs phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
    411       1.88       chs {
    412      1.121      yamt 
    413      1.121      yamt 	/*
    414      1.121      yamt 	 * we consider pool_item_header with smaller ph_page bigger.
    415      1.121      yamt 	 * (this unnatural ordering is for the benefit of pr_find_pagehead.)
    416      1.121      yamt 	 */
    417      1.121      yamt 
    418       1.88       chs 	if (a->ph_page < b->ph_page)
    419      1.121      yamt 		return (1);
    420      1.121      yamt 	else if (a->ph_page > b->ph_page)
    421       1.88       chs 		return (-1);
    422       1.88       chs 	else
    423       1.88       chs 		return (0);
    424       1.88       chs }
    425       1.88       chs 
    426       1.88       chs SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
    427       1.88       chs SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
    428       1.88       chs 
    429      1.141      yamt static inline struct pool_item_header *
    430      1.141      yamt pr_find_pagehead_noalign(struct pool *pp, void *v)
    431      1.141      yamt {
    432      1.141      yamt 	struct pool_item_header *ph, tmp;
    433      1.141      yamt 
    434      1.141      yamt 	tmp.ph_page = (void *)(uintptr_t)v;
    435      1.141      yamt 	ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
    436      1.141      yamt 	if (ph == NULL) {
    437      1.141      yamt 		ph = SPLAY_ROOT(&pp->pr_phtree);
    438      1.141      yamt 		if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
    439      1.141      yamt 			ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
    440      1.141      yamt 		}
    441      1.141      yamt 		KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
    442      1.141      yamt 	}
    443      1.141      yamt 
    444      1.141      yamt 	return ph;
    445      1.141      yamt }
    446      1.141      yamt 
    447        1.3        pk /*
    448      1.121      yamt  * Return the pool page header based on item address.
    449        1.3        pk  */
    450      1.110     perry static inline struct pool_item_header *
    451      1.121      yamt pr_find_pagehead(struct pool *pp, void *v)
    452        1.3        pk {
    453       1.88       chs 	struct pool_item_header *ph, tmp;
    454        1.3        pk 
    455      1.121      yamt 	if ((pp->pr_roflags & PR_NOALIGN) != 0) {
    456      1.141      yamt 		ph = pr_find_pagehead_noalign(pp, v);
    457      1.121      yamt 	} else {
    458      1.128  christos 		void *page =
    459      1.128  christos 		    (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask);
    460      1.121      yamt 
    461      1.121      yamt 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
    462      1.128  christos 			ph = (struct pool_item_header *)((char *)page + pp->pr_phoffset);
    463      1.121      yamt 		} else {
    464      1.121      yamt 			tmp.ph_page = page;
    465      1.121      yamt 			ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
    466      1.121      yamt 		}
    467      1.121      yamt 	}
    468        1.3        pk 
    469      1.121      yamt 	KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
    470      1.128  christos 	    ((char *)ph->ph_page <= (char *)v &&
    471      1.128  christos 	    (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
    472       1.88       chs 	return ph;
    473        1.3        pk }
    474        1.3        pk 
    475      1.101   thorpej static void
    476      1.101   thorpej pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
    477      1.101   thorpej {
    478      1.101   thorpej 	struct pool_item_header *ph;
    479      1.101   thorpej 
    480      1.101   thorpej 	while ((ph = LIST_FIRST(pq)) != NULL) {
    481      1.101   thorpej 		LIST_REMOVE(ph, ph_pagelist);
    482      1.101   thorpej 		pool_allocator_free(pp, ph->ph_page);
    483      1.134        ad 		if ((pp->pr_roflags & PR_PHINPAGE) == 0)
    484      1.101   thorpej 			pool_put(pp->pr_phpool, ph);
    485      1.101   thorpej 	}
    486      1.101   thorpej }
    487      1.101   thorpej 
    488        1.3        pk /*
    489        1.3        pk  * Remove a page from the pool.
    490        1.3        pk  */
    491      1.110     perry static inline void
    492       1.61       chs pr_rmpage(struct pool *pp, struct pool_item_header *ph,
    493       1.61       chs      struct pool_pagelist *pq)
    494        1.3        pk {
    495        1.3        pk 
    496      1.134        ad 	KASSERT(mutex_owned(&pp->pr_lock));
    497       1.91      yamt 
    498        1.3        pk 	/*
    499        1.7   thorpej 	 * If the page was idle, decrement the idle page count.
    500        1.3        pk 	 */
    501        1.6   thorpej 	if (ph->ph_nmissing == 0) {
    502        1.6   thorpej #ifdef DIAGNOSTIC
    503        1.6   thorpej 		if (pp->pr_nidle == 0)
    504        1.6   thorpej 			panic("pr_rmpage: nidle inconsistent");
    505       1.20   thorpej 		if (pp->pr_nitems < pp->pr_itemsperpage)
    506       1.20   thorpej 			panic("pr_rmpage: nitems inconsistent");
    507        1.6   thorpej #endif
    508        1.6   thorpej 		pp->pr_nidle--;
    509        1.6   thorpej 	}
    510        1.7   thorpej 
    511       1.20   thorpej 	pp->pr_nitems -= pp->pr_itemsperpage;
    512       1.20   thorpej 
    513        1.7   thorpej 	/*
    514      1.101   thorpej 	 * Unlink the page from the pool and queue it for release.
    515        1.7   thorpej 	 */
    516       1.88       chs 	LIST_REMOVE(ph, ph_pagelist);
    517       1.91      yamt 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
    518       1.91      yamt 		SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
    519      1.101   thorpej 	LIST_INSERT_HEAD(pq, ph, ph_pagelist);
    520      1.101   thorpej 
    521        1.7   thorpej 	pp->pr_npages--;
    522        1.7   thorpej 	pp->pr_npagefree++;
    523        1.6   thorpej 
    524       1.88       chs 	pool_update_curpage(pp);
    525        1.3        pk }
    526        1.3        pk 
    527      1.126   thorpej static bool
    528      1.117      yamt pa_starved_p(struct pool_allocator *pa)
    529      1.117      yamt {
    530      1.117      yamt 
    531      1.117      yamt 	if (pa->pa_backingmap != NULL) {
    532      1.117      yamt 		return vm_map_starved_p(pa->pa_backingmap);
    533      1.117      yamt 	}
    534      1.127   thorpej 	return false;
    535      1.117      yamt }
    536      1.117      yamt 
    537      1.117      yamt static int
    538      1.124      yamt pool_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
    539      1.117      yamt {
    540      1.117      yamt 	struct pool *pp = obj;
    541      1.117      yamt 	struct pool_allocator *pa = pp->pr_alloc;
    542      1.117      yamt 
    543      1.117      yamt 	KASSERT(&pp->pr_reclaimerentry == ce);
    544      1.117      yamt 	pool_reclaim(pp);
    545      1.117      yamt 	if (!pa_starved_p(pa)) {
    546      1.117      yamt 		return CALLBACK_CHAIN_ABORT;
    547      1.117      yamt 	}
    548      1.117      yamt 	return CALLBACK_CHAIN_CONTINUE;
    549      1.117      yamt }
    550      1.117      yamt 
    551      1.117      yamt static void
    552      1.117      yamt pool_reclaim_register(struct pool *pp)
    553      1.117      yamt {
    554      1.117      yamt 	struct vm_map *map = pp->pr_alloc->pa_backingmap;
    555      1.117      yamt 	int s;
    556      1.117      yamt 
    557      1.117      yamt 	if (map == NULL) {
    558      1.117      yamt 		return;
    559      1.117      yamt 	}
    560      1.117      yamt 
    561      1.117      yamt 	s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
    562      1.117      yamt 	callback_register(&vm_map_to_kernel(map)->vmk_reclaim_callback,
    563      1.117      yamt 	    &pp->pr_reclaimerentry, pp, pool_reclaim_callback);
    564      1.117      yamt 	splx(s);
    565  1.182.4.1     rmind 
    566  1.182.4.1     rmind #ifdef DIAGNOSTIC
    567  1.182.4.1     rmind 	/* Diagnostic drain attempt. */
    568  1.182.4.1     rmind 	uvm_km_va_drain(map, 0);
    569  1.182.4.1     rmind #endif
    570      1.117      yamt }
    571      1.117      yamt 
    572      1.117      yamt static void
    573      1.117      yamt pool_reclaim_unregister(struct pool *pp)
    574      1.117      yamt {
    575      1.117      yamt 	struct vm_map *map = pp->pr_alloc->pa_backingmap;
    576      1.117      yamt 	int s;
    577      1.117      yamt 
    578      1.117      yamt 	if (map == NULL) {
    579      1.117      yamt 		return;
    580      1.117      yamt 	}
    581      1.117      yamt 
    582      1.117      yamt 	s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
    583      1.117      yamt 	callback_unregister(&vm_map_to_kernel(map)->vmk_reclaim_callback,
    584      1.117      yamt 	    &pp->pr_reclaimerentry);
    585      1.117      yamt 	splx(s);
    586      1.117      yamt }
    587      1.117      yamt 
    588      1.117      yamt static void
    589      1.117      yamt pa_reclaim_register(struct pool_allocator *pa)
    590      1.117      yamt {
    591      1.117      yamt 	struct vm_map *map = *pa->pa_backingmapptr;
    592      1.117      yamt 	struct pool *pp;
    593      1.117      yamt 
    594      1.117      yamt 	KASSERT(pa->pa_backingmap == NULL);
    595      1.117      yamt 	if (map == NULL) {
    596      1.117      yamt 		SLIST_INSERT_HEAD(&pa_deferinitq, pa, pa_q);
    597      1.117      yamt 		return;
    598      1.117      yamt 	}
    599      1.117      yamt 	pa->pa_backingmap = map;
    600      1.117      yamt 	TAILQ_FOREACH(pp, &pa->pa_list, pr_alloc_list) {
    601      1.117      yamt 		pool_reclaim_register(pp);
    602      1.117      yamt 	}
    603      1.117      yamt }
    604      1.117      yamt 
    605        1.3        pk /*
    606       1.94    simonb  * Initialize all the pools listed in the "pools" link set.
    607       1.94    simonb  */
    608       1.94    simonb void
    609      1.117      yamt pool_subsystem_init(void)
    610       1.94    simonb {
    611      1.117      yamt 	struct pool_allocator *pa;
    612       1.94    simonb 
    613      1.134        ad 	mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
    614      1.179   mlelstv 	mutex_init(&pool_allocator_lock, MUTEX_DEFAULT, IPL_NONE);
    615      1.134        ad 	cv_init(&pool_busy, "poolbusy");
    616      1.134        ad 
    617      1.117      yamt 	while ((pa = SLIST_FIRST(&pa_deferinitq)) != NULL) {
    618      1.117      yamt 		KASSERT(pa->pa_backingmapptr != NULL);
    619      1.117      yamt 		KASSERT(*pa->pa_backingmapptr != NULL);
    620      1.117      yamt 		SLIST_REMOVE_HEAD(&pa_deferinitq, pa_q);
    621      1.117      yamt 		pa_reclaim_register(pa);
    622      1.117      yamt 	}
    623      1.134        ad 
    624      1.156        ad 	pool_init(&cache_pool, sizeof(struct pool_cache), coherency_unit,
    625      1.134        ad 	    0, 0, "pcache", &pool_allocator_nointr, IPL_NONE);
    626      1.134        ad 
    627      1.156        ad 	pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), coherency_unit,
    628      1.134        ad 	    0, 0, "pcachecpu", &pool_allocator_nointr, IPL_NONE);
    629       1.94    simonb }
    630       1.94    simonb 
    631       1.94    simonb /*
    632        1.3        pk  * Initialize the given pool resource structure.
    633        1.3        pk  *
    634        1.3        pk  * We export this routine to allow other kernel parts to declare
    635        1.3        pk  * static pools that must be initialized before malloc() is available.
    636        1.3        pk  */
    637        1.3        pk void
    638       1.42   thorpej pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
    639      1.129        ad     const char *wchan, struct pool_allocator *palloc, int ipl)
    640        1.3        pk {
    641      1.116    simonb 	struct pool *pp1;
    642       1.92     enami 	size_t trysize, phsize;
    643      1.134        ad 	int off, slack;
    644        1.3        pk 
    645      1.116    simonb #ifdef DEBUG
    646      1.116    simonb 	/*
    647      1.116    simonb 	 * Check that the pool hasn't already been initialised and
    648      1.116    simonb 	 * added to the list of all pools.
    649      1.116    simonb 	 */
    650      1.145        ad 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
    651      1.116    simonb 		if (pp == pp1)
    652      1.116    simonb 			panic("pool_init: pool %s already initialised",
    653      1.116    simonb 			    wchan);
    654      1.116    simonb 	}
    655      1.116    simonb #endif
    656      1.116    simonb 
    657       1.25   thorpej #ifdef POOL_DIAGNOSTIC
    658       1.25   thorpej 	/*
    659       1.25   thorpej 	 * Always log if POOL_DIAGNOSTIC is defined.
    660       1.25   thorpej 	 */
    661       1.25   thorpej 	if (pool_logsize != 0)
    662       1.25   thorpej 		flags |= PR_LOGGING;
    663       1.25   thorpej #endif
    664       1.25   thorpej 
    665       1.66   thorpej 	if (palloc == NULL)
    666       1.66   thorpej 		palloc = &pool_allocator_kmem;
    667      1.112     bjh21 #ifdef POOL_SUBPAGE
    668      1.112     bjh21 	if (size > palloc->pa_pagesz) {
    669      1.112     bjh21 		if (palloc == &pool_allocator_kmem)
    670      1.112     bjh21 			palloc = &pool_allocator_kmem_fullpage;
    671      1.112     bjh21 		else if (palloc == &pool_allocator_nointr)
    672      1.112     bjh21 			palloc = &pool_allocator_nointr_fullpage;
    673      1.112     bjh21 	}
    674       1.66   thorpej #endif /* POOL_SUBPAGE */
    675      1.180   mlelstv 	if (!cold)
    676      1.180   mlelstv 		mutex_enter(&pool_allocator_lock);
    677      1.178      elad 	if (palloc->pa_refcnt++ == 0) {
    678      1.112     bjh21 		if (palloc->pa_pagesz == 0)
    679       1.66   thorpej 			palloc->pa_pagesz = PAGE_SIZE;
    680       1.66   thorpej 
    681       1.66   thorpej 		TAILQ_INIT(&palloc->pa_list);
    682       1.66   thorpej 
    683      1.134        ad 		mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
    684       1.66   thorpej 		palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
    685       1.66   thorpej 		palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
    686      1.117      yamt 
    687      1.117      yamt 		if (palloc->pa_backingmapptr != NULL) {
    688      1.117      yamt 			pa_reclaim_register(palloc);
    689      1.117      yamt 		}
    690        1.4   thorpej 	}
    691      1.180   mlelstv 	if (!cold)
    692      1.180   mlelstv 		mutex_exit(&pool_allocator_lock);
    693        1.3        pk 
    694        1.3        pk 	if (align == 0)
    695        1.3        pk 		align = ALIGN(1);
    696       1.14   thorpej 
    697      1.120      yamt 	if ((flags & PR_NOTOUCH) == 0 && size < sizeof(struct pool_item))
    698       1.14   thorpej 		size = sizeof(struct pool_item);
    699        1.3        pk 
    700       1.78   thorpej 	size = roundup(size, align);
    701       1.66   thorpej #ifdef DIAGNOSTIC
    702       1.66   thorpej 	if (size > palloc->pa_pagesz)
    703      1.121      yamt 		panic("pool_init: pool item size (%zu) too large", size);
    704       1.66   thorpej #endif
    705       1.35        pk 
    706        1.3        pk 	/*
    707        1.3        pk 	 * Initialize the pool structure.
    708        1.3        pk 	 */
    709       1.88       chs 	LIST_INIT(&pp->pr_emptypages);
    710       1.88       chs 	LIST_INIT(&pp->pr_fullpages);
    711       1.88       chs 	LIST_INIT(&pp->pr_partpages);
    712      1.134        ad 	pp->pr_cache = NULL;
    713        1.3        pk 	pp->pr_curpage = NULL;
    714        1.3        pk 	pp->pr_npages = 0;
    715        1.3        pk 	pp->pr_minitems = 0;
    716        1.3        pk 	pp->pr_minpages = 0;
    717        1.3        pk 	pp->pr_maxpages = UINT_MAX;
    718       1.20   thorpej 	pp->pr_roflags = flags;
    719       1.20   thorpej 	pp->pr_flags = 0;
    720       1.35        pk 	pp->pr_size = size;
    721        1.3        pk 	pp->pr_align = align;
    722        1.3        pk 	pp->pr_wchan = wchan;
    723       1.66   thorpej 	pp->pr_alloc = palloc;
    724       1.20   thorpej 	pp->pr_nitems = 0;
    725       1.20   thorpej 	pp->pr_nout = 0;
    726       1.20   thorpej 	pp->pr_hardlimit = UINT_MAX;
    727       1.20   thorpej 	pp->pr_hardlimit_warning = NULL;
    728       1.31   thorpej 	pp->pr_hardlimit_ratecap.tv_sec = 0;
    729       1.31   thorpej 	pp->pr_hardlimit_ratecap.tv_usec = 0;
    730       1.31   thorpej 	pp->pr_hardlimit_warning_last.tv_sec = 0;
    731       1.31   thorpej 	pp->pr_hardlimit_warning_last.tv_usec = 0;
    732       1.68   thorpej 	pp->pr_drain_hook = NULL;
    733       1.68   thorpej 	pp->pr_drain_hook_arg = NULL;
    734      1.125        ad 	pp->pr_freecheck = NULL;
    735        1.3        pk 
    736        1.3        pk 	/*
    737        1.3        pk 	 * Decide whether to put the page header off page to avoid
    738       1.92     enami 	 * wasting too large a part of the page or too big item.
    739       1.92     enami 	 * Off-page page headers go on a hash table, so we can match
    740       1.92     enami 	 * a returned item with its header based on the page address.
    741       1.92     enami 	 * We use 1/16 of the page size and about 8 times of the item
    742       1.92     enami 	 * size as the threshold (XXX: tune)
    743       1.92     enami 	 *
    744       1.92     enami 	 * However, we'll put the header into the page if we can put
    745       1.92     enami 	 * it without wasting any items.
    746       1.92     enami 	 *
    747       1.92     enami 	 * Silently enforce `0 <= ioff < align'.
