Home | History | Annotate | Line # | Download | only in kern
subr_pool.c revision 1.188
      1  1.187  uebayasi /*	$NetBSD: subr_pool.c,v 1.188 2011/01/17 07:36:58 uebayasi Exp $	*/
      2    1.1        pk 
      3    1.1        pk /*-
      4  1.183        ad  * Copyright (c) 1997, 1999, 2000, 2002, 2007, 2008, 2010
      5  1.183        ad  *     The NetBSD Foundation, Inc.
      6    1.1        pk  * All rights reserved.
      7    1.1        pk  *
      8    1.1        pk  * This code is derived from software contributed to The NetBSD Foundation
      9   1.20   thorpej  * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
     10  1.134        ad  * Simulation Facility, NASA Ames Research Center, and by Andrew Doran.
     11    1.1        pk  *
     12    1.1        pk  * Redistribution and use in source and binary forms, with or without
     13    1.1        pk  * modification, are permitted provided that the following conditions
     14    1.1        pk  * are met:
     15    1.1        pk  * 1. Redistributions of source code must retain the above copyright
     16    1.1        pk  *    notice, this list of conditions and the following disclaimer.
     17    1.1        pk  * 2. Redistributions in binary form must reproduce the above copyright
     18    1.1        pk  *    notice, this list of conditions and the following disclaimer in the
     19    1.1        pk  *    documentation and/or other materials provided with the distribution.
     20    1.1        pk  *
     21    1.1        pk  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     22    1.1        pk  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     23    1.1        pk  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     24    1.1        pk  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     25    1.1        pk  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     26    1.1        pk  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     27    1.1        pk  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     28    1.1        pk  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     29    1.1        pk  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     30    1.1        pk  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     31    1.1        pk  * POSSIBILITY OF SUCH DAMAGE.
     32    1.1        pk  */
     33   1.64     lukem 
     34   1.64     lukem #include <sys/cdefs.h>
     35  1.187  uebayasi __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.188 2011/01/17 07:36:58 uebayasi Exp $");
     36   1.24    scottr 
     37  1.141      yamt #include "opt_ddb.h"
     38   1.25   thorpej #include "opt_pool.h"
     39   1.24    scottr #include "opt_poollog.h"
     40   1.28   thorpej #include "opt_lockdebug.h"
     41    1.1        pk 
     42    1.1        pk #include <sys/param.h>
     43    1.1        pk #include <sys/systm.h>
     44  1.135      yamt #include <sys/bitops.h>
     45    1.1        pk #include <sys/proc.h>
     46    1.1        pk #include <sys/errno.h>
     47    1.1        pk #include <sys/kernel.h>
     48    1.1        pk #include <sys/malloc.h>
     49    1.1        pk #include <sys/pool.h>
     50   1.20   thorpej #include <sys/syslog.h>
     51  1.125        ad #include <sys/debug.h>
     52  1.134        ad #include <sys/lockdebug.h>
     53  1.134        ad #include <sys/xcall.h>
     54  1.134        ad #include <sys/cpu.h>
     55  1.145        ad #include <sys/atomic.h>
     56    1.3        pk 
     57  1.187  uebayasi #include <uvm/uvm_extern.h>
     58  1.188  uebayasi #ifdef DIAGNOSTIC
     59  1.188  uebayasi #include <uvm/uvm_km.h>	/* uvm_km_va_drain */
     60  1.188  uebayasi #endif
     61    1.3        pk 
     62    1.1        pk /*
     63    1.1        pk  * Pool resource management utility.
     64    1.3        pk  *
     65   1.88       chs  * Memory is allocated in pages which are split into pieces according to
     66   1.88       chs  * the pool item size. Each page is kept on one of three lists in the
     67   1.88       chs  * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
     68   1.88       chs  * for empty, full and partially-full pages respectively. The individual
     69   1.88       chs  * pool items are on a linked list headed by `ph_itemlist' in each page
     70   1.88       chs  * header. The memory for building the page list is either taken from
     71   1.88       chs  * the allocated pages themselves (for small pool items) or taken from
     72   1.88       chs  * an internal pool of page headers (`phpool').
     73    1.1        pk  */
     74    1.1        pk 
     75    1.3        pk /* List of all pools */
     76  1.173     rmind static TAILQ_HEAD(, pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
     77  1.134        ad 
     78    1.3        pk /* Private pool for page header structures */
     79   1.97      yamt #define	PHPOOL_MAX	8
     80   1.97      yamt static struct pool phpool[PHPOOL_MAX];
     81  1.135      yamt #define	PHPOOL_FREELIST_NELEM(idx) \
     82  1.135      yamt 	(((idx) == 0) ? 0 : BITMAP_SIZE * (1 << (idx)))
     83    1.3        pk 
     84   1.62     bjh21 #ifdef POOL_SUBPAGE
     85   1.62     bjh21 /* Pool of subpages for use by normal pools. */
     86   1.62     bjh21 static struct pool psppool;
     87   1.62     bjh21 #endif
     88   1.62     bjh21 
     89  1.117      yamt static SLIST_HEAD(, pool_allocator) pa_deferinitq =
     90  1.117      yamt     SLIST_HEAD_INITIALIZER(pa_deferinitq);
     91  1.117      yamt 
     92   1.98      yamt static void *pool_page_alloc_meta(struct pool *, int);
     93   1.98      yamt static void pool_page_free_meta(struct pool *, void *);
     94   1.98      yamt 
     95   1.98      yamt /* allocator for pool metadata */
     96  1.134        ad struct pool_allocator pool_allocator_meta = {
     97  1.117      yamt 	pool_page_alloc_meta, pool_page_free_meta,
     98  1.117      yamt 	.pa_backingmapptr = &kmem_map,
     99   1.98      yamt };
    100   1.98      yamt 
    101    1.3        pk /* # of seconds to retain page after last use */
    102    1.3        pk int pool_inactive_time = 10;
    103    1.3        pk 
    104    1.3        pk /* Next candidate for drainage (see pool_drain()) */
    105   1.23   thorpej static struct pool	*drainpp;
    106   1.23   thorpej 
    107  1.134        ad /* This lock protects both pool_head and drainpp. */
    108  1.134        ad static kmutex_t pool_head_lock;
    109  1.134        ad static kcondvar_t pool_busy;
    110    1.3        pk 
    111  1.178      elad /* This lock protects initialization of a potentially shared pool allocator */
    112  1.178      elad static kmutex_t pool_allocator_lock;
    113  1.178      elad 
    114  1.135      yamt typedef uint32_t pool_item_bitmap_t;
    115  1.135      yamt #define	BITMAP_SIZE	(CHAR_BIT * sizeof(pool_item_bitmap_t))
    116  1.135      yamt #define	BITMAP_MASK	(BITMAP_SIZE - 1)
    117   1.99      yamt 
    118    1.3        pk struct pool_item_header {
    119    1.3        pk 	/* Page headers */
    120   1.88       chs 	LIST_ENTRY(pool_item_header)
    121    1.3        pk 				ph_pagelist;	/* pool page list */
    122   1.88       chs 	SPLAY_ENTRY(pool_item_header)
    123   1.88       chs 				ph_node;	/* Off-page page headers */
    124  1.128  christos 	void *			ph_page;	/* this page's address */
    125  1.151      yamt 	uint32_t		ph_time;	/* last referenced */
    126  1.135      yamt 	uint16_t		ph_nmissing;	/* # of chunks in use */
    127  1.141      yamt 	uint16_t		ph_off;		/* start offset in page */
    128   1.97      yamt 	union {
    129   1.97      yamt 		/* !PR_NOTOUCH */
    130   1.97      yamt 		struct {
    131  1.102       chs 			LIST_HEAD(, pool_item)
    132   1.97      yamt 				phu_itemlist;	/* chunk list for this page */
    133   1.97      yamt 		} phu_normal;
    134   1.97      yamt 		/* PR_NOTOUCH */
    135   1.97      yamt 		struct {
    136  1.141      yamt 			pool_item_bitmap_t phu_bitmap[1];
    137   1.97      yamt 		} phu_notouch;
    138   1.97      yamt 	} ph_u;
    139    1.3        pk };
    140   1.97      yamt #define	ph_itemlist	ph_u.phu_normal.phu_itemlist
    141  1.135      yamt #define	ph_bitmap	ph_u.phu_notouch.phu_bitmap
    142    1.3        pk 
    143    1.1        pk struct pool_item {
    144    1.3        pk #ifdef DIAGNOSTIC
    145   1.82   thorpej 	u_int pi_magic;
    146   1.33       chs #endif
    147  1.134        ad #define	PI_MAGIC 0xdeaddeadU
    148    1.3        pk 	/* Other entries use only this list entry */
    149  1.102       chs 	LIST_ENTRY(pool_item)	pi_list;
    150    1.3        pk };
    151    1.3        pk 
    152   1.53   thorpej #define	POOL_NEEDS_CATCHUP(pp)						\
    153   1.53   thorpej 	((pp)->pr_nitems < (pp)->pr_minitems)
    154   1.53   thorpej 
    155   1.43   thorpej /*
    156   1.43   thorpej  * Pool cache management.
    157   1.43   thorpej  *
    158   1.43   thorpej  * Pool caches provide a way for constructed objects to be cached by the
    159   1.43   thorpej  * pool subsystem.  This can lead to performance improvements by avoiding
    160   1.43   thorpej  * needless object construction/destruction; it is deferred until absolutely
    161   1.43   thorpej  * necessary.
    162   1.43   thorpej  *
    163  1.134        ad  * Caches are grouped into cache groups.  Each cache group references up
    164  1.134        ad  * to PCG_NUMOBJECTS constructed objects.  When a cache allocates an
    165  1.134        ad  * object from the pool, it calls the object's constructor and places it
    166  1.134        ad  * into a cache group.  When a cache group frees an object back to the
    167  1.134        ad  * pool, it first calls the object's destructor.  This allows the object
    168  1.134        ad  * to persist in constructed form while freed to the cache.
    169  1.134        ad  *
    170  1.134        ad  * The pool references each cache, so that when a pool is drained by the
    171  1.134        ad  * pagedaemon, it can drain each individual cache as well.  Each time a
    172  1.134        ad  * cache is drained, the most idle cache group is freed to the pool in
    173  1.134        ad  * its entirety.
    174   1.43   thorpej  *
    175   1.43   thorpej  * Pool caches are layed on top of pools.  By layering them, we can avoid
    176   1.43   thorpej  * the complexity of cache management for pools which would not benefit
    177   1.43   thorpej  * from it.
    178   1.43   thorpej  */
    179   1.43   thorpej 
    180  1.142        ad static struct pool pcg_normal_pool;
    181  1.142        ad static struct pool pcg_large_pool;
    182  1.134        ad static struct pool cache_pool;
    183  1.134        ad static struct pool cache_cpu_pool;
    184    1.3        pk 
    185  1.145        ad /* List of all caches. */
    186  1.145        ad TAILQ_HEAD(,pool_cache) pool_cache_head =
    187  1.145        ad     TAILQ_HEAD_INITIALIZER(pool_cache_head);
    188  1.145        ad 
    189  1.162        ad int pool_cache_disable;		/* global disable for caching */
    190  1.169      yamt static const pcg_t pcg_dummy;	/* zero sized: always empty, yet always full */
    191  1.145        ad 
    192  1.162        ad static bool	pool_cache_put_slow(pool_cache_cpu_t *, int,
    193  1.162        ad 				    void *);
    194  1.162        ad static bool	pool_cache_get_slow(pool_cache_cpu_t *, int,
    195  1.162        ad 				    void **, paddr_t *, int);
    196  1.134        ad static void	pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
    197  1.134        ad static void	pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
    198  1.175       jym static void	pool_cache_invalidate_cpu(pool_cache_t, u_int);
    199  1.134        ad static void	pool_cache_xcall(pool_cache_t);
    200    1.3        pk 
    201   1.42   thorpej static int	pool_catchup(struct pool *);
    202  1.128  christos static void	pool_prime_page(struct pool *, void *,
    203   1.55   thorpej 		    struct pool_item_header *);
    204   1.88       chs static void	pool_update_curpage(struct pool *);
    205   1.66   thorpej 
    206  1.113      yamt static int	pool_grow(struct pool *, int);
    207  1.117      yamt static void	*pool_allocator_alloc(struct pool *, int);
    208  1.117      yamt static void	pool_allocator_free(struct pool *, void *);
    209    1.3        pk 
    210   1.97      yamt static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
    211   1.88       chs 	void (*)(const char *, ...));
    212   1.42   thorpej static void pool_print1(struct pool *, const char *,
    213   1.42   thorpej 	void (*)(const char *, ...));
    214    1.3        pk 
    215   1.88       chs static int pool_chk_page(struct pool *, const char *,
    216   1.88       chs 			 struct pool_item_header *);
    217   1.88       chs 
    218    1.3        pk /*
    219   1.52   thorpej  * Pool log entry. An array of these is allocated in pool_init().
    220    1.3        pk  */
    221    1.3        pk struct pool_log {
    222    1.3        pk 	const char	*pl_file;
    223    1.3        pk 	long		pl_line;
    224    1.3        pk 	int		pl_action;
    225   1.25   thorpej #define	PRLOG_GET	1
    226   1.25   thorpej #define	PRLOG_PUT	2
    227    1.3        pk 	void		*pl_addr;
    228    1.1        pk };
    229    1.1        pk 
    230   1.86      matt #ifdef POOL_DIAGNOSTIC
    231    1.3        pk /* Number of entries in pool log buffers */
    232   1.17   thorpej #ifndef POOL_LOGSIZE
    233   1.17   thorpej #define	POOL_LOGSIZE	10
    234   1.17   thorpej #endif
    235   1.17   thorpej 
    236   1.17   thorpej int pool_logsize = POOL_LOGSIZE;
    237    1.1        pk 
    238  1.110     perry static inline void
    239   1.42   thorpej pr_log(struct pool *pp, void *v, int action, const char *file, long line)
    240    1.3        pk {
    241  1.179   mlelstv 	int n;
    242    1.3        pk 	struct pool_log *pl;
    243    1.3        pk 
    244   1.20   thorpej 	if ((pp->pr_roflags & PR_LOGGING) == 0)
    245    1.3        pk 		return;
    246    1.3        pk 
    247  1.179   mlelstv 	if (pp->pr_log == NULL) {
    248  1.179   mlelstv 		if (kmem_map != NULL)
    249  1.179   mlelstv 			pp->pr_log = malloc(
    250  1.179   mlelstv 				pool_logsize * sizeof(struct pool_log),
    251  1.179   mlelstv 				M_TEMP, M_NOWAIT | M_ZERO);
    252  1.179   mlelstv 		if (pp->pr_log == NULL)
    253  1.179   mlelstv 			return;
    254  1.179   mlelstv 		pp->pr_curlogentry = 0;
    255  1.179   mlelstv 		pp->pr_logsize = pool_logsize;
    256  1.179   mlelstv 	}
    257  1.179   mlelstv 
    258    1.3        pk 	/*
    259    1.3        pk 	 * Fill in the current entry. Wrap around and overwrite
    260    1.3        pk 	 * the oldest entry if necessary.
    261    1.3        pk 	 */
    262  1.179   mlelstv 	n = pp->pr_curlogentry;
    263    1.3        pk 	pl = &pp->pr_log[n];
    264    1.3        pk 	pl->pl_file = file;
    265    1.3        pk 	pl->pl_line = line;
    266    1.3        pk 	pl->pl_action = action;
    267    1.3        pk 	pl->pl_addr = v;
    268    1.3        pk 	if (++n >= pp->pr_logsize)
    269    1.3        pk 		n = 0;
    270    1.3        pk 	pp->pr_curlogentry = n;
    271    1.3        pk }
    272    1.3        pk 
    273    1.3        pk static void
    274   1.42   thorpej pr_printlog(struct pool *pp, struct pool_item *pi,
    275   1.42   thorpej     void (*pr)(const char *, ...))
    276    1.3        pk {
    277    1.3        pk 	int i = pp->pr_logsize;
    278    1.3        pk 	int n = pp->pr_curlogentry;
    279    1.3        pk 
    280  1.179   mlelstv 	if (pp->pr_log == NULL)
    281    1.3        pk 		return;
    282    1.3        pk 
    283    1.3        pk 	/*
    284    1.3        pk 	 * Print all entries in this pool's log.
    285    1.3        pk 	 */
    286    1.3        pk 	while (i-- > 0) {
    287    1.3        pk 		struct pool_log *pl = &pp->pr_log[n];
    288    1.3        pk 		if (pl->pl_action != 0) {
    289   1.25   thorpej 			if (pi == NULL || pi == pl->pl_addr) {
    290   1.25   thorpej 				(*pr)("\tlog entry %d:\n", i);
    291   1.25   thorpej 				(*pr)("\t\taction = %s, addr = %p\n",
    292   1.25   thorpej 				    pl->pl_action == PRLOG_GET ? "get" : "put",
    293   1.25   thorpej 				    pl->pl_addr);
    294   1.25   thorpej 				(*pr)("\t\tfile: %s at line %lu\n",
    295   1.25   thorpej 				    pl->pl_file, pl->pl_line);
    296   1.25   thorpej 			}
    297    1.3        pk 		}
    298    1.3        pk 		if (++n >= pp->pr_logsize)
    299    1.3        pk 			n = 0;
    300    1.3        pk 	}
    301    1.3        pk }
    302   1.25   thorpej 
    303  1.110     perry static inline void
    304   1.42   thorpej pr_enter(struct pool *pp, const char *file, long line)
    305   1.25   thorpej {
    306   1.25   thorpej 
    307   1.34   thorpej 	if (__predict_false(pp->pr_entered_file != NULL)) {
    308   1.25   thorpej 		printf("pool %s: reentrancy at file %s line %ld\n",
    309   1.25   thorpej 		    pp->pr_wchan, file, line);
    310   1.25   thorpej 		printf("         previous entry at file %s line %ld\n",
    311   1.25   thorpej 		    pp->pr_entered_file, pp->pr_entered_line);
    312   1.25   thorpej 		panic("pr_enter");
    313   1.25   thorpej 	}
    314   1.25   thorpej 
    315   1.25   thorpej 	pp->pr_entered_file = file;
    316   1.25   thorpej 	pp->pr_entered_line = line;
    317   1.25   thorpej }
    318   1.25   thorpej 
    319  1.110     perry static inline void
    320   1.42   thorpej pr_leave(struct pool *pp)
    321   1.25   thorpej {
    322   1.25   thorpej 
    323   1.34   thorpej 	if (__predict_false(pp->pr_entered_file == NULL)) {
    324   1.25   thorpej 		printf("pool %s not entered?\n", pp->pr_wchan);
    325   1.25   thorpej 		panic("pr_leave");
    326   1.25   thorpej 	}
    327   1.25   thorpej 
    328   1.25   thorpej 	pp->pr_entered_file = NULL;
    329   1.25   thorpej 	pp->pr_entered_line = 0;
    330   1.25   thorpej }
    331   1.25   thorpej 
    332  1.110     perry static inline void
    333   1.42   thorpej pr_enter_check(struct pool *pp, void (*pr)(const char *, ...))
    334   1.25   thorpej {
    335   1.25   thorpej 
    336   1.25   thorpej 	if (pp->pr_entered_file != NULL)
    337   1.25   thorpej 		(*pr)("\n\tcurrently entered from file %s line %ld\n",
    338   1.25   thorpej 		    pp->pr_entered_file, pp->pr_entered_line);
    339   1.25   thorpej }
    340    1.3        pk #else
    341   1.25   thorpej #define	pr_log(pp, v, action, file, line)
    342   1.25   thorpej #define	pr_printlog(pp, pi, pr)
    343   1.25   thorpej #define	pr_enter(pp, file, line)
    344   1.25   thorpej #define	pr_leave(pp)
    345   1.25   thorpej #define	pr_enter_check(pp, pr)
    346   1.59   thorpej #endif /* POOL_DIAGNOSTIC */
    347    1.3        pk 
    348  1.135      yamt static inline unsigned int
    349   1.97      yamt pr_item_notouch_index(const struct pool *pp, const struct pool_item_header *ph,
    350   1.97      yamt     const void *v)
    351   1.97      yamt {
    352   1.97      yamt 	const char *cp = v;
    353  1.135      yamt 	unsigned int idx;
    354   1.97      yamt 
    355   1.97      yamt 	KASSERT(pp->pr_roflags & PR_NOTOUCH);
    356  1.128  christos 	idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
    357   1.97      yamt 	KASSERT(idx < pp->pr_itemsperpage);
    358   1.97      yamt 	return idx;
    359   1.97      yamt }
    360   1.97      yamt 
    361  1.110     perry static inline void
    362   1.97      yamt pr_item_notouch_put(const struct pool *pp, struct pool_item_header *ph,
    363   1.97      yamt     void *obj)
    364   1.97      yamt {
    365  1.135      yamt 	unsigned int idx = pr_item_notouch_index(pp, ph, obj);
    366  1.135      yamt 	pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE);
    367  1.135      yamt 	pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
    368   1.97      yamt 
    369  1.135      yamt 	KASSERT((*bitmap & mask) == 0);
    370  1.135      yamt 	*bitmap |= mask;
    371   1.97      yamt }
    372   1.97      yamt 
    373  1.110     perry static inline void *
    374   1.97      yamt pr_item_notouch_get(const struct pool *pp, struct pool_item_header *ph)
    375   1.97      yamt {
    376  1.135      yamt 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
    377  1.135      yamt 	unsigned int idx;
    378  1.135      yamt 	int i;
    379   1.97      yamt 
    380  1.135      yamt 	for (i = 0; ; i++) {
    381  1.135      yamt 		int bit;
    382   1.97      yamt 
    383  1.135      yamt 		KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage);
    384  1.135      yamt 		bit = ffs32(bitmap[i]);
    385  1.135      yamt 		if (bit) {
    386  1.135      yamt 			pool_item_bitmap_t mask;
    387  1.135      yamt 
    388  1.135      yamt 			bit--;
    389  1.135      yamt 			idx = (i * BITMAP_SIZE) + bit;
    390  1.135      yamt 			mask = 1 << bit;
    391  1.135      yamt 			KASSERT((bitmap[i] & mask) != 0);
    392  1.135      yamt 			bitmap[i] &= ~mask;
    393  1.135      yamt 			break;
    394  1.135      yamt 		}
    395  1.135      yamt 	}
    396  1.135      yamt 	KASSERT(idx < pp->pr_itemsperpage);
    397  1.128  christos 	return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
    398   1.97      yamt }
    399   1.97      yamt 
    400  1.135      yamt static inline void
    401  1.141      yamt pr_item_notouch_init(const struct pool *pp, struct pool_item_header *ph)
    402  1.135      yamt {
    403  1.135      yamt 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
    404  1.135      yamt 	const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE);
    405  1.135      yamt 	int i;
    406  1.135      yamt 
    407  1.135      yamt 	for (i = 0; i < n; i++) {
    408  1.135      yamt 		bitmap[i] = (pool_item_bitmap_t)-1;
    409  1.135      yamt 	}
    410  1.135      yamt }
    411  1.135      yamt 
    412  1.110     perry static inline int
    413   1.88       chs phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
    414   1.88       chs {
    415  1.121      yamt 
    416  1.121      yamt 	/*
    417  1.121      yamt 	 * we consider pool_item_header with smaller ph_page bigger.
    418  1.121      yamt 	 * (this unnatural ordering is for the benefit of pr_find_pagehead.)
    419  1.121      yamt 	 */
    420  1.121      yamt 
    421   1.88       chs 	if (a->ph_page < b->ph_page)
    422  1.121      yamt 		return (1);
    423  1.121      yamt 	else if (a->ph_page > b->ph_page)
    424   1.88       chs 		return (-1);
    425   1.88       chs 	else
    426   1.88       chs 		return (0);
    427   1.88       chs }
    428   1.88       chs 
    429   1.88       chs SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
    430   1.88       chs SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
    431   1.88       chs 
    432  1.141      yamt static inline struct pool_item_header *
    433  1.141      yamt pr_find_pagehead_noalign(struct pool *pp, void *v)
    434  1.141      yamt {
    435  1.141      yamt 	struct pool_item_header *ph, tmp;
    436  1.141      yamt 
    437  1.141      yamt 	tmp.ph_page = (void *)(uintptr_t)v;
    438  1.141      yamt 	ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
    439  1.141      yamt 	if (ph == NULL) {
    440  1.141      yamt 		ph = SPLAY_ROOT(&pp->pr_phtree);
    441  1.141      yamt 		if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
    442  1.141      yamt 			ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
    443  1.141      yamt 		}
    444  1.141      yamt 		KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
    445  1.141      yamt 	}
    446  1.141      yamt 
    447  1.141      yamt 	return ph;
    448  1.141      yamt }
    449  1.141      yamt 
    450    1.3        pk /*
    451  1.121      yamt  * Return the pool page header based on item address.
    452    1.3        pk  */
    453  1.110     perry static inline struct pool_item_header *
    454  1.121      yamt pr_find_pagehead(struct pool *pp, void *v)
    455    1.3        pk {
    456   1.88       chs 	struct pool_item_header *ph, tmp;
    457    1.3        pk 
    458  1.121      yamt 	if ((pp->pr_roflags & PR_NOALIGN) != 0) {
    459  1.141      yamt 		ph = pr_find_pagehead_noalign(pp, v);
    460  1.121      yamt 	} else {
    461  1.128  christos 		void *page =
    462  1.128  christos 		    (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask);
    463  1.121      yamt 
    464  1.121      yamt 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
    465  1.128  christos 			ph = (struct pool_item_header *)((char *)page + pp->pr_phoffset);
    466  1.121      yamt 		} else {
    467  1.121      yamt 			tmp.ph_page = page;
    468  1.121      yamt 			ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
    469  1.121      yamt 		}
    470  1.121      yamt 	}
    471    1.3        pk 
    472  1.121      yamt 	KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
    473  1.128  christos 	    ((char *)ph->ph_page <= (char *)v &&
    474  1.128  christos 	    (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
    475   1.88       chs 	return ph;
    476    1.3        pk }
    477    1.3        pk 
    478  1.101   thorpej static void
    479  1.101   thorpej pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
    480  1.101   thorpej {
    481  1.101   thorpej 	struct pool_item_header *ph;
    482  1.101   thorpej 
    483  1.101   thorpej 	while ((ph = LIST_FIRST(pq)) != NULL) {
    484  1.101   thorpej 		LIST_REMOVE(ph, ph_pagelist);
    485  1.101   thorpej 		pool_allocator_free(pp, ph->ph_page);
    486  1.134        ad 		if ((pp->pr_roflags & PR_PHINPAGE) == 0)
    487  1.101   thorpej 			pool_put(pp->pr_phpool, ph);
    488  1.101   thorpej 	}
    489  1.101   thorpej }
    490  1.101   thorpej 
    491    1.3        pk /*
    492    1.3        pk  * Remove a page from the pool.
    493    1.3        pk  */
    494  1.110     perry static inline void
    495   1.61       chs pr_rmpage(struct pool *pp, struct pool_item_header *ph,
    496   1.61       chs      struct pool_pagelist *pq)
    497    1.3        pk {
    498    1.3        pk 
    499  1.134        ad 	KASSERT(mutex_owned(&pp->pr_lock));
    500   1.91      yamt 
    501    1.3        pk 	/*
    502    1.7   thorpej 	 * If the page was idle, decrement the idle page count.
    503    1.3        pk 	 */
    504    1.6   thorpej 	if (ph->ph_nmissing == 0) {
    505    1.6   thorpej #ifdef DIAGNOSTIC
    506    1.6   thorpej 		if (pp->pr_nidle == 0)
    507    1.6   thorpej 			panic("pr_rmpage: nidle inconsistent");
    508   1.20   thorpej 		if (pp->pr_nitems < pp->pr_itemsperpage)
    509   1.20   thorpej 			panic("pr_rmpage: nitems inconsistent");
    510    1.6   thorpej #endif
    511    1.6   thorpej 		pp->pr_nidle--;
    512    1.6   thorpej 	}
    513    1.7   thorpej 
    514   1.20   thorpej 	pp->pr_nitems -= pp->pr_itemsperpage;
    515   1.20   thorpej 
    516    1.7   thorpej 	/*
    517  1.101   thorpej 	 * Unlink the page from the pool and queue it for release.
    518    1.7   thorpej 	 */
    519   1.88       chs 	LIST_REMOVE(ph, ph_pagelist);
    520   1.91      yamt 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
    521   1.91      yamt 		SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
    522  1.101   thorpej 	LIST_INSERT_HEAD(pq, ph, ph_pagelist);
    523  1.101   thorpej 
    524    1.7   thorpej 	pp->pr_npages--;
    525    1.7   thorpej 	pp->pr_npagefree++;
    526    1.6   thorpej 
    527   1.88       chs 	pool_update_curpage(pp);
    528    1.3        pk }
    529    1.3        pk 
    530  1.126   thorpej static bool
    531  1.117      yamt pa_starved_p(struct pool_allocator *pa)
    532  1.117      yamt {
    533  1.117      yamt 
    534  1.117      yamt 	if (pa->pa_backingmap != NULL) {
    535  1.117      yamt 		return vm_map_starved_p(pa->pa_backingmap);
    536  1.117      yamt 	}
    537  1.127   thorpej 	return false;
    538  1.117      yamt }
    539  1.117      yamt 
    540  1.117      yamt static int
    541  1.124      yamt pool_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
    542  1.117      yamt {
    543  1.117      yamt 	struct pool *pp = obj;
    544  1.117      yamt 	struct pool_allocator *pa = pp->pr_alloc;
    545  1.117      yamt 
    546  1.117      yamt 	KASSERT(&pp->pr_reclaimerentry == ce);
    547  1.117      yamt 	pool_reclaim(pp);
    548  1.117      yamt 	if (!pa_starved_p(pa)) {
    549  1.117      yamt 		return CALLBACK_CHAIN_ABORT;
    550  1.117      yamt 	}
    551  1.117      yamt 	return CALLBACK_CHAIN_CONTINUE;
    552  1.117      yamt }
    553  1.117      yamt 
    554  1.117      yamt static void
    555  1.117      yamt pool_reclaim_register(struct pool *pp)
    556  1.117      yamt {
    557  1.117      yamt 	struct vm_map *map = pp->pr_alloc->pa_backingmap;
    558  1.117      yamt 	int s;
    559  1.117      yamt 
    560  1.117      yamt 	if (map == NULL) {
    561  1.117      yamt 		return;
    562  1.117      yamt 	}
    563  1.117      yamt 
    564  1.117      yamt 	s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
    565  1.117      yamt 	callback_register(&vm_map_to_kernel(map)->vmk_reclaim_callback,
    566  1.117      yamt 	    &pp->pr_reclaimerentry, pp, pool_reclaim_callback);
    567  1.117      yamt 	splx(s);
    568  1.184     rmind 
    569  1.184     rmind #ifdef DIAGNOSTIC
    570  1.184     rmind 	/* Diagnostic drain attempt. */
    571  1.184     rmind 	uvm_km_va_drain(map, 0);
    572  1.184     rmind #endif
    573  1.117      yamt }
    574  1.117      yamt 
    575  1.117      yamt static void
    576  1.117      yamt pool_reclaim_unregister(struct pool *pp)
    577  1.117      yamt {
    578  1.117      yamt 	struct vm_map *map = pp->pr_alloc->pa_backingmap;
    579  1.117      yamt 	int s;
    580  1.117      yamt 
    581  1.117      yamt 	if (map == NULL) {
    582  1.117      yamt 		return;
    583  1.117      yamt 	}
    584  1.117      yamt 
    585  1.117      yamt 	s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
    586  1.117      yamt 	callback_unregister(&vm_map_to_kernel(map)->vmk_reclaim_callback,
    587  1.117      yamt 	    &pp->pr_reclaimerentry);
    588  1.117      yamt 	splx(s);
    589  1.117      yamt }
    590  1.117      yamt 
    591  1.117      yamt static void
    592  1.117      yamt pa_reclaim_register(struct pool_allocator *pa)
    593  1.117      yamt {
    594  1.117      yamt 	struct vm_map *map = *pa->pa_backingmapptr;
    595  1.117      yamt 	struct pool *pp;
    596  1.117      yamt 
    597  1.117      yamt 	KASSERT(pa->pa_backingmap == NULL);
    598  1.117      yamt 	if (map == NULL) {
    599  1.117      yamt 		SLIST_INSERT_HEAD(&pa_deferinitq, pa, pa_q);
    600  1.117      yamt 		return;
    601  1.117      yamt 	}
    602  1.117      yamt 	pa->pa_backingmap = map;
    603  1.117      yamt 	TAILQ_FOREACH(pp, &pa->pa_list, pr_alloc_list) {
    604  1.117      yamt 		pool_reclaim_register(pp);
    605  1.117      yamt 	}
    606  1.117      yamt }
    607  1.117      yamt 
    608    1.3        pk /*
    609   1.94    simonb  * Initialize all the pools listed in the "pools" link set.
    610   1.94    simonb  */
    611   1.94    simonb void
    612  1.117      yamt pool_subsystem_init(void)
    613   1.94    simonb {
    614  1.117      yamt 	struct pool_allocator *pa;
    615   1.94    simonb 
    616  1.134        ad 	mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
    617  1.179   mlelstv 	mutex_init(&pool_allocator_lock, MUTEX_DEFAULT, IPL_NONE);
    618  1.134        ad 	cv_init(&pool_busy, "poolbusy");
    619  1.134        ad 
    620  1.117      yamt 	while ((pa = SLIST_FIRST(&pa_deferinitq)) != NULL) {
    621  1.117      yamt 		KASSERT(pa->pa_backingmapptr != NULL);
    622  1.117      yamt 		KASSERT(*pa->pa_backingmapptr != NULL);
    623  1.117      yamt 		SLIST_REMOVE_HEAD(&pa_deferinitq, pa_q);
    624  1.117      yamt 		pa_reclaim_register(pa);
    625  1.117      yamt 	}
    626  1.134        ad 
    627  1.156        ad 	pool_init(&cache_pool, sizeof(struct pool_cache), coherency_unit,
    628  1.134        ad 	    0, 0, "pcache", &pool_allocator_nointr, IPL_NONE);
    629  1.134        ad 
    630  1.156        ad 	pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), coherency_unit,
    631  1.134        ad 	    0, 0, "pcachecpu", &pool_allocator_nointr, IPL_NONE);
    632   1.94    simonb }
    633   1.94    simonb 
    634   1.94    simonb /*
    635    1.3        pk  * Initialize the given pool resource structure.
    636    1.3        pk  *
    637    1.3        pk  * We export this routine to allow other kernel parts to declare
    638    1.3        pk  * static pools that must be initialized before malloc() is available.
    639    1.3        pk  */
    640    1.3        pk void
    641   1.42   thorpej pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
    642  1.129        ad     const char *wchan, struct pool_allocator *palloc, int ipl)
    643    1.3        pk {
    644  1.116    simonb 	struct pool *pp1;
    645   1.92     enami 	size_t trysize, phsize;
    646  1.134        ad 	int off, slack;
    647    1.3        pk 
    648  1.116    simonb #ifdef DEBUG
    649  1.116    simonb 	/*
    650  1.116    simonb 	 * Check that the pool hasn't already been initialised and
    651  1.116    simonb 	 * added to the list of all pools.
    652  1.116    simonb 	 */
    653  1.145        ad 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
    654  1.116    simonb 		if (pp == pp1)
    655  1.116    simonb 			panic("pool_init: pool %s already initialised",
    656  1.116    simonb 			    wchan);
    657  1.116    simonb 	}
    658  1.116    simonb #endif
    659  1.116    simonb 
    660   1.25   thorpej #ifdef POOL_DIAGNOSTIC
    661   1.25   thorpej 	/*
    662   1.25   thorpej 	 * Always log if POOL_DIAGNOSTIC is defined.
    663   1.25   thorpej 	 */
    664   1.25   thorpej 	if (pool_logsize != 0)
    665   1.25   thorpej 		flags |= PR_LOGGING;
    666   1.25   thorpej #endif
    667   1.25   thorpej 
    668   1.66   thorpej 	if (palloc == NULL)
    669   1.66   thorpej 		palloc = &pool_allocator_kmem;
    670  1.112     bjh21 #ifdef POOL_SUBPAGE
    671  1.112     bjh21 	if (size > palloc->pa_pagesz) {
    672  1.112     bjh21 		if (palloc == &pool_allocator_kmem)
    673  1.112     bjh21 			palloc = &pool_allocator_kmem_fullpage;
    674  1.112     bjh21 		else if (palloc == &pool_allocator_nointr)
    675  1.112     bjh21 			palloc = &pool_allocator_nointr_fullpage;
    676  1.112     bjh21 	}
    677   1.66   thorpej #endif /* POOL_SUBPAGE */
    678  1.180   mlelstv 	if (!cold)
    679  1.180   mlelstv 		mutex_enter(&pool_allocator_lock);
    680  1.178      elad 	if (palloc->pa_refcnt++ == 0) {
    681  1.112     bjh21 		if (palloc->pa_pagesz == 0)
    682   1.66   thorpej 			palloc->pa_pagesz = PAGE_SIZE;
    683   1.66   thorpej 
    684   1.66   thorpej 		TAILQ_INIT(&palloc->pa_list);
    685   1.66   thorpej 
    686  1.134        ad 		mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
    687   1.66   thorpej 		palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
    688   1.66   thorpej 		palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
    689  1.117      yamt 
    690  1.117      yamt 		if (palloc->pa_backingmapptr != NULL) {
    691  1.117      yamt 			pa_reclaim_register(palloc);
    692  1.117      yamt 		}
    693    1.4   thorpej 	}
    694  1.180   mlelstv 	if (!cold)
    695  1.180   mlelstv 		mutex_exit(&pool_allocator_lock);
    696    1.3        pk 
    697    1.3        pk 	if (align == 0)
    698    1.3        pk 		align = ALIGN(1);
    699   1.14   thorpej 
    700  1.120      yamt 	if ((flags & PR_NOTOUCH) == 0 && size < sizeof(struct pool_item))
    701   1.14   thorpej 		size = sizeof(struct pool_item);
    702    1.3        pk 
    703   1.78   thorpej 	size = roundup(size, align);
    704   1.66   thorpej #ifdef DIAGNOSTIC
    705   1.66   thorpej 	if (size > palloc->pa_pagesz)
    706  1.121      yamt 		panic("pool_init: pool item size (%zu) too large", size);
    707   1.66   thorpej #endif
    708   1.35        pk 
    709    1.3        pk 	/*
    710    1.3        pk 	 * Initialize the pool structure.
    711    1.3        pk 	 */
    712   1.88       chs 	LIST_INIT(&pp->pr_emptypages);
    713   1.88       chs 	LIST_INIT(&pp->pr_fullpages);
    714   1.88       chs 	LIST_INIT(&pp->pr_partpages);
    715  1.134        ad 	pp->pr_cache = NULL;
    716    1.3        pk 	pp->pr_curpage = NULL;
    717    1.3        pk 	pp->pr_npages = 0;
    718    1.3        pk 	pp->pr_minitems = 0;
    719    1.3        pk 	pp->pr_minpages = 0;
    720    1.3        pk 	pp->pr_maxpages = UINT_MAX;
    721   1.20   thorpej 	pp->pr_roflags = flags;
    722   1.20   thorpej 	pp->pr_flags = 0;
    723   1.35        pk 	pp->pr_size = size;
    724    1.3        pk 	pp->pr_align = align;
    725    1.3        pk 	pp->pr_wchan = wchan;
    726   1.66   thorpej 	pp->pr_alloc = palloc;
    727   1.20   thorpej 	pp->pr_nitems = 0;
    728   1.20   thorpej 	pp->pr_nout = 0;
    729   1.20   thorpej 	pp->pr_hardlimit = UINT_MAX;
    730   1.20   thorpej 	pp->pr_hardlimit_warning = NULL;
    731   1.31   thorpej 	pp->pr_hardlimit_ratecap.tv_sec = 0;
    732   1.31   thorpej 	pp->pr_hardlimit_ratecap.tv_usec = 0;
    733   1.31   thorpej 	pp->pr_hardlimit_warning_last.tv_sec = 0;
    734   1.31   thorpej 	pp->pr_hardlimit_warning_last.tv_usec = 0;
    735   1.68   thorpej 	pp->pr_drain_hook = NULL;
    736   1.68   thorpej 	pp->pr_drain_hook_arg = NULL;
    737  1.125        ad 	pp->pr_freecheck = NULL;
    738    1.3        pk 
    739    1.3        pk 	/*
    740    1.3        pk 	 * Decide whether to put the page header off page to avoid
    741   1.92     enami 	 * wasting too large a part of the page or too big item.
    742   1.92     enami 	 * Off-page page headers go on a hash table, so we can match
    743   1.92     enami 	 * a returned item with its header based on the page address.
    744   1.92     enami 	 * We use 1/16 of the page size and about 8 times of the item
    745   1.92     enami 	 * size as the threshold (XXX: tune)
    746   1.92     enami 	 *
    747   1.92     enami 	 * However, we'll put the header into the page if we can put
    748   1.92     enami 	 * it without wasting any items.
    749   1.92     enami 	 *
    750   1.92     enami 	 * Silently enforce `0 <= ioff < align'.
    751    1.3        pk 	 */
    752   1.92     enami 	pp->pr_itemoffset = ioff %= align;
    753   1.92     enami 	/* See the comment below about reserved bytes. */
    754   1.92     enami 	trysize = palloc->pa_pagesz - ((align - ioff) % align);
    755   1.92     enami 	phsize = ALIGN(sizeof(struct pool_item_header));
    756  1.121      yamt 	if ((pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) == 0 &&
    757   1.97      yamt 	    (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) ||
    758   1.97      yamt 	    trysize / pp->pr_size == (trysize - phsize) / pp->pr_size)) {
    759    1.3        pk 		/* Use the end of the page for the page header */
    760   1.20   thorpej 		pp->pr_roflags |= PR_PHINPAGE;
    761   1.92     enami 		pp->pr_phoffset = off = palloc->pa_pagesz - phsize;
    762    1.2        pk 	} else {
    763    1.3        pk 		/* The page header will be taken from our page header pool */
    764    1.3        pk 		pp->pr_phoffset = 0;
    765   1.66   thorpej 		off = palloc->pa_pagesz;
    766   1.88       chs 		SPLAY_INIT(&pp->pr_phtree);
    767    1.2        pk 	}
    768    1.1        pk 
    769    1.3        pk 	/*
    770    1.3        pk 	 * Alignment is to take place at `ioff' within the item. This means
    771    1.3        pk 	 * we must reserve up to `align - 1' bytes on the page to allow
    772    1.3        pk 	 * appropriate positioning of each item.