    748        1.3        pk 	 */
    749       1.92     enami 	pp->pr_itemoffset = ioff %= align;
    750       1.92     enami 	/* See the comment below about reserved bytes. */
    751       1.92     enami 	trysize = palloc->pa_pagesz - ((align - ioff) % align);
    752       1.92     enami 	phsize = ALIGN(sizeof(struct pool_item_header));
    753      1.121      yamt 	if ((pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) == 0 &&
    754       1.97      yamt 	    (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) ||
    755       1.97      yamt 	    trysize / pp->pr_size == (trysize - phsize) / pp->pr_size)) {
    756        1.3        pk 		/* Use the end of the page for the page header */
    757       1.20   thorpej 		pp->pr_roflags |= PR_PHINPAGE;
    758       1.92     enami 		pp->pr_phoffset = off = palloc->pa_pagesz - phsize;
    759        1.2        pk 	} else {
    760        1.3        pk 		/* The page header will be taken from our page header pool */
    761        1.3        pk 		pp->pr_phoffset = 0;
    762       1.66   thorpej 		off = palloc->pa_pagesz;
    763       1.88       chs 		SPLAY_INIT(&pp->pr_phtree);
    764        1.2        pk 	}
    765        1.1        pk 
    766        1.3        pk 	/*
    767        1.3        pk 	 * Alignment is to take place at `ioff' within the item. This means
    768        1.3        pk 	 * we must reserve up to `align - 1' bytes on the page to allow
    769        1.3        pk 	 * appropriate positioning of each item.
    770        1.3        pk 	 */
    771        1.3        pk 	pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
    772       1.43   thorpej 	KASSERT(pp->pr_itemsperpage != 0);
    773       1.97      yamt 	if ((pp->pr_roflags & PR_NOTOUCH)) {
    774       1.97      yamt 		int idx;
    775       1.97      yamt 
    776       1.97      yamt 		for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
    777       1.97      yamt 		    idx++) {
    778       1.97      yamt 			/* nothing */
    779       1.97      yamt 		}
    780       1.97      yamt 		if (idx >= PHPOOL_MAX) {
    781       1.97      yamt 			/*
    782       1.97      yamt 			 * if you see this panic, consider to tweak
    783       1.97      yamt 			 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
    784       1.97      yamt 			 */
    785       1.97      yamt 			panic("%s: too large itemsperpage(%d) for PR_NOTOUCH",
    786       1.97      yamt 			    pp->pr_wchan, pp->pr_itemsperpage);
    787       1.97      yamt 		}
    788       1.97      yamt 		pp->pr_phpool = &phpool[idx];
    789       1.97      yamt 	} else if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
    790       1.97      yamt 		pp->pr_phpool = &phpool[0];
    791       1.97      yamt 	}
    792       1.97      yamt #if defined(DIAGNOSTIC)
    793       1.97      yamt 	else {
    794       1.97      yamt 		pp->pr_phpool = NULL;
    795       1.97      yamt 	}
    796       1.97      yamt #endif
    797        1.3        pk 
    798        1.3        pk 	/*
    799        1.3        pk 	 * Use the slack between the chunks and the page header
    800        1.3        pk 	 * for "cache coloring".
    801        1.3        pk 	 */
    802        1.3        pk 	slack = off - pp->pr_itemsperpage * pp->pr_size;
    803        1.3        pk 	pp->pr_maxcolor = (slack / align) * align;
    804        1.3        pk 	pp->pr_curcolor = 0;
    805        1.3        pk 
    806        1.3        pk 	pp->pr_nget = 0;
    807        1.3        pk 	pp->pr_nfail = 0;
    808        1.3        pk 	pp->pr_nput = 0;
    809        1.3        pk 	pp->pr_npagealloc = 0;
    810        1.3        pk 	pp->pr_npagefree = 0;
    811        1.1        pk 	pp->pr_hiwat = 0;
    812        1.8   thorpej 	pp->pr_nidle = 0;
    813      1.134        ad 	pp->pr_refcnt = 0;
    814        1.3        pk 
    815      1.179   mlelstv 	pp->pr_log = NULL;
    816       1.25   thorpej 
    817       1.25   thorpej 	pp->pr_entered_file = NULL;
    818       1.25   thorpej 	pp->pr_entered_line = 0;
    819        1.3        pk 
    820      1.157        ad 	mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
    821      1.134        ad 	cv_init(&pp->pr_cv, wchan);
    822      1.134        ad 	pp->pr_ipl = ipl;
    823        1.1        pk 
    824        1.3        pk 	/*
    825       1.43   thorpej 	 * Initialize private page header pool and cache magazine pool if we
    826       1.43   thorpej 	 * haven't done so yet.
    827       1.23   thorpej 	 * XXX LOCKING.
    828        1.3        pk 	 */
    829       1.97      yamt 	if (phpool[0].pr_size == 0) {
    830       1.97      yamt 		int idx;
    831       1.97      yamt 		for (idx = 0; idx < PHPOOL_MAX; idx++) {
    832       1.97      yamt 			static char phpool_names[PHPOOL_MAX][6+1+6+1];
    833       1.97      yamt 			int nelem;
    834       1.97      yamt 			size_t sz;
    835       1.97      yamt 
    836       1.97      yamt 			nelem = PHPOOL_FREELIST_NELEM(idx);
    837       1.97      yamt 			snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
    838       1.97      yamt 			    "phpool-%d", nelem);
    839       1.97      yamt 			sz = sizeof(struct pool_item_header);
    840       1.97      yamt 			if (nelem) {
    841      1.135      yamt 				sz = offsetof(struct pool_item_header,
    842      1.135      yamt 				    ph_bitmap[howmany(nelem, BITMAP_SIZE)]);
    843       1.97      yamt 			}
    844       1.97      yamt 			pool_init(&phpool[idx], sz, 0, 0, 0,
    845      1.129        ad 			    phpool_names[idx], &pool_allocator_meta, IPL_VM);
    846       1.97      yamt 		}
    847       1.62     bjh21 #ifdef POOL_SUBPAGE
    848       1.62     bjh21 		pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
    849      1.129        ad 		    PR_RECURSIVE, "psppool", &pool_allocator_meta, IPL_VM);
    850       1.62     bjh21 #endif
    851      1.142        ad 
    852      1.142        ad 		size = sizeof(pcg_t) +
    853      1.142        ad 		    (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t);
    854      1.156        ad 		pool_init(&pcg_normal_pool, size, coherency_unit, 0, 0,
    855      1.142        ad 		    "pcgnormal", &pool_allocator_meta, IPL_VM);
    856      1.142        ad 
    857      1.142        ad 		size = sizeof(pcg_t) +
    858      1.142        ad 		    (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t);
    859      1.156        ad 		pool_init(&pcg_large_pool, size, coherency_unit, 0, 0,
    860      1.142        ad 		    "pcglarge", &pool_allocator_meta, IPL_VM);
    861        1.1        pk 	}
    862        1.1        pk 
    863      1.145        ad 	/* Insert into the list of all pools. */
    864      1.181   mlelstv 	if (!cold)
    865      1.134        ad 		mutex_enter(&pool_head_lock);
    866      1.145        ad 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
    867      1.145        ad 		if (strcmp(pp1->pr_wchan, pp->pr_wchan) > 0)
    868      1.145        ad 			break;
    869      1.145        ad 	}
    870      1.145        ad 	if (pp1 == NULL)
    871      1.145        ad 		TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
    872      1.145        ad 	else
    873      1.145        ad 		TAILQ_INSERT_BEFORE(pp1, pp, pr_poollist);
    874      1.181   mlelstv 	if (!cold)
    875      1.134        ad 		mutex_exit(&pool_head_lock);
    876      1.134        ad 
    877      1.167     skrll 	/* Insert this into the list of pools using this allocator. */
    878      1.181   mlelstv 	if (!cold)
    879      1.134        ad 		mutex_enter(&palloc->pa_lock);
    880      1.145        ad 	TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
    881      1.181   mlelstv 	if (!cold)
    882      1.134        ad 		mutex_exit(&palloc->pa_lock);
    883       1.66   thorpej 
    884      1.117      yamt 	pool_reclaim_register(pp);
    885        1.1        pk }
    886        1.1        pk 
    887        1.1        pk /*
    888        1.1        pk  * De-commision a pool resource.
    889        1.1        pk  */
    890        1.1        pk void
    891       1.42   thorpej pool_destroy(struct pool *pp)
    892        1.1        pk {
    893      1.101   thorpej 	struct pool_pagelist pq;
    894        1.3        pk 	struct pool_item_header *ph;
    895       1.43   thorpej 
    896      1.101   thorpej 	/* Remove from global pool list */
    897      1.134        ad 	mutex_enter(&pool_head_lock);
    898      1.134        ad 	while (pp->pr_refcnt != 0)
    899      1.134        ad 		cv_wait(&pool_busy, &pool_head_lock);
    900      1.145        ad 	TAILQ_REMOVE(&pool_head, pp, pr_poollist);
    901      1.101   thorpej 	if (drainpp == pp)
    902      1.101   thorpej 		drainpp = NULL;
    903      1.134        ad 	mutex_exit(&pool_head_lock);
    904      1.101   thorpej 
    905      1.101   thorpej 	/* Remove this pool from its allocator's list of pools. */
    906      1.117      yamt 	pool_reclaim_unregister(pp);
    907      1.134        ad 	mutex_enter(&pp->pr_alloc->pa_lock);
    908       1.66   thorpej 	TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
    909      1.134        ad 	mutex_exit(&pp->pr_alloc->pa_lock);
    910       1.66   thorpej 
    911      1.178      elad 	mutex_enter(&pool_allocator_lock);
    912      1.178      elad 	if (--pp->pr_alloc->pa_refcnt == 0)
    913      1.178      elad 		mutex_destroy(&pp->pr_alloc->pa_lock);
    914      1.178      elad 	mutex_exit(&pool_allocator_lock);
    915      1.178      elad 
    916      1.134        ad 	mutex_enter(&pp->pr_lock);
    917      1.101   thorpej 
    918      1.134        ad 	KASSERT(pp->pr_cache == NULL);
    919        1.3        pk 
    920        1.3        pk #ifdef DIAGNOSTIC
    921       1.20   thorpej 	if (pp->pr_nout != 0) {
    922       1.25   thorpej 		pr_printlog(pp, NULL, printf);
    923       1.80    provos 		panic("pool_destroy: pool busy: still out: %u",
    924       1.20   thorpej 		    pp->pr_nout);
    925        1.3        pk 	}
    926        1.3        pk #endif
    927        1.1        pk 
    928      1.101   thorpej 	KASSERT(LIST_EMPTY(&pp->pr_fullpages));
    929      1.101   thorpej 	KASSERT(LIST_EMPTY(&pp->pr_partpages));
    930      1.101   thorpej 
    931        1.3        pk 	/* Remove all pages */
    932      1.101   thorpej 	LIST_INIT(&pq);
    933       1.88       chs 	while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
    934      1.101   thorpej 		pr_rmpage(pp, ph, &pq);
    935      1.101   thorpej 
    936      1.134        ad 	mutex_exit(&pp->pr_lock);
    937        1.3        pk 
    938      1.101   thorpej 	pr_pagelist_free(pp, &pq);
    939        1.3        pk 
    940       1.59   thorpej #ifdef POOL_DIAGNOSTIC
    941      1.179   mlelstv 	if (pp->pr_log != NULL) {
    942        1.3        pk 		free(pp->pr_log, M_TEMP);
    943      1.179   mlelstv 		pp->pr_log = NULL;
    944      1.179   mlelstv 	}
    945       1.59   thorpej #endif
    946      1.134        ad 
    947      1.134        ad 	cv_destroy(&pp->pr_cv);
    948      1.134        ad 	mutex_destroy(&pp->pr_lock);
    949        1.1        pk }
    950        1.1        pk 
    951       1.68   thorpej void
    952       1.68   thorpej pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
    953       1.68   thorpej {
    954       1.68   thorpej 
    955       1.68   thorpej 	/* XXX no locking -- must be used just after pool_init() */
    956       1.68   thorpej #ifdef DIAGNOSTIC
    957       1.68   thorpej 	if (pp->pr_drain_hook != NULL)
    958       1.68   thorpej 		panic("pool_set_drain_hook(%s): already set", pp->pr_wchan);
    959       1.68   thorpej #endif
    960       1.68   thorpej 	pp->pr_drain_hook = fn;
    961       1.68   thorpej 	pp->pr_drain_hook_arg = arg;
    962       1.68   thorpej }
    963       1.68   thorpej 
    964       1.88       chs static struct pool_item_header *
    965      1.128  christos pool_alloc_item_header(struct pool *pp, void *storage, int flags)
    966       1.55   thorpej {
    967       1.55   thorpej 	struct pool_item_header *ph;
    968       1.55   thorpej 
    969       1.55   thorpej 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
    970      1.128  christos 		ph = (struct pool_item_header *) ((char *)storage + pp->pr_phoffset);
    971      1.134        ad 	else
    972       1.97      yamt 		ph = pool_get(pp->pr_phpool, flags);
    973       1.55   thorpej 
    974       1.55   thorpej 	return (ph);
    975       1.55   thorpej }
    976        1.1        pk 
    977        1.1        pk /*
    978      1.134        ad  * Grab an item from the pool.
    979        1.1        pk  */
    980        1.3        pk void *
    981       1.59   thorpej #ifdef POOL_DIAGNOSTIC
    982       1.42   thorpej _pool_get(struct pool *pp, int flags, const char *file, long line)
    983       1.56  sommerfe #else
    984       1.56  sommerfe pool_get(struct pool *pp, int flags)
    985       1.56  sommerfe #endif
    986        1.1        pk {
    987        1.1        pk 	struct pool_item *pi;
    988        1.3        pk 	struct pool_item_header *ph;
    989       1.55   thorpej 	void *v;
    990        1.1        pk 
    991        1.2        pk #ifdef DIAGNOSTIC
    992  1.182.4.1     rmind 	if (pp->pr_itemsperpage == 0)
    993  1.182.4.1     rmind 		panic("pool_get: pool '%s': pr_itemsperpage is zero, "
    994  1.182.4.1     rmind 		    "pool not initialized?", pp->pr_wchan);
    995  1.182.4.1     rmind 	if ((cpu_intr_p() || cpu_softintr_p()) && pp->pr_ipl == IPL_NONE &&
    996  1.182.4.1     rmind 	    !cold && panicstr == NULL)
    997  1.182.4.1     rmind 		panic("pool '%s' is IPL_NONE, but called from "
    998  1.182.4.1     rmind 		    "interrupt context\n", pp->pr_wchan);
    999  1.182.4.1     rmind #endif
   1000      1.155        ad 	if (flags & PR_WAITOK) {
   1001      1.154      yamt 		ASSERT_SLEEPABLE();
   1002      1.155        ad 	}
   1003        1.1        pk 
   1004      1.134        ad 	mutex_enter(&pp->pr_lock);
   1005       1.25   thorpej 	pr_enter(pp, file, line);
   1006       1.20   thorpej 
   1007       1.20   thorpej  startover:
   1008       1.20   thorpej 	/*
   1009       1.20   thorpej 	 * Check to see if we've reached the hard limit.  If we have,
   1010       1.20   thorpej 	 * and we can wait, then wait until an item has been returned to
   1011       1.20   thorpej 	 * the pool.
   1012       1.20   thorpej 	 */
   1013       1.20   thorpej #ifdef DIAGNOSTIC
   1014       1.34   thorpej 	if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
   1015       1.25   thorpej 		pr_leave(pp);
   1016      1.134        ad 		mutex_exit(&pp->pr_lock);
   1017       1.20   thorpej 		panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
   1018       1.20   thorpej 	}
   1019       1.20   thorpej #endif
   1020       1.34   thorpej 	if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
   1021       1.68   thorpej 		if (pp->pr_drain_hook != NULL) {
   1022       1.68   thorpej 			/*
   1023       1.68   thorpej 			 * Since the drain hook is going to free things
   1024       1.68   thorpej 			 * back to the pool, unlock, call the hook, re-lock,
   1025       1.68   thorpej 			 * and check the hardlimit condition again.
   1026       1.68   thorpej 			 */
   1027       1.68   thorpej 			pr_leave(pp);
   1028      1.134        ad 			mutex_exit(&pp->pr_lock);
   1029       1.68   thorpej 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
   1030      1.134        ad 			mutex_enter(&pp->pr_lock);
   1031       1.68   thorpej 			pr_enter(pp, file, line);
   1032       1.68   thorpej 			if (pp->pr_nout < pp->pr_hardlimit)
   1033       1.68   thorpej 				goto startover;
   1034       1.68   thorpej 		}
   1035       1.68   thorpej 
   1036       1.29  sommerfe 		if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
   1037       1.20   thorpej 			/*
   1038       1.20   thorpej 			 * XXX: A warning isn't logged in this case.  Should
   1039       1.20   thorpej 			 * it be?
   1040       1.20   thorpej 			 */
   1041       1.20   thorpej 			pp->pr_flags |= PR_WANTED;
   1042       1.25   thorpej 			pr_leave(pp);
   1043      1.134        ad 			cv_wait(&pp->pr_cv, &pp->pr_lock);
   1044       1.25   thorpej 			pr_enter(pp, file, line);
   1045       1.20   thorpej 			goto startover;
   1046       1.20   thorpej 		}
   1047       1.31   thorpej 
   1048       1.31   thorpej 		/*
   1049       1.31   thorpej 		 * Log a message that the hard limit has been hit.
   1050       1.31   thorpej 		 */
   1051       1.31   thorpej 		if (pp->pr_hardlimit_warning != NULL &&
   1052       1.31   thorpej 		    ratecheck(&pp->pr_hardlimit_warning_last,
   1053       1.31   thorpej 			      &pp->pr_hardlimit_ratecap))
   1054       1.31   thorpej 			log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
   1055       1.21   thorpej 
   1056       1.21   thorpej 		pp->pr_nfail++;
   1057       1.21   thorpej 
   1058       1.25   thorpej 		pr_leave(pp);
   1059      1.134        ad 		mutex_exit(&pp->pr_lock);
   1060       1.20   thorpej 		return (NULL);
   1061       1.20   thorpej 	}
   1062       1.20   thorpej 
   1063        1.3        pk 	/*
   1064        1.3        pk 	 * The convention we use is that if `curpage' is not NULL, then
   1065        1.3        pk 	 * it points at a non-empty bucket. In particular, `curpage'
   1066        1.3        pk 	 * never points at a page header which has PR_PHINPAGE set and
   1067        1.3        pk 	 * has no items in its bucket.
   1068        1.3        pk 	 */
   1069       1.20   thorpej 	if ((ph = pp->pr_curpage) == NULL) {
   1070      1.113      yamt 		int error;
   1071      1.113      yamt 
   1072       1.20   thorpej #ifdef DIAGNOSTIC
   1073       1.20   thorpej 		if (pp->pr_nitems != 0) {
   1074      1.134        ad 			mutex_exit(&pp->pr_lock);
   1075       1.20   thorpej 			printf("pool_get: %s: curpage NULL, nitems %u\n",
   1076       1.20   thorpej 			    pp->pr_wchan, pp->pr_nitems);
   1077       1.80    provos 			panic("pool_get: nitems inconsistent");
   1078       1.20   thorpej 		}
   1079       1.20   thorpej #endif
   1080       1.20   thorpej 
   1081       1.21   thorpej 		/*
   1082       1.21   thorpej 		 * Call the back-end page allocator for more memory.
   1083       1.21   thorpej 		 * Release the pool lock, as the back-end page allocator
   1084       1.21   thorpej 		 * may block.
   1085       1.21   thorpej 		 */
   1086       1.25   thorpej 		pr_leave(pp);
   1087      1.113      yamt 		error = pool_grow(pp, flags);
   1088      1.113      yamt 		pr_enter(pp, file, line);
   1089      1.113      yamt 		if (error != 0) {
   1090       1.21   thorpej 			/*
   1091       1.55   thorpej 			 * We were unable to allocate a page or item
   1092       1.55   thorpej 			 * header, but we released the lock during
   1093       1.55   thorpej 			 * allocation, so perhaps items were freed
   1094       1.55   thorpej 			 * back to the pool.  Check for this case.
   1095       1.21   thorpej 			 */
   1096       1.21   thorpej 			if (pp->pr_curpage != NULL)
   1097       1.21   thorpej 				goto startover;
   1098       1.15        pk 
   1099      1.117      yamt 			pp->pr_nfail++;
   1100       1.25   thorpej 			pr_leave(pp);
   1101      1.134        ad 			mutex_exit(&pp->pr_lock);
   1102      1.117      yamt 			return (NULL);
   1103        1.1        pk 		}
   1104        1.3        pk 
   1105       1.20   thorpej 		/* Start the allocation process over. */
   1106       1.20   thorpej 		goto startover;
   1107        1.3        pk 	}
   1108       1.97      yamt 	if (pp->pr_roflags & PR_NOTOUCH) {
   1109       1.97      yamt #ifdef DIAGNOSTIC
   1110       1.97      yamt 		if (__predict_false(ph->ph_nmissing == pp->pr_itemsperpage)) {
   1111       1.97      yamt 			pr_leave(pp);
   1112      1.134        ad 			mutex_exit(&pp->pr_lock);
   1113       1.97      yamt 			panic("pool_get: %s: page empty", pp->pr_wchan);
   1114       1.97      yamt 		}
   1115       1.97      yamt #endif
   1116       1.97      yamt 		v = pr_item_notouch_get(pp, ph);
   1117       1.97      yamt #ifdef POOL_DIAGNOSTIC
   1118       1.97      yamt 		pr_log(pp, v, PRLOG_GET, file, line);
   1119       1.97      yamt #endif
   1120       1.97      yamt 	} else {
   1121      1.102       chs 		v = pi = LIST_FIRST(&ph->ph_itemlist);
   1122       1.97      yamt 		if (__predict_false(v == NULL)) {
   1123       1.97      yamt 			pr_leave(pp);
   1124      1.134        ad 			mutex_exit(&pp->pr_lock);
   1125       1.97      yamt 			panic("pool_get: %s: page empty", pp->pr_wchan);
   1126       1.97      yamt 		}
   1127       1.20   thorpej #ifdef DIAGNOSTIC
   1128       1.97      yamt 		if (__predict_false(pp->pr_nitems == 0)) {
   1129       1.97      yamt 			pr_leave(pp);
   1130      1.134        ad 			mutex_exit(&pp->pr_lock);
   1131       1.97      yamt 			printf("pool_get: %s: items on itemlist, nitems %u\n",
   1132       1.97      yamt 			    pp->pr_wchan, pp->pr_nitems);
   1133       1.97      yamt 			panic("pool_get: nitems inconsistent");
   1134       1.97      yamt 		}
   1135       1.65     enami #endif
   1136       1.56  sommerfe 
   1137       1.65     enami #ifdef POOL_DIAGNOSTIC
   1138       1.97      yamt 		pr_log(pp, v, PRLOG_GET, file, line);
   1139       1.65     enami #endif
   1140        1.3        pk 
   1141       1.65     enami #ifdef DIAGNOSTIC
   1142       1.97      yamt 		if (__predict_false(pi->pi_magic != PI_MAGIC)) {
   1143       1.97      yamt 			pr_printlog(pp, pi, printf);
   1144       1.97      yamt 			panic("pool_get(%s): free list modified: "
   1145       1.97      yamt 			    "magic=%x; page %p; item addr %p\n",
   1146       1.97      yamt 			    pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
   1147       1.97      yamt 		}
   1148        1.3        pk #endif
   1149        1.3        pk 
   1150       1.97      yamt 		/*
   1151       1.97      yamt 		 * Remove from item list.
   1152       1.97      yamt 		 */
   1153      1.102       chs 		LIST_REMOVE(pi, pi_list);
   1154       1.97      yamt 	}
   1155       1.20   thorpej 	pp->pr_nitems--;
   1156       1.20   thorpej 	pp->pr_nout++;
   1157        1.6   thorpej 	if (ph->ph_nmissing == 0) {
   1158        1.6   thorpej #ifdef DIAGNOSTIC
   1159       1.34   thorpej 		if (__predict_false(pp->pr_nidle == 0))
   1160        1.6   thorpej 			panic("pool_get: nidle inconsistent");
   1161        1.6   thorpej #endif
   1162        1.6   thorpej 		pp->pr_nidle--;
   1163       1.88       chs 
   1164       1.88       chs 		/*
   1165       1.88       chs 		 * This page was previously empty.  Move it to the list of
   1166       1.88       chs 		 * partially-full pages.  This page is already curpage.
   1167       1.88       chs 		 */
   1168       1.88       chs 		LIST_REMOVE(ph, ph_pagelist);
   1169       1.88       chs 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
   1170        1.6   thorpej 	}
   1171        1.3        pk 	ph->ph_nmissing++;
   1172       1.97      yamt 	if (ph->ph_nmissing == pp->pr_itemsperpage) {
   1173       1.21   thorpej #ifdef DIAGNOSTIC
   1174       1.97      yamt 		if (__predict_false((pp->pr_roflags & PR_NOTOUCH) == 0 &&
   1175      1.102       chs 		    !LIST_EMPTY(&ph->ph_itemlist))) {
   1176       1.25   thorpej 			pr_leave(pp);
   1177      1.134        ad 			mutex_exit(&pp->pr_lock);
   1178       1.21   thorpej 			panic("pool_get: %s: nmissing inconsistent",
   1179       1.21   thorpej 			    pp->pr_wchan);
   1180       1.21   thorpej 		}
   1181       1.21   thorpej #endif
   1182        1.3        pk 		/*
   1183       1.88       chs 		 * This page is now full.  Move it to the full list
   1184       1.88       chs 		 * and select a new current page.
   1185        1.3        pk 		 */
   1186       1.88       chs 		LIST_REMOVE(ph, ph_pagelist);
   1187       1.88       chs 		LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
   1188       1.88       chs 		pool_update_curpage(pp);
   1189        1.1        pk 	}
   1190        1.3        pk 
   1191        1.3        pk 	pp->pr_nget++;
   1192      1.111  christos 	pr_leave(pp);
   1193       1.20   thorpej 
   1194       1.20   thorpej 	/*
   1195       1.20   thorpej 	 * If we have a low water mark and we are now below that low
   1196       1.20   thorpej 	 * water mark, add more items to the pool.
   1197       1.20   thorpej 	 */
   1198       1.53   thorpej 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
   1199       1.20   thorpej 		/*
   1200       1.20   thorpej 		 * XXX: Should we log a warning?  Should we set up a timeout
   1201       1.20   thorpej 		 * to try again in a second or so?  The latter could break
   1202       1.20   thorpej 		 * a caller's assumptions about interrupt protection, etc.
   1203       1.20   thorpej 		 */
   1204       1.20   thorpej 	}
   1205       1.20   thorpej 
   1206      1.134        ad 	mutex_exit(&pp->pr_lock);
   1207      1.125        ad 	KASSERT((((vaddr_t)v + pp->pr_itemoffset) & (pp->pr_align - 1)) == 0);
   1208      1.125        ad 	FREECHECK_OUT(&pp->pr_freecheck, v);
   1209        1.1        pk 	return (v);
   1210        1.1        pk }
   1211        1.1        pk 
   1212        1.1        pk /*
   1213       1.43   thorpej  * Internal version of pool_put().  Pool is already locked/entered.
   1214        1.1        pk  */
   1215       1.43   thorpej static void
   1216      1.101   thorpej pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
   1217        1.1        pk {
   1218        1.1        pk 	struct pool_item *pi = v;
   1219        1.3        pk 	struct pool_item_header *ph;
   1220        1.3        pk 
   1221      1.134        ad 	KASSERT(mutex_owned(&pp->pr_lock));
   1222      1.125        ad 	FREECHECK_IN(&pp->pr_freecheck, v);
   1223      1.134        ad 	LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
   1224       1.61       chs 
   1225       1.30   thorpej #ifdef DIAGNOSTIC
   1226       1.34   thorpej 	if (__predict_false(pp->pr_nout == 0)) {
   1227       1.30   thorpej 		printf("pool %s: putting with none out\n",
   1228       1.30   thorpej 		    pp->pr_wchan);
   1229       1.30   thorpej 		panic("pool_put");
   1230       1.30   thorpej 	}
   1231       1.30   thorpej #endif
   1232        1.3        pk 
   1233      1.121      yamt 	if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
   1234       1.25   thorpej 		pr_printlog(pp, NULL, printf);
   1235        1.3        pk 		panic("pool_put: %s: page header missing", pp->pr_wchan);
   1236        1.3        pk 	}
   1237       1.28   thorpej 
   1238        1.3        pk 	/*
   1239        1.3        pk 	 * Return to item list.
   1240        1.3        pk 	 */
   1241       1.97      yamt 	if (pp->pr_roflags & PR_NOTOUCH) {
   1242       1.97      yamt 		pr_item_notouch_put(pp, ph, v);
   1243       1.97      yamt 	} else {
   1244        1.2        pk #ifdef DIAGNOSTIC
   1245       1.97      yamt 		pi->pi_magic = PI_MAGIC;
   1246        1.3        pk #endif
   1247       1.32       chs #ifdef DEBUG
   1248       1.97      yamt 		{
   1249       1.97      yamt 			int i, *ip = v;
   1250       1.32       chs 
   1251       1.97      yamt 			for (i = 0; i < pp->pr_size / sizeof(int); i++) {
   1252       1.97      yamt 				*ip++ = PI_MAGIC;
   1253       1.97      yamt 			}
   1254       1.32       chs 		}
   1255       1.32       chs #endif
   1256       1.32       chs 
   1257      1.102       chs 		LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
   1258       1.97      yamt 	}
   1259       1.79   thorpej 	KDASSERT(ph->ph_nmissing != 0);
   1260        1.3        pk 	ph->ph_nmissing--;
   1261        1.3        pk 	pp->pr_nput++;
   1262       1.20   thorpej 	pp->pr_nitems++;
   1263       1.20   thorpej 	pp->pr_nout--;
   1264        1.3        pk 
   1265        1.3        pk 	/* Cancel "pool empty" condition if it exists */
   1266        1.3        pk 	if (pp->pr_curpage == NULL)
   1267        1.3        pk 		pp->pr_curpage = ph;
   1268        1.3        pk 
   1269        1.3        pk 	if (pp->pr_flags & PR_WANTED) {
   1270        1.3        pk 		pp->pr_flags &= ~PR_WANTED;
   1271      1.134        ad 		cv_broadcast(&pp->pr_cv);
   1272        1.3        pk 	}
   1273        1.3        pk 
   1274        1.3        pk 	/*
   1275       1.88       chs 	 * If this page is now empty, do one of two things:
   1276       1.21   thorpej 	 *
   1277       1.88       chs 	 *	(1) If we have more pages than the page high water mark,
   1278       1.96   thorpej 	 *	    free the page back to the system.  ONLY CONSIDER
   1279       1.90   thorpej 	 *	    FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
   1280       1.90   thorpej 	 *	    CLAIM.
   1281       1.21   thorpej 	 *
   1282       1.88       chs 	 *	(2) Otherwise, move the page to the empty page list.
   1283       1.88       chs 	 *
   1284       1.88       chs 	 * Either way, select a new current page (so we use a partially-full
   1285       1.88       chs 	 * page if one is available).
   1286        1.3        pk 	 */
   1287        1.3        pk 	if (ph->ph_nmissing == 0) {
   1288        1.6   thorpej 		pp->pr_nidle++;
   1289       1.90   thorpej 		if (pp->pr_npages > pp->pr_minpages &&
   1290      1.152      yamt 		    pp->pr_npages > pp->pr_maxpages) {
   1291      1.101   thorpej 			pr_rmpage(pp, ph, pq);
   1292        1.3        pk 		} else {
   1293       1.88       chs 			LIST_REMOVE(ph, ph_pagelist);
   1294       1.88       chs 			LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
   1295        1.3        pk 
   1296       1.21   thorpej 			/*
   1297       1.21   thorpej 			 * Update the timestamp on the page.  A page must
   1298       1.21   thorpej 			 * be idle for some period of time before it can
   1299       1.21   thorpej 			 * be reclaimed by the pagedaemon.  This minimizes
   1300       1.21   thorpej 			 * ping-pong'ing for memory.
   1301      1.151      yamt 			 *
   1302      1.151      yamt 			 * note for 64-bit time_t: truncating to 32-bit is not
   1303      1.151      yamt 			 * a problem for our usage.
   1304       1.21   thorpej 			 */
   1305      1.151      yamt 			ph->ph_time = time_uptime;
   1306        1.1        pk 		}
   1307       1.88       chs 		pool_update_curpage(pp);
   1308        1.1        pk 	}
   1309       1.88       chs 
   1310       1.21   thorpej 	/*
   1311       1.88       chs 	 * If the page was previously completely full, move it to the
   1312       1.88       chs 	 * partially-full list and make it the current page.  The next
   1313       1.88       chs 	 * allocation will get the item from this page, instead of
   1314       1.88       chs 	 * further fragmenting the pool.
   1315       1.21   thorpej 	 */
   1316       1.21   thorpej 	else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
   1317       1.88       chs 		LIST_REMOVE(ph, ph_pagelist);
   1318       1.88       chs 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
   1319       1.21   thorpej 		pp->pr_curpage = ph;
   1320       1.21   thorpej 	}
   1321       1.43   thorpej }
   1322       1.43   thorpej 
   1323       1.43   thorpej /*
   1324      1.134        ad  * Return resource to the pool.
   1325       1.43   thorpej  */
   1326       1.59   thorpej #ifdef POOL_DIAGNOSTIC
   1327       1.43   thorpej void
   1328       1.43   thorpej _pool_put(struct pool *pp, void *v, const char *file, long line)
   1329       1.43   thorpej {
   1330      1.101   thorpej 	struct pool_pagelist pq;
   1331      1.101   thorpej 
   1332      1.101   thorpej 	LIST_INIT(&pq);
   1333       1.43   thorpej 
   1334      1.134        ad 	mutex_enter(&pp->pr_lock);
   1335       1.43   thorpej 	pr_enter(pp, file, line);
   1336       1.43   thorpej 
   1337       1.56  sommerfe 	pr_log(pp, v, PRLOG_PUT, file, line);
   1338       1.56  sommerfe 
   1339      1.101   thorpej 	pool_do_put(pp, v, &pq);
   1340       1.21   thorpej 
   1341       1.25   thorpej 	pr_leave(pp);
   1342      1.134        ad 	mutex_exit(&pp->pr_lock);
   1343      1.101   thorpej 
   1344      1.102       chs 	pr_pagelist_free(pp, &pq);
   1345        1.1        pk }
   1346       1.57  sommerfe #undef pool_put
   1347       1.59   thorpej #endif /* POOL_DIAGNOSTIC */
   1348        1.1        pk 
   1349       1.56  sommerfe void
   1350       1.56  sommerfe pool_put(struct pool *pp, void *v)
   1351       1.56  sommerfe {
   1352      1.101   thorpej 	struct pool_pagelist pq;
   1353      1.101   thorpej 
   1354      1.101   thorpej 	LIST_INIT(&pq);
   1355       1.56  sommerfe 
   1356      1.134        ad 	mutex_enter(&pp->pr_lock);
   1357      1.101   thorpej 	pool_do_put(pp, v, &pq);
   1358      1.134        ad 	mutex_exit(&pp->pr_lock);
   1359       1.56  sommerfe 
   1360      1.102       chs 	pr_pagelist_free(pp, &pq);
   1361       1.56  sommerfe }
   1362       1.57  sommerfe 
   1363       1.59   thorpej #ifdef POOL_DIAGNOSTIC
   1364       1.57  sommerfe #define		pool_put(h, v)	_pool_put((h), (v), __FILE__, __LINE__)
   1365       1.56  sommerfe #endif
   1366       1.74   thorpej 
   1367       1.74   thorpej /*
   1368      1.113      yamt  * pool_grow: grow a pool by a page.
   1369      1.113      yamt  *
   1370      1.113      yamt  * => called with pool locked.
   1371      1.113      yamt  * => unlock and relock the pool.
   1372      1.113      yamt  * => return with pool locked.
   1373      1.113      yamt  */
   1374      1.113      yamt 
   1375      1.113      yamt static int
   1376      1.113      yamt pool_grow(struct pool *pp, int flags)
   1377      1.113      yamt {
   1378      1.113      yamt 	struct pool_item_header *ph = NULL;
   1379      1.113      yamt 	char *cp;
   1380      1.113      yamt 
   1381      1.134        ad 	mutex_exit(&pp->pr_lock);
   1382      1.113      yamt 	cp = pool_allocator_alloc(pp, flags);
   1383      1.113      yamt 	if (__predict_true(cp != NULL)) {
   1384      1.113      yamt 		ph = pool_alloc_item_header(pp, cp, flags);
   1385      1.113      yamt 	}
   1386      1.113      yamt 	if (__predict_false(cp == NULL || ph == NULL)) {
   1387      1.113      yamt 		if (cp != NULL) {
   1388      1.113      yamt 			pool_allocator_free(pp, cp);
   1389      1.113      yamt 		}
   1390      1.134        ad 		mutex_enter(&pp->pr_lock);
   1391      1.113      yamt 		return ENOMEM;
   1392      1.113      yamt 	}
   1393      1.113      yamt 
   1394      1.134        ad 	mutex_enter(&pp->pr_lock);
   1395      1.113      yamt 	pool_prime_page(pp, cp, ph);
   1396      1.113      yamt 	pp->pr_npagealloc++;
   1397      1.113      yamt 	return 0;
   1398      1.113      yamt }
   1399      1.113      yamt 
   1400      1.113      yamt /*
   1401       1.74   thorpej  * Add N items to the pool.