    773    1.3        pk 	 */
    774    1.3        pk 	pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
    775   1.43   thorpej 	KASSERT(pp->pr_itemsperpage != 0);
    776   1.97      yamt 	if ((pp->pr_roflags & PR_NOTOUCH)) {
    777   1.97      yamt 		int idx;
    778   1.97      yamt 
    779   1.97      yamt 		for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
    780   1.97      yamt 		    idx++) {
    781   1.97      yamt 			/* nothing */
    782   1.97      yamt 		}
    783   1.97      yamt 		if (idx >= PHPOOL_MAX) {
    784   1.97      yamt 			/*
    785   1.97      yamt 			 * if you see this panic, consider to tweak
    786   1.97      yamt 			 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
    787   1.97      yamt 			 */
    788   1.97      yamt 			panic("%s: too large itemsperpage(%d) for PR_NOTOUCH",
    789   1.97      yamt 			    pp->pr_wchan, pp->pr_itemsperpage);
    790   1.97      yamt 		}
    791   1.97      yamt 		pp->pr_phpool = &phpool[idx];
    792   1.97      yamt 	} else if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
    793   1.97      yamt 		pp->pr_phpool = &phpool[0];
    794   1.97      yamt 	}
    795   1.97      yamt #if defined(DIAGNOSTIC)
    796   1.97      yamt 	else {
    797   1.97      yamt 		pp->pr_phpool = NULL;
    798   1.97      yamt 	}
    799   1.97      yamt #endif
    800    1.3        pk 
    801    1.3        pk 	/*
    802    1.3        pk 	 * Use the slack between the chunks and the page header
    803    1.3        pk 	 * for "cache coloring".
    804    1.3        pk 	 */
    805    1.3        pk 	slack = off - pp->pr_itemsperpage * pp->pr_size;
    806    1.3        pk 	pp->pr_maxcolor = (slack / align) * align;
    807    1.3        pk 	pp->pr_curcolor = 0;
    808    1.3        pk 
    809    1.3        pk 	pp->pr_nget = 0;
    810    1.3        pk 	pp->pr_nfail = 0;
    811    1.3        pk 	pp->pr_nput = 0;
    812    1.3        pk 	pp->pr_npagealloc = 0;
    813    1.3        pk 	pp->pr_npagefree = 0;
    814    1.1        pk 	pp->pr_hiwat = 0;
    815    1.8   thorpej 	pp->pr_nidle = 0;
    816  1.134        ad 	pp->pr_refcnt = 0;
    817    1.3        pk 
    818  1.179   mlelstv 	pp->pr_log = NULL;
    819   1.25   thorpej 
    820   1.25   thorpej 	pp->pr_entered_file = NULL;
    821   1.25   thorpej 	pp->pr_entered_line = 0;
    822    1.3        pk 
    823  1.157        ad 	mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
    824  1.134        ad 	cv_init(&pp->pr_cv, wchan);
    825  1.134        ad 	pp->pr_ipl = ipl;
    826    1.1        pk 
    827    1.3        pk 	/*
    828   1.43   thorpej 	 * Initialize private page header pool and cache magazine pool if we
    829   1.43   thorpej 	 * haven't done so yet.
    830   1.23   thorpej 	 * XXX LOCKING.
    831    1.3        pk 	 */
    832   1.97      yamt 	if (phpool[0].pr_size == 0) {
    833   1.97      yamt 		int idx;
    834   1.97      yamt 		for (idx = 0; idx < PHPOOL_MAX; idx++) {
    835   1.97      yamt 			static char phpool_names[PHPOOL_MAX][6+1+6+1];
    836   1.97      yamt 			int nelem;
    837   1.97      yamt 			size_t sz;
    838   1.97      yamt 
    839   1.97      yamt 			nelem = PHPOOL_FREELIST_NELEM(idx);
    840   1.97      yamt 			snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
    841   1.97      yamt 			    "phpool-%d", nelem);
    842   1.97      yamt 			sz = sizeof(struct pool_item_header);
    843   1.97      yamt 			if (nelem) {
    844  1.135      yamt 				sz = offsetof(struct pool_item_header,
    845  1.135      yamt 				    ph_bitmap[howmany(nelem, BITMAP_SIZE)]);
    846   1.97      yamt 			}
    847   1.97      yamt 			pool_init(&phpool[idx], sz, 0, 0, 0,
    848  1.129        ad 			    phpool_names[idx], &pool_allocator_meta, IPL_VM);
    849   1.97      yamt 		}
    850   1.62     bjh21 #ifdef POOL_SUBPAGE
    851   1.62     bjh21 		pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
    852  1.129        ad 		    PR_RECURSIVE, "psppool", &pool_allocator_meta, IPL_VM);
    853   1.62     bjh21 #endif
    854  1.142        ad 
    855  1.142        ad 		size = sizeof(pcg_t) +
    856  1.142        ad 		    (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t);
    857  1.156        ad 		pool_init(&pcg_normal_pool, size, coherency_unit, 0, 0,
    858  1.142        ad 		    "pcgnormal", &pool_allocator_meta, IPL_VM);
    859  1.142        ad 
    860  1.142        ad 		size = sizeof(pcg_t) +
    861  1.142        ad 		    (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t);
    862  1.156        ad 		pool_init(&pcg_large_pool, size, coherency_unit, 0, 0,
    863  1.142        ad 		    "pcglarge", &pool_allocator_meta, IPL_VM);
    864    1.1        pk 	}
    865    1.1        pk 
    866  1.145        ad 	/* Insert into the list of all pools. */
    867  1.181   mlelstv 	if (!cold)
    868  1.134        ad 		mutex_enter(&pool_head_lock);
    869  1.145        ad 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
    870  1.145        ad 		if (strcmp(pp1->pr_wchan, pp->pr_wchan) > 0)
    871  1.145        ad 			break;
    872  1.145        ad 	}
    873  1.145        ad 	if (pp1 == NULL)
    874  1.145        ad 		TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
    875  1.145        ad 	else
    876  1.145        ad 		TAILQ_INSERT_BEFORE(pp1, pp, pr_poollist);
    877  1.181   mlelstv 	if (!cold)
    878  1.134        ad 		mutex_exit(&pool_head_lock);
    879  1.134        ad 
    880  1.167     skrll 	/* Insert this into the list of pools using this allocator. */
    881  1.181   mlelstv 	if (!cold)
    882  1.134        ad 		mutex_enter(&palloc->pa_lock);
    883  1.145        ad 	TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
    884  1.181   mlelstv 	if (!cold)
    885  1.134        ad 		mutex_exit(&palloc->pa_lock);
    886   1.66   thorpej 
    887  1.117      yamt 	pool_reclaim_register(pp);
    888    1.1        pk }
    889    1.1        pk 
    890    1.1        pk /*
    891    1.1        pk  * De-commision a pool resource.
    892    1.1        pk  */
    893    1.1        pk void
    894   1.42   thorpej pool_destroy(struct pool *pp)
    895    1.1        pk {
    896  1.101   thorpej 	struct pool_pagelist pq;
    897    1.3        pk 	struct pool_item_header *ph;
    898   1.43   thorpej 
    899  1.101   thorpej 	/* Remove from global pool list */
    900  1.134        ad 	mutex_enter(&pool_head_lock);
    901  1.134        ad 	while (pp->pr_refcnt != 0)
    902  1.134        ad 		cv_wait(&pool_busy, &pool_head_lock);
    903  1.145        ad 	TAILQ_REMOVE(&pool_head, pp, pr_poollist);
    904  1.101   thorpej 	if (drainpp == pp)
    905  1.101   thorpej 		drainpp = NULL;
    906  1.134        ad 	mutex_exit(&pool_head_lock);
    907  1.101   thorpej 
    908  1.101   thorpej 	/* Remove this pool from its allocator's list of pools. */
    909  1.117      yamt 	pool_reclaim_unregister(pp);
    910  1.134        ad 	mutex_enter(&pp->pr_alloc->pa_lock);
    911   1.66   thorpej 	TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
    912  1.134        ad 	mutex_exit(&pp->pr_alloc->pa_lock);
    913   1.66   thorpej 
    914  1.178      elad 	mutex_enter(&pool_allocator_lock);
    915  1.178      elad 	if (--pp->pr_alloc->pa_refcnt == 0)
    916  1.178      elad 		mutex_destroy(&pp->pr_alloc->pa_lock);
    917  1.178      elad 	mutex_exit(&pool_allocator_lock);
    918  1.178      elad 
    919  1.134        ad 	mutex_enter(&pp->pr_lock);
    920  1.101   thorpej 
    921  1.134        ad 	KASSERT(pp->pr_cache == NULL);
    922    1.3        pk 
    923    1.3        pk #ifdef DIAGNOSTIC
    924   1.20   thorpej 	if (pp->pr_nout != 0) {
    925   1.25   thorpej 		pr_printlog(pp, NULL, printf);
    926   1.80    provos 		panic("pool_destroy: pool busy: still out: %u",
    927   1.20   thorpej 		    pp->pr_nout);
    928    1.3        pk 	}
    929    1.3        pk #endif
    930    1.1        pk 
    931  1.101   thorpej 	KASSERT(LIST_EMPTY(&pp->pr_fullpages));
    932  1.101   thorpej 	KASSERT(LIST_EMPTY(&pp->pr_partpages));
    933  1.101   thorpej 
    934    1.3        pk 	/* Remove all pages */
    935  1.101   thorpej 	LIST_INIT(&pq);
    936   1.88       chs 	while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
    937  1.101   thorpej 		pr_rmpage(pp, ph, &pq);
    938  1.101   thorpej 
    939  1.134        ad 	mutex_exit(&pp->pr_lock);
    940    1.3        pk 
    941  1.101   thorpej 	pr_pagelist_free(pp, &pq);
    942    1.3        pk 
    943   1.59   thorpej #ifdef POOL_DIAGNOSTIC
    944  1.179   mlelstv 	if (pp->pr_log != NULL) {
    945    1.3        pk 		free(pp->pr_log, M_TEMP);
    946  1.179   mlelstv 		pp->pr_log = NULL;
    947  1.179   mlelstv 	}
    948   1.59   thorpej #endif
    949  1.134        ad 
    950  1.134        ad 	cv_destroy(&pp->pr_cv);
    951  1.134        ad 	mutex_destroy(&pp->pr_lock);
    952    1.1        pk }
    953    1.1        pk 
    954   1.68   thorpej void
    955   1.68   thorpej pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
    956   1.68   thorpej {
    957   1.68   thorpej 
    958   1.68   thorpej 	/* XXX no locking -- must be used just after pool_init() */
    959   1.68   thorpej #ifdef DIAGNOSTIC
    960   1.68   thorpej 	if (pp->pr_drain_hook != NULL)
    961   1.68   thorpej 		panic("pool_set_drain_hook(%s): already set", pp->pr_wchan);
    962   1.68   thorpej #endif
    963   1.68   thorpej 	pp->pr_drain_hook = fn;
    964   1.68   thorpej 	pp->pr_drain_hook_arg = arg;
    965   1.68   thorpej }
    966   1.68   thorpej 
    967   1.88       chs static struct pool_item_header *
    968  1.128  christos pool_alloc_item_header(struct pool *pp, void *storage, int flags)
    969   1.55   thorpej {
    970   1.55   thorpej 	struct pool_item_header *ph;
    971   1.55   thorpej 
    972   1.55   thorpej 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
    973  1.128  christos 		ph = (struct pool_item_header *) ((char *)storage + pp->pr_phoffset);
    974  1.134        ad 	else
    975   1.97      yamt 		ph = pool_get(pp->pr_phpool, flags);
    976   1.55   thorpej 
    977   1.55   thorpej 	return (ph);
    978   1.55   thorpej }
    979    1.1        pk 
    980    1.1        pk /*
    981  1.134        ad  * Grab an item from the pool.
    982    1.1        pk  */
    983    1.3        pk void *
    984   1.59   thorpej #ifdef POOL_DIAGNOSTIC
    985   1.42   thorpej _pool_get(struct pool *pp, int flags, const char *file, long line)
    986   1.56  sommerfe #else
    987   1.56  sommerfe pool_get(struct pool *pp, int flags)
    988   1.56  sommerfe #endif
    989    1.1        pk {
    990    1.1        pk 	struct pool_item *pi;
    991    1.3        pk 	struct pool_item_header *ph;
    992   1.55   thorpej 	void *v;
    993    1.1        pk 
    994    1.2        pk #ifdef DIAGNOSTIC
    995  1.184     rmind 	if (pp->pr_itemsperpage == 0)
    996  1.184     rmind 		panic("pool_get: pool '%s': pr_itemsperpage is zero, "
    997  1.184     rmind 		    "pool not initialized?", pp->pr_wchan);
    998  1.185     rmind 	if ((cpu_intr_p() || cpu_softintr_p()) && pp->pr_ipl == IPL_NONE &&
    999  1.185     rmind 	    !cold && panicstr == NULL)
   1000  1.184     rmind 		panic("pool '%s' is IPL_NONE, but called from "
   1001  1.184     rmind 		    "interrupt context\n", pp->pr_wchan);
   1002  1.184     rmind #endif
   1003  1.155        ad 	if (flags & PR_WAITOK) {
   1004  1.154      yamt 		ASSERT_SLEEPABLE();
   1005  1.155        ad 	}
   1006    1.1        pk 
   1007  1.134        ad 	mutex_enter(&pp->pr_lock);
   1008   1.25   thorpej 	pr_enter(pp, file, line);
   1009   1.20   thorpej 
   1010   1.20   thorpej  startover:
   1011   1.20   thorpej 	/*
   1012   1.20   thorpej 	 * Check to see if we've reached the hard limit.  If we have,
   1013   1.20   thorpej 	 * and we can wait, then wait until an item has been returned to
   1014   1.20   thorpej 	 * the pool.
   1015   1.20   thorpej 	 */
   1016   1.20   thorpej #ifdef DIAGNOSTIC
   1017   1.34   thorpej 	if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
   1018   1.25   thorpej 		pr_leave(pp);
   1019  1.134        ad 		mutex_exit(&pp->pr_lock);
   1020   1.20   thorpej 		panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
   1021   1.20   thorpej 	}
   1022   1.20   thorpej #endif
   1023   1.34   thorpej 	if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
   1024   1.68   thorpej 		if (pp->pr_drain_hook != NULL) {
   1025   1.68   thorpej 			/*
   1026   1.68   thorpej 			 * Since the drain hook is going to free things
   1027   1.68   thorpej 			 * back to the pool, unlock, call the hook, re-lock,
   1028   1.68   thorpej 			 * and check the hardlimit condition again.
   1029   1.68   thorpej 			 */
   1030   1.68   thorpej 			pr_leave(pp);
   1031  1.134        ad 			mutex_exit(&pp->pr_lock);
   1032   1.68   thorpej 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
   1033  1.134        ad 			mutex_enter(&pp->pr_lock);
   1034   1.68   thorpej 			pr_enter(pp, file, line);
   1035   1.68   thorpej 			if (pp->pr_nout < pp->pr_hardlimit)
   1036   1.68   thorpej 				goto startover;
   1037   1.68   thorpej 		}
   1038   1.68   thorpej 
   1039   1.29  sommerfe 		if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
   1040   1.20   thorpej 			/*
   1041   1.20   thorpej 			 * XXX: A warning isn't logged in this case.  Should
   1042   1.20   thorpej 			 * it be?
   1043   1.20   thorpej 			 */
   1044   1.20   thorpej 			pp->pr_flags |= PR_WANTED;
   1045   1.25   thorpej 			pr_leave(pp);
   1046  1.134        ad 			cv_wait(&pp->pr_cv, &pp->pr_lock);
   1047   1.25   thorpej 			pr_enter(pp, file, line);
   1048   1.20   thorpej 			goto startover;
   1049   1.20   thorpej 		}
   1050   1.31   thorpej 
   1051   1.31   thorpej 		/*
   1052   1.31   thorpej 		 * Log a message that the hard limit has been hit.
   1053   1.31   thorpej 		 */
   1054   1.31   thorpej 		if (pp->pr_hardlimit_warning != NULL &&
   1055   1.31   thorpej 		    ratecheck(&pp->pr_hardlimit_warning_last,
   1056   1.31   thorpej 			      &pp->pr_hardlimit_ratecap))
   1057   1.31   thorpej 			log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
   1058   1.21   thorpej 
   1059   1.21   thorpej 		pp->pr_nfail++;
   1060   1.21   thorpej 
   1061   1.25   thorpej 		pr_leave(pp);
   1062  1.134        ad 		mutex_exit(&pp->pr_lock);
   1063   1.20   thorpej 		return (NULL);
   1064   1.20   thorpej 	}
   1065   1.20   thorpej 
   1066    1.3        pk 	/*
   1067    1.3        pk 	 * The convention we use is that if `curpage' is not NULL, then
   1068    1.3        pk 	 * it points at a non-empty bucket. In particular, `curpage'
   1069    1.3        pk 	 * never points at a page header which has PR_PHINPAGE set and
   1070    1.3        pk 	 * has no items in its bucket.
   1071    1.3        pk 	 */
   1072   1.20   thorpej 	if ((ph = pp->pr_curpage) == NULL) {
   1073  1.113      yamt 		int error;
   1074  1.113      yamt 
   1075   1.20   thorpej #ifdef DIAGNOSTIC
   1076   1.20   thorpej 		if (pp->pr_nitems != 0) {
   1077  1.134        ad 			mutex_exit(&pp->pr_lock);
   1078   1.20   thorpej 			printf("pool_get: %s: curpage NULL, nitems %u\n",
   1079   1.20   thorpej 			    pp->pr_wchan, pp->pr_nitems);
   1080   1.80    provos 			panic("pool_get: nitems inconsistent");
   1081   1.20   thorpej 		}
   1082   1.20   thorpej #endif
   1083   1.20   thorpej 
   1084   1.21   thorpej 		/*
   1085   1.21   thorpej 		 * Call the back-end page allocator for more memory.
   1086   1.21   thorpej 		 * Release the pool lock, as the back-end page allocator
   1087   1.21   thorpej 		 * may block.
   1088   1.21   thorpej 		 */
   1089   1.25   thorpej 		pr_leave(pp);
   1090  1.113      yamt 		error = pool_grow(pp, flags);
   1091  1.113      yamt 		pr_enter(pp, file, line);
   1092  1.113      yamt 		if (error != 0) {
   1093   1.21   thorpej 			/*
   1094   1.55   thorpej 			 * We were unable to allocate a page or item
   1095   1.55   thorpej 			 * header, but we released the lock during
   1096   1.55   thorpej 			 * allocation, so perhaps items were freed
   1097   1.55   thorpej 			 * back to the pool.  Check for this case.
   1098   1.21   thorpej 			 */
   1099   1.21   thorpej 			if (pp->pr_curpage != NULL)
   1100   1.21   thorpej 				goto startover;
   1101   1.15        pk 
   1102  1.117      yamt 			pp->pr_nfail++;
   1103   1.25   thorpej 			pr_leave(pp);
   1104  1.134        ad 			mutex_exit(&pp->pr_lock);
   1105  1.117      yamt 			return (NULL);
   1106    1.1        pk 		}
   1107    1.3        pk 
   1108   1.20   thorpej 		/* Start the allocation process over. */
   1109   1.20   thorpej 		goto startover;
   1110    1.3        pk 	}
   1111   1.97      yamt 	if (pp->pr_roflags & PR_NOTOUCH) {
   1112   1.97      yamt #ifdef DIAGNOSTIC
   1113   1.97      yamt 		if (__predict_false(ph->ph_nmissing == pp->pr_itemsperpage)) {
   1114   1.97      yamt 			pr_leave(pp);
   1115  1.134        ad 			mutex_exit(&pp->pr_lock);
   1116   1.97      yamt 			panic("pool_get: %s: page empty", pp->pr_wchan);
   1117   1.97      yamt 		}
   1118   1.97      yamt #endif
   1119   1.97      yamt 		v = pr_item_notouch_get(pp, ph);
   1120   1.97      yamt #ifdef POOL_DIAGNOSTIC
   1121   1.97      yamt 		pr_log(pp, v, PRLOG_GET, file, line);
   1122   1.97      yamt #endif
   1123   1.97      yamt 	} else {
   1124  1.102       chs 		v = pi = LIST_FIRST(&ph->ph_itemlist);
   1125   1.97      yamt 		if (__predict_false(v == NULL)) {
   1126   1.97      yamt 			pr_leave(pp);
   1127  1.134        ad 			mutex_exit(&pp->pr_lock);
   1128   1.97      yamt 			panic("pool_get: %s: page empty", pp->pr_wchan);
   1129   1.97      yamt 		}
   1130   1.20   thorpej #ifdef DIAGNOSTIC
   1131   1.97      yamt 		if (__predict_false(pp->pr_nitems == 0)) {
   1132   1.97      yamt 			pr_leave(pp);
   1133  1.134        ad 			mutex_exit(&pp->pr_lock);
   1134   1.97      yamt 			printf("pool_get: %s: items on itemlist, nitems %u\n",
   1135   1.97      yamt 			    pp->pr_wchan, pp->pr_nitems);
   1136   1.97      yamt 			panic("pool_get: nitems inconsistent");
   1137   1.97      yamt 		}
   1138   1.65     enami #endif
   1139   1.56  sommerfe 
   1140   1.65     enami #ifdef POOL_DIAGNOSTIC
   1141   1.97      yamt 		pr_log(pp, v, PRLOG_GET, file, line);
   1142   1.65     enami #endif
   1143    1.3        pk 
   1144   1.65     enami #ifdef DIAGNOSTIC
   1145   1.97      yamt 		if (__predict_false(pi->pi_magic != PI_MAGIC)) {
   1146   1.97      yamt 			pr_printlog(pp, pi, printf);
   1147   1.97      yamt 			panic("pool_get(%s): free list modified: "
   1148   1.97      yamt 			    "magic=%x; page %p; item addr %p\n",
   1149   1.97      yamt 			    pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
   1150   1.97      yamt 		}
   1151    1.3        pk #endif
   1152    1.3        pk 
   1153   1.97      yamt 		/*
   1154   1.97      yamt 		 * Remove from item list.
   1155   1.97      yamt 		 */
   1156  1.102       chs 		LIST_REMOVE(pi, pi_list);
   1157   1.97      yamt 	}
   1158   1.20   thorpej 	pp->pr_nitems--;
   1159   1.20   thorpej 	pp->pr_nout++;
   1160    1.6   thorpej 	if (ph->ph_nmissing == 0) {
   1161    1.6   thorpej #ifdef DIAGNOSTIC
   1162   1.34   thorpej 		if (__predict_false(pp->pr_nidle == 0))
   1163    1.6   thorpej 			panic("pool_get: nidle inconsistent");
   1164    1.6   thorpej #endif
   1165    1.6   thorpej 		pp->pr_nidle--;
   1166   1.88       chs 
   1167   1.88       chs 		/*
   1168   1.88       chs 		 * This page was previously empty.  Move it to the list of
   1169   1.88       chs 		 * partially-full pages.  This page is already curpage.
   1170   1.88       chs 		 */
   1171   1.88       chs 		LIST_REMOVE(ph, ph_pagelist);
   1172   1.88       chs 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
   1173    1.6   thorpej 	}
   1174    1.3        pk 	ph->ph_nmissing++;
   1175   1.97      yamt 	if (ph->ph_nmissing == pp->pr_itemsperpage) {
   1176   1.21   thorpej #ifdef DIAGNOSTIC
   1177   1.97      yamt 		if (__predict_false((pp->pr_roflags & PR_NOTOUCH) == 0 &&
   1178  1.102       chs 		    !LIST_EMPTY(&ph->ph_itemlist))) {
   1179   1.25   thorpej 			pr_leave(pp);
   1180  1.134        ad 			mutex_exit(&pp->pr_lock);
   1181   1.21   thorpej 			panic("pool_get: %s: nmissing inconsistent",
   1182   1.21   thorpej 			    pp->pr_wchan);
   1183   1.21   thorpej 		}
   1184   1.21   thorpej #endif
   1185    1.3        pk 		/*
   1186   1.88       chs 		 * This page is now full.  Move it to the full list
   1187   1.88       chs 		 * and select a new current page.
   1188    1.3        pk 		 */
   1189   1.88       chs 		LIST_REMOVE(ph, ph_pagelist);
   1190   1.88       chs 		LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
   1191   1.88       chs 		pool_update_curpage(pp);
   1192    1.1        pk 	}
   1193    1.3        pk 
   1194    1.3        pk 	pp->pr_nget++;
   1195  1.111  christos 	pr_leave(pp);
   1196   1.20   thorpej 
   1197   1.20   thorpej 	/*
   1198   1.20   thorpej 	 * If we have a low water mark and we are now below that low
   1199   1.20   thorpej 	 * water mark, add more items to the pool.
   1200   1.20   thorpej 	 */
   1201   1.53   thorpej 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
   1202   1.20   thorpej 		/*
   1203   1.20   thorpej 		 * XXX: Should we log a warning?  Should we set up a timeout
   1204   1.20   thorpej 		 * to try again in a second or so?  The latter could break
   1205   1.20   thorpej 		 * a caller's assumptions about interrupt protection, etc.
   1206   1.20   thorpej 		 */
   1207   1.20   thorpej 	}
   1208   1.20   thorpej 
   1209  1.134        ad 	mutex_exit(&pp->pr_lock);
   1210  1.125        ad 	KASSERT((((vaddr_t)v + pp->pr_itemoffset) & (pp->pr_align - 1)) == 0);
   1211  1.125        ad 	FREECHECK_OUT(&pp->pr_freecheck, v);
   1212    1.1        pk 	return (v);
   1213    1.1        pk }
   1214    1.1        pk 
   1215    1.1        pk /*
   1216   1.43   thorpej  * Internal version of pool_put().  Pool is already locked/entered.
   1217    1.1        pk  */
   1218   1.43   thorpej static void
   1219  1.101   thorpej pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
   1220    1.1        pk {
   1221    1.1        pk 	struct pool_item *pi = v;
   1222    1.3        pk 	struct pool_item_header *ph;
   1223    1.3        pk 
   1224  1.134        ad 	KASSERT(mutex_owned(&pp->pr_lock));
   1225  1.125        ad 	FREECHECK_IN(&pp->pr_freecheck, v);
   1226  1.134        ad 	LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
   1227   1.61       chs 
   1228   1.30   thorpej #ifdef DIAGNOSTIC
   1229   1.34   thorpej 	if (__predict_false(pp->pr_nout == 0)) {
   1230   1.30   thorpej 		printf("pool %s: putting with none out\n",
   1231   1.30   thorpej 		    pp->pr_wchan);
   1232   1.30   thorpej 		panic("pool_put");
   1233   1.30   thorpej 	}
   1234   1.30   thorpej #endif
   1235    1.3        pk 
   1236  1.121      yamt 	if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
   1237   1.25   thorpej 		pr_printlog(pp, NULL, printf);
   1238    1.3        pk 		panic("pool_put: %s: page header missing", pp->pr_wchan);
   1239    1.3        pk 	}
   1240   1.28   thorpej 
   1241    1.3        pk 	/*
   1242    1.3        pk 	 * Return to item list.
   1243    1.3        pk 	 */
   1244   1.97      yamt 	if (pp->pr_roflags & PR_NOTOUCH) {
   1245   1.97      yamt 		pr_item_notouch_put(pp, ph, v);
   1246   1.97      yamt 	} else {
   1247    1.2        pk #ifdef DIAGNOSTIC
   1248   1.97      yamt 		pi->pi_magic = PI_MAGIC;
   1249    1.3        pk #endif
   1250   1.32       chs #ifdef DEBUG
   1251   1.97      yamt 		{
   1252   1.97      yamt 			int i, *ip = v;
   1253   1.32       chs 
   1254   1.97      yamt 			for (i = 0; i < pp->pr_size / sizeof(int); i++) {
   1255   1.97      yamt 				*ip++ = PI_MAGIC;
   1256   1.97      yamt 			}
   1257   1.32       chs 		}
   1258   1.32       chs #endif
   1259   1.32       chs 
   1260  1.102       chs 		LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
   1261   1.97      yamt 	}
   1262   1.79   thorpej 	KDASSERT(ph->ph_nmissing != 0);
   1263    1.3        pk 	ph->ph_nmissing--;
   1264    1.3        pk 	pp->pr_nput++;
   1265   1.20   thorpej 	pp->pr_nitems++;
   1266   1.20   thorpej 	pp->pr_nout--;
   1267    1.3        pk 
   1268    1.3        pk 	/* Cancel "pool empty" condition if it exists */
   1269    1.3        pk 	if (pp->pr_curpage == NULL)
   1270    1.3        pk 		pp->pr_curpage = ph;
   1271    1.3        pk 
   1272    1.3        pk 	if (pp->pr_flags & PR_WANTED) {
   1273    1.3        pk 		pp->pr_flags &= ~PR_WANTED;
   1274  1.134        ad 		cv_broadcast(&pp->pr_cv);
   1275    1.3        pk 	}
   1276    1.3        pk 
   1277    1.3        pk 	/*
   1278   1.88       chs 	 * If this page is now empty, do one of two things:
   1279   1.21   thorpej 	 *
   1280   1.88       chs 	 *	(1) If we have more pages than the page high water mark,
   1281   1.96   thorpej 	 *	    free the page back to the system.  ONLY CONSIDER
   1282   1.90   thorpej 	 *	    FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
   1283   1.90   thorpej 	 *	    CLAIM.
   1284   1.21   thorpej 	 *
   1285   1.88       chs 	 *	(2) Otherwise, move the page to the empty page list.
   1286   1.88       chs 	 *
   1287   1.88       chs 	 * Either way, select a new current page (so we use a partially-full
   1288   1.88       chs 	 * page if one is available).
   1289    1.3        pk 	 */
   1290    1.3        pk 	if (ph->ph_nmissing == 0) {
   1291    1.6   thorpej 		pp->pr_nidle++;
   1292   1.90   thorpej 		if (pp->pr_npages > pp->pr_minpages &&
   1293  1.152      yamt 		    pp->pr_npages > pp->pr_maxpages) {
   1294  1.101   thorpej 			pr_rmpage(pp, ph, pq);
   1295    1.3        pk 		} else {
   1296   1.88       chs 			LIST_REMOVE(ph, ph_pagelist);
   1297   1.88       chs 			LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
   1298    1.3        pk 
   1299   1.21   thorpej 			/*
   1300   1.21   thorpej 			 * Update the timestamp on the page.  A page must
   1301   1.21   thorpej 			 * be idle for some period of time before it can
   1302   1.21   thorpej 			 * be reclaimed by the pagedaemon.  This minimizes
   1303   1.21   thorpej 			 * ping-pong'ing for memory.
   1304  1.151      yamt 			 *
   1305  1.151      yamt 			 * note for 64-bit time_t: truncating to 32-bit is not
   1306  1.151      yamt 			 * a problem for our usage.
   1307   1.21   thorpej 			 */
   1308  1.151      yamt 			ph->ph_time = time_uptime;
   1309    1.1        pk 		}
   1310   1.88       chs 		pool_update_curpage(pp);
   1311    1.1        pk 	}
   1312   1.88       chs 
   1313   1.21   thorpej 	/*
   1314   1.88       chs 	 * If the page was previously completely full, move it to the
   1315   1.88       chs 	 * partially-full list and make it the current page.  The next
   1316   1.88       chs 	 * allocation will get the item from this page, instead of
   1317   1.88       chs 	 * further fragmenting the pool.
   1318   1.21   thorpej 	 */
   1319   1.21   thorpej 	else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
   1320   1.88       chs 		LIST_REMOVE(ph, ph_pagelist);
   1321   1.88       chs 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
   1322   1.21   thorpej 		pp->pr_curpage = ph;
   1323   1.21   thorpej 	}
   1324   1.43   thorpej }
   1325   1.43   thorpej 
   1326   1.43   thorpej /*
   1327  1.134        ad  * Return resource to the pool.
   1328   1.43   thorpej  */
   1329   1.59   thorpej #ifdef POOL_DIAGNOSTIC
   1330   1.43   thorpej void
   1331   1.43   thorpej _pool_put(struct pool *pp, void *v, const char *file, long line)
   1332   1.43   thorpej {
   1333  1.101   thorpej 	struct pool_pagelist pq;
   1334  1.101   thorpej 
   1335  1.101   thorpej 	LIST_INIT(&pq);
   1336   1.43   thorpej 
   1337  1.134        ad 	mutex_enter(&pp->pr_lock);
   1338   1.43   thorpej 	pr_enter(pp, file, line);
   1339   1.43   thorpej 
   1340   1.56  sommerfe 	pr_log(pp, v, PRLOG_PUT, file, line);
   1341   1.56  sommerfe 
   1342  1.101   thorpej 	pool_do_put(pp, v, &pq);
   1343   1.21   thorpej 
   1344   1.25   thorpej 	pr_leave(pp);
   1345  1.134        ad 	mutex_exit(&pp->pr_lock);
   1346  1.101   thorpej 
   1347  1.102       chs 	pr_pagelist_free(pp, &pq);
   1348    1.1        pk }
   1349   1.57  sommerfe #undef pool_put
   1350   1.59   thorpej #endif /* POOL_DIAGNOSTIC */
   1351    1.1        pk 
   1352   1.56  sommerfe void
   1353   1.56  sommerfe pool_put(struct pool *pp, void *v)
   1354   1.56  sommerfe {
   1355  1.101   thorpej 	struct pool_pagelist pq;
   1356  1.101   thorpej 
   1357  1.101   thorpej 	LIST_INIT(&pq);
   1358   1.56  sommerfe 
   1359  1.134        ad 	mutex_enter(&pp->pr_lock);
   1360  1.101   thorpej 	pool_do_put(pp, v, &pq);
   1361  1.134        ad 	mutex_exit(&pp->pr_lock);
   1362   1.56  sommerfe 
   1363  1.102       chs 	pr_pagelist_free(pp, &pq);
   1364   1.56  sommerfe }
   1365   1.57  sommerfe 
   1366   1.59   thorpej #ifdef POOL_DIAGNOSTIC
   1367   1.57  sommerfe #define		pool_put(h, v)	_pool_put((h), (v), __FILE__, __LINE__)
   1368   1.56  sommerfe #endif
   1369   1.74   thorpej 
   1370   1.74   thorpej /*
   1371  1.113      yamt  * pool_grow: grow a pool by a page.
   1372  1.113      yamt  *
   1373  1.113      yamt  * => called with pool locked.
   1374  1.113      yamt  * => unlock and relock the pool.
   1375  1.113      yamt  * => return with pool locked.
   1376  1.113      yamt  */
   1377  1.113      yamt 
   1378  1.113      yamt static int
   1379  1.113      yamt pool_grow(struct pool *pp, int flags)
   1380  1.113      yamt {
   1381  1.113      yamt 	struct pool_item_header *ph = NULL;
   1382  1.113      yamt 	char *cp;
   1383  1.113      yamt 
   1384  1.134        ad 	mutex_exit(&pp->pr_lock);
   1385  1.113      yamt 	cp = pool_allocator_alloc(pp, flags);
   1386  1.113      yamt 	if (__predict_true(cp != NULL)) {
   1387  1.113      yamt 		ph = pool_alloc_item_header(pp, cp, flags);
   1388  1.113      yamt 	}
   1389  1.113      yamt 	if (__predict_false(cp == NULL || ph == NULL)) {
   1390  1.113      yamt 		if (cp != NULL) {
   1391  1.113      yamt 			pool_allocator_free(pp, cp);
   1392  1.113      yamt 		}
   1393  1.134        ad 		mutex_enter(&pp->pr_lock);
   1394  1.113      yamt 		return ENOMEM;
   1395  1.113      yamt 	}
   1396  1.113      yamt 
   1397  1.134        ad 	mutex_enter(&pp->pr_lock);
   1398  1.113      yamt 	pool_prime_page(pp, cp, ph);
   1399  1.113      yamt 	pp->pr_npagealloc++;
   1400  1.113      yamt 	return 0;
   1401  1.113      yamt }
   1402  1.113      yamt 
   1403  1.113      yamt /*
   1404   1.74   thorpej  * Add N items to the pool.
   1405   1.74   thorpej  */
   1406   1.74   thorpej int
   1407   1.74   thorpej pool_prime(struct pool *pp, int n)
   1408   1.74   thorpej {
   1409   1.75    simonb 	int newpages;
   1410  1.113      yamt 	int error = 0;
   1411   1.74   thorpej 
   1412  1.134        ad 	mutex_enter(&pp->pr_lock);
   1413   1.74   thorpej 
   1414   1.74   thorpej 	newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1415   1.74   thorpej 
   1416   1.74   thorpej 	while (newpages-- > 0) {
   1417  1.113      yamt 		error = pool_grow(pp, PR_NOWAIT);
   1418  1.113      yamt 		if (error) {
   1419   1.74   thorpej 			break;
   1420   1.74   thorpej 		}
   1421   1.74   thorpej 		pp->pr_minpages++;
   1422   1.74   thorpej 	}
   1423   1.74   thorpej 
   1424   1.74   thorpej 	if (pp->pr_minpages >= pp->pr_maxpages)
   1425   1.74   thorpej 		pp->pr_maxpages = pp->pr_minpages + 1;	/* XXX */
   1426   1.74   thorpej 
   1427  1.134        ad 	mutex_exit(&pp->pr_lock);
   1428  1.113      yamt 	return error;
   1429   1.74   thorpej }
   1430   1.55   thorpej 
   1431   1.55   thorpej /*
   1432    1.3        pk  * Add a page worth of items to the pool.
   1433   1.21   thorpej  *
   1434   1.21   thorpej  * Note, we must be called with the pool descriptor LOCKED.
   1435    1.3        pk  */
   1436   1.55   thorpej static void
   1437  1.128  christos pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
   1438    1.3        pk {
   1439    1.3        pk 	struct pool_item *pi;
   1440  1.128  christos 	void *cp = storage;
   1441  1.125        ad 	const unsigned int align = pp->pr_align;
   1442  1.125        ad 	const unsigned int ioff = pp->pr_itemoffset;
   1443   1.55   thorpej 	int n;
   1444   1.36        pk 
   1445  1.134        ad 	KASSERT(mutex_owned(&pp->pr_lock));
   1446   1.91      yamt 
   1447   1.66   thorpej #ifdef DIAGNOSTIC
   1448  1.121      yamt 	if ((pp->pr_roflags & PR_NOALIGN) == 0 &&
   1449  1.150     skrll 	    ((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) != 0)
   1450   1.36        pk 		panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
   1451   1.66   thorpej #endif
   1452    1.3        pk 
   1453    1.3        pk 	/*
   1454    1.3        pk 	 * Insert page header.
   1455    1.3        pk 	 */
   1456   1.88       chs 	LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
   1457  1.102       chs 	LIST_INIT(&ph->ph_itemlist);
   1458    1.3        pk 	ph->ph_page = storage;
   1459    1.3        pk 	ph->ph_nmissing = 0;
   1460  1.151      yamt 	ph->ph_time = time_uptime;
   1461   1.88       chs 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
   1462   1.88       chs 		SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
   1463    1.3        pk 
   1464    1.6   thorpej 	pp->pr_nidle++;
   1465    1.6   thorpej 
   1466    1.3        pk 	/*
   1467    1.3        pk 	 * Color this page.
   1468    1.3        pk 	 */
   1469  1.141      yamt 	ph->ph_off = pp->pr_curcolor;
   1470  1.141      yamt 	cp = (char *)cp + ph->ph_off;
   1471    1.3        pk 	if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
   1472    1.3        pk 		pp->pr_curcolor = 0;
   1473    1.3        pk 
   1474    1.3        pk 	/*
   1475    1.3        pk 	 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
   1476    1.3        pk 	 */
   1477    1.3        pk 	if (ioff != 0)
   1478  1.128  christos 		cp = (char *)cp + align - ioff;
   1479    1.3        pk 
   1480  1.125        ad 	KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
   1481  1.125        ad 
   1482    1.3        pk 	/*
   1483    1.3        pk 	 * Insert remaining chunks on the bucket list.
   1484    1.3        pk 	 */
   1485    1.3        pk 	n = pp->pr_itemsperpage;
   1486   1.20   thorpej 	pp->pr_nitems += n;
   1487    1.3        pk 
   1488   1.97      yamt 	if (pp->pr_roflags & PR_NOTOUCH) {
   1489  1.141      yamt 		pr_item_notouch_init(pp, ph);
   1490   1.97      yamt 	} else {
   1491   1.97      yamt 		while (n--) {
   1492   1.97      yamt 			pi = (struct pool_item *)cp;
   1493   1.78   thorpej 
   1494   1.97      yamt 			KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0);
   1495    1.3        pk 
   1496   1.97      yamt 			/* Insert on page list */
   1497  1.102       chs 			LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
   1498    1.3        pk #ifdef DIAGNOSTIC
   1499   1.97      yamt 			pi->pi_magic = PI_MAGIC;
   1500    1.3        pk #endif
   1501  1.128  christos 			cp = (char *)cp + pp->pr_size;
   1502  1.125        ad 
   1503  1.125        ad 			KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
   1504   1.97      yamt 		}
   1505    1.3        pk 	}
   1506    1.3        pk 
   1507    1.3        pk 	/*
   1508    1.3        pk 	 * If the pool was depleted, point at the new page.
   1509    1.3        pk 	 */
   1510    1.3        pk 	if (pp->pr_curpage == NULL)
   1511    1.3        pk 		pp->pr_curpage = ph;
   1512    1.3        pk 
   1513    1.3        pk 	if (++pp->pr_npages > pp->pr_hiwat)
   1514    1.3        pk 		pp->pr_hiwat = pp->pr_npages;
   1515    1.3        pk }
   1516    1.3        pk 
   1517   1.20   thorpej /*
   1518   1.52   thorpej  * Used by pool_get() when nitems drops below the low water mark.  This
   1519   1.88       chs  * is used to catch up pr_nitems with the low water mark.
   1520   1.20   thorpej  *
   1521   1.21   thorpej  * Note 1, we never wait for memory here, we let the caller decide what to do.
   1522   1.20   thorpej  *
   1523   1.73   thorpej  * Note 2, we must be called with the pool already locked, and we return
   1524   1.20   thorpej  * with it locked.