   1402       1.74   thorpej  */
   1403       1.74   thorpej int
   1404       1.74   thorpej pool_prime(struct pool *pp, int n)
   1405       1.74   thorpej {
   1406       1.75    simonb 	int newpages;
   1407      1.113      yamt 	int error = 0;
   1408       1.74   thorpej 
   1409      1.134        ad 	mutex_enter(&pp->pr_lock);
   1410       1.74   thorpej 
   1411       1.74   thorpej 	newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1412       1.74   thorpej 
   1413       1.74   thorpej 	while (newpages-- > 0) {
   1414      1.113      yamt 		error = pool_grow(pp, PR_NOWAIT);
   1415      1.113      yamt 		if (error) {
   1416       1.74   thorpej 			break;
   1417       1.74   thorpej 		}
   1418       1.74   thorpej 		pp->pr_minpages++;
   1419       1.74   thorpej 	}
   1420       1.74   thorpej 
   1421       1.74   thorpej 	if (pp->pr_minpages >= pp->pr_maxpages)
   1422       1.74   thorpej 		pp->pr_maxpages = pp->pr_minpages + 1;	/* XXX */
   1423       1.74   thorpej 
   1424      1.134        ad 	mutex_exit(&pp->pr_lock);
   1425      1.113      yamt 	return error;
   1426       1.74   thorpej }
   1427       1.55   thorpej 
   1428       1.55   thorpej /*
   1429        1.3        pk  * Add a page worth of items to the pool.
   1430       1.21   thorpej  *
   1431       1.21   thorpej  * Note, we must be called with the pool descriptor LOCKED.
   1432        1.3        pk  */
   1433       1.55   thorpej static void
   1434      1.128  christos pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
   1435        1.3        pk {
   1436        1.3        pk 	struct pool_item *pi;
   1437      1.128  christos 	void *cp = storage;
   1438      1.125        ad 	const unsigned int align = pp->pr_align;
   1439      1.125        ad 	const unsigned int ioff = pp->pr_itemoffset;
   1440       1.55   thorpej 	int n;
   1441       1.36        pk 
   1442      1.134        ad 	KASSERT(mutex_owned(&pp->pr_lock));
   1443       1.91      yamt 
   1444       1.66   thorpej #ifdef DIAGNOSTIC
   1445      1.121      yamt 	if ((pp->pr_roflags & PR_NOALIGN) == 0 &&
   1446      1.150     skrll 	    ((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) != 0)
   1447       1.36        pk 		panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
   1448       1.66   thorpej #endif
   1449        1.3        pk 
   1450        1.3        pk 	/*
   1451        1.3        pk 	 * Insert page header.
   1452        1.3        pk 	 */
   1453       1.88       chs 	LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
   1454      1.102       chs 	LIST_INIT(&ph->ph_itemlist);
   1455        1.3        pk 	ph->ph_page = storage;
   1456        1.3        pk 	ph->ph_nmissing = 0;
   1457      1.151      yamt 	ph->ph_time = time_uptime;
   1458       1.88       chs 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
   1459       1.88       chs 		SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
   1460        1.3        pk 
   1461        1.6   thorpej 	pp->pr_nidle++;
   1462        1.6   thorpej 
   1463        1.3        pk 	/*
   1464        1.3        pk 	 * Color this page.
   1465        1.3        pk 	 */
   1466      1.141      yamt 	ph->ph_off = pp->pr_curcolor;
   1467      1.141      yamt 	cp = (char *)cp + ph->ph_off;
   1468        1.3        pk 	if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
   1469        1.3        pk 		pp->pr_curcolor = 0;
   1470        1.3        pk 
   1471        1.3        pk 	/*
   1472        1.3        pk 	 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
   1473        1.3        pk 	 */
   1474        1.3        pk 	if (ioff != 0)
   1475      1.128  christos 		cp = (char *)cp + align - ioff;
   1476        1.3        pk 
   1477      1.125        ad 	KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
   1478      1.125        ad 
   1479        1.3        pk 	/*
   1480        1.3        pk 	 * Insert remaining chunks on the bucket list.
   1481        1.3        pk 	 */
   1482        1.3        pk 	n = pp->pr_itemsperpage;
   1483       1.20   thorpej 	pp->pr_nitems += n;
   1484        1.3        pk 
   1485       1.97      yamt 	if (pp->pr_roflags & PR_NOTOUCH) {
   1486      1.141      yamt 		pr_item_notouch_init(pp, ph);
   1487       1.97      yamt 	} else {
   1488       1.97      yamt 		while (n--) {
   1489       1.97      yamt 			pi = (struct pool_item *)cp;
   1490       1.78   thorpej 
   1491       1.97      yamt 			KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0);
   1492        1.3        pk 
   1493       1.97      yamt 			/* Insert on page list */
   1494      1.102       chs 			LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
   1495        1.3        pk #ifdef DIAGNOSTIC
   1496       1.97      yamt 			pi->pi_magic = PI_MAGIC;
   1497        1.3        pk #endif
   1498      1.128  christos 			cp = (char *)cp + pp->pr_size;
   1499      1.125        ad 
   1500      1.125        ad 			KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
   1501       1.97      yamt 		}
   1502        1.3        pk 	}
   1503        1.3        pk 
   1504        1.3        pk 	/*
   1505        1.3        pk 	 * If the pool was depleted, point at the new page.
   1506        1.3        pk 	 */
   1507        1.3        pk 	if (pp->pr_curpage == NULL)
   1508        1.3        pk 		pp->pr_curpage = ph;
   1509        1.3        pk 
   1510        1.3        pk 	if (++pp->pr_npages > pp->pr_hiwat)
   1511        1.3        pk 		pp->pr_hiwat = pp->pr_npages;
   1512        1.3        pk }
   1513        1.3        pk 
   1514       1.20   thorpej /*
   1515       1.52   thorpej  * Used by pool_get() when nitems drops below the low water mark.  This
   1516       1.88       chs  * is used to catch up pr_nitems with the low water mark.
   1517       1.20   thorpej  *
   1518       1.21   thorpej  * Note 1, we never wait for memory here, we let the caller decide what to do.
   1519       1.20   thorpej  *
   1520       1.73   thorpej  * Note 2, we must be called with the pool already locked, and we return
   1521       1.20   thorpej  * with it locked.
   1522       1.20   thorpej  */
   1523       1.20   thorpej static int
   1524       1.42   thorpej pool_catchup(struct pool *pp)
   1525       1.20   thorpej {
   1526       1.20   thorpej 	int error = 0;
   1527       1.20   thorpej 
   1528       1.54   thorpej 	while (POOL_NEEDS_CATCHUP(pp)) {
   1529      1.113      yamt 		error = pool_grow(pp, PR_NOWAIT);
   1530      1.113      yamt 		if (error) {
   1531       1.20   thorpej 			break;
   1532       1.20   thorpej 		}
   1533       1.20   thorpej 	}
   1534      1.113      yamt 	return error;
   1535       1.20   thorpej }
   1536       1.20   thorpej 
   1537       1.88       chs static void
   1538       1.88       chs pool_update_curpage(struct pool *pp)
   1539       1.88       chs {
   1540       1.88       chs 
   1541       1.88       chs 	pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
   1542       1.88       chs 	if (pp->pr_curpage == NULL) {
   1543       1.88       chs 		pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
   1544       1.88       chs 	}
   1545      1.168      yamt 	KASSERT((pp->pr_curpage == NULL && pp->pr_nitems == 0) ||
   1546      1.168      yamt 	    (pp->pr_curpage != NULL && pp->pr_nitems > 0));
   1547       1.88       chs }
   1548       1.88       chs 
   1549        1.3        pk void
   1550       1.42   thorpej pool_setlowat(struct pool *pp, int n)
   1551        1.3        pk {
   1552       1.15        pk 
   1553      1.134        ad 	mutex_enter(&pp->pr_lock);
   1554       1.21   thorpej 
   1555        1.3        pk 	pp->pr_minitems = n;
   1556       1.15        pk 	pp->pr_minpages = (n == 0)
   1557       1.15        pk 		? 0
   1558       1.18   thorpej 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1559       1.20   thorpej 
   1560       1.20   thorpej 	/* Make sure we're caught up with the newly-set low water mark. */
   1561       1.75    simonb 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
   1562       1.20   thorpej 		/*
   1563       1.20   thorpej 		 * XXX: Should we log a warning?  Should we set up a timeout
   1564       1.20   thorpej 		 * to try again in a second or so?  The latter could break
   1565       1.20   thorpej 		 * a caller's assumptions about interrupt protection, etc.
   1566       1.20   thorpej 		 */
   1567       1.20   thorpej 	}
   1568       1.21   thorpej 
   1569      1.134        ad 	mutex_exit(&pp->pr_lock);
   1570        1.3        pk }
   1571        1.3        pk 
   1572        1.3        pk void
   1573       1.42   thorpej pool_sethiwat(struct pool *pp, int n)
   1574        1.3        pk {
   1575       1.15        pk 
   1576      1.134        ad 	mutex_enter(&pp->pr_lock);
   1577       1.21   thorpej 
   1578       1.15        pk 	pp->pr_maxpages = (n == 0)
   1579       1.15        pk 		? 0
   1580       1.18   thorpej 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1581       1.21   thorpej 
   1582      1.134        ad 	mutex_exit(&pp->pr_lock);
   1583        1.3        pk }
   1584        1.3        pk 
   1585       1.20   thorpej void
   1586       1.42   thorpej pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
   1587       1.20   thorpej {
   1588       1.20   thorpej 
   1589      1.134        ad 	mutex_enter(&pp->pr_lock);
   1590       1.20   thorpej 
   1591       1.20   thorpej 	pp->pr_hardlimit = n;
   1592       1.20   thorpej 	pp->pr_hardlimit_warning = warnmess;
   1593       1.31   thorpej 	pp->pr_hardlimit_ratecap.tv_sec = ratecap;
   1594       1.31   thorpej 	pp->pr_hardlimit_warning_last.tv_sec = 0;
   1595       1.31   thorpej 	pp->pr_hardlimit_warning_last.tv_usec = 0;
   1596       1.20   thorpej 
   1597       1.20   thorpej 	/*
   1598       1.21   thorpej 	 * In-line version of pool_sethiwat(), because we don't want to
   1599       1.21   thorpej 	 * release the lock.
   1600       1.20   thorpej 	 */
   1601       1.20   thorpej 	pp->pr_maxpages = (n == 0)
   1602       1.20   thorpej 		? 0
   1603       1.20   thorpej 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1604       1.21   thorpej 
   1605      1.134        ad 	mutex_exit(&pp->pr_lock);
   1606       1.20   thorpej }
   1607        1.3        pk 
   1608        1.3        pk /*
   1609        1.3        pk  * Release all complete pages that have not been used recently.
   1610  1.182.4.1     rmind  *
   1611  1.182.4.1     rmind  * Might be called from interrupt context.
   1612        1.3        pk  */
   1613       1.66   thorpej int
   1614       1.59   thorpej #ifdef POOL_DIAGNOSTIC
   1615       1.42   thorpej _pool_reclaim(struct pool *pp, const char *file, long line)
   1616       1.56  sommerfe #else
   1617       1.56  sommerfe pool_reclaim(struct pool *pp)
   1618       1.56  sommerfe #endif
   1619        1.3        pk {
   1620        1.3        pk 	struct pool_item_header *ph, *phnext;
   1621       1.61       chs 	struct pool_pagelist pq;
   1622      1.151      yamt 	uint32_t curtime;
   1623      1.134        ad 	bool klock;
   1624      1.134        ad 	int rv;
   1625        1.3        pk 
   1626  1.182.4.1     rmind 	if (cpu_intr_p() || cpu_softintr_p()) {
   1627  1.182.4.1     rmind 		KASSERT(pp->pr_ipl != IPL_NONE);
   1628  1.182.4.1     rmind 	}
   1629  1.182.4.1     rmind 
   1630       1.68   thorpej 	if (pp->pr_drain_hook != NULL) {
   1631       1.68   thorpej 		/*
   1632       1.68   thorpej 		 * The drain hook must be called with the pool unlocked.
   1633       1.68   thorpej 		 */
   1634       1.68   thorpej 		(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
   1635       1.68   thorpej 	}
   1636       1.68   thorpej 
   1637      1.134        ad 	/*
   1638      1.157        ad 	 * XXXSMP Because we do not want to cause non-MPSAFE code
   1639      1.157        ad 	 * to block.
   1640      1.134        ad 	 */
   1641      1.134        ad 	if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK ||
   1642      1.134        ad 	    pp->pr_ipl == IPL_SOFTSERIAL) {
   1643      1.134        ad 		KERNEL_LOCK(1, NULL);
   1644      1.134        ad 		klock = true;
   1645      1.134        ad 	} else
   1646      1.134        ad 		klock = false;
   1647      1.134        ad 
   1648      1.134        ad 	/* Reclaim items from the pool's cache (if any). */
   1649      1.134        ad 	if (pp->pr_cache != NULL)
   1650      1.134        ad 		pool_cache_invalidate(pp->pr_cache);
   1651      1.134        ad 
   1652      1.134        ad 	if (mutex_tryenter(&pp->pr_lock) == 0) {
   1653      1.134        ad 		if (klock) {
   1654      1.134        ad 			KERNEL_UNLOCK_ONE(NULL);
   1655      1.134        ad 		}
   1656       1.66   thorpej 		return (0);
   1657      1.134        ad 	}
   1658       1.25   thorpej 	pr_enter(pp, file, line);
   1659       1.68   thorpej 
   1660       1.88       chs 	LIST_INIT(&pq);
   1661       1.43   thorpej 
   1662      1.151      yamt 	curtime = time_uptime;
   1663       1.21   thorpej 
   1664       1.88       chs 	for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
   1665       1.88       chs 		phnext = LIST_NEXT(ph, ph_pagelist);
   1666        1.3        pk 
   1667        1.3        pk 		/* Check our minimum page claim */
   1668        1.3        pk 		if (pp->pr_npages <= pp->pr_minpages)
   1669        1.3        pk 			break;
   1670        1.3        pk 
   1671       1.88       chs 		KASSERT(ph->ph_nmissing == 0);
   1672      1.151      yamt 		if (curtime - ph->ph_time < pool_inactive_time
   1673      1.117      yamt 		    && !pa_starved_p(pp->pr_alloc))
   1674       1.88       chs 			continue;
   1675       1.21   thorpej 
   1676       1.88       chs 		/*
   1677       1.88       chs 		 * If freeing this page would put us below
   1678       1.88       chs 		 * the low water mark, stop now.
   1679       1.88       chs 		 */
   1680       1.88       chs 		if ((pp->pr_nitems - pp->pr_itemsperpage) <
   1681       1.88       chs 		    pp->pr_minitems)
   1682       1.88       chs 			break;
   1683       1.21   thorpej 
   1684       1.88       chs 		pr_rmpage(pp, ph, &pq);
   1685        1.3        pk 	}
   1686        1.3        pk 
   1687       1.25   thorpej 	pr_leave(pp);
   1688      1.134        ad 	mutex_exit(&pp->pr_lock);
   1689      1.134        ad 
   1690      1.134        ad 	if (LIST_EMPTY(&pq))
   1691      1.134        ad 		rv = 0;
   1692      1.134        ad 	else {
   1693      1.134        ad 		pr_pagelist_free(pp, &pq);
   1694      1.134        ad 		rv = 1;
   1695      1.134        ad 	}
   1696      1.134        ad 
   1697      1.134        ad 	if (klock) {
   1698      1.134        ad 		KERNEL_UNLOCK_ONE(NULL);
   1699      1.134        ad 	}
   1700       1.66   thorpej 
   1701      1.134        ad 	return (rv);
   1702        1.3        pk }
   1703        1.3        pk 
   1704        1.3        pk /*
   1705      1.134        ad  * Drain pools, one at a time.  This is a two stage process;
   1706      1.134        ad  * drain_start kicks off a cross call to drain CPU-level caches
   1707      1.134        ad  * if the pool has an associated pool_cache.  drain_end waits
   1708      1.134        ad  * for those cross calls to finish, and then drains the cache
   1709      1.134        ad  * (if any) and pool.
   1710      1.131        ad  *
   1711      1.134        ad  * Note, must never be called from interrupt context.
   1712        1.3        pk  */
   1713        1.3        pk void
   1714      1.134        ad pool_drain_start(struct pool **ppp, uint64_t *wp)
   1715        1.3        pk {
   1716        1.3        pk 	struct pool *pp;
   1717      1.134        ad 
   1718      1.145        ad 	KASSERT(!TAILQ_EMPTY(&pool_head));
   1719        1.3        pk 
   1720       1.61       chs 	pp = NULL;
   1721      1.134        ad 
   1722      1.134        ad 	/* Find next pool to drain, and add a reference. */
   1723      1.134        ad 	mutex_enter(&pool_head_lock);
   1724      1.134        ad 	do {
   1725      1.134        ad 		if (drainpp == NULL) {
   1726      1.145        ad 			drainpp = TAILQ_FIRST(&pool_head);
   1727      1.134        ad 		}
   1728      1.134        ad 		if (drainpp != NULL) {
   1729      1.134        ad 			pp = drainpp;
   1730      1.145        ad 			drainpp = TAILQ_NEXT(pp, pr_poollist);
   1731      1.134        ad 		}
   1732      1.134        ad 		/*
   1733      1.134        ad 		 * Skip completely idle pools.  We depend on at least
   1734      1.134        ad 		 * one pool in the system being active.