   1525   1.20   thorpej  */
   1526   1.20   thorpej static int
   1527   1.42   thorpej pool_catchup(struct pool *pp)
   1528   1.20   thorpej {
   1529   1.20   thorpej 	int error = 0;
   1530   1.20   thorpej 
   1531   1.54   thorpej 	while (POOL_NEEDS_CATCHUP(pp)) {
   1532  1.113      yamt 		error = pool_grow(pp, PR_NOWAIT);
   1533  1.113      yamt 		if (error) {
   1534   1.20   thorpej 			break;
   1535   1.20   thorpej 		}
   1536   1.20   thorpej 	}
   1537  1.113      yamt 	return error;
   1538   1.20   thorpej }
   1539   1.20   thorpej 
   1540   1.88       chs static void
   1541   1.88       chs pool_update_curpage(struct pool *pp)
   1542   1.88       chs {
   1543   1.88       chs 
   1544   1.88       chs 	pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
   1545   1.88       chs 	if (pp->pr_curpage == NULL) {
   1546   1.88       chs 		pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
   1547   1.88       chs 	}
   1548  1.168      yamt 	KASSERT((pp->pr_curpage == NULL && pp->pr_nitems == 0) ||
   1549  1.168      yamt 	    (pp->pr_curpage != NULL && pp->pr_nitems > 0));
   1550   1.88       chs }
   1551   1.88       chs 
   1552    1.3        pk void
   1553   1.42   thorpej pool_setlowat(struct pool *pp, int n)
   1554    1.3        pk {
   1555   1.15        pk 
   1556  1.134        ad 	mutex_enter(&pp->pr_lock);
   1557   1.21   thorpej 
   1558    1.3        pk 	pp->pr_minitems = n;
   1559   1.15        pk 	pp->pr_minpages = (n == 0)
   1560   1.15        pk 		? 0
   1561   1.18   thorpej 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1562   1.20   thorpej 
   1563   1.20   thorpej 	/* Make sure we're caught up with the newly-set low water mark. */
   1564   1.75    simonb 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
   1565   1.20   thorpej 		/*
   1566   1.20   thorpej 		 * XXX: Should we log a warning?  Should we set up a timeout
   1567   1.20   thorpej 		 * to try again in a second or so?  The latter could break
   1568   1.20   thorpej 		 * a caller's assumptions about interrupt protection, etc.
   1569   1.20   thorpej 		 */
   1570   1.20   thorpej 	}
   1571   1.21   thorpej 
   1572  1.134        ad 	mutex_exit(&pp->pr_lock);
   1573    1.3        pk }
   1574    1.3        pk 
   1575    1.3        pk void
   1576   1.42   thorpej pool_sethiwat(struct pool *pp, int n)
   1577    1.3        pk {
   1578   1.15        pk 
   1579  1.134        ad 	mutex_enter(&pp->pr_lock);
   1580   1.21   thorpej 
   1581   1.15        pk 	pp->pr_maxpages = (n == 0)
   1582   1.15        pk 		? 0
   1583   1.18   thorpej 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1584   1.21   thorpej 
   1585  1.134        ad 	mutex_exit(&pp->pr_lock);
   1586    1.3        pk }
   1587    1.3        pk 
   1588   1.20   thorpej void
   1589   1.42   thorpej pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
   1590   1.20   thorpej {
   1591   1.20   thorpej 
   1592  1.134        ad 	mutex_enter(&pp->pr_lock);
   1593   1.20   thorpej 
   1594   1.20   thorpej 	pp->pr_hardlimit = n;
   1595   1.20   thorpej 	pp->pr_hardlimit_warning = warnmess;
   1596   1.31   thorpej 	pp->pr_hardlimit_ratecap.tv_sec = ratecap;
   1597   1.31   thorpej 	pp->pr_hardlimit_warning_last.tv_sec = 0;
   1598   1.31   thorpej 	pp->pr_hardlimit_warning_last.tv_usec = 0;
   1599   1.20   thorpej 
   1600   1.20   thorpej 	/*
   1601   1.21   thorpej 	 * In-line version of pool_sethiwat(), because we don't want to
   1602   1.21   thorpej 	 * release the lock.
   1603   1.20   thorpej 	 */
   1604   1.20   thorpej 	pp->pr_maxpages = (n == 0)
   1605   1.20   thorpej 		? 0
   1606   1.20   thorpej 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1607   1.21   thorpej 
   1608  1.134        ad 	mutex_exit(&pp->pr_lock);
   1609   1.20   thorpej }
   1610    1.3        pk 
   1611    1.3        pk /*
   1612    1.3        pk  * Release all complete pages that have not been used recently.
   1613  1.184     rmind  *
   1614  1.184     rmind  * Might be called from interrupt context.
   1615    1.3        pk  */
   1616   1.66   thorpej int
   1617   1.59   thorpej #ifdef POOL_DIAGNOSTIC
   1618   1.42   thorpej _pool_reclaim(struct pool *pp, const char *file, long line)
   1619   1.56  sommerfe #else
   1620   1.56  sommerfe pool_reclaim(struct pool *pp)
   1621   1.56  sommerfe #endif
   1622    1.3        pk {
   1623    1.3        pk 	struct pool_item_header *ph, *phnext;
   1624   1.61       chs 	struct pool_pagelist pq;
   1625  1.151      yamt 	uint32_t curtime;
   1626  1.134        ad 	bool klock;
   1627  1.134        ad 	int rv;
   1628    1.3        pk 
   1629  1.184     rmind 	if (cpu_intr_p() || cpu_softintr_p()) {
   1630  1.184     rmind 		KASSERT(pp->pr_ipl != IPL_NONE);
   1631  1.184     rmind 	}
   1632  1.184     rmind 
   1633   1.68   thorpej 	if (pp->pr_drain_hook != NULL) {
   1634   1.68   thorpej 		/*
   1635   1.68   thorpej 		 * The drain hook must be called with the pool unlocked.
   1636   1.68   thorpej 		 */
   1637   1.68   thorpej 		(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
   1638   1.68   thorpej 	}
   1639   1.68   thorpej 
   1640  1.134        ad 	/*
   1641  1.157        ad 	 * XXXSMP Because we do not want to cause non-MPSAFE code
   1642  1.157        ad 	 * to block.
   1643  1.134        ad 	 */
   1644  1.134        ad 	if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK ||
   1645  1.134        ad 	    pp->pr_ipl == IPL_SOFTSERIAL) {
   1646  1.134        ad 		KERNEL_LOCK(1, NULL);
   1647  1.134        ad 		klock = true;
   1648  1.134        ad 	} else
   1649  1.134        ad 		klock = false;
   1650  1.134        ad 
   1651  1.134        ad 	/* Reclaim items from the pool's cache (if any). */
   1652  1.134        ad 	if (pp->pr_cache != NULL)
   1653  1.134        ad 		pool_cache_invalidate(pp->pr_cache);
   1654  1.134        ad 
   1655  1.134        ad 	if (mutex_tryenter(&pp->pr_lock) == 0) {
   1656  1.134        ad 		if (klock) {
   1657  1.134        ad 			KERNEL_UNLOCK_ONE(NULL);
   1658  1.134        ad 		}
   1659   1.66   thorpej 		return (0);
   1660  1.134        ad 	}
   1661   1.25   thorpej 	pr_enter(pp, file, line);
   1662   1.68   thorpej 
   1663   1.88       chs 	LIST_INIT(&pq);
   1664   1.43   thorpej 
   1665  1.151      yamt 	curtime = time_uptime;
   1666   1.21   thorpej 
   1667   1.88       chs 	for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
   1668   1.88       chs 		phnext = LIST_NEXT(ph, ph_pagelist);
   1669    1.3        pk 
   1670    1.3        pk 		/* Check our minimum page claim */
   1671    1.3        pk 		if (pp->pr_npages <= pp->pr_minpages)
   1672    1.3        pk 			break;
   1673    1.3        pk 
   1674   1.88       chs 		KASSERT(ph->ph_nmissing == 0);
   1675  1.151      yamt 		if (curtime - ph->ph_time < pool_inactive_time
   1676  1.117      yamt 		    && !pa_starved_p(pp->pr_alloc))
   1677   1.88       chs 			continue;
   1678   1.21   thorpej 
   1679   1.88       chs 		/*
   1680   1.88       chs 		 * If freeing this page would put us below
   1681   1.88       chs 		 * the low water mark, stop now.
   1682   1.88       chs 		 */
   1683   1.88       chs 		if ((pp->pr_nitems - pp->pr_itemsperpage) <
   1684   1.88       chs 		    pp->pr_minitems)
   1685   1.88       chs 			break;
   1686   1.21   thorpej 
   1687   1.88       chs 		pr_rmpage(pp, ph, &pq);
   1688    1.3        pk 	}
   1689    1.3        pk 
   1690   1.25   thorpej 	pr_leave(pp);
   1691  1.134        ad 	mutex_exit(&pp->pr_lock);
   1692  1.134        ad 
   1693  1.134        ad 	if (LIST_EMPTY(&pq))
   1694  1.134        ad 		rv = 0;
   1695  1.134        ad 	else {
   1696  1.134        ad 		pr_pagelist_free(pp, &pq);
   1697  1.134        ad 		rv = 1;
   1698  1.134        ad 	}
   1699  1.134        ad 
   1700  1.134        ad 	if (klock) {
   1701  1.134        ad 		KERNEL_UNLOCK_ONE(NULL);
   1702  1.134        ad 	}
   1703   1.66   thorpej 
   1704  1.134        ad 	return (rv);
   1705    1.3        pk }
   1706    1.3        pk 
   1707    1.3        pk /*
   1708  1.134        ad  * Drain pools, one at a time.  This is a two stage process;
   1709  1.134        ad  * drain_start kicks off a cross call to drain CPU-level caches
   1710  1.134        ad  * if the pool has an associated pool_cache.  drain_end waits
   1711  1.134        ad  * for those cross calls to finish, and then drains the cache
   1712  1.134        ad  * (if any) and pool.
   1713  1.131        ad  *
   1714  1.134        ad  * Note, must never be called from interrupt context.
   1715    1.3        pk  */
   1716    1.3        pk void
   1717  1.134        ad pool_drain_start(struct pool **ppp, uint64_t *wp)
   1718    1.3        pk {
   1719    1.3        pk 	struct pool *pp;
   1720  1.134        ad 
   1721  1.145        ad 	KASSERT(!TAILQ_EMPTY(&pool_head));
   1722    1.3        pk 
   1723   1.61       chs 	pp = NULL;
   1724  1.134        ad 
   1725  1.134        ad 	/* Find next pool to drain, and add a reference. */
   1726  1.134        ad 	mutex_enter(&pool_head_lock);
   1727  1.134        ad 	do {
   1728  1.134        ad 		if (drainpp == NULL) {
   1729  1.145        ad 			drainpp = TAILQ_FIRST(&pool_head);
   1730  1.134        ad 		}
   1731  1.134        ad 		if (drainpp != NULL) {
   1732  1.134        ad 			pp = drainpp;
   1733  1.145        ad 			drainpp = TAILQ_NEXT(pp, pr_poollist);
   1734  1.134        ad 		}
   1735  1.134        ad 		/*
   1736  1.134        ad 		 * Skip completely idle pools.  We depend on at least
   1737  1.134        ad 		 * one pool in the system being active.
   1738  1.134        ad 		 */
   1739  1.134        ad 	} while (pp == NULL || pp->pr_npages == 0);
   1740  1.134        ad 	pp->pr_refcnt++;
   1741  1.134        ad 	mutex_exit(&pool_head_lock);
   1742  1.134        ad 
   1743  1.134        ad 	/* If there is a pool_cache, drain CPU level caches. */
   1744  1.134        ad 	*ppp = pp;
   1745  1.134        ad 	if (pp->pr_cache != NULL) {
   1746  1.134        ad 		*wp = xc_broadcast(0, (xcfunc_t)pool_cache_xcall,
   1747  1.134        ad 		    pp->pr_cache, NULL);
   1748  1.134        ad 	}
   1749  1.134        ad }
   1750  1.134        ad 
   1751  1.186     pooka bool
   1752  1.134        ad pool_drain_end(struct pool *pp, uint64_t where)
   1753  1.134        ad {
   1754  1.186     pooka 	bool reclaimed;
   1755  1.134        ad 
   1756  1.134        ad 	if (pp == NULL)
   1757  1.186     pooka 		return false;
   1758  1.134        ad 
   1759  1.134        ad 	KASSERT(pp->pr_refcnt > 0);
   1760  1.134        ad 
   1761  1.134        ad 	/* Wait for remote draining to complete. */
   1762  1.134        ad 	if (pp->pr_cache != NULL)
   1763  1.134        ad 		xc_wait(where);
   1764  1.134        ad 
   1765  1.134        ad 	/* Drain the cache (if any) and pool.. */
   1766  1.186     pooka 	reclaimed = pool_reclaim(pp);
   1767  1.134        ad 
   1768  1.134        ad 	/* Finally, unlock the pool. */
   1769  1.134        ad 	mutex_enter(&pool_head_lock);
   1770  1.134        ad 	pp->pr_refcnt--;
   1771  1.134        ad 	cv_broadcast(&pool_busy);
   1772  1.134        ad 	mutex_exit(&pool_head_lock);
   1773  1.186     pooka 
   1774  1.186     pooka 	return reclaimed;
   1775    1.3        pk }
   1776    1.3        pk 
   1777    1.3        pk /*
   1778    1.3        pk  * Diagnostic helpers.
   1779    1.3        pk  */
   1780    1.3        pk void
   1781   1.42   thorpej pool_print(struct pool *pp, const char *modif)
   1782   1.21   thorpej {
   1783   1.21   thorpej 
   1784   1.25   thorpej 	pool_print1(pp, modif, printf);
   1785   1.21   thorpej }
   1786   1.21   thorpej 
   1787   1.25   thorpej void
   1788  1.108      yamt pool_printall(const char *modif, void (*pr)(const char *, ...))
   1789  1.108      yamt {
   1790  1.108      yamt 	struct pool *pp;
   1791  1.108      yamt 
   1792  1.145        ad 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   1793  1.108      yamt 		pool_printit(pp, modif, pr);
   1794  1.108      yamt 	}
   1795  1.108      yamt }
   1796  1.108      yamt 
   1797  1.108      yamt void
   1798   1.42   thorpej pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1799   1.25   thorpej {
   1800   1.25   thorpej 
   1801   1.25   thorpej 	if (pp == NULL) {
   1802   1.25   thorpej 		(*pr)("Must specify a pool to print.\n");
   1803   1.25   thorpej 		return;
   1804   1.25   thorpej 	}
   1805   1.25   thorpej 
   1806   1.25   thorpej 	pool_print1(pp, modif, pr);
   1807   1.25   thorpej }
   1808   1.25   thorpej 
   1809   1.21   thorpej static void
   1810  1.124      yamt pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
   1811   1.97      yamt     void (*pr)(const char *, ...))
   1812   1.88       chs {
   1813   1.88       chs 	struct pool_item_header *ph;
   1814   1.88       chs #ifdef DIAGNOSTIC
   1815   1.88       chs 	struct pool_item *pi;
   1816   1.88       chs #endif
   1817   1.88       chs 
   1818   1.88       chs 	LIST_FOREACH(ph, pl, ph_pagelist) {
   1819  1.151      yamt 		(*pr)("\t\tpage %p, nmissing %d, time %" PRIu32 "\n",
   1820  1.151      yamt 		    ph->ph_page, ph->ph_nmissing, ph->ph_time);
   1821   1.88       chs #ifdef DIAGNOSTIC
   1822   1.97      yamt 		if (!(pp->pr_roflags & PR_NOTOUCH)) {
   1823  1.102       chs 			LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
   1824   1.97      yamt 				if (pi->pi_magic != PI_MAGIC) {
   1825   1.97      yamt 					(*pr)("\t\t\titem %p, magic 0x%x\n",
   1826   1.97      yamt 					    pi, pi->pi_magic);
   1827   1.97      yamt 				}
   1828   1.88       chs 			}
   1829   1.88       chs 		}
   1830   1.88       chs #endif
   1831   1.88       chs 	}
   1832   1.88       chs }
   1833   1.88       chs 
   1834   1.88       chs static void
   1835   1.42   thorpej pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1836    1.3        pk {
   1837   1.25   thorpej 	struct pool_item_header *ph;
   1838  1.134        ad 	pool_cache_t pc;
   1839  1.134        ad 	pcg_t *pcg;
   1840  1.134        ad 	pool_cache_cpu_t *cc;
   1841  1.134        ad 	uint64_t cpuhit, cpumiss;
   1842   1.44   thorpej 	int i, print_log = 0, print_pagelist = 0, print_cache = 0;
   1843   1.25   thorpej 	char c;
   1844   1.25   thorpej 
   1845   1.25   thorpej 	while ((c = *modif++) != '\0') {
   1846   1.25   thorpej 		if (c == 'l')
   1847   1.25   thorpej 			print_log = 1;
   1848   1.25   thorpej 		if (c == 'p')
   1849   1.25   thorpej 			print_pagelist = 1;
   1850   1.44   thorpej 		if (c == 'c')
   1851   1.44   thorpej 			print_cache = 1;
   1852   1.25   thorpej 	}
   1853   1.25   thorpej 
   1854  1.134        ad 	if ((pc = pp->pr_cache) != NULL) {
   1855  1.134        ad 		(*pr)("POOL CACHE");
   1856  1.134        ad 	} else {
   1857  1.134        ad 		(*pr)("POOL");
   1858  1.134        ad 	}
   1859  1.134        ad 
   1860  1.134        ad 	(*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
   1861   1.25   thorpej 	    pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
   1862   1.25   thorpej 	    pp->pr_roflags);
   1863   1.66   thorpej 	(*pr)("\talloc %p\n", pp->pr_alloc);
   1864   1.25   thorpej 	(*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
   1865   1.25   thorpej 	    pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
   1866   1.25   thorpej 	(*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
   1867   1.25   thorpej 	    pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
   1868   1.25   thorpej 
   1869  1.134        ad 	(*pr)("\tnget %lu, nfail %lu, nput %lu\n",
   1870   1.25   thorpej 	    pp->pr_nget, pp->pr_nfail, pp->pr_nput);
   1871   1.25   thorpej 	(*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
   1872   1.25   thorpej 	    pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
   1873   1.25   thorpej 
   1874   1.25   thorpej 	if (print_pagelist == 0)
   1875   1.25   thorpej 		goto skip_pagelist;
   1876   1.25   thorpej 
   1877   1.88       chs 	if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
   1878   1.88       chs 		(*pr)("\n\tempty page list:\n");
   1879   1.97      yamt 	pool_print_pagelist(pp, &pp->pr_emptypages, pr);
   1880   1.88       chs 	if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
   1881   1.88       chs 		(*pr)("\n\tfull page list:\n");
   1882   1.97      yamt 	pool_print_pagelist(pp, &pp->pr_fullpages, pr);
   1883   1.88       chs 	if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
   1884   1.88       chs 		(*pr)("\n\tpartial-page list:\n");
   1885   1.97      yamt 	pool_print_pagelist(pp, &pp->pr_partpages, pr);
   1886   1.88       chs 
   1887   1.25   thorpej 	if (pp->pr_curpage == NULL)
   1888   1.25   thorpej 		(*pr)("\tno current page\n");
   1889   1.25   thorpej 	else
   1890   1.25   thorpej 		(*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
   1891   1.25   thorpej 
   1892   1.25   thorpej  skip_pagelist:
   1893   1.25   thorpej 	if (print_log == 0)
   1894   1.25   thorpej 		goto skip_log;
   1895   1.25   thorpej 
   1896   1.25   thorpej 	(*pr)("\n");
   1897   1.25   thorpej 	if ((pp->pr_roflags & PR_LOGGING) == 0)
   1898   1.25   thorpej 		(*pr)("\tno log\n");
   1899  1.122  christos 	else {
   1900   1.25   thorpej 		pr_printlog(pp, NULL, pr);
   1901  1.122  christos 	}
   1902    1.3        pk 
   1903   1.25   thorpej  skip_log:
   1904   1.44   thorpej 
   1905  1.102       chs #define PR_GROUPLIST(pcg)						\
   1906  1.102       chs 	(*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail);		\
   1907  1.142        ad 	for (i = 0; i < pcg->pcg_size; i++) {				\
   1908  1.102       chs 		if (pcg->pcg_objects[i].pcgo_pa !=			\
   1909  1.102       chs 		    POOL_PADDR_INVALID) {				\
   1910  1.102       chs 			(*pr)("\t\t\t%p, 0x%llx\n",			\
   1911  1.102       chs 			    pcg->pcg_objects[i].pcgo_va,		\
   1912  1.102       chs 			    (unsigned long long)			\
   1913  1.102       chs 			    pcg->pcg_objects[i].pcgo_pa);		\
   1914  1.102       chs 		} else {						\
   1915  1.102       chs 			(*pr)("\t\t\t%p\n",				\
   1916  1.102       chs 			    pcg->pcg_objects[i].pcgo_va);		\
   1917  1.102       chs 		}							\
   1918  1.102       chs 	}
   1919  1.102       chs 
   1920  1.134        ad 	if (pc != NULL) {
   1921  1.134        ad 		cpuhit = 0;
   1922  1.134        ad 		cpumiss = 0;
   1923  1.183        ad 		for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
   1924  1.134        ad 			if ((cc = pc->pc_cpus[i]) == NULL)
   1925  1.134        ad 				continue;
   1926  1.134        ad 			cpuhit += cc->cc_hits;
   1927  1.134        ad 			cpumiss += cc->cc_misses;
   1928  1.134        ad 		}
   1929  1.134        ad 		(*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
   1930  1.134        ad 		(*pr)("\tcache layer hits %llu misses %llu\n",
   1931  1.134        ad 		    pc->pc_hits, pc->pc_misses);
   1932  1.134        ad 		(*pr)("\tcache layer entry uncontended %llu contended %llu\n",
   1933  1.134        ad 		    pc->pc_hits + pc->pc_misses - pc->pc_contended,
   1934  1.134        ad 		    pc->pc_contended);
   1935  1.134        ad 		(*pr)("\tcache layer empty groups %u full groups %u\n",
   1936  1.134        ad 		    pc->pc_nempty, pc->pc_nfull);
   1937  1.134        ad 		if (print_cache) {
   1938  1.134        ad 			(*pr)("\tfull cache groups:\n");
   1939  1.134        ad 			for (pcg = pc->pc_fullgroups; pcg != NULL;
   1940  1.134        ad 			    pcg = pcg->pcg_next) {
   1941  1.134        ad 				PR_GROUPLIST(pcg);
   1942  1.134        ad 			}
   1943  1.134        ad 			(*pr)("\tempty cache groups:\n");
   1944  1.134        ad 			for (pcg = pc->pc_emptygroups; pcg != NULL;
   1945  1.134        ad 			    pcg = pcg->pcg_next) {
   1946  1.134        ad 				PR_GROUPLIST(pcg);
   1947  1.134        ad 			}
   1948  1.103       chs 		}
   1949   1.44   thorpej 	}
   1950  1.102       chs #undef PR_GROUPLIST
   1951   1.44   thorpej 
   1952   1.88       chs 	pr_enter_check(pp, pr);
   1953   1.88       chs }
   1954   1.88       chs 
   1955   1.88       chs static int
   1956   1.88       chs pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
   1957   1.88       chs {
   1958   1.88       chs 	struct pool_item *pi;
   1959  1.128  christos 	void *page;
   1960   1.88       chs 	int n;
   1961   1.88       chs 
   1962  1.121      yamt 	if ((pp->pr_roflags & PR_NOALIGN) == 0) {
   1963  1.128  christos 		page = (void *)((uintptr_t)ph & pp->pr_alloc->pa_pagemask);
   1964  1.121      yamt 		if (page != ph->ph_page &&
   1965  1.121      yamt 		    (pp->pr_roflags & PR_PHINPAGE) != 0) {
   1966  1.121      yamt 			if (label != NULL)
   1967  1.121      yamt 				printf("%s: ", label);
   1968  1.121      yamt 			printf("pool(%p:%s): page inconsistency: page %p;"
   1969  1.121      yamt 			       " at page head addr %p (p %p)\n", pp,
   1970  1.121      yamt 				pp->pr_wchan, ph->ph_page,
   1971  1.121      yamt 				ph, page);
   1972  1.121      yamt 			return 1;
   1973  1.121      yamt 		}
   1974   1.88       chs 	}
   1975    1.3        pk 
   1976   1.97      yamt 	if ((pp->pr_roflags & PR_NOTOUCH) != 0)
   1977   1.97      yamt 		return 0;
   1978   1.97      yamt 
   1979  1.102       chs 	for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
   1980   1.88       chs 	     pi != NULL;
   1981  1.102       chs 	     pi = LIST_NEXT(pi,pi_list), n++) {
   1982   1.88       chs 
   1983   1.88       chs #ifdef DIAGNOSTIC
   1984   1.88       chs 		if (pi->pi_magic != PI_MAGIC) {
   1985   1.88       chs 			if (label != NULL)
   1986   1.88       chs 				printf("%s: ", label);
   1987   1.88       chs 			printf("pool(%s): free list modified: magic=%x;"
   1988  1.121      yamt 			       " page %p; item ordinal %d; addr %p\n",
   1989   1.88       chs 				pp->pr_wchan, pi->pi_magic, ph->ph_page,
   1990  1.121      yamt 				n, pi);
   1991   1.88       chs 			panic("pool");
   1992   1.88       chs 		}
   1993   1.88       chs #endif
   1994  1.121      yamt 		if ((pp->pr_roflags & PR_NOALIGN) != 0) {
   1995  1.121      yamt 			continue;
   1996  1.121      yamt 		}
   1997  1.128  christos 		page = (void *)((uintptr_t)pi & pp->pr_alloc->pa_pagemask);
   1998   1.88       chs 		if (page == ph->ph_page)
   1999   1.88       chs 			continue;
   2000   1.88       chs 
   2001   1.88       chs 		if (label != NULL)
   2002   1.88       chs 			printf("%s: ", label);
   2003   1.88       chs 		printf("pool(%p:%s): page inconsistency: page %p;"
   2004   1.88       chs 		       " item ordinal %d; addr %p (p %p)\n", pp,
   2005   1.88       chs 			pp->pr_wchan, ph->ph_page,
   2006   1.88       chs 			n, pi, page);
   2007   1.88       chs 		return 1;
   2008   1.88       chs 	}
   2009   1.88       chs 	return 0;
   2010    1.3        pk }
   2011    1.3        pk 
   2012   1.88       chs 
   2013    1.3        pk int
   2014   1.42   thorpej pool_chk(struct pool *pp, const char *label)
   2015    1.3        pk {
   2016    1.3        pk 	struct pool_item_header *ph;
   2017    1.3        pk 	int r = 0;
   2018    1.3        pk 
   2019  1.134        ad 	mutex_enter(&pp->pr_lock);
   2020   1.88       chs 	LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
   2021   1.88       chs 		r = pool_chk_page(pp, label, ph);
   2022   1.88       chs 		if (r) {
   2023   1.88       chs 			goto out;
   2024   1.88       chs 		}
   2025   1.88       chs 	}
   2026   1.88       chs 	LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
   2027   1.88       chs 		r = pool_chk_page(pp, label, ph);
   2028   1.88       chs 		if (r) {
   2029    1.3        pk 			goto out;
   2030    1.3        pk 		}
   2031   1.88       chs 	}
   2032   1.88       chs 	LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
   2033   1.88       chs 		r = pool_chk_page(pp, label, ph);
   2034   1.88       chs 		if (r) {
   2035    1.3        pk 			goto out;
   2036    1.3        pk 		}
   2037    1.3        pk 	}
   2038   1.88       chs 
   2039    1.3        pk out:
   2040  1.134        ad 	mutex_exit(&pp->pr_lock);
   2041    1.3        pk 	return (r);
   2042   1.43   thorpej }
   2043   1.43   thorpej 
   2044   1.43   thorpej /*
   2045   1.43   thorpej  * pool_cache_init:
   2046   1.43   thorpej  *
   2047   1.43   thorpej  *	Initialize a pool cache.
   2048  1.134        ad  */
   2049  1.134        ad pool_cache_t
   2050  1.134        ad pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
   2051  1.134        ad     const char *wchan, struct pool_allocator *palloc, int ipl,
   2052  1.134        ad     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
   2053  1.134        ad {
   2054  1.134        ad 	pool_cache_t pc;
   2055  1.134        ad 
   2056  1.134        ad 	pc = pool_get(&cache_pool, PR_WAITOK);
   2057  1.134        ad 	if (pc == NULL)
   2058  1.134        ad 		return NULL;
   2059  1.134        ad 
   2060  1.134        ad 	pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
   2061  1.134        ad 	   palloc, ipl, ctor, dtor, arg);
   2062  1.134        ad 
   2063  1.134        ad 	return pc;
   2064  1.134        ad }
   2065  1.134        ad 
   2066  1.134        ad /*
   2067  1.134        ad  * pool_cache_bootstrap:
   2068   1.43   thorpej  *
   2069  1.134        ad  *	Kernel-private version of pool_cache_init().  The caller
   2070  1.134        ad  *	provides initial storage.
   2071   1.43   thorpej  */
   2072   1.43   thorpej void
   2073  1.134        ad pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
   2074  1.134        ad     u_int align_offset, u_int flags, const char *wchan,
   2075  1.134        ad     struct pool_allocator *palloc, int ipl,
   2076  1.134        ad     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
   2077   1.43   thorpej     void *arg)
   2078   1.43   thorpej {
   2079  1.134        ad 	CPU_INFO_ITERATOR cii;
   2080  1.145        ad 	pool_cache_t pc1;
   2081  1.134        ad 	struct cpu_info *ci;
   2082  1.134        ad 	struct pool *pp;
   2083  1.134        ad 
   2084  1.134        ad 	pp = &pc->pc_pool;
   2085  1.134        ad 	if (palloc == NULL && ipl == IPL_NONE)
   2086  1.134        ad 		palloc = &pool_allocator_nointr;
   2087  1.134        ad 	pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl);
   2088  1.157        ad 	mutex_init(&pc->pc_lock, MUTEX_DEFAULT, ipl);
   2089   1.43   thorpej 
   2090  1.134        ad 	if (ctor == NULL) {
   2091  1.134        ad 		ctor = (int (*)(void *, void *, int))nullop;
   2092  1.134        ad 	}
   2093  1.134        ad 	if (dtor == NULL) {
   2094  1.134        ad 		dtor = (void (*)(void *, void *))nullop;
   2095  1.134        ad 	}
   2096   1.43   thorpej 
   2097  1.134        ad 	pc->pc_emptygroups = NULL;
   2098  1.134        ad 	pc->pc_fullgroups = NULL;
   2099  1.134        ad 	pc->pc_partgroups = NULL;
   2100   1.43   thorpej 	pc->pc_ctor = ctor;
   2101   1.43   thorpej 	pc->pc_dtor = dtor;
   2102   1.43   thorpej 	pc->pc_arg  = arg;
   2103  1.134        ad 	pc->pc_hits  = 0;
   2104   1.48   thorpej 	pc->pc_misses = 0;
   2105  1.134        ad 	pc->pc_nempty = 0;
   2106  1.134        ad 	pc->pc_npart = 0;
   2107  1.134        ad 	pc->pc_nfull = 0;
   2108  1.134        ad 	pc->pc_contended = 0;
   2109  1.134        ad 	pc->pc_refcnt = 0;
   2110  1.136      yamt 	pc->pc_freecheck = NULL;
   2111  1.134        ad 
   2112  1.142        ad 	if ((flags & PR_LARGECACHE) != 0) {
   2113  1.142        ad 		pc->pc_pcgsize = PCG_NOBJECTS_LARGE;
   2114  1.163        ad 		pc->pc_pcgpool = &pcg_large_pool;
   2115  1.142        ad 	} else {
   2116  1.142        ad 		pc->pc_pcgsize = PCG_NOBJECTS_NORMAL;
   2117  1.163        ad 		pc->pc_pcgpool = &pcg_normal_pool;
   2118  1.142        ad 	}
   2119  1.142        ad 
   2120  1.134        ad 	/* Allocate per-CPU caches. */
   2121  1.134        ad 	memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
   2122  1.134        ad 	pc->pc_ncpu = 0;
   2123  1.139        ad 	if (ncpu < 2) {
   2124  1.137        ad 		/* XXX For sparc: boot CPU is not attached yet. */
   2125  1.137        ad 		pool_cache_cpu_init1(curcpu(), pc);
   2126  1.137        ad 	} else {
   2127  1.137        ad 		for (CPU_INFO_FOREACH(cii, ci)) {
   2128  1.137        ad 			pool_cache_cpu_init1(ci, pc);
   2129  1.137        ad 		}
   2130  1.134        ad 	}
   2131  1.145        ad 
   2132  1.145        ad 	/* Add to list of all pools. */
   2133  1.145        ad 	if (__predict_true(!cold))
   2134  1.134        ad 		mutex_enter(&pool_head_lock);
   2135  1.145        ad 	TAILQ_FOREACH(pc1, &pool_cache_head, pc_cachelist) {
   2136  1.145        ad 		if (strcmp(pc1->pc_pool.pr_wchan, pc->pc_pool.pr_wchan) > 0)
   2137  1.145        ad 			break;
   2138  1.145        ad 	}
   2139  1.145        ad 	if (pc1 == NULL)
   2140  1.145        ad 		TAILQ_INSERT_TAIL(&pool_cache_head, pc, pc_cachelist);
   2141  1.145        ad 	else
   2142  1.145        ad 		TAILQ_INSERT_BEFORE(pc1, pc, pc_cachelist);
   2143  1.145        ad 	if (__predict_true(!cold))
   2144  1.134        ad 		mutex_exit(&pool_head_lock);
   2145  1.145        ad 
   2146  1.145        ad 	membar_sync();
   2147  1.145        ad 	pp->pr_cache = pc;
   2148   1.43   thorpej }
   2149   1.43   thorpej 
   2150   1.43   thorpej /*
   2151   1.43   thorpej  * pool_cache_destroy:
   2152   1.43   thorpej  *
   2153   1.43   thorpej  *	Destroy a pool cache.
   2154   1.43   thorpej  */
   2155   1.43   thorpej void
   2156  1.134        ad pool_cache_destroy(pool_cache_t pc)
   2157   1.43   thorpej {
   2158  1.134        ad 	struct pool *pp = &pc->pc_pool;
   2159  1.175       jym 	u_int i;
   2160  1.134        ad 
   2161  1.134        ad 	/* Remove it from the global list. */
   2162  1.134        ad 	mutex_enter(&pool_head_lock);
   2163  1.134        ad 	while (pc->pc_refcnt != 0)
   2164  1.134        ad 		cv_wait(&pool_busy, &pool_head_lock);
   2165  1.145        ad 	TAILQ_REMOVE(&pool_cache_head, pc, pc_cachelist);
   2166  1.134        ad 	mutex_exit(&pool_head_lock);
   2167   1.43   thorpej 
   2168   1.43   thorpej 	/* First, invalidate the entire cache. */
   2169   1.43   thorpej 	pool_cache_invalidate(pc);
   2170   1.43   thorpej 
   2171  1.134        ad 	/* Disassociate it from the pool. */
   2172  1.134        ad 	mutex_enter(&pp->pr_lock);
   2173  1.134        ad 	pp->pr_cache = NULL;
   2174  1.134        ad 	mutex_exit(&pp->pr_lock);
   2175  1.134        ad 
   2176  1.134        ad 	/* Destroy per-CPU data */
   2177  1.183        ad 	for (i = 0; i < __arraycount(pc->pc_cpus); i++)
   2178  1.175       jym 		pool_cache_invalidate_cpu(pc, i);
   2179  1.134        ad 
   2180  1.134        ad 	/* Finally, destroy it. */
   2181  1.134        ad 	mutex_destroy(&pc->pc_lock);
   2182  1.134        ad 	pool_destroy(pp);
   2183  1.134        ad 	pool_put(&cache_pool, pc);
   2184  1.134        ad }
   2185  1.134        ad 
   2186  1.134        ad /*
   2187  1.134        ad  * pool_cache_cpu_init1:
   2188  1.134        ad  *
   2189  1.134        ad  *	Called for each pool_cache whenever a new CPU is attached.
   2190  1.134        ad  */
   2191  1.134        ad static void
   2192  1.134        ad pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
   2193  1.134        ad {
   2194  1.134        ad 	pool_cache_cpu_t *cc;
   2195  1.137        ad 	int index;
   2196  1.134        ad 
   2197  1.137        ad 	index = ci->ci_index;
   2198  1.137        ad 
   2199  1.183        ad 	KASSERT(index < __arraycount(pc->pc_cpus));
   2200  1.134        ad 
   2201  1.137        ad 	if ((cc = pc->pc_cpus[index]) != NULL) {
   2202  1.137        ad 		KASSERT(cc->cc_cpuindex == index);
   2203  1.134        ad 		return;
   2204  1.134        ad 	}
   2205  1.134        ad 
   2206  1.134        ad 	/*
   2207  1.134        ad 	 * The first CPU is 'free'.  This needs to be the case for
   2208  1.134        ad 	 * bootstrap - we may not be able to allocate yet.
   2209  1.134        ad 	 */
   2210  1.134        ad 	if (pc->pc_ncpu == 0) {
   2211  1.134        ad 		cc = &pc->pc_cpu0;
   2212  1.134        ad 		pc->pc_ncpu = 1;
   2213  1.134        ad 	} else {
   2214  1.134        ad 		mutex_enter(&pc->pc_lock);
   2215  1.134        ad 		pc->pc_ncpu++;
   2216  1.134        ad 		mutex_exit(&pc->pc_lock);
   2217  1.134        ad 		cc = pool_get(&cache_cpu_pool, PR_WAITOK);
   2218  1.134        ad 	}
   2219  1.134        ad 
   2220  1.134        ad 	cc->cc_ipl = pc->pc_pool.pr_ipl;
   2221  1.134        ad 	cc->cc_iplcookie = makeiplcookie(cc->cc_ipl);
   2222  1.134        ad 	cc->cc_cache = pc;
   2223  1.137        ad 	cc->cc_cpuindex = index;
   2224  1.134        ad 	cc->cc_hits = 0;
   2225  1.134        ad 	cc->cc_misses = 0;
   2226  1.169      yamt 	cc->cc_current = __UNCONST(&pcg_dummy);
   2227  1.169      yamt 	cc->cc_previous = __UNCONST(&pcg_dummy);
   2228  1.134        ad 
   2229  1.137        ad 	pc->pc_cpus[index] = cc;
   2230   1.43   thorpej }
   2231   1.43   thorpej 
   2232  1.134        ad /*
   2233  1.134        ad  * pool_cache_cpu_init:
   2234  1.134        ad  *
   2235  1.134        ad  *	Called whenever a new CPU is attached.
   2236  1.134        ad  */
   2237  1.134        ad void
   2238  1.134        ad pool_cache_cpu_init(struct cpu_info *ci)
   2239   1.43   thorpej {
   2240  1.134        ad 	pool_cache_t pc;
   2241  1.134        ad 
   2242  1.134        ad 	mutex_enter(&pool_head_lock);
   2243  1.145        ad 	TAILQ_FOREACH(pc, &pool_cache_head, pc_cachelist) {
   2244  1.134        ad 		pc->pc_refcnt++;
   2245  1.134        ad 		mutex_exit(&pool_head_lock);
   2246   1.43   thorpej 
   2247  1.134        ad 		pool_cache_cpu_init1(ci, pc);
   2248   1.43   thorpej 
   2249  1.134        ad 		mutex_enter(&pool_head_lock);
   2250  1.134        ad 		pc->pc_refcnt--;
   2251  1.134        ad 		cv_broadcast(&pool_busy);
   2252  1.134        ad 	}
   2253  1.134        ad 	mutex_exit(&pool_head_lock);
   2254   1.43   thorpej }
   2255   1.43   thorpej 
   2256  1.134        ad /*
   2257  1.134        ad  * pool_cache_reclaim:
   2258  1.134        ad  *
   2259  1.134        ad  *	Reclaim memory from a pool cache.
   2260  1.134        ad  */
   2261  1.134        ad bool
   2262  1.134        ad pool_cache_reclaim(pool_cache_t pc)
   2263   1.43   thorpej {
   2264   1.43   thorpej 
   2265  1.134        ad 	return pool_reclaim(&pc->pc_pool);
   2266  1.134        ad }
   2267   1.43   thorpej 
   2268  1.136      yamt static void
   2269  1.136      yamt pool_cache_destruct_object1(pool_cache_t pc, void *object)
   2270  1.136      yamt {
   2271  1.136      yamt 
   2272  1.136      yamt 	(*pc->pc_dtor)(pc->pc_arg, object);
   2273  1.136      yamt 	pool_put(&pc->pc_pool, object);
   2274  1.136      yamt }
   2275  1.136      yamt 
   2276  1.134        ad /*
   2277  1.134        ad  * pool_cache_destruct_object:
   2278  1.134        ad  *
   2279  1.134        ad  *	Force destruction of an object and its release back into
   2280  1.134        ad  *	the pool.
   2281  1.134        ad  */
   2282  1.134        ad void
   2283  1.134        ad pool_cache_destruct_object(pool_cache_t pc, void *object)
   2284  1.134        ad {
   2285  1.134        ad 
   2286  1.136      yamt 	FREECHECK_IN(&pc->pc_freecheck, object);
   2287  1.136      yamt 
   2288  1.136      yamt 	pool_cache_destruct_object1(pc, object);
   2289   1.43   thorpej }
   2290   1.43   thorpej 
   2291  1.134        ad /*
   2292  1.134        ad  * pool_cache_invalidate_groups:
   2293  1.134        ad  *
   2294  1.134        ad  *	Invalidate a chain of groups and destruct all objects.
   2295  1.134        ad  */
   2296  1.102       chs static void
   2297  1.134        ad pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
   2298  1.102       chs {
   2299  1.134        ad 	void *object;
   2300  1.134        ad 	pcg_t *next;
   2301  1.134        ad 	int i;
   2302  1.134        ad 
   2303  1.134        ad 	for (; pcg != NULL; pcg = next) {
   2304  1.134        ad 		next = pcg->pcg_next;
   2305  1.134        ad 
   2306  1.134        ad 		for (i = 0; i < pcg->pcg_avail; i++) {
   2307  1.134        ad 			object = pcg->pcg_objects[i].pcgo_va;
   2308  1.136      yamt 			pool_cache_destruct_object1(pc, object);
   2309  1.134        ad 		}
   2310  1.102       chs 
   2311  1.142        ad 		if (pcg->pcg_size == PCG_NOBJECTS_LARGE) {
   2312  1.142        ad 			pool_put(&pcg_large_pool, pcg);
   2313  1.142        ad 		} else {
   2314  1.142        ad 			KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL);
   2315  1.142        ad 			pool_put(&pcg_normal_pool, pcg);
   2316  1.142        ad 		}
   2317  1.102       chs 	}
   2318  1.102       chs }
   2319  1.102       chs 
   2320   1.43   thorpej /*
   2321  1.134        ad  * pool_cache_invalidate:
   2322   1.43   thorpej  *
   2323  1.134        ad  *	Invalidate a pool cache (destruct and release all of the
   2324  1.134        ad  *	cached objects).  Does not reclaim objects from the pool.