   1735      1.134        ad 		 */
   1736      1.134        ad 	} while (pp == NULL || pp->pr_npages == 0);
   1737      1.134        ad 	pp->pr_refcnt++;
   1738      1.134        ad 	mutex_exit(&pool_head_lock);
   1739      1.134        ad 
   1740      1.134        ad 	/* If there is a pool_cache, drain CPU level caches. */
   1741      1.134        ad 	*ppp = pp;
   1742      1.134        ad 	if (pp->pr_cache != NULL) {
   1743      1.134        ad 		*wp = xc_broadcast(0, (xcfunc_t)pool_cache_xcall,
   1744      1.134        ad 		    pp->pr_cache, NULL);
   1745      1.134        ad 	}
   1746      1.134        ad }
   1747      1.134        ad 
   1748      1.134        ad void
   1749      1.134        ad pool_drain_end(struct pool *pp, uint64_t where)
   1750      1.134        ad {
   1751      1.134        ad 
   1752      1.134        ad 	if (pp == NULL)
   1753      1.134        ad 		return;
   1754      1.134        ad 
   1755      1.134        ad 	KASSERT(pp->pr_refcnt > 0);
   1756      1.134        ad 
   1757      1.134        ad 	/* Wait for remote draining to complete. */
   1758      1.134        ad 	if (pp->pr_cache != NULL)
   1759      1.134        ad 		xc_wait(where);
   1760      1.134        ad 
   1761      1.134        ad 	/* Drain the cache (if any) and pool.. */
   1762      1.134        ad 	pool_reclaim(pp);
   1763      1.134        ad 
   1764      1.134        ad 	/* Finally, unlock the pool. */
   1765      1.134        ad 	mutex_enter(&pool_head_lock);
   1766      1.134        ad 	pp->pr_refcnt--;
   1767      1.134        ad 	cv_broadcast(&pool_busy);
   1768      1.134        ad 	mutex_exit(&pool_head_lock);
   1769        1.3        pk }
   1770        1.3        pk 
   1771        1.3        pk /*
   1772        1.3        pk  * Diagnostic helpers.
   1773        1.3        pk  */
   1774        1.3        pk void
   1775       1.42   thorpej pool_print(struct pool *pp, const char *modif)
   1776       1.21   thorpej {
   1777       1.21   thorpej 
   1778       1.25   thorpej 	pool_print1(pp, modif, printf);
   1779       1.21   thorpej }
   1780       1.21   thorpej 
   1781       1.25   thorpej void
   1782      1.108      yamt pool_printall(const char *modif, void (*pr)(const char *, ...))
   1783      1.108      yamt {
   1784      1.108      yamt 	struct pool *pp;
   1785      1.108      yamt 
   1786      1.145        ad 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   1787      1.108      yamt 		pool_printit(pp, modif, pr);
   1788      1.108      yamt 	}
   1789      1.108      yamt }
   1790      1.108      yamt 
   1791      1.108      yamt void
   1792       1.42   thorpej pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1793       1.25   thorpej {
   1794       1.25   thorpej 
   1795       1.25   thorpej 	if (pp == NULL) {
   1796       1.25   thorpej 		(*pr)("Must specify a pool to print.\n");
   1797       1.25   thorpej 		return;
   1798       1.25   thorpej 	}
   1799       1.25   thorpej 
   1800       1.25   thorpej 	pool_print1(pp, modif, pr);
   1801       1.25   thorpej }
   1802       1.25   thorpej 
   1803       1.21   thorpej static void
   1804      1.124      yamt pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
   1805       1.97      yamt     void (*pr)(const char *, ...))
   1806       1.88       chs {
   1807       1.88       chs 	struct pool_item_header *ph;
   1808       1.88       chs #ifdef DIAGNOSTIC
   1809       1.88       chs 	struct pool_item *pi;
   1810       1.88       chs #endif
   1811       1.88       chs 
   1812       1.88       chs 	LIST_FOREACH(ph, pl, ph_pagelist) {
   1813      1.151      yamt 		(*pr)("\t\tpage %p, nmissing %d, time %" PRIu32 "\n",
   1814      1.151      yamt 		    ph->ph_page, ph->ph_nmissing, ph->ph_time);
   1815       1.88       chs #ifdef DIAGNOSTIC
   1816       1.97      yamt 		if (!(pp->pr_roflags & PR_NOTOUCH)) {
   1817      1.102       chs 			LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
   1818       1.97      yamt 				if (pi->pi_magic != PI_MAGIC) {
   1819       1.97      yamt 					(*pr)("\t\t\titem %p, magic 0x%x\n",
   1820       1.97      yamt 					    pi, pi->pi_magic);
   1821       1.97      yamt 				}
   1822       1.88       chs 			}
   1823       1.88       chs 		}
   1824       1.88       chs #endif
   1825       1.88       chs 	}
   1826       1.88       chs }
   1827       1.88       chs 
   1828       1.88       chs static void
   1829       1.42   thorpej pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1830        1.3        pk {
   1831       1.25   thorpej 	struct pool_item_header *ph;
   1832      1.134        ad 	pool_cache_t pc;
   1833      1.134        ad 	pcg_t *pcg;
   1834      1.134        ad 	pool_cache_cpu_t *cc;
   1835      1.134        ad 	uint64_t cpuhit, cpumiss;
   1836       1.44   thorpej 	int i, print_log = 0, print_pagelist = 0, print_cache = 0;
   1837       1.25   thorpej 	char c;
   1838       1.25   thorpej 
   1839       1.25   thorpej 	while ((c = *modif++) != '\0') {
   1840       1.25   thorpej 		if (c == 'l')
   1841       1.25   thorpej 			print_log = 1;
   1842       1.25   thorpej 		if (c == 'p')
   1843       1.25   thorpej 			print_pagelist = 1;
   1844       1.44   thorpej 		if (c == 'c')
   1845       1.44   thorpej 			print_cache = 1;
   1846       1.25   thorpej 	}
   1847       1.25   thorpej 
   1848      1.134        ad 	if ((pc = pp->pr_cache) != NULL) {
   1849      1.134        ad 		(*pr)("POOL CACHE");
   1850      1.134        ad 	} else {
   1851      1.134        ad 		(*pr)("POOL");
   1852      1.134        ad 	}
   1853      1.134        ad 
   1854      1.134        ad 	(*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
   1855       1.25   thorpej 	    pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
   1856       1.25   thorpej 	    pp->pr_roflags);
   1857       1.66   thorpej 	(*pr)("\talloc %p\n", pp->pr_alloc);
   1858       1.25   thorpej 	(*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
   1859       1.25   thorpej 	    pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
   1860       1.25   thorpej 	(*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
   1861       1.25   thorpej 	    pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
   1862       1.25   thorpej 
   1863      1.134        ad 	(*pr)("\tnget %lu, nfail %lu, nput %lu\n",
   1864       1.25   thorpej 	    pp->pr_nget, pp->pr_nfail, pp->pr_nput);
   1865       1.25   thorpej 	(*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
   1866       1.25   thorpej 	    pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
   1867       1.25   thorpej 
   1868       1.25   thorpej 	if (print_pagelist == 0)
   1869       1.25   thorpej 		goto skip_pagelist;
   1870       1.25   thorpej 
   1871       1.88       chs 	if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
   1872       1.88       chs 		(*pr)("\n\tempty page list:\n");
   1873       1.97      yamt 	pool_print_pagelist(pp, &pp->pr_emptypages, pr);
   1874       1.88       chs 	if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
   1875       1.88       chs 		(*pr)("\n\tfull page list:\n");
   1876       1.97      yamt 	pool_print_pagelist(pp, &pp->pr_fullpages, pr);
   1877       1.88       chs 	if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
   1878       1.88       chs 		(*pr)("\n\tpartial-page list:\n");
   1879       1.97      yamt 	pool_print_pagelist(pp, &pp->pr_partpages, pr);
   1880       1.88       chs 
   1881       1.25   thorpej 	if (pp->pr_curpage == NULL)
   1882       1.25   thorpej 		(*pr)("\tno current page\n");
   1883       1.25   thorpej 	else
   1884       1.25   thorpej 		(*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
   1885       1.25   thorpej 
   1886       1.25   thorpej  skip_pagelist:
   1887       1.25   thorpej 	if (print_log == 0)
   1888       1.25   thorpej 		goto skip_log;
   1889       1.25   thorpej 
   1890       1.25   thorpej 	(*pr)("\n");
   1891       1.25   thorpej 	if ((pp->pr_roflags & PR_LOGGING) == 0)
   1892       1.25   thorpej 		(*pr)("\tno log\n");
   1893      1.122  christos 	else {
   1894       1.25   thorpej 		pr_printlog(pp, NULL, pr);
   1895      1.122  christos 	}
   1896        1.3        pk 
   1897       1.25   thorpej  skip_log:
   1898       1.44   thorpej 
   1899      1.102       chs #define PR_GROUPLIST(pcg)						\
   1900      1.102       chs 	(*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail);		\
   1901      1.142        ad 	for (i = 0; i < pcg->pcg_size; i++) {				\
   1902      1.102       chs 		if (pcg->pcg_objects[i].pcgo_pa !=			\
   1903      1.102       chs 		    POOL_PADDR_INVALID) {				\
   1904      1.102       chs 			(*pr)("\t\t\t%p, 0x%llx\n",			\
   1905      1.102       chs 			    pcg->pcg_objects[i].pcgo_va,		\
   1906      1.102       chs 			    (unsigned long long)			\
   1907      1.102       chs 			    pcg->pcg_objects[i].pcgo_pa);		\
   1908      1.102       chs 		} else {						\
   1909      1.102       chs 			(*pr)("\t\t\t%p\n",				\
   1910      1.102       chs 			    pcg->pcg_objects[i].pcgo_va);		\
   1911      1.102       chs 		}							\
   1912      1.102       chs 	}
   1913      1.102       chs 
   1914      1.134        ad 	if (pc != NULL) {
   1915      1.134        ad 		cpuhit = 0;
   1916      1.134        ad 		cpumiss = 0;
   1917  1.182.4.1     rmind 		for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
   1918      1.134        ad 			if ((cc = pc->pc_cpus[i]) == NULL)
   1919      1.134        ad 				continue;
   1920      1.134        ad 			cpuhit += cc->cc_hits;
   1921      1.134        ad 			cpumiss += cc->cc_misses;
   1922      1.134        ad 		}
   1923      1.134        ad 		(*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
   1924      1.134        ad 		(*pr)("\tcache layer hits %llu misses %llu\n",
   1925      1.134        ad 		    pc->pc_hits, pc->pc_misses);
   1926      1.134        ad 		(*pr)("\tcache layer entry uncontended %llu contended %llu\n",
   1927      1.134        ad 		    pc->pc_hits + pc->pc_misses - pc->pc_contended,
   1928      1.134        ad 		    pc->pc_contended);
   1929      1.134        ad 		(*pr)("\tcache layer empty groups %u full groups %u\n",
   1930      1.134        ad 		    pc->pc_nempty, pc->pc_nfull);
   1931      1.134        ad 		if (print_cache) {
   1932      1.134        ad 			(*pr)("\tfull cache groups:\n");
   1933      1.134        ad 			for (pcg = pc->pc_fullgroups; pcg != NULL;
   1934      1.134        ad 			    pcg = pcg->pcg_next) {
   1935      1.134        ad 				PR_GROUPLIST(pcg);
   1936      1.134        ad 			}
   1937      1.134        ad 			(*pr)("\tempty cache groups:\n");
   1938      1.134        ad 			for (pcg = pc->pc_emptygroups; pcg != NULL;
   1939      1.134        ad 			    pcg = pcg->pcg_next) {
   1940      1.134        ad 				PR_GROUPLIST(pcg);
   1941      1.134        ad 			}
   1942      1.103       chs 		}
   1943       1.44   thorpej 	}
   1944      1.102       chs #undef PR_GROUPLIST
   1945       1.44   thorpej 
   1946       1.88       chs 	pr_enter_check(pp, pr);
   1947       1.88       chs }
   1948       1.88       chs 
   1949       1.88       chs static int
   1950       1.88       chs pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
   1951       1.88       chs {
   1952       1.88       chs 	struct pool_item *pi;
   1953      1.128  christos 	void *page;
   1954       1.88       chs 	int n;
   1955       1.88       chs 
   1956      1.121      yamt 	if ((pp->pr_roflags & PR_NOALIGN) == 0) {
   1957      1.128  christos 		page = (void *)((uintptr_t)ph & pp->pr_alloc->pa_pagemask);
   1958      1.121      yamt 		if (page != ph->ph_page &&
   1959      1.121      yamt 		    (pp->pr_roflags & PR_PHINPAGE) != 0) {
   1960      1.121      yamt 			if (label != NULL)
   1961      1.121      yamt 				printf("%s: ", label);
   1962      1.121      yamt 			printf("pool(%p:%s): page inconsistency: page %p;"
   1963      1.121      yamt 			       " at page head addr %p (p %p)\n", pp,
   1964      1.121      yamt 				pp->pr_wchan, ph->ph_page,
   1965      1.121      yamt 				ph, page);
   1966      1.121      yamt 			return 1;
   1967      1.121      yamt 		}
   1968       1.88       chs 	}
   1969        1.3        pk 
   1970       1.97      yamt 	if ((pp->pr_roflags & PR_NOTOUCH) != 0)
   1971       1.97      yamt 		return 0;
   1972       1.97      yamt 
   1973      1.102       chs 	for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
   1974       1.88       chs 	     pi != NULL;
   1975      1.102       chs 	     pi = LIST_NEXT(pi,pi_list), n++) {
   1976       1.88       chs 
   1977       1.88       chs #ifdef DIAGNOSTIC
   1978       1.88       chs 		if (pi->pi_magic != PI_MAGIC) {
   1979       1.88       chs 			if (label != NULL)
   1980       1.88       chs 				printf("%s: ", label);
   1981       1.88       chs 			printf("pool(%s): free list modified: magic=%x;"
   1982      1.121      yamt 			       " page %p; item ordinal %d; addr %p\n",
   1983       1.88       chs 				pp->pr_wchan, pi->pi_magic, ph->ph_page,
   1984      1.121      yamt 				n, pi);
   1985       1.88       chs 			panic("pool");
   1986       1.88       chs 		}
   1987       1.88       chs #endif
   1988      1.121      yamt 		if ((pp->pr_roflags & PR_NOALIGN) != 0) {
   1989      1.121      yamt 			continue;
   1990      1.121      yamt 		}
   1991      1.128  christos 		page = (void *)((uintptr_t)pi & pp->pr_alloc->pa_pagemask);
   1992       1.88       chs 		if (page == ph->ph_page)
   1993       1.88       chs 			continue;
   1994       1.88       chs 
   1995       1.88       chs 		if (label != NULL)
   1996       1.88       chs 			printf("%s: ", label);
   1997       1.88       chs 		printf("pool(%p:%s): page inconsistency: page %p;"
   1998       1.88       chs 		       " item ordinal %d; addr %p (p %p)\n", pp,
   1999       1.88       chs 			pp->pr_wchan, ph->ph_page,
   2000       1.88       chs 			n, pi, page);
   2001       1.88       chs 		return 1;
   2002       1.88       chs 	}
   2003       1.88       chs 	return 0;
   2004        1.3        pk }
   2005        1.3        pk 
   2006       1.88       chs 
   2007        1.3        pk int
   2008       1.42   thorpej pool_chk(struct pool *pp, const char *label)
   2009        1.3        pk {
   2010        1.3        pk 	struct pool_item_header *ph;
   2011        1.3        pk 	int r = 0;
   2012        1.3        pk 
   2013      1.134        ad 	mutex_enter(&pp->pr_lock);
   2014       1.88       chs 	LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
   2015       1.88       chs 		r = pool_chk_page(pp, label, ph);
   2016       1.88       chs 		if (r) {
   2017       1.88       chs 			goto out;
   2018       1.88       chs 		}
   2019       1.88       chs 	}
   2020       1.88       chs 	LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
   2021       1.88       chs 		r = pool_chk_page(pp, label, ph);
   2022       1.88       chs 		if (r) {
   2023        1.3        pk 			goto out;
   2024        1.3        pk 		}
   2025       1.88       chs 	}
   2026       1.88       chs 	LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
   2027       1.88       chs 		r = pool_chk_page(pp, label, ph);
   2028       1.88       chs 		if (r) {
   2029        1.3        pk 			goto out;
   2030        1.3        pk 		}
   2031        1.3        pk 	}
   2032       1.88       chs 
   2033        1.3        pk out:
   2034      1.134        ad 	mutex_exit(&pp->pr_lock);
   2035        1.3        pk 	return (r);
   2036       1.43   thorpej }
   2037       1.43   thorpej 
   2038       1.43   thorpej /*
   2039       1.43   thorpej  * pool_cache_init:
   2040       1.43   thorpej  *
   2041       1.43   thorpej  *	Initialize a pool cache.
   2042      1.134        ad  */
   2043      1.134        ad pool_cache_t
   2044      1.134        ad pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
   2045      1.134        ad     const char *wchan, struct pool_allocator *palloc, int ipl,
   2046      1.134        ad     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
   2047      1.134        ad {
   2048      1.134        ad 	pool_cache_t pc;
   2049      1.134        ad 
   2050      1.134        ad 	pc = pool_get(&cache_pool, PR_WAITOK);
   2051      1.134        ad 	if (pc == NULL)
   2052      1.134        ad 		return NULL;
   2053      1.134        ad 
   2054      1.134        ad 	pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
   2055      1.134        ad 	   palloc, ipl, ctor, dtor, arg);
   2056      1.134        ad 
   2057      1.134        ad 	return pc;
   2058      1.134        ad }
   2059      1.134        ad 
   2060      1.134        ad /*
   2061      1.134        ad  * pool_cache_bootstrap:
   2062       1.43   thorpej  *
   2063      1.134        ad  *	Kernel-private version of pool_cache_init().  The caller
   2064      1.134        ad  *	provides initial storage.