   2325  1.176   thorpej  *
   2326  1.176   thorpej  *	Note: For pool caches that provide constructed objects, there
   2327  1.176   thorpej  *	is an assumption that another level of synchronization is occurring
   2328  1.176   thorpej  *	between the input to the constructor and the cache invalidation.
   2329   1.43   thorpej  */
   2330  1.134        ad void
   2331  1.134        ad pool_cache_invalidate(pool_cache_t pc)
   2332  1.134        ad {
   2333  1.134        ad 	pcg_t *full, *empty, *part;
   2334  1.182     rmind #if 0
   2335  1.176   thorpej 	uint64_t where;
   2336  1.176   thorpej 
   2337  1.177       jym 	if (ncpu < 2 || !mp_online) {
   2338  1.176   thorpej 		/*
   2339  1.176   thorpej 		 * We might be called early enough in the boot process
   2340  1.176   thorpej 		 * for the CPU data structures to not be fully initialized.
   2341  1.176   thorpej 		 * In this case, simply gather the local CPU's cache now
   2342  1.176   thorpej 		 * since it will be the only one running.
   2343  1.176   thorpej 		 */
   2344  1.176   thorpej 		pool_cache_xcall(pc);
   2345  1.176   thorpej 	} else {
   2346  1.176   thorpej 		/*
   2347  1.176   thorpej 		 * Gather all of the CPU-specific caches into the
   2348  1.176   thorpej 		 * global cache.
   2349  1.176   thorpej 		 */
   2350  1.176   thorpej 		where = xc_broadcast(0, (xcfunc_t)pool_cache_xcall, pc, NULL);
   2351  1.176   thorpej 		xc_wait(where);
   2352  1.176   thorpej 	}
   2353  1.182     rmind #endif
   2354  1.134        ad 	mutex_enter(&pc->pc_lock);
   2355  1.134        ad 	full = pc->pc_fullgroups;
   2356  1.134        ad 	empty = pc->pc_emptygroups;
   2357  1.134        ad 	part = pc->pc_partgroups;
   2358  1.134        ad 	pc->pc_fullgroups = NULL;
   2359  1.134        ad 	pc->pc_emptygroups = NULL;
   2360  1.134        ad 	pc->pc_partgroups = NULL;
   2361  1.134        ad 	pc->pc_nfull = 0;
   2362  1.134        ad 	pc->pc_nempty = 0;
   2363  1.134        ad 	pc->pc_npart = 0;
   2364  1.134        ad 	mutex_exit(&pc->pc_lock);
   2365  1.134        ad 
   2366  1.134        ad 	pool_cache_invalidate_groups(pc, full);
   2367  1.134        ad 	pool_cache_invalidate_groups(pc, empty);
   2368  1.134        ad 	pool_cache_invalidate_groups(pc, part);
   2369  1.134        ad }
   2370  1.134        ad 
   2371  1.175       jym /*
   2372  1.175       jym  * pool_cache_invalidate_cpu:
   2373  1.175       jym  *
   2374  1.175       jym  *	Invalidate all CPU-bound cached objects in pool cache, the CPU being
   2375  1.175       jym  *	identified by its associated index.
   2376  1.175       jym  *	It is caller's responsibility to ensure that no operation is
   2377  1.175       jym  *	taking place on this pool cache while doing this invalidation.
   2378  1.175       jym  *	WARNING: as no inter-CPU locking is enforced, trying to invalidate
   2379  1.175       jym  *	pool cached objects from a CPU different from the one currently running
   2380  1.175       jym  *	may result in an undefined behaviour.
   2381  1.175       jym  */
   2382  1.175       jym static void
   2383  1.175       jym pool_cache_invalidate_cpu(pool_cache_t pc, u_int index)
   2384  1.175       jym {
   2385  1.175       jym 
   2386  1.175       jym 	pool_cache_cpu_t *cc;
   2387  1.175       jym 	pcg_t *pcg;
   2388  1.175       jym 
   2389  1.175       jym 	if ((cc = pc->pc_cpus[index]) == NULL)
   2390  1.175       jym 		return;
   2391  1.175       jym 
   2392  1.175       jym 	if ((pcg = cc->cc_current) != &pcg_dummy) {
   2393  1.175       jym 		pcg->pcg_next = NULL;
   2394  1.175       jym 		pool_cache_invalidate_groups(pc, pcg);
   2395  1.175       jym 	}
   2396  1.175       jym 	if ((pcg = cc->cc_previous) != &pcg_dummy) {
   2397  1.175       jym 		pcg->pcg_next = NULL;
   2398  1.175       jym 		pool_cache_invalidate_groups(pc, pcg);
   2399  1.175       jym 	}
   2400  1.175       jym 	if (cc != &pc->pc_cpu0)
   2401  1.175       jym 		pool_put(&cache_cpu_pool, cc);
   2402  1.175       jym 
   2403  1.175       jym }
   2404  1.175       jym 
   2405  1.134        ad void
   2406  1.134        ad pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
   2407  1.134        ad {
   2408  1.134        ad 
   2409  1.134        ad 	pool_set_drain_hook(&pc->pc_pool, fn, arg);
   2410  1.134        ad }
   2411  1.134        ad 
   2412  1.134        ad void
   2413  1.134        ad pool_cache_setlowat(pool_cache_t pc, int n)
   2414  1.134        ad {
   2415  1.134        ad 
   2416  1.134        ad 	pool_setlowat(&pc->pc_pool, n);
   2417  1.134        ad }
   2418  1.134        ad 
   2419  1.134        ad void
   2420  1.134        ad pool_cache_sethiwat(pool_cache_t pc, int n)
   2421  1.134        ad {
   2422  1.134        ad 
   2423  1.134        ad 	pool_sethiwat(&pc->pc_pool, n);
   2424  1.134        ad }
   2425  1.134        ad 
   2426  1.134        ad void
   2427  1.134        ad pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
   2428  1.134        ad {
   2429  1.134        ad 
   2430  1.134        ad 	pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
   2431  1.134        ad }
   2432  1.134        ad 
   2433  1.162        ad static bool __noinline
   2434  1.162        ad pool_cache_get_slow(pool_cache_cpu_t *cc, int s, void **objectp,
   2435  1.134        ad 		    paddr_t *pap, int flags)
   2436   1.43   thorpej {
   2437  1.134        ad 	pcg_t *pcg, *cur;
   2438  1.134        ad 	uint64_t ncsw;
   2439  1.134        ad 	pool_cache_t pc;
   2440   1.43   thorpej 	void *object;
   2441   1.58   thorpej 
   2442  1.168      yamt 	KASSERT(cc->cc_current->pcg_avail == 0);
   2443  1.168      yamt 	KASSERT(cc->cc_previous->pcg_avail == 0);
   2444  1.168      yamt 
   2445  1.134        ad 	pc = cc->cc_cache;
   2446  1.134        ad 	cc->cc_misses++;
   2447   1.43   thorpej 
   2448  1.134        ad 	/*
   2449  1.134        ad 	 * Nothing was available locally.  Try and grab a group
   2450  1.134        ad 	 * from the cache.
   2451  1.134        ad 	 */
   2452  1.162        ad 	if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
   2453  1.134        ad 		ncsw = curlwp->l_ncsw;
   2454  1.134        ad 		mutex_enter(&pc->pc_lock);
   2455  1.134        ad 		pc->pc_contended++;
   2456   1.43   thorpej 
   2457  1.134        ad 		/*
   2458  1.134        ad 		 * If we context switched while locking, then
   2459  1.134        ad 		 * our view of the per-CPU data is invalid:
   2460  1.134        ad 		 * retry.
   2461  1.134        ad 		 */
   2462  1.134        ad 		if (curlwp->l_ncsw != ncsw) {
   2463  1.134        ad 			mutex_exit(&pc->pc_lock);
   2464  1.162        ad 			return true;
   2465   1.43   thorpej 		}
   2466  1.102       chs 	}
   2467   1.43   thorpej 
   2468  1.162        ad 	if (__predict_true((pcg = pc->pc_fullgroups) != NULL)) {
   2469   1.43   thorpej 		/*
   2470  1.134        ad 		 * If there's a full group, release our empty
   2471  1.134        ad 		 * group back to the cache.  Install the full
   2472  1.134        ad 		 * group as cc_current and return.
   2473   1.43   thorpej 		 */
   2474  1.162        ad 		if (__predict_true((cur = cc->cc_current) != &pcg_dummy)) {
   2475  1.134        ad 			KASSERT(cur->pcg_avail == 0);
   2476  1.134        ad 			cur->pcg_next = pc->pc_emptygroups;
   2477  1.134        ad 			pc->pc_emptygroups = cur;
   2478  1.134        ad 			pc->pc_nempty++;
   2479   1.87   thorpej 		}
   2480  1.142        ad 		KASSERT(pcg->pcg_avail == pcg->pcg_size);
   2481  1.134        ad 		cc->cc_current = pcg;
   2482  1.134        ad 		pc->pc_fullgroups = pcg->pcg_next;
   2483  1.134        ad 		pc->pc_hits++;
   2484  1.134        ad 		pc->pc_nfull--;
   2485  1.134        ad 		mutex_exit(&pc->pc_lock);
   2486  1.162        ad 		return true;
   2487  1.134        ad 	}
   2488  1.134        ad 
   2489  1.134        ad 	/*
   2490  1.134        ad 	 * Nothing available locally or in cache.  Take the slow
   2491  1.134        ad 	 * path: fetch a new object from the pool and construct
   2492  1.134        ad 	 * it.
   2493  1.134        ad 	 */
   2494  1.134        ad 	pc->pc_misses++;
   2495  1.134        ad 	mutex_exit(&pc->pc_lock);
   2496  1.162        ad 	splx(s);
   2497  1.134        ad 
   2498  1.134        ad 	object = pool_get(&pc->pc_pool, flags);
   2499  1.134        ad 	*objectp = object;
   2500  1.162        ad 	if (__predict_false(object == NULL))
   2501  1.162        ad 		return false;
   2502  1.125        ad 
   2503  1.162        ad 	if (__predict_false((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0)) {
   2504  1.134        ad 		pool_put(&pc->pc_pool, object);
   2505  1.134        ad 		*objectp = NULL;
   2506  1.162        ad 		return false;
   2507   1.43   thorpej 	}
   2508   1.43   thorpej 
   2509  1.134        ad 	KASSERT((((vaddr_t)object + pc->pc_pool.pr_itemoffset) &
   2510  1.134        ad 	    (pc->pc_pool.pr_align - 1)) == 0);
   2511   1.43   thorpej 
   2512  1.134        ad 	if (pap != NULL) {
   2513  1.134        ad #ifdef POOL_VTOPHYS
   2514  1.134        ad 		*pap = POOL_VTOPHYS(object);
   2515  1.134        ad #else
   2516  1.134        ad 		*pap = POOL_PADDR_INVALID;
   2517  1.134        ad #endif
   2518  1.102       chs 	}
   2519   1.43   thorpej 
   2520  1.125        ad 	FREECHECK_OUT(&pc->pc_freecheck, object);
   2521  1.162        ad 	return false;
   2522   1.43   thorpej }
   2523   1.43   thorpej 
   2524   1.43   thorpej /*
   2525  1.134        ad  * pool_cache_get{,_paddr}:
   2526   1.43   thorpej  *
   2527  1.134        ad  *	Get an object from a pool cache (optionally returning
   2528  1.134        ad  *	the physical address of the object).
   2529   1.43   thorpej  */
   2530  1.134        ad void *
   2531  1.134        ad pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
   2532   1.43   thorpej {
   2533  1.134        ad 	pool_cache_cpu_t *cc;
   2534  1.134        ad 	pcg_t *pcg;
   2535  1.134        ad 	void *object;
   2536   1.60   thorpej 	int s;
   2537   1.43   thorpej 
   2538  1.184     rmind 	KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()) ||
   2539  1.185     rmind 	    (pc->pc_pool.pr_ipl != IPL_NONE || cold || panicstr != NULL),
   2540  1.184     rmind 	    ("pool '%s' is IPL_NONE, but called from interrupt context\n",
   2541  1.184     rmind 	    pc->pc_pool.pr_wchan));
   2542  1.184     rmind 
   2543  1.155        ad 	if (flags & PR_WAITOK) {
   2544  1.154      yamt 		ASSERT_SLEEPABLE();
   2545  1.155        ad 	}
   2546  1.125        ad 
   2547  1.162        ad 	/* Lock out interrupts and disable preemption. */
   2548  1.162        ad 	s = splvm();
   2549  1.165      yamt 	while (/* CONSTCOND */ true) {
   2550  1.134        ad 		/* Try and allocate an object from the current group. */
   2551  1.162        ad 		cc = pc->pc_cpus[curcpu()->ci_index];
   2552  1.162        ad 		KASSERT(cc->cc_cache == pc);
   2553  1.134        ad 	 	pcg = cc->cc_current;
   2554  1.162        ad 		if (__predict_true(pcg->pcg_avail > 0)) {
   2555  1.134        ad 			object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;
   2556  1.162        ad 			if (__predict_false(pap != NULL))
   2557  1.134        ad 				*pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa;
   2558  1.148      yamt #if defined(DIAGNOSTIC)
   2559  1.134        ad 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL;
   2560  1.163        ad 			KASSERT(pcg->pcg_avail < pcg->pcg_size);
   2561  1.134        ad 			KASSERT(object != NULL);
   2562  1.163        ad #endif
   2563  1.134        ad 			cc->cc_hits++;
   2564  1.162        ad 			splx(s);
   2565  1.134        ad 			FREECHECK_OUT(&pc->pc_freecheck, object);
   2566  1.134        ad 			return object;
   2567   1.43   thorpej 		}
   2568   1.43   thorpej 
   2569   1.43   thorpej 		/*
   2570  1.134        ad 		 * That failed.  If the previous group isn't empty, swap
   2571  1.134        ad 		 * it with the current group and allocate from there.
   2572   1.43   thorpej 		 */
   2573  1.134        ad 		pcg = cc->cc_previous;
   2574  1.162        ad 		if (__predict_true(pcg->pcg_avail > 0)) {
   2575  1.134        ad 			cc->cc_previous = cc->cc_current;
   2576  1.134        ad 			cc->cc_current = pcg;
   2577  1.134        ad 			continue;
   2578   1.43   thorpej 		}
   2579   1.43   thorpej 
   2580  1.134        ad 		/*
   2581  1.134        ad 		 * Can't allocate from either group: try the slow path.
   2582  1.134        ad 		 * If get_slow() allocated an object for us, or if
   2583  1.162        ad 		 * no more objects are available, it will return false.
   2584  1.134        ad 		 * Otherwise, we need to retry.
   2585  1.134        ad 		 */
   2586  1.165      yamt 		if (!pool_cache_get_slow(cc, s, &object, pap, flags))
   2587  1.165      yamt 			break;
   2588  1.165      yamt 	}
   2589   1.43   thorpej 
   2590  1.134        ad 	return object;
   2591   1.51   thorpej }
   2592   1.51   thorpej 
   2593  1.162        ad static bool __noinline
   2594  1.162        ad pool_cache_put_slow(pool_cache_cpu_t *cc, int s, void *object)
   2595   1.51   thorpej {
   2596  1.163        ad 	pcg_t *pcg, *cur;
   2597  1.134        ad 	uint64_t ncsw;
   2598  1.134        ad 	pool_cache_t pc;
   2599   1.51   thorpej 
   2600  1.168      yamt 	KASSERT(cc->cc_current->pcg_avail == cc->cc_current->pcg_size);
   2601  1.168      yamt 	KASSERT(cc->cc_previous->pcg_avail == cc->cc_previous->pcg_size);
   2602  1.168      yamt 
   2603  1.134        ad 	pc = cc->cc_cache;
   2604  1.171        ad 	pcg = NULL;
   2605  1.134        ad 	cc->cc_misses++;
   2606   1.43   thorpej 
   2607  1.171        ad 	/*
   2608  1.171        ad 	 * If there are no empty groups in the cache then allocate one
   2609  1.171        ad 	 * while still unlocked.
   2610  1.171        ad 	 */
   2611  1.171        ad 	if (__predict_false(pc->pc_emptygroups == NULL)) {
   2612  1.171        ad 		if (__predict_true(!pool_cache_disable)) {
   2613  1.171        ad 			pcg = pool_get(pc->pc_pcgpool, PR_NOWAIT);
   2614  1.171        ad 		}
   2615  1.171        ad 		if (__predict_true(pcg != NULL)) {
   2616  1.171        ad 			pcg->pcg_avail = 0;
   2617  1.171        ad 			pcg->pcg_size = pc->pc_pcgsize;
   2618  1.171        ad 		}
   2619  1.171        ad 	}
   2620  1.171        ad 
   2621  1.162        ad 	/* Lock the cache. */
   2622  1.162        ad 	if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
   2623  1.164        ad 		ncsw = curlwp->l_ncsw;
   2624  1.134        ad 		mutex_enter(&pc->pc_lock);
   2625  1.134        ad 		pc->pc_contended++;
   2626  1.162        ad 
   2627  1.163        ad 		/*
   2628  1.163        ad 		 * If we context switched while locking, then our view of
   2629  1.163        ad 		 * the per-CPU data is invalid: retry.
   2630  1.163        ad 		 */
   2631  1.163        ad 		if (__predict_false(curlwp->l_ncsw != ncsw)) {
   2632  1.163        ad 			mutex_exit(&pc->pc_lock);
   2633  1.171        ad 			if (pcg != NULL) {
   2634  1.171        ad 				pool_put(pc->pc_pcgpool, pcg);
   2635  1.171        ad 			}
   2636  1.163        ad 			return true;
   2637  1.163        ad 		}
   2638  1.162        ad 	}
   2639  1.102       chs 
   2640  1.163        ad 	/* If there are no empty groups in the cache then allocate one. */
   2641  1.171        ad 	if (pcg == NULL && pc->pc_emptygroups != NULL) {
   2642  1.171        ad 		pcg = pc->pc_emptygroups;
   2643  1.163        ad 		pc->pc_emptygroups = pcg->pcg_next;
   2644  1.163        ad 		pc->pc_nempty--;
   2645  1.134        ad 	}
   2646  1.130        ad 
   2647  1.162        ad 	/*
   2648  1.162        ad 	 * If there's a empty group, release our full group back
   2649  1.162        ad 	 * to the cache.  Install the empty group to the local CPU
   2650  1.162        ad 	 * and return.
   2651  1.162        ad 	 */
   2652  1.163        ad 	if (pcg != NULL) {
   2653  1.134        ad 		KASSERT(pcg->pcg_avail == 0);
   2654  1.162        ad 		if (__predict_false(cc->cc_previous == &pcg_dummy)) {
   2655  1.146        ad 			cc->cc_previous = pcg;
   2656  1.146        ad 		} else {
   2657  1.162        ad 			cur = cc->cc_current;
   2658  1.162        ad 			if (__predict_true(cur != &pcg_dummy)) {
   2659  1.163        ad 				KASSERT(cur->pcg_avail == cur->pcg_size);
   2660  1.146        ad 				cur->pcg_next = pc->pc_fullgroups;
   2661  1.146        ad 				pc->pc_fullgroups = cur;
   2662  1.146        ad 				pc->pc_nfull++;
   2663  1.146        ad 			}
   2664  1.146        ad 			cc->cc_current = pcg;
   2665  1.146        ad 		}
   2666  1.163        ad 		pc->pc_hits++;
   2667  1.134        ad 		mutex_exit(&pc->pc_lock);
   2668  1.162        ad 		return true;
   2669  1.102       chs 	}
   2670  1.105  christos 
   2671  1.134        ad 	/*
   2672  1.162        ad 	 * Nothing available locally or in cache, and we didn't
   2673  1.162        ad 	 * allocate an empty group.  Take the slow path and destroy
   2674  1.162        ad 	 * the object here and now.
   2675  1.134        ad 	 */
   2676  1.134        ad 	pc->pc_misses++;
   2677  1.134        ad 	mutex_exit(&pc->pc_lock);
   2678  1.162        ad 	splx(s);
   2679  1.162        ad 	pool_cache_destruct_object(pc, object);
   2680  1.105  christos 
   2681  1.162        ad 	return false;
   2682  1.134        ad }
   2683  1.102       chs 
   2684   1.43   thorpej /*
   2685  1.134        ad  * pool_cache_put{,_paddr}:
   2686   1.43   thorpej  *
   2687  1.134        ad  *	Put an object back to the pool cache (optionally caching the
   2688  1.134        ad  *	physical address of the object).