   2065       1.43   thorpej  */
   2066       1.43   thorpej void
   2067      1.134        ad pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
   2068      1.134        ad     u_int align_offset, u_int flags, const char *wchan,
   2069      1.134        ad     struct pool_allocator *palloc, int ipl,
   2070      1.134        ad     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
   2071       1.43   thorpej     void *arg)
   2072       1.43   thorpej {
   2073      1.134        ad 	CPU_INFO_ITERATOR cii;
   2074      1.145        ad 	pool_cache_t pc1;
   2075      1.134        ad 	struct cpu_info *ci;
   2076      1.134        ad 	struct pool *pp;
   2077      1.134        ad 
   2078      1.134        ad 	pp = &pc->pc_pool;
   2079      1.134        ad 	if (palloc == NULL && ipl == IPL_NONE)
   2080      1.134        ad 		palloc = &pool_allocator_nointr;
   2081      1.134        ad 	pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl);
   2082      1.157        ad 	mutex_init(&pc->pc_lock, MUTEX_DEFAULT, ipl);
   2083       1.43   thorpej 
   2084      1.134        ad 	if (ctor == NULL) {
   2085      1.134        ad 		ctor = (int (*)(void *, void *, int))nullop;
   2086      1.134        ad 	}
   2087      1.134        ad 	if (dtor == NULL) {
   2088      1.134        ad 		dtor = (void (*)(void *, void *))nullop;
   2089      1.134        ad 	}
   2090       1.43   thorpej 
   2091      1.134        ad 	pc->pc_emptygroups = NULL;
   2092      1.134        ad 	pc->pc_fullgroups = NULL;
   2093      1.134        ad 	pc->pc_partgroups = NULL;
   2094       1.43   thorpej 	pc->pc_ctor = ctor;
   2095       1.43   thorpej 	pc->pc_dtor = dtor;
   2096       1.43   thorpej 	pc->pc_arg  = arg;
   2097      1.134        ad 	pc->pc_hits  = 0;
   2098       1.48   thorpej 	pc->pc_misses = 0;
   2099      1.134        ad 	pc->pc_nempty = 0;
   2100      1.134        ad 	pc->pc_npart = 0;
   2101      1.134        ad 	pc->pc_nfull = 0;
   2102      1.134        ad 	pc->pc_contended = 0;
   2103      1.134        ad 	pc->pc_refcnt = 0;
   2104      1.136      yamt 	pc->pc_freecheck = NULL;
   2105      1.134        ad 
   2106      1.142        ad 	if ((flags & PR_LARGECACHE) != 0) {
   2107      1.142        ad 		pc->pc_pcgsize = PCG_NOBJECTS_LARGE;
   2108      1.163        ad 		pc->pc_pcgpool = &pcg_large_pool;
   2109      1.142        ad 	} else {
   2110      1.142        ad 		pc->pc_pcgsize = PCG_NOBJECTS_NORMAL;
   2111      1.163        ad 		pc->pc_pcgpool = &pcg_normal_pool;
   2112      1.142        ad 	}
   2113      1.142        ad 
   2114      1.134        ad 	/* Allocate per-CPU caches. */
   2115      1.134        ad 	memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
   2116      1.134        ad 	pc->pc_ncpu = 0;
   2117      1.139        ad 	if (ncpu < 2) {
   2118      1.137        ad 		/* XXX For sparc: boot CPU is not attached yet. */
   2119      1.137        ad 		pool_cache_cpu_init1(curcpu(), pc);
   2120      1.137        ad 	} else {
   2121      1.137        ad 		for (CPU_INFO_FOREACH(cii, ci)) {
   2122      1.137        ad 			pool_cache_cpu_init1(ci, pc);
   2123      1.137        ad 		}
   2124      1.134        ad 	}
   2125      1.145        ad 
   2126      1.145        ad 	/* Add to list of all pools. */
   2127      1.145        ad 	if (__predict_true(!cold))
   2128      1.134        ad 		mutex_enter(&pool_head_lock);
   2129      1.145        ad 	TAILQ_FOREACH(pc1, &pool_cache_head, pc_cachelist) {
   2130      1.145        ad 		if (strcmp(pc1->pc_pool.pr_wchan, pc->pc_pool.pr_wchan) > 0)
   2131      1.145        ad 			break;
   2132      1.145        ad 	}
   2133      1.145        ad 	if (pc1 == NULL)
   2134      1.145        ad 		TAILQ_INSERT_TAIL(&pool_cache_head, pc, pc_cachelist);
   2135      1.145        ad 	else
   2136      1.145        ad 		TAILQ_INSERT_BEFORE(pc1, pc, pc_cachelist);
   2137      1.145        ad 	if (__predict_true(!cold))
   2138      1.134        ad 		mutex_exit(&pool_head_lock);
   2139      1.145        ad 
   2140      1.145        ad 	membar_sync();
   2141      1.145        ad 	pp->pr_cache = pc;
   2142       1.43   thorpej }
   2143       1.43   thorpej 
   2144       1.43   thorpej /*
   2145       1.43   thorpej  * pool_cache_destroy:
   2146       1.43   thorpej  *
   2147       1.43   thorpej  *	Destroy a pool cache.
   2148       1.43   thorpej  */
   2149       1.43   thorpej void
   2150      1.134        ad pool_cache_destroy(pool_cache_t pc)
   2151       1.43   thorpej {
   2152      1.134        ad 	struct pool *pp = &pc->pc_pool;
   2153      1.175       jym 	u_int i;
   2154      1.134        ad 
   2155      1.134        ad 	/* Remove it from the global list. */
   2156      1.134        ad 	mutex_enter(&pool_head_lock);
   2157      1.134        ad 	while (pc->pc_refcnt != 0)
   2158      1.134        ad 		cv_wait(&pool_busy, &pool_head_lock);
   2159      1.145        ad 	TAILQ_REMOVE(&pool_cache_head, pc, pc_cachelist);
   2160      1.134        ad 	mutex_exit(&pool_head_lock);
   2161       1.43   thorpej 
   2162       1.43   thorpej 	/* First, invalidate the entire cache. */
   2163       1.43   thorpej 	pool_cache_invalidate(pc);
   2164       1.43   thorpej 
   2165      1.134        ad 	/* Disassociate it from the pool. */
   2166      1.134        ad 	mutex_enter(&pp->pr_lock);
   2167      1.134        ad 	pp->pr_cache = NULL;
   2168      1.134        ad 	mutex_exit(&pp->pr_lock);
   2169      1.134        ad 
   2170      1.134        ad 	/* Destroy per-CPU data */
   2171  1.182.4.1     rmind 	for (i = 0; i < __arraycount(pc->pc_cpus); i++)
   2172      1.175       jym 		pool_cache_invalidate_cpu(pc, i);
   2173      1.134        ad 
   2174      1.134        ad 	/* Finally, destroy it. */
   2175      1.134        ad 	mutex_destroy(&pc->pc_lock);
   2176      1.134        ad 	pool_destroy(pp);
   2177      1.134        ad 	pool_put(&cache_pool, pc);
   2178      1.134        ad }
   2179      1.134        ad 
   2180      1.134        ad /*
   2181      1.134        ad  * pool_cache_cpu_init1:
   2182      1.134        ad  *
   2183      1.134        ad  *	Called for each pool_cache whenever a new CPU is attached.
   2184      1.134        ad  */
   2185      1.134        ad static void
   2186      1.134        ad pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
   2187      1.134        ad {
   2188      1.134        ad 	pool_cache_cpu_t *cc;
   2189      1.137        ad 	int index;
   2190      1.134        ad 
   2191      1.137        ad 	index = ci->ci_index;
   2192      1.137        ad 
   2193  1.182.4.1     rmind 	KASSERT(index < __arraycount(pc->pc_cpus));
   2194      1.134        ad 
   2195      1.137        ad 	if ((cc = pc->pc_cpus[index]) != NULL) {
   2196      1.137        ad 		KASSERT(cc->cc_cpuindex == index);
   2197      1.134        ad 		return;
   2198      1.134        ad 	}
   2199      1.134        ad 
   2200      1.134        ad 	/*
   2201      1.134        ad 	 * The first CPU is 'free'.  This needs to be the case for
   2202      1.134        ad 	 * bootstrap - we may not be able to allocate yet.
   2203      1.134        ad 	 */
   2204      1.134        ad 	if (pc->pc_ncpu == 0) {
   2205      1.134        ad 		cc = &pc->pc_cpu0;
   2206      1.134        ad 		pc->pc_ncpu = 1;
   2207      1.134        ad 	} else {
   2208      1.134        ad 		mutex_enter(&pc->pc_lock);
   2209      1.134        ad 		pc->pc_ncpu++;
   2210      1.134        ad 		mutex_exit(&pc->pc_lock);
   2211      1.134        ad 		cc = pool_get(&cache_cpu_pool, PR_WAITOK);
   2212      1.134        ad 	}
   2213      1.134        ad 
   2214      1.134        ad 	cc->cc_ipl = pc->pc_pool.pr_ipl;
   2215      1.134        ad 	cc->cc_iplcookie = makeiplcookie(cc->cc_ipl);
   2216      1.134        ad 	cc->cc_cache = pc;
   2217      1.137        ad 	cc->cc_cpuindex = index;
   2218      1.134        ad 	cc->cc_hits = 0;
   2219      1.134        ad 	cc->cc_misses = 0;
   2220      1.169      yamt 	cc->cc_current = __UNCONST(&pcg_dummy);
   2221      1.169      yamt 	cc->cc_previous = __UNCONST(&pcg_dummy);
   2222      1.134        ad 
   2223      1.137        ad 	pc->pc_cpus[index] = cc;
   2224       1.43   thorpej }
   2225       1.43   thorpej 
   2226      1.134        ad /*
   2227      1.134        ad  * pool_cache_cpu_init:
   2228      1.134        ad  *
   2229      1.134        ad  *	Called whenever a new CPU is attached.
   2230      1.134        ad  */
   2231      1.134        ad void
   2232      1.134        ad pool_cache_cpu_init(struct cpu_info *ci)
   2233       1.43   thorpej {
   2234      1.134        ad 	pool_cache_t pc;
   2235      1.134        ad 
   2236      1.134        ad 	mutex_enter(&pool_head_lock);
   2237      1.145        ad 	TAILQ_FOREACH(pc, &pool_cache_head, pc_cachelist) {
   2238      1.134        ad 		pc->pc_refcnt++;
   2239      1.134        ad 		mutex_exit(&pool_head_lock);
   2240       1.43   thorpej 
   2241      1.134        ad 		pool_cache_cpu_init1(ci, pc);
   2242       1.43   thorpej 
   2243      1.134        ad 		mutex_enter(&pool_head_lock);
   2244      1.134        ad 		pc->pc_refcnt--;
   2245      1.134        ad 		cv_broadcast(&pool_busy);
   2246      1.134        ad 	}
   2247      1.134        ad 	mutex_exit(&pool_head_lock);
   2248       1.43   thorpej }
   2249       1.43   thorpej 
   2250      1.134        ad /*
   2251      1.134        ad  * pool_cache_reclaim:
   2252      1.134        ad  *
   2253      1.134        ad  *	Reclaim memory from a pool cache.
   2254      1.134        ad  */
   2255      1.134        ad bool
   2256      1.134        ad pool_cache_reclaim(pool_cache_t pc)
   2257       1.43   thorpej {
   2258       1.43   thorpej 
   2259      1.134        ad 	return pool_reclaim(&pc->pc_pool);
   2260      1.134        ad }
   2261       1.43   thorpej 
   2262      1.136      yamt static void
   2263      1.136      yamt pool_cache_destruct_object1(pool_cache_t pc, void *object)
   2264      1.136      yamt {
   2265      1.136      yamt 
   2266      1.136      yamt 	(*pc->pc_dtor)(pc->pc_arg, object);
   2267      1.136      yamt 	pool_put(&pc->pc_pool, object);
   2268      1.136      yamt }
   2269      1.136      yamt 
   2270      1.134        ad /*
   2271      1.134        ad  * pool_cache_destruct_object:
   2272      1.134        ad  *
   2273      1.134        ad  *	Force destruction of an object and its release back into
   2274      1.134        ad  *	the pool.
   2275      1.134        ad  */
   2276      1.134        ad void
   2277      1.134        ad pool_cache_destruct_object(pool_cache_t pc, void *object)
   2278      1.134        ad {
   2279      1.134        ad 
   2280      1.136      yamt 	FREECHECK_IN(&pc->pc_freecheck, object);
   2281      1.136      yamt 
   2282      1.136      yamt 	pool_cache_destruct_object1(pc, object);
   2283       1.43   thorpej }
   2284       1.43   thorpej 
   2285      1.134        ad /*
   2286      1.134        ad  * pool_cache_invalidate_groups:
   2287      1.134        ad  *
   2288      1.134        ad  *	Invalidate a chain of groups and destruct all objects.
   2289      1.134        ad  */
   2290      1.102       chs static void
   2291      1.134        ad pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
   2292      1.102       chs {
   2293      1.134        ad 	void *object;
   2294      1.134        ad 	pcg_t *next;
   2295      1.134        ad 	int i;
   2296      1.134        ad 
   2297      1.134        ad 	for (; pcg != NULL; pcg = next) {
   2298      1.134        ad 		next = pcg->pcg_next;
   2299      1.134        ad 
   2300      1.134        ad 		for (i = 0; i < pcg->pcg_avail; i++) {
   2301      1.134        ad 			object = pcg->pcg_objects[i].pcgo_va;
   2302      1.136      yamt 			pool_cache_destruct_object1(pc, object);
   2303      1.134        ad 		}
   2304      1.102       chs 
   2305      1.142        ad 		if (pcg->pcg_size == PCG_NOBJECTS_LARGE) {
   2306      1.142        ad 			pool_put(&pcg_large_pool, pcg);
   2307      1.142        ad 		} else {
   2308      1.142        ad 			KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL);
   2309      1.142        ad 			pool_put(&pcg_normal_pool, pcg);
   2310      1.142        ad 		}
   2311      1.102       chs 	}
   2312      1.102       chs }
   2313      1.102       chs 
   2314       1.43   thorpej /*
   2315      1.134        ad  * pool_cache_invalidate:
   2316       1.43   thorpej  *
   2317      1.134        ad  *	Invalidate a pool cache (destruct and release all of the
   2318      1.134        ad  *	cached objects).  Does not reclaim objects from the pool.
   2319      1.176   thorpej  *
   2320      1.176   thorpej  *	Note: For pool caches that provide constructed objects, there
   2321      1.176   thorpej  *	is an assumption that another level of synchronization is occurring
   2322      1.176   thorpej  *	between the input to the constructor and the cache invalidation.
   2323       1.43   thorpej  */
   2324      1.134        ad void
   2325      1.134        ad pool_cache_invalidate(pool_cache_t pc)
   2326      1.134        ad {
   2327      1.134        ad 	pcg_t *full, *empty, *part;
   2328      1.182     rmind #if 0
   2329      1.176   thorpej 	uint64_t where;
   2330      1.176   thorpej 
   2331      1.177       jym 	if (ncpu < 2 || !mp_online) {
   2332      1.176   thorpej 		/*
   2333      1.176   thorpej 		 * We might be called early enough in the boot process
   2334      1.176   thorpej 		 * for the CPU data structures to not be fully initialized.
   2335      1.176   thorpej 		 * In this case, simply gather the local CPU's cache now
   2336      1.176   thorpej 		 * since it will be the only one running.
   2337      1.176   thorpej 		 */
   2338      1.176   thorpej 		pool_cache_xcall(pc);
   2339      1.176   thorpej 	} else {
   2340      1.176   thorpej 		/*
   2341      1.176   thorpej 		 * Gather all of the CPU-specific caches into the
   2342      1.176   thorpej 		 * global cache.
   2343      1.176   thorpej 		 */
   2344      1.176   thorpej 		where = xc_broadcast(0, (xcfunc_t)pool_cache_xcall, pc, NULL);
   2345      1.176   thorpej 		xc_wait(where);
   2346      1.176   thorpej 	}
   2347      1.182     rmind #endif
   2348      1.134        ad 	mutex_enter(&pc->pc_lock);
   2349      1.134        ad 	full = pc->pc_fullgroups;
   2350      1.134        ad 	empty = pc->pc_emptygroups;
   2351      1.134        ad 	part = pc->pc_partgroups;
   2352      1.134        ad 	pc->pc_fullgroups = NULL;
   2353      1.134        ad 	pc->pc_emptygroups = NULL;
   2354      1.134        ad 	pc->pc_partgroups = NULL;
   2355      1.134        ad 	pc->pc_nfull = 0;
   2356      1.134        ad 	pc->pc_nempty = 0;
   2357      1.134        ad 	pc->pc_npart = 0;
   2358      1.134        ad 	mutex_exit(&pc->pc_lock);
   2359      1.134        ad 
   2360      1.134        ad 	pool_cache_invalidate_groups(pc, full);
   2361      1.134        ad 	pool_cache_invalidate_groups(pc, empty);
   2362      1.134        ad 	pool_cache_invalidate_groups(pc, part);
   2363      1.134        ad }
   2364      1.134        ad 
   2365      1.175       jym /*
   2366      1.175       jym  * pool_cache_invalidate_cpu:
   2367      1.175       jym  *
   2368      1.175       jym  *	Invalidate all CPU-bound cached objects in pool cache, the CPU being
   2369      1.175       jym  *	identified by its associated index.
   2370      1.175       jym  *	It is caller's responsibility to ensure that no operation is
   2371      1.175       jym  *	taking place on this pool cache while doing this invalidation.
   2372      1.175       jym  *	WARNING: as no inter-CPU locking is enforced, trying to invalidate
   2373      1.175       jym  *	pool cached objects from a CPU different from the one currently running
   2374      1.175       jym  *	may result in an undefined behaviour.
   2375      1.175       jym  */
   2376      1.175       jym static void
   2377      1.175       jym pool_cache_invalidate_cpu(pool_cache_t pc, u_int index)
   2378      1.175       jym {
   2379      1.175       jym 
   2380      1.175       jym 	pool_cache_cpu_t *cc;
   2381      1.175       jym 	pcg_t *pcg;
   2382      1.175       jym 
   2383      1.175       jym 	if ((cc = pc->pc_cpus[index]) == NULL)
   2384      1.175       jym 		return;
   2385      1.175       jym 
   2386      1.175       jym 	if ((pcg = cc->cc_current) != &pcg_dummy) {
   2387      1.175       jym 		pcg->pcg_next = NULL;
   2388      1.175       jym 		pool_cache_invalidate_groups(pc, pcg);
   2389      1.175       jym 	}
   2390      1.175       jym 	if ((pcg = cc->cc_previous) != &pcg_dummy) {
   2391      1.175       jym 		pcg->pcg_next = NULL;
   2392      1.175       jym 		pool_cache_invalidate_groups(pc, pcg);
   2393      1.175       jym 	}
   2394      1.175       jym 	if (cc != &pc->pc_cpu0)
   2395      1.175       jym 		pool_put(&cache_cpu_pool, cc);
   2396      1.175       jym 
   2397      1.175       jym }
   2398      1.175       jym 
   2399      1.134        ad void
   2400      1.134        ad pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
   2401      1.134        ad {
   2402      1.134        ad 
   2403      1.134        ad 	pool_set_drain_hook(&pc->pc_pool, fn, arg);
   2404      1.134        ad }
   2405      1.134        ad 
   2406      1.134        ad void
   2407      1.134        ad pool_cache_setlowat(pool_cache_t pc, int n)
   2408      1.134        ad {
   2409      1.134        ad 
   2410      1.134        ad 	pool_setlowat(&pc->pc_pool, n);
   2411      1.134        ad }
   2412      1.134        ad 
   2413      1.134        ad void
   2414      1.134        ad pool_cache_sethiwat(pool_cache_t pc, int n)
   2415      1.134        ad {
   2416      1.134        ad 
   2417      1.134        ad 	pool_sethiwat(&pc->pc_pool, n);
   2418      1.134        ad }
   2419      1.134        ad 
   2420      1.134        ad void
   2421      1.134        ad pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
   2422      1.134        ad {
   2423      1.134        ad 
   2424      1.134        ad 	pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
   2425      1.134        ad }
   2426      1.134        ad 
   2427      1.162        ad static bool __noinline
   2428      1.162        ad pool_cache_get_slow(pool_cache_cpu_t *cc, int s, void **objectp,
   2429      1.134        ad 		    paddr_t *pap, int flags)
   2430       1.43   thorpej {
   2431      1.134        ad 	pcg_t *pcg, *cur;
   2432      1.134        ad 	uint64_t ncsw;
   2433      1.134        ad 	pool_cache_t pc;
   2434       1.43   thorpej 	void *object;
   2435       1.58   thorpej 
   2436      1.168      yamt 	KASSERT(cc->cc_current->pcg_avail == 0);
   2437      1.168      yamt 	KASSERT(cc->cc_previous->pcg_avail == 0);
   2438      1.168      yamt 
   2439      1.134        ad 	pc = cc->cc_cache;
   2440      1.134        ad 	cc->cc_misses++;
   2441       1.43   thorpej 
   2442      1.134        ad 	/*
   2443      1.134        ad 	 * Nothing was available locally.  Try and grab a group
   2444      1.134        ad 	 * from the cache.
   2445      1.134        ad 	 */
   2446      1.162        ad 	if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
   2447      1.134        ad 		ncsw = curlwp->l_ncsw;
   2448      1.134        ad 		mutex_enter(&pc->pc_lock);
   2449      1.134        ad 		pc->pc_contended++;
   2450       1.43   thorpej 
   2451      1.134        ad 		/*
   2452      1.134        ad 		 * If we context switched while locking, then
   2453      1.134        ad 		 * our view of the per-CPU data is invalid:
   2454      1.134        ad 		 * retry.
   2455      1.134        ad 		 */
   2456      1.134        ad 		if (curlwp->l_ncsw != ncsw) {
   2457      1.134        ad 			mutex_exit(&pc->pc_lock);
   2458      1.162        ad 			return true;
   2459       1.43   thorpej 		}
   2460      1.102       chs 	}
   2461       1.43   thorpej 
   2462      1.162        ad 	if (__predict_true((pcg = pc->pc_fullgroups) != NULL)) {
   2463       1.43   thorpej 		/*
   2464      1.134        ad 		 * If there's a full group, release our empty
   2465      1.134        ad 		 * group back to the cache.  Install the full
   2466      1.134        ad 		 * group as cc_current and return.
   2467       1.43   thorpej 		 */
   2468      1.162        ad 		if (__predict_true((cur = cc->cc_current) != &pcg_dummy)) {
   2469      1.134        ad 			KASSERT(cur->pcg_avail == 0);
   2470      1.134        ad 			cur->pcg_next = pc->pc_emptygroups;
   2471      1.134        ad 			pc->pc_emptygroups = cur;
   2472      1.134        ad 			pc->pc_nempty++;
   2473       1.87   thorpej 		}
   2474      1.142        ad 		KASSERT(pcg->pcg_avail == pcg->pcg_size);
   2475      1.134        ad 		cc->cc_current = pcg;
   2476      1.134        ad 		pc->pc_fullgroups = pcg->pcg_next;
   2477      1.134        ad 		pc->pc_hits++;
   2478      1.134        ad 		pc->pc_nfull--;
   2479      1.134        ad 		mutex_exit(&pc->pc_lock);
   2480      1.162        ad 		return true;
   2481      1.134        ad 	}
   2482      1.134        ad 
   2483      1.134        ad 	/*
   2484      1.134        ad 	 * Nothing available locally or in cache.  Take the slow
   2485      1.134        ad 	 * path: fetch a new object from the pool and construct
   2486      1.134        ad 	 * it.
   2487      1.134        ad 	 */
   2488      1.134        ad 	pc->pc_misses++;
   2489      1.134        ad 	mutex_exit(&pc->pc_lock);
   2490      1.162        ad 	splx(s);
   2491      1.134        ad 
   2492      1.134        ad 	object = pool_get(&pc->pc_pool, flags);
   2493      1.134        ad 	*objectp = object;
   2494      1.162        ad 	if (__predict_false(object == NULL))
   2495      1.162        ad 		return false;
   2496      1.125        ad 
   2497      1.162        ad 	if (__predict_false((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0)) {
   2498      1.134        ad 		pool_put(&pc->pc_pool, object);
   2499      1.134        ad 		*objectp = NULL;
   2500      1.162        ad 		return false;
   2501       1.43   thorpej 	}
   2502       1.43   thorpej 
   2503      1.134        ad 	KASSERT((((vaddr_t)object + pc->pc_pool.pr_itemoffset) &
   2504      1.134        ad 	    (pc->pc_pool.pr_align - 1)) == 0);
   2505       1.43   thorpej 
   2506      1.134        ad 	if (pap != NULL) {
   2507      1.134        ad #ifdef POOL_VTOPHYS
   2508      1.134        ad 		*pap = POOL_VTOPHYS(object);
   2509      1.134        ad #else
   2510      1.134        ad 		*pap = POOL_PADDR_INVALID;
   2511      1.134        ad #endif
   2512      1.102       chs 	}
   2513       1.43   thorpej 
   2514      1.125        ad 	FREECHECK_OUT(&pc->pc_freecheck, object);
   2515      1.162        ad 	return false;
   2516       1.43   thorpej }
   2517       1.43   thorpej 
   2518       1.43   thorpej /*
   2519      1.134        ad  * pool_cache_get{,_paddr}:
   2520       1.43   thorpej  *
   2521      1.134        ad  *	Get an object from a pool cache (optionally returning
   2522      1.134        ad  *	the physical address of the object).
   2523       1.43   thorpej  */
   2524      1.134        ad void *
   2525      1.134        ad pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
   2526       1.43   thorpej {
   2527      1.134        ad 	pool_cache_cpu_t *cc;
   2528      1.134        ad 	pcg_t *pcg;
   2529      1.134        ad 	void *object;
   2530       1.60   thorpej 	int s;
   2531       1.43   thorpej 
   2532  1.182.4.1     rmind 	KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()) ||
   2533  1.182.4.1     rmind 	    (pc->pc_pool.pr_ipl != IPL_NONE || cold || panicstr != NULL),
   2534  1.182.4.1     rmind 	    ("pool '%s' is IPL_NONE, but called from interrupt context\n",
   2535  1.182.4.1     rmind 	    pc->pc_pool.pr_wchan));
   2536  1.182.4.1     rmind 
   2537      1.155        ad 	if (flags & PR_WAITOK) {
   2538      1.154      yamt 		ASSERT_SLEEPABLE();
   2539      1.155        ad 	}
   2540      1.125        ad 
   2541      1.162        ad 	/* Lock out interrupts and disable preemption. */
   2542      1.162        ad 	s = splvm();
   2543      1.165      yamt 	while (/* CONSTCOND */ true) {
   2544      1.134        ad 		/* Try and allocate an object from the current group. */
   2545      1.162        ad 		cc = pc->pc_cpus[curcpu()->ci_index];
   2546      1.162        ad 		KASSERT(cc->cc_cache == pc);
   2547      1.134        ad 	 	pcg = cc->cc_current;
   2548      1.162        ad 		if (__predict_true(pcg->pcg_avail > 0)) {
   2549      1.134        ad 			object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;
   2550      1.162        ad 			if (__predict_false(pap != NULL))
   2551      1.134        ad 				*pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa;
   2552      1.148      yamt #if defined(DIAGNOSTIC)
   2553      1.134        ad 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL;
   2554      1.163        ad 			KASSERT(pcg->pcg_avail < pcg->pcg_size);
   2555      1.134        ad 			KASSERT(object != NULL);
   2556      1.163        ad #endif
   2557      1.134        ad 			cc->cc_hits++;
   2558      1.162        ad 			splx(s);
   2559      1.134        ad 			FREECHECK_OUT(&pc->pc_freecheck, object);
   2560      1.134        ad 			return object;
   2561       1.43   thorpej 		}
   2562       1.43   thorpej 
   2563       1.43   thorpej 		/*
   2564      1.134        ad 		 * That failed.  If the previous group isn't empty, swap
   2565      1.134        ad 		 * it with the current group and allocate from there.
   2566       1.43   thorpej 		 */
   2567      1.134        ad 		pcg = cc->cc_previous;
   2568      1.162        ad 		if (__predict_true(pcg->pcg_avail > 0)) {
   2569      1.134        ad 			cc->cc_previous = cc->cc_current;
   2570      1.134        ad 			cc->cc_current = pcg;
   2571      1.134        ad 			continue;
   2572       1.43   thorpej 		}
   2573       1.43   thorpej 
   2574      1.134        ad 		/*
   2575      1.134        ad 		 * Can't allocate from either group: try the slow path.
   2576      1.134        ad 		 * If get_slow() allocated an object for us, or if
   2577      1.162        ad 		 * no more objects are available, it will return false.
   2578      1.134        ad 		 * Otherwise, we need to retry.
   2579      1.134        ad 		 */
   2580      1.165      yamt 		if (!pool_cache_get_slow(cc, s, &object, pap, flags))
   2581      1.165      yamt 			break;
   2582      1.165      yamt 	}
   2583       1.43   thorpej 
   2584      1.134        ad 	return object;
   2585       1.51   thorpej }
   2586       1.51   thorpej 
   2587      1.162        ad static bool __noinline
   2588      1.162        ad pool_cache_put_slow(pool_cache_cpu_t *cc, int s, void *object)
   2589       1.51   thorpej {
   2590      1.163        ad 	pcg_t *pcg, *cur;
   2591      1.134        ad 	uint64_t ncsw;
   2592      1.134        ad 	pool_cache_t pc;
   2593       1.51   thorpej 
   2594      1.168      yamt 	KASSERT(cc->cc_current->pcg_avail == cc->cc_current->pcg_size);
   2595      1.168      yamt 	KASSERT(cc->cc_previous->pcg_avail == cc->cc_previous->pcg_size);
   2596      1.168      yamt 
   2597      1.134        ad 	pc = cc->cc_cache;
   2598      1.171        ad 	pcg = NULL;
   2599      1.134        ad 	cc->cc_misses++;
   2600       1.43   thorpej 
   2601      1.171        ad 	/*
   2602      1.171        ad 	 * If there are no empty groups in the cache then allocate one
   2603      1.171        ad 	 * while still unlocked.
   2604      1.171        ad 	 */
   2605      1.171        ad 	if (__predict_false(pc->pc_emptygroups == NULL)) {
   2606      1.171        ad 		if (__predict_true(!pool_cache_disable)) {
   2607      1.171        ad 			pcg = pool_get(pc->pc_pcgpool, PR_NOWAIT);
   2608      1.171        ad 		}
   2609      1.171        ad 		if (__predict_true(pcg != NULL)) {
   2610      1.171        ad 			pcg->pcg_avail = 0;
   2611      1.171        ad 			pcg->pcg_size = pc->pc_pcgsize;
   2612      1.171        ad 		}
   2613      1.171        ad 	}
   2614      1.171        ad 
   2615      1.162        ad 	/* Lock the cache. */
   2616      1.162        ad 	if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
   2617      1.164        ad 		ncsw = curlwp->l_ncsw;
   2618      1.134        ad 		mutex_enter(&pc->pc_lock);
   2619      1.134        ad 		pc->pc_contended++;
   2620      1.162        ad 
   2621      1.163        ad 		/*
   2622      1.163        ad 		 * If we context switched while locking, then our view of
   2623      1.163        ad 		 * the per-CPU data is invalid: retry.
   2624      1.163        ad 		 */
   2625      1.163        ad 		if (__predict_false(curlwp->l_ncsw != ncsw)) {
   2626      1.163        ad 			mutex_exit(&pc->pc_lock);
   2627      1.171        ad 			if (pcg != NULL) {
   2628      1.171        ad 				pool_put(pc->pc_pcgpool, pcg);
   2629      1.171        ad 			}
   2630      1.163        ad 			return true;
   2631      1.163        ad 		}
   2632      1.162        ad 	}
   2633      1.102       chs 
   2634      1.163        ad 	/* If there are no empty groups in the cache then allocate one. */
   2635      1.171        ad 	if (pcg == NULL && pc->pc_emptygroups != NULL) {
   2636      1.171        ad 		pcg = pc->pc_emptygroups;
   2637      1.163        ad 		pc->pc_emptygroups = pcg->pcg_next;
   2638      1.163        ad 		pc->pc_nempty--;
   2639      1.134        ad 	}
   2640      1.130        ad 
   2641      1.162        ad 	/*
   2642      1.162        ad 	 * If there's a empty group, release our full group back
   2643      1.162        ad 	 * to the cache.  Install the empty group to the local CPU
   2644      1.162        ad 	 * and return.
   2645      1.162        ad 	 */
   2646      1.163        ad 	if (pcg != NULL) {
   2647      1.134        ad 		KASSERT(pcg->pcg_avail == 0);
   2648      1.162        ad 		if (__predict_false(cc->cc_previous == &pcg_dummy)) {
   2649      1.146        ad 			cc->cc_previous = pcg;
   2650      1.146        ad 		} else {
   2651      1.162        ad 			cur = cc->cc_current;
   2652      1.162        ad 			if (__predict_true(cur != &pcg_dummy)) {
   2653      1.163        ad 				KASSERT(cur->pcg_avail == cur->pcg_size);
   2654      1.146        ad 				cur->pcg_next = pc->pc_fullgroups;
   2655      1.146        ad 				pc->pc_fullgroups = cur;
   2656      1.146        ad 				pc->pc_nfull++;
   2657      1.146        ad 			}
   2658      1.146        ad 			cc->cc_current = pcg;
   2659      1.146        ad 		}
   2660      1.163        ad 		pc->pc_hits++;
   2661      1.134        ad 		mutex_exit(&pc->pc_lock);
   2662      1.162        ad 		return true;
   2663      1.102       chs 	}
   2664      1.105  christos 
   2665      1.134        ad 	/*
   2666      1.162        ad 	 * Nothing available locally or in cache, and we didn't
   2667      1.162        ad 	 * allocate an empty group.  Take the slow path and destroy
   2668      1.162        ad 	 * the object here and now.
   2669      1.134        ad 	 */
   2670      1.134        ad 	pc->pc_misses++;
   2671      1.134        ad 	mutex_exit(&pc->pc_lock);
   2672      1.162        ad 	splx(s);
   2673      1.162        ad 	pool_cache_destruct_object(pc, object);
   2674      1.105  christos 
   2675      1.162        ad 	return false;
   2676      1.134        ad }
   2677      1.102       chs 
   2678       1.43   thorpej /*
   2679      1.134        ad  * pool_cache_put{,_paddr}:
   2680       1.43   thorpej  *
   2681      1.134        ad  *	Put an object back to the pool cache (optionally caching the
   2682      1.134        ad  *	physical address of the object).
   2683       1.43   thorpej  */
   2684      1.101   thorpej void
   2685      1.134        ad pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
   2686       1.43   thorpej {
   2687      1.134        ad 	pool_cache_cpu_t *cc;
   2688      1.134        ad 	pcg_t *pcg;
   2689      1.134        ad 	int s;
   2690      1.101   thorpej 
   2691      1.172      yamt 	KASSERT(object != NULL);
   2692      1.134        ad 	FREECHECK_IN(&pc->pc_freecheck, object);
   2693      1.101   thorpej 
   2694      1.162        ad 	/* Lock out interrupts and disable preemption. */
   2695      1.162        ad 	s = splvm();
   2696      1.165      yamt 	while (/* CONSTCOND */ true) {
   2697      1.134        ad 		/* If the current group isn't full, release it there. */
   2698      1.162        ad 		cc = pc->pc_cpus[curcpu()->ci_index];
   2699      1.162        ad 		KASSERT(cc->cc_cache == pc);
   2700      1.134        ad 	 	pcg = cc->cc_current;
   2701      1.162        ad 		if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
   2702      1.134        ad 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object;
   2703      1.134        ad 			pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa;
   2704      1.134        ad 			pcg->pcg_avail++;
   2705      1.134        ad 			cc->cc_hits++;
   2706      1.162        ad 			splx(s);
   2707      1.134        ad 			return;
   2708      1.134        ad 		}
   2709       1.43   thorpej 
   2710      1.134        ad 		/*
   2711      1.162        ad 		 * That failed.  If the previous group isn't full, swap
   2712      1.134        ad 		 * it with the current group and try again.
   2713      1.134        ad 		 */
   2714      1.134        ad 		pcg = cc->cc_previous;
   2715      1.162        ad 		if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
   2716      1.134        ad 			cc->cc_previous = cc->cc_current;
   2717      1.134        ad 			cc->cc_current = pcg;
   2718      1.134        ad 			continue;
   2719      1.134        ad 		}
   2720       1.43   thorpej 
   2721      1.134        ad 		/*
   2722      1.134        ad 		 * Can't free to either group: try the slow path.
   2723      1.134        ad 		 * If put_slow() releases the object for us, it
   2724      1.162        ad 		 * will return false.  Otherwise we need to retry.
   2725      1.134        ad 		 */
   2726      1.165      yamt 		if (!pool_cache_put_slow(cc, s, object))
   2727      1.165      yamt 			break;
   2728      1.165      yamt 	}
   2729       1.43   thorpej }
   2730       1.43   thorpej 
   2731       1.43   thorpej /*
   2732      1.134        ad  * pool_cache_xcall:
   2733       1.43   thorpej  *
   2734      1.134        ad  *	Transfer objects from the per-CPU cache to the global cache.
   2735      1.134        ad  *	Run within a cross-call thread.
   2736       1.43   thorpej  */
   2737       1.43   thorpej static void
   2738      1.134        ad pool_cache_xcall(pool_cache_t pc)
   2739       1.43   thorpej {
   2740      1.134        ad 	pool_cache_cpu_t *cc;
   2741      1.134        ad 	pcg_t *prev, *cur, **list;
   2742      1.162        ad 	int s;
   2743      1.134        ad 
   2744      1.162        ad 	s = splvm();
   2745      1.162        ad 	mutex_enter(&pc->pc_lock);
   2746      1.162        ad 	cc = pc->pc_cpus[curcpu()->ci_index];
   2747      1.134        ad 	cur = cc->cc_current;
   2748      1.169      yamt 	cc->cc_current = __UNCONST(&pcg_dummy);
   2749      1.134        ad 	prev = cc->cc_previous;
   2750      1.169      yamt 	cc->cc_previous = __UNCONST(&pcg_dummy);
   2751      1.162        ad 	if (cur != &pcg_dummy) {
   2752      1.142        ad 		if (cur->pcg_avail == cur->pcg_size) {
   2753      1.134        ad 			list = &pc->pc_fullgroups;
   2754      1.134        ad 			pc->pc_nfull++;
   2755      1.134        ad 		} else if (cur->pcg_avail == 0) {
   2756      1.134        ad 			list = &pc->pc_emptygroups;
   2757      1.134        ad 			pc->pc_nempty++;
   2758      1.134        ad 		} else {
   2759      1.134        ad 			list = &pc->pc_partgroups;
   2760      1.134        ad 			pc->pc_npart++;
   2761      1.134        ad 		}
   2762      1.134        ad 		cur->pcg_next = *list;
   2763      1.134        ad 		*list = cur;
   2764      1.134        ad 	}
   2765      1.162        ad 	if (prev != &pcg_dummy) {
   2766      1.142        ad 		if (prev->pcg_avail == prev->pcg_size) {
   2767      1.134        ad 			list = &pc->pc_fullgroups;
   2768      1.134        ad 			pc->pc_nfull++;
   2769      1.134        ad 		} else if (prev->pcg_avail == 0) {
   2770      1.134        ad 			list = &pc->pc_emptygroups;
   2771      1.134        ad 			pc->pc_nempty++;
   2772      1.134        ad 		} else {
   2773      1.134        ad 			list = &pc->pc_partgroups;
   2774      1.134        ad 			pc->pc_npart++;
   2775      1.134        ad 		}
   2776      1.134        ad 		prev->pcg_next = *list;
   2777      1.134        ad 		*list = prev;
   2778      1.134        ad 	}
   2779      1.134        ad 	mutex_exit(&pc->pc_lock);
   2780      1.134        ad 	splx(s);
   2781        1.3        pk }
   2782       1.66   thorpej 
   2783       1.66   thorpej /*
   2784       1.66   thorpej  * Pool backend allocators.
   2785       1.66   thorpej  *
   2786       1.66   thorpej  * Each pool has a backend allocator that handles allocation, deallocation,
   2787       1.66   thorpej  * and any additional draining that might be needed.
   2788       1.66   thorpej  *
   2789       1.66   thorpej  * We provide two standard allocators:
   2790       1.66   thorpej  *
   2791       1.66   thorpej  *	pool_allocator_kmem - the default when no allocator is specified
   2792       1.66   thorpej  *
   2793       1.66   thorpej  *	pool_allocator_nointr - used for pools that will not be accessed
   2794       1.66   thorpej  *	in interrupt context.
   2795       1.66   thorpej  */
   2796       1.66   thorpej void	*pool_page_alloc(struct pool *, int);
   2797       1.66   thorpej void	pool_page_free(struct pool *, void *);
   2798       1.66   thorpej 
   2799      1.112     bjh21 #ifdef POOL_SUBPAGE
   2800      1.112     bjh21 struct pool_allocator pool_allocator_kmem_fullpage = {
   2801      1.112     bjh21 	pool_page_alloc, pool_page_free, 0,
   2802      1.117      yamt 	.pa_backingmapptr = &kmem_map,
   2803      1.112     bjh21 };
   2804      1.112     bjh21 #else
   2805       1.66   thorpej struct pool_allocator pool_allocator_kmem = {
   2806       1.66   thorpej 	pool_page_alloc, pool_page_free, 0,
   2807      1.117      yamt 	.pa_backingmapptr = &kmem_map,
   2808       1.66   thorpej };
   2809      1.112     bjh21 #endif
   2810       1.66   thorpej 
   2811       1.66   thorpej void	*pool_page_alloc_nointr(struct pool *, int);
   2812       1.66   thorpej void	pool_page_free_nointr(struct pool *, void *);
   2813       1.66   thorpej 
   2814      1.112     bjh21 #ifdef POOL_SUBPAGE
   2815      1.112     bjh21 struct pool_allocator pool_allocator_nointr_fullpage = {
   2816      1.112     bjh21 	pool_page_alloc_nointr, pool_page_free_nointr, 0,
   2817      1.117      yamt 	.pa_backingmapptr = &kernel_map,
   2818      1.112     bjh21 };
   2819      1.112     bjh21 #else
   2820       1.66   thorpej struct pool_allocator pool_allocator_nointr = {
   2821       1.66   thorpej 	pool_page_alloc_nointr, pool_page_free_nointr, 0,
   2822      1.117      yamt 	.pa_backingmapptr = &kernel_map,
   2823       1.66   thorpej };
   2824      1.112     bjh21 #endif
   2825       1.66   thorpej 
   2826       1.66   thorpej #ifdef POOL_SUBPAGE
   2827       1.66   thorpej void	*pool_subpage_alloc(struct pool *, int);
   2828       1.66   thorpej void	pool_subpage_free(struct pool *, void *);
   2829       1.66   thorpej 
   2830      1.112     bjh21 struct pool_allocator pool_allocator_kmem = {
   2831      1.112     bjh21 	pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
   2832      1.117      yamt 	.pa_backingmapptr = &kmem_map,
   2833      1.112     bjh21 };
   2834      1.112     bjh21 
   2835      1.112     bjh21 void	*pool_subpage_alloc_nointr(struct pool *, int);
   2836      1.112     bjh21 void	pool_subpage_free_nointr(struct pool *, void *);
   2837      1.112     bjh21 
   2838      1.112     bjh21 struct pool_allocator pool_allocator_nointr = {
   2839      1.112     bjh21 	pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
   2840      1.117      yamt 	.pa_backingmapptr = &kmem_map,
   2841       1.66   thorpej };
   2842       1.66   thorpej #endif /* POOL_SUBPAGE */
   2843       1.66   thorpej 
   2844      1.117      yamt static void *
   2845      1.117      yamt pool_allocator_alloc(struct pool *pp, int flags)
   2846       1.66   thorpej {
   2847      1.117      yamt 	struct pool_allocator *pa = pp->pr_alloc;
   2848       1.66   thorpej 	void *res;
   2849       1.66   thorpej 
   2850      1.117      yamt 	res = (*pa->pa_alloc)(pp, flags);
   2851      1.117      yamt 	if (res == NULL && (flags & PR_WAITOK) == 0) {
   2852       1.66   thorpej 		/*
   2853      1.117      yamt 		 * We only run the drain hook here if PR_NOWAIT.
   2854      1.117      yamt 		 * In other cases, the hook will be run in
   2855      1.117      yamt 		 * pool_reclaim().
   2856       1.66   thorpej 		 */
   2857      1.117      yamt 		if (pp->pr_drain_hook != NULL) {
   2858      1.117      yamt 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
   2859      1.117      yamt 			res = (*pa->pa_alloc)(pp, flags);
   2860       1.66   thorpej 		}
   2861      1.117      yamt 	}
   2862      1.117      yamt 	return res;
   2863       1.66   thorpej }
   2864       1.66   thorpej 
   2865      1.117      yamt static void
   2866       1.66   thorpej pool_allocator_free(struct pool *pp, void *v)
   2867       1.66   thorpej {
   2868       1.66   thorpej 	struct pool_allocator *pa = pp->pr_alloc;
   2869       1.66   thorpej 
   2870       1.66   thorpej 	(*pa->pa_free)(pp, v);
   2871       1.66   thorpej }
   2872       1.66   thorpej 
   2873       1.66   thorpej void *
   2874      1.124      yamt pool_page_alloc(struct pool *pp, int flags)
   2875       1.66   thorpej {
   2876      1.127   thorpej 	bool waitok = (flags & PR_WAITOK) ? true : false;
   2877       1.66   thorpej 
   2878      1.100      yamt 	return ((void *) uvm_km_alloc_poolpage_cache(kmem_map, waitok));
   2879       1.66   thorpej }
   2880       1.66   thorpej 
   2881       1.66   thorpej void
   2882      1.124      yamt pool_page_free(struct pool *pp, void *v)
   2883       1.66   thorpej {
   2884       1.66   thorpej 
   2885       1.98      yamt 	uvm_km_free_poolpage_cache(kmem_map, (vaddr_t) v);
   2886       1.98      yamt }
   2887       1.98      yamt 
   2888       1.98      yamt static void *
   2889      1.124      yamt pool_page_alloc_meta(struct pool *pp, int flags)
   2890       1.98      yamt {
   2891      1.127   thorpej 	bool waitok = (flags & PR_WAITOK) ? true : false;
   2892       1.98      yamt 
   2893      1.100      yamt 	return ((void *) uvm_km_alloc_poolpage(kmem_map, waitok));
   2894       1.98      yamt }
   2895       1.98      yamt 
   2896       1.98      yamt static void
   2897      1.124      yamt pool_page_free_meta(struct pool *pp, void *v)
   2898       1.98      yamt {
   2899       1.98      yamt 
   2900      1.100      yamt 	uvm_km_free_poolpage(kmem_map, (vaddr_t) v);
   2901       1.66   thorpej }
   2902       1.66   thorpej 
   2903       1.66   thorpej #ifdef POOL_SUBPAGE
   2904       1.66   thorpej /* Sub-page allocator, for machines with large hardware pages. */
   2905       1.66   thorpej void *
   2906       1.66   thorpej pool_subpage_alloc(struct pool *pp, int flags)
   2907       1.66   thorpej {
   2908      1.134        ad 	return pool_get(&psppool, flags);
   2909       1.66   thorpej }
   2910       1.66   thorpej 
   2911       1.66   thorpej void
   2912       1.66   thorpej pool_subpage_free(struct pool *pp, void *v)
   2913       1.66   thorpej {
   2914       1.66   thorpej 	pool_put(&psppool, v);
   2915       1.66   thorpej }
   2916       1.66   thorpej 
   2917       1.66   thorpej /* We don't provide a real nointr allocator.  Maybe later. */
   2918       1.66   thorpej void *
   2919      1.112     bjh21 pool_subpage_alloc_nointr(struct pool *pp, int flags)
   2920       1.66   thorpej {
   2921       1.66   thorpej 
   2922       1.66   thorpej 	return (pool_subpage_alloc(pp, flags));
   2923       1.66   thorpej }
   2924       1.66   thorpej 
   2925       1.66   thorpej void
   2926      1.112     bjh21 pool_subpage_free_nointr(struct pool *pp, void *v)
   2927       1.66   thorpej {
   2928       1.66   thorpej 
   2929       1.66   thorpej 	pool_subpage_free(pp, v);
   2930       1.66   thorpej }
   2931      1.112     bjh21 #endif /* POOL_SUBPAGE */
   2932       1.66   thorpej void *
   2933      1.124      yamt pool_page_alloc_nointr(struct pool *pp, int flags)
   2934       1.66   thorpej {
   2935      1.127   thorpej 	bool waitok = (flags & PR_WAITOK) ? true : false;
   2936       1.66   thorpej 
   2937      1.100      yamt 	return ((void *) uvm_km_alloc_poolpage_cache(kernel_map, waitok));
   2938       1.66   thorpej }
   2939       1.66   thorpej 
   2940       1.66   thorpej void
   2941      1.124      yamt pool_page_free_nointr(struct pool *pp, void *v)
   2942       1.66   thorpej {
   2943       1.66   thorpej 
   2944       1.98      yamt 	uvm_km_free_poolpage_cache(kernel_map, (vaddr_t) v);
   2945       1.66   thorpej }
   2946      1.141      yamt 
   2947      1.141      yamt #if defined(DDB)
   2948      1.141      yamt static bool
   2949      1.141      yamt pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
   2950      1.141      yamt {
   2951      1.141      yamt 
   2952      1.141      yamt 	return (uintptr_t)ph->ph_page <= addr &&
   2953      1.141      yamt 	    addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz;
   2954      1.141      yamt }
   2955      1.141      yamt 
   2956      1.143      yamt static bool
   2957      1.143      yamt pool_in_item(struct pool *pp, void *item, uintptr_t addr)
   2958      1.143      yamt {
   2959      1.143      yamt 
   2960      1.143      yamt 	return (uintptr_t)item <= addr && addr < (uintptr_t)item + pp->pr_size;
   2961      1.143      yamt }
   2962      1.143      yamt 
   2963      1.143      yamt static bool
   2964      1.143      yamt pool_in_cg(struct pool *pp, struct pool_cache_group *pcg, uintptr_t addr)
   2965      1.143      yamt {
   2966      1.143      yamt 	int i;
   2967      1.143      yamt 
   2968      1.143      yamt 	if (pcg == NULL) {
   2969      1.143      yamt 		return false;
   2970      1.143      yamt 	}
   2971      1.144      yamt 	for (i = 0; i < pcg->pcg_avail; i++) {
   2972      1.143      yamt 		if (pool_in_item(pp, pcg->pcg_objects[i].pcgo_va, addr)) {
   2973      1.143      yamt 			return true;
   2974      1.143      yamt 		}
   2975      1.143      yamt 	}
   2976      1.143      yamt 	return false;
   2977      1.143      yamt }
   2978      1.143      yamt 
   2979      1.143      yamt static bool
   2980      1.143      yamt pool_allocated(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
   2981      1.143      yamt {
   2982      1.143      yamt 
   2983      1.143      yamt 	if ((pp->pr_roflags & PR_NOTOUCH) != 0) {
   2984      1.143      yamt 		unsigned int idx = pr_item_notouch_index(pp, ph, (void *)addr);
   2985      1.143      yamt 		pool_item_bitmap_t *bitmap =
   2986      1.143      yamt 		    ph->ph_bitmap + (idx / BITMAP_SIZE);
   2987      1.143      yamt 		pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
   2988      1.143      yamt 
   2989      1.143      yamt 		return (*bitmap & mask) == 0;
   2990      1.143      yamt 	} else {
   2991      1.143      yamt 		struct pool_item *pi;
   2992      1.143      yamt 
   2993      1.143      yamt 		LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
   2994      1.143      yamt 			if (pool_in_item(pp, pi, addr)) {
   2995      1.143      yamt 				return false;
   2996      1.143      yamt 			}
   2997      1.143      yamt 		}
   2998      1.143      yamt 		return true;
   2999      1.143      yamt 	}
   3000      1.143      yamt }
   3001      1.143      yamt 
   3002      1.141      yamt void
   3003      1.141      yamt pool_whatis(uintptr_t addr, void (*pr)(const char *, ...))
   3004      1.141      yamt {
   3005      1.141      yamt 	struct pool *pp;
   3006      1.141      yamt 
   3007      1.145        ad 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   3008      1.141      yamt 		struct pool_item_header *ph;
   3009      1.141      yamt 		uintptr_t item;
   3010      1.143      yamt 		bool allocated = true;
   3011      1.143      yamt 		bool incache = false;
   3012      1.143      yamt 		bool incpucache = false;
   3013      1.143      yamt 		char cpucachestr[32];
   3014      1.141      yamt 
   3015      1.141      yamt 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
   3016      1.141      yamt 			LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
   3017      1.141      yamt 				if (pool_in_page(pp, ph, addr)) {
   3018      1.141      yamt 					goto found;
   3019      1.141      yamt 				}
   3020      1.141      yamt 			}
   3021      1.141      yamt 			LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
   3022      1.141      yamt 				if (pool_in_page(pp, ph, addr)) {
   3023      1.143      yamt 					allocated =
   3024      1.143      yamt 					    pool_allocated(pp, ph, addr);
   3025      1.143      yamt 					goto found;
   3026      1.143      yamt 				}
   3027      1.143      yamt 			}
   3028      1.143      yamt 			LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
   3029      1.143      yamt 				if (pool_in_page(pp, ph, addr)) {
   3030      1.143      yamt 					allocated = false;
   3031      1.141      yamt 					goto found;
   3032      1.141      yamt 				}
   3033      1.141      yamt 			}
   3034      1.141      yamt 			continue;
   3035      1.141      yamt 		} else {
   3036      1.141      yamt 			ph = pr_find_pagehead_noalign(pp, (void *)addr);
   3037      1.141      yamt 			if (ph == NULL || !pool_in_page(pp, ph, addr)) {
   3038      1.141      yamt 				continue;
   3039      1.141      yamt 			}
   3040      1.143      yamt 			allocated = pool_allocated(pp, ph, addr);
   3041      1.141      yamt 		}
   3042      1.141      yamt found:
   3043      1.143      yamt 		if (allocated && pp->pr_cache) {
   3044      1.143      yamt 			pool_cache_t pc = pp->pr_cache;
   3045      1.143      yamt 			struct pool_cache_group *pcg;
   3046      1.143      yamt 			int i;
   3047      1.143      yamt 
   3048      1.143      yamt 			for (pcg = pc->pc_fullgroups; pcg != NULL;
   3049      1.143      yamt 			    pcg = pcg->pcg_next) {
   3050      1.143      yamt 				if (pool_in_cg(pp, pcg, addr)) {
   3051      1.143      yamt 					incache = true;
   3052      1.143      yamt 					goto print;
   3053      1.143      yamt 				}
   3054      1.143      yamt 			}
   3055  1.182.4.1     rmind 			for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
   3056      1.143      yamt 				pool_cache_cpu_t *cc;
   3057      1.143      yamt 
   3058      1.143      yamt 				if ((cc = pc->pc_cpus[i]) == NULL) {
   3059      1.143      yamt 					continue;
   3060      1.143      yamt 				}
   3061      1.143      yamt 				if (pool_in_cg(pp, cc->cc_current, addr) ||
   3062      1.143      yamt 				    pool_in_cg(pp, cc->cc_previous, addr)) {
   3063      1.143      yamt 					struct cpu_info *ci =
   3064      1.170        ad 					    cpu_lookup(i);
   3065      1.143      yamt 
   3066      1.143      yamt 					incpucache = true;
   3067      1.143      yamt 					snprintf(cpucachestr,
   3068      1.143      yamt 					    sizeof(cpucachestr),
   3069      1.143      yamt 					    "cached by CPU %u",
   3070      1.153    martin 					    ci->ci_index);
   3071      1.143      yamt 					goto print;
   3072      1.143      yamt 				}
   3073      1.143      yamt 			}
   3074      1.143      yamt 		}
   3075      1.143      yamt print:
   3076      1.141      yamt 		item = (uintptr_t)ph->ph_page + ph->ph_off;
   3077      1.141      yamt 		item = item + rounddown(addr - item, pp->pr_size);
   3078      1.143      yamt 		(*pr)("%p is %p+%zu in POOL '%s' (%s)\n",
   3079      1.141      yamt 		    (void *)addr, item, (size_t)(addr - item),
   3080      1.143      yamt 		    pp->pr_wchan,
   3081      1.143      yamt 		    incpucache ? cpucachestr :
   3082      1.143      yamt 		    incache ? "cached" : allocated ? "allocated" : "free");
   3083      1.141      yamt 	}
   3084      1.141      yamt }
   3085      1.141      yamt #endif /* defined(DDB) */
   3086