   2689   1.43   thorpej  */
   2690  1.101   thorpej void
   2691  1.134        ad pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
   2692   1.43   thorpej {
   2693  1.134        ad 	pool_cache_cpu_t *cc;
   2694  1.134        ad 	pcg_t *pcg;
   2695  1.134        ad 	int s;
   2696  1.101   thorpej 
   2697  1.172      yamt 	KASSERT(object != NULL);
   2698  1.134        ad 	FREECHECK_IN(&pc->pc_freecheck, object);
   2699  1.101   thorpej 
   2700  1.162        ad 	/* Lock out interrupts and disable preemption. */
   2701  1.162        ad 	s = splvm();
   2702  1.165      yamt 	while (/* CONSTCOND */ true) {
   2703  1.134        ad 		/* If the current group isn't full, release it there. */
   2704  1.162        ad 		cc = pc->pc_cpus[curcpu()->ci_index];
   2705  1.162        ad 		KASSERT(cc->cc_cache == pc);
   2706  1.134        ad 	 	pcg = cc->cc_current;
   2707  1.162        ad 		if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
   2708  1.134        ad 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object;
   2709  1.134        ad 			pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa;
   2710  1.134        ad 			pcg->pcg_avail++;
   2711  1.134        ad 			cc->cc_hits++;
   2712  1.162        ad 			splx(s);
   2713  1.134        ad 			return;
   2714  1.134        ad 		}
   2715   1.43   thorpej 
   2716  1.134        ad 		/*
   2717  1.162        ad 		 * That failed.  If the previous group isn't full, swap
   2718  1.134        ad 		 * it with the current group and try again.
   2719  1.134        ad 		 */
   2720  1.134        ad 		pcg = cc->cc_previous;
   2721  1.162        ad 		if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
   2722  1.134        ad 			cc->cc_previous = cc->cc_current;
   2723  1.134        ad 			cc->cc_current = pcg;
   2724  1.134        ad 			continue;
   2725  1.134        ad 		}
   2726   1.43   thorpej 
   2727  1.134        ad 		/*
   2728  1.134        ad 		 * Can't free to either group: try the slow path.
   2729  1.134        ad 		 * If put_slow() releases the object for us, it
   2730  1.162        ad 		 * will return false.  Otherwise we need to retry.
   2731  1.134        ad 		 */
   2732  1.165      yamt 		if (!pool_cache_put_slow(cc, s, object))
   2733  1.165      yamt 			break;
   2734  1.165      yamt 	}
   2735   1.43   thorpej }
   2736   1.43   thorpej 
   2737   1.43   thorpej /*
   2738  1.134        ad  * pool_cache_xcall:
   2739   1.43   thorpej  *
   2740  1.134        ad  *	Transfer objects from the per-CPU cache to the global cache.
   2741  1.134        ad  *	Run within a cross-call thread.
   2742   1.43   thorpej  */
   2743   1.43   thorpej static void
   2744  1.134        ad pool_cache_xcall(pool_cache_t pc)
   2745   1.43   thorpej {
   2746  1.134        ad 	pool_cache_cpu_t *cc;
   2747  1.134        ad 	pcg_t *prev, *cur, **list;
   2748  1.162        ad 	int s;
   2749  1.134        ad 
   2750  1.162        ad 	s = splvm();
   2751  1.162        ad 	mutex_enter(&pc->pc_lock);
   2752  1.162        ad 	cc = pc->pc_cpus[curcpu()->ci_index];
   2753  1.134        ad 	cur = cc->cc_current;
   2754  1.169      yamt 	cc->cc_current = __UNCONST(&pcg_dummy);
   2755  1.134        ad 	prev = cc->cc_previous;
   2756  1.169      yamt 	cc->cc_previous = __UNCONST(&pcg_dummy);
   2757  1.162        ad 	if (cur != &pcg_dummy) {
   2758  1.142        ad 		if (cur->pcg_avail == cur->pcg_size) {
   2759  1.134        ad 			list = &pc->pc_fullgroups;
   2760  1.134        ad 			pc->pc_nfull++;
   2761  1.134        ad 		} else if (cur->pcg_avail == 0) {
   2762  1.134        ad 			list = &pc->pc_emptygroups;
   2763  1.134        ad 			pc->pc_nempty++;
   2764  1.134        ad 		} else {
   2765  1.134        ad 			list = &pc->pc_partgroups;
   2766  1.134        ad 			pc->pc_npart++;
   2767  1.134        ad 		}
   2768  1.134        ad 		cur->pcg_next = *list;
   2769  1.134        ad 		*list = cur;
   2770  1.134        ad 	}
   2771  1.162        ad 	if (prev != &pcg_dummy) {
   2772  1.142        ad 		if (prev->pcg_avail == prev->pcg_size) {
   2773  1.134        ad 			list = &pc->pc_fullgroups;
   2774  1.134        ad 			pc->pc_nfull++;
   2775  1.134        ad 		} else if (prev->pcg_avail == 0) {
   2776  1.134        ad 			list = &pc->pc_emptygroups;
   2777  1.134        ad 			pc->pc_nempty++;
   2778  1.134        ad 		} else {
   2779  1.134        ad 			list = &pc->pc_partgroups;
   2780  1.134        ad 			pc->pc_npart++;
   2781  1.134        ad 		}
   2782  1.134        ad 		prev->pcg_next = *list;
   2783  1.134        ad 		*list = prev;
   2784  1.134        ad 	}
   2785  1.134        ad 	mutex_exit(&pc->pc_lock);
   2786  1.134        ad 	splx(s);
   2787    1.3        pk }
   2788   1.66   thorpej 
   2789   1.66   thorpej /*
   2790   1.66   thorpej  * Pool backend allocators.
   2791   1.66   thorpej  *
   2792   1.66   thorpej  * Each pool has a backend allocator that handles allocation, deallocation,
   2793   1.66   thorpej  * and any additional draining that might be needed.
   2794   1.66   thorpej  *
   2795   1.66   thorpej  * We provide two standard allocators:
   2796   1.66   thorpej  *
   2797   1.66   thorpej  *	pool_allocator_kmem - the default when no allocator is specified
   2798   1.66   thorpej  *
   2799   1.66   thorpej  *	pool_allocator_nointr - used for pools that will not be accessed
   2800   1.66   thorpej  *	in interrupt context.
   2801   1.66   thorpej  */
   2802   1.66   thorpej void	*pool_page_alloc(struct pool *, int);
   2803   1.66   thorpej void	pool_page_free(struct pool *, void *);
   2804   1.66   thorpej 
   2805  1.112     bjh21 #ifdef POOL_SUBPAGE
   2806  1.112     bjh21 struct pool_allocator pool_allocator_kmem_fullpage = {
   2807  1.112     bjh21 	pool_page_alloc, pool_page_free, 0,
   2808  1.117      yamt 	.pa_backingmapptr = &kmem_map,
   2809  1.112     bjh21 };
   2810  1.112     bjh21 #else
   2811   1.66   thorpej struct pool_allocator pool_allocator_kmem = {
   2812   1.66   thorpej 	pool_page_alloc, pool_page_free, 0,
   2813  1.117      yamt 	.pa_backingmapptr = &kmem_map,
   2814   1.66   thorpej };
   2815  1.112     bjh21 #endif
   2816   1.66   thorpej 
   2817   1.66   thorpej void	*pool_page_alloc_nointr(struct pool *, int);
   2818   1.66   thorpej void	pool_page_free_nointr(struct pool *, void *);
   2819   1.66   thorpej 
   2820  1.112     bjh21 #ifdef POOL_SUBPAGE
   2821  1.112     bjh21 struct pool_allocator pool_allocator_nointr_fullpage = {
   2822  1.112     bjh21 	pool_page_alloc_nointr, pool_page_free_nointr, 0,
   2823  1.117      yamt 	.pa_backingmapptr = &kernel_map,
   2824  1.112     bjh21 };
   2825  1.112     bjh21 #else
   2826   1.66   thorpej struct pool_allocator pool_allocator_nointr = {
   2827   1.66   thorpej 	pool_page_alloc_nointr, pool_page_free_nointr, 0,
   2828  1.117      yamt 	.pa_backingmapptr = &kernel_map,
   2829   1.66   thorpej };
   2830  1.112     bjh21 #endif
   2831   1.66   thorpej 
   2832   1.66   thorpej #ifdef POOL_SUBPAGE
   2833   1.66   thorpej void	*pool_subpage_alloc(struct pool *, int);
   2834   1.66   thorpej void	pool_subpage_free(struct pool *, void *);
   2835   1.66   thorpej 
   2836  1.112     bjh21 struct pool_allocator pool_allocator_kmem = {
   2837  1.112     bjh21 	pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
   2838  1.117      yamt 	.pa_backingmapptr = &kmem_map,
   2839  1.112     bjh21 };
   2840  1.112     bjh21 
   2841  1.112     bjh21 void	*pool_subpage_alloc_nointr(struct pool *, int);
   2842  1.112     bjh21 void	pool_subpage_free_nointr(struct pool *, void *);
   2843  1.112     bjh21 
   2844  1.112     bjh21 struct pool_allocator pool_allocator_nointr = {
   2845  1.112     bjh21 	pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
   2846  1.117      yamt 	.pa_backingmapptr = &kmem_map,
   2847   1.66   thorpej };
   2848   1.66   thorpej #endif /* POOL_SUBPAGE */
   2849   1.66   thorpej 
   2850  1.117      yamt static void *
   2851  1.117      yamt pool_allocator_alloc(struct pool *pp, int flags)
   2852   1.66   thorpej {
   2853  1.117      yamt 	struct pool_allocator *pa = pp->pr_alloc;
   2854   1.66   thorpej 	void *res;
   2855   1.66   thorpej 
   2856  1.117      yamt 	res = (*pa->pa_alloc)(pp, flags);
   2857  1.117      yamt 	if (res == NULL && (flags & PR_WAITOK) == 0) {
   2858   1.66   thorpej 		/*
   2859  1.117      yamt 		 * We only run the drain hook here if PR_NOWAIT.
   2860  1.117      yamt 		 * In other cases, the hook will be run in
   2861  1.117      yamt 		 * pool_reclaim().
   2862   1.66   thorpej 		 */
   2863  1.117      yamt 		if (pp->pr_drain_hook != NULL) {
   2864  1.117      yamt 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
   2865  1.117      yamt 			res = (*pa->pa_alloc)(pp, flags);
   2866   1.66   thorpej 		}
   2867  1.117      yamt 	}
   2868  1.117      yamt 	return res;
   2869   1.66   thorpej }
   2870   1.66   thorpej 
   2871  1.117      yamt static void
   2872   1.66   thorpej pool_allocator_free(struct pool *pp, void *v)
   2873   1.66   thorpej {
   2874   1.66   thorpej 	struct pool_allocator *pa = pp->pr_alloc;
   2875   1.66   thorpej 
   2876   1.66   thorpej 	(*pa->pa_free)(pp, v);
   2877   1.66   thorpej }
   2878   1.66   thorpej 
   2879   1.66   thorpej void *
   2880  1.124      yamt pool_page_alloc(struct pool *pp, int flags)
   2881   1.66   thorpej {
   2882  1.127   thorpej 	bool waitok = (flags & PR_WAITOK) ? true : false;
   2883   1.66   thorpej 
   2884  1.100      yamt 	return ((void *) uvm_km_alloc_poolpage_cache(kmem_map, waitok));
   2885   1.66   thorpej }
   2886   1.66   thorpej 
   2887   1.66   thorpej void
   2888  1.124      yamt pool_page_free(struct pool *pp, void *v)
   2889   1.66   thorpej {
   2890   1.66   thorpej 
   2891   1.98      yamt 	uvm_km_free_poolpage_cache(kmem_map, (vaddr_t) v);
   2892   1.98      yamt }
   2893   1.98      yamt 
   2894   1.98      yamt static void *
   2895  1.124      yamt pool_page_alloc_meta(struct pool *pp, int flags)
   2896   1.98      yamt {
   2897  1.127   thorpej 	bool waitok = (flags & PR_WAITOK) ? true : false;
   2898   1.98      yamt 
   2899  1.100      yamt 	return ((void *) uvm_km_alloc_poolpage(kmem_map, waitok));
   2900   1.98      yamt }
   2901   1.98      yamt 
   2902   1.98      yamt static void
   2903  1.124      yamt pool_page_free_meta(struct pool *pp, void *v)
   2904   1.98      yamt {
   2905   1.98      yamt 
   2906  1.100      yamt 	uvm_km_free_poolpage(kmem_map, (vaddr_t) v);
   2907   1.66   thorpej }
   2908   1.66   thorpej 
   2909   1.66   thorpej #ifdef POOL_SUBPAGE
   2910   1.66   thorpej /* Sub-page allocator, for machines with large hardware pages. */
   2911   1.66   thorpej void *
   2912   1.66   thorpej pool_subpage_alloc(struct pool *pp, int flags)
   2913   1.66   thorpej {
   2914  1.134        ad 	return pool_get(&psppool, flags);
   2915   1.66   thorpej }
   2916   1.66   thorpej 
   2917   1.66   thorpej void
   2918   1.66   thorpej pool_subpage_free(struct pool *pp, void *v)
   2919   1.66   thorpej {
   2920   1.66   thorpej 	pool_put(&psppool, v);
   2921   1.66   thorpej }
   2922   1.66   thorpej 
   2923   1.66   thorpej /* We don't provide a real nointr allocator.  Maybe later. */
   2924   1.66   thorpej void *
   2925  1.112     bjh21 pool_subpage_alloc_nointr(struct pool *pp, int flags)
   2926   1.66   thorpej {
   2927   1.66   thorpej 
   2928   1.66   thorpej 	return (pool_subpage_alloc(pp, flags));
   2929   1.66   thorpej }
   2930   1.66   thorpej 
   2931   1.66   thorpej void
   2932  1.112     bjh21 pool_subpage_free_nointr(struct pool *pp, void *v)
   2933   1.66   thorpej {
   2934   1.66   thorpej 
   2935   1.66   thorpej 	pool_subpage_free(pp, v);
   2936   1.66   thorpej }
   2937  1.112     bjh21 #endif /* POOL_SUBPAGE */
   2938   1.66   thorpej void *
   2939  1.124      yamt pool_page_alloc_nointr(struct pool *pp, int flags)
   2940   1.66   thorpej {
   2941  1.127   thorpej 	bool waitok = (flags & PR_WAITOK) ? true : false;
   2942   1.66   thorpej 
   2943  1.100      yamt 	return ((void *) uvm_km_alloc_poolpage_cache(kernel_map, waitok));
   2944   1.66   thorpej }
   2945   1.66   thorpej 
   2946   1.66   thorpej void
   2947  1.124      yamt pool_page_free_nointr(struct pool *pp, void *v)
   2948   1.66   thorpej {
   2949   1.66   thorpej 
   2950   1.98      yamt 	uvm_km_free_poolpage_cache(kernel_map, (vaddr_t) v);
   2951   1.66   thorpej }
   2952  1.141      yamt 
   2953  1.141      yamt #if defined(DDB)
   2954  1.141      yamt static bool
   2955  1.141      yamt pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
   2956  1.141      yamt {
   2957  1.141      yamt 
   2958  1.141      yamt 	return (uintptr_t)ph->ph_page <= addr &&
   2959  1.141      yamt 	    addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz;
   2960  1.141      yamt }
   2961  1.141      yamt 
   2962  1.143      yamt static bool
   2963  1.143      yamt pool_in_item(struct pool *pp, void *item, uintptr_t addr)
   2964  1.143      yamt {
   2965  1.143      yamt 
   2966  1.143      yamt 	return (uintptr_t)item <= addr && addr < (uintptr_t)item + pp->pr_size;
   2967  1.143      yamt }
   2968  1.143      yamt 
   2969  1.143      yamt static bool
   2970  1.143      yamt pool_in_cg(struct pool *pp, struct pool_cache_group *pcg, uintptr_t addr)
   2971  1.143      yamt {
   2972  1.143      yamt 	int i;
   2973  1.143      yamt 
   2974  1.143      yamt 	if (pcg == NULL) {
   2975  1.143      yamt 		return false;
   2976  1.143      yamt 	}
   2977  1.144      yamt 	for (i = 0; i < pcg->pcg_avail; i++) {
   2978  1.143      yamt 		if (pool_in_item(pp, pcg->pcg_objects[i].pcgo_va, addr)) {
   2979  1.143      yamt 			return true;
   2980  1.143      yamt 		}
   2981  1.143      yamt 	}
   2982  1.143      yamt 	return false;
   2983  1.143      yamt }
   2984  1.143      yamt 
   2985  1.143      yamt static bool
   2986  1.143      yamt pool_allocated(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
   2987  1.143      yamt {
   2988  1.143      yamt 
   2989  1.143      yamt 	if ((pp->pr_roflags & PR_NOTOUCH) != 0) {
   2990  1.143      yamt 		unsigned int idx = pr_item_notouch_index(pp, ph, (void *)addr);
   2991  1.143      yamt 		pool_item_bitmap_t *bitmap =
   2992  1.143      yamt 		    ph->ph_bitmap + (idx / BITMAP_SIZE);
   2993  1.143      yamt 		pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
   2994  1.143      yamt 
   2995  1.143      yamt 		return (*bitmap & mask) == 0;
   2996  1.143      yamt 	} else {
   2997  1.143      yamt 		struct pool_item *pi;
   2998  1.143      yamt 
   2999  1.143      yamt 		LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
   3000  1.143      yamt 			if (pool_in_item(pp, pi, addr)) {
   3001  1.143      yamt 				return false;
   3002  1.143      yamt 			}
   3003  1.143      yamt 		}
   3004  1.143      yamt 		return true;
   3005  1.143      yamt 	}
   3006  1.143      yamt }
   3007  1.143      yamt 
   3008  1.141      yamt void
   3009  1.141      yamt pool_whatis(uintptr_t addr, void (*pr)(const char *, ...))
   3010  1.141      yamt {
   3011  1.141      yamt 	struct pool *pp;
   3012  1.141      yamt 
   3013  1.145        ad 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   3014  1.141      yamt 		struct pool_item_header *ph;
   3015  1.141      yamt 		uintptr_t item;
   3016  1.143      yamt 		bool allocated = true;
   3017  1.143      yamt 		bool incache = false;
   3018  1.143      yamt 		bool incpucache = false;
   3019  1.143      yamt 		char cpucachestr[32];
   3020  1.141      yamt 
   3021  1.141      yamt 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
   3022  1.141      yamt 			LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
   3023  1.141      yamt 				if (pool_in_page(pp, ph, addr)) {
   3024  1.141      yamt 					goto found;
   3025  1.141      yamt 				}
   3026  1.141      yamt 			}
   3027  1.141      yamt 			LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
   3028  1.141      yamt 				if (pool_in_page(pp, ph, addr)) {
   3029  1.143      yamt 					allocated =
   3030  1.143      yamt 					    pool_allocated(pp, ph, addr);
   3031  1.143      yamt 					goto found;
   3032  1.143      yamt 				}
   3033  1.143      yamt 			}
   3034  1.143      yamt 			LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
   3035  1.143      yamt 				if (pool_in_page(pp, ph, addr)) {
   3036  1.143      yamt 					allocated = false;
   3037  1.141      yamt 					goto found;
   3038  1.141      yamt 				}
   3039  1.141      yamt 			}
   3040  1.141      yamt 			continue;
   3041  1.141      yamt 		} else {
   3042  1.141      yamt 			ph = pr_find_pagehead_noalign(pp, (void *)addr);
   3043  1.141      yamt 			if (ph == NULL || !pool_in_page(pp, ph, addr)) {
   3044  1.141      yamt 				continue;
   3045  1.141      yamt 			}
   3046  1.143      yamt 			allocated = pool_allocated(pp, ph, addr);
   3047  1.141      yamt 		}
   3048  1.141      yamt found:
   3049  1.143      yamt 		if (allocated && pp->pr_cache) {
   3050  1.143      yamt 			pool_cache_t pc = pp->pr_cache;
   3051  1.143      yamt 			struct pool_cache_group *pcg;
   3052  1.143      yamt 			int i;
   3053  1.143      yamt 
   3054  1.143      yamt 			for (pcg = pc->pc_fullgroups; pcg != NULL;
   3055  1.143      yamt 			    pcg = pcg->pcg_next) {
   3056  1.143      yamt 				if (pool_in_cg(pp, pcg, addr)) {
   3057  1.143      yamt 					incache = true;
   3058  1.143      yamt 					goto print;
   3059  1.143      yamt 				}
   3060  1.143      yamt 			}
   3061  1.183        ad 			for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
   3062  1.143      yamt 				pool_cache_cpu_t *cc;
   3063  1.143      yamt 
   3064  1.143      yamt 				if ((cc = pc->pc_cpus[i]) == NULL) {
   3065  1.143      yamt 					continue;
   3066  1.143      yamt 				}
   3067  1.143      yamt 				if (pool_in_cg(pp, cc->cc_current, addr) ||
   3068  1.143      yamt 				    pool_in_cg(pp, cc->cc_previous, addr)) {
   3069  1.143      yamt 					struct cpu_info *ci =
   3070  1.170        ad 					    cpu_lookup(i);
   3071  1.143      yamt 
   3072  1.143      yamt 					incpucache = true;
   3073  1.143      yamt 					snprintf(cpucachestr,
   3074  1.143      yamt 					    sizeof(cpucachestr),
   3075  1.143      yamt 					    "cached by CPU %u",
   3076  1.153    martin 					    ci->ci_index);
   3077  1.143      yamt 					goto print;
   3078  1.143      yamt 				}
   3079  1.143      yamt 			}
   3080  1.143      yamt 		}
   3081  1.143      yamt print:
   3082  1.141      yamt 		item = (uintptr_t)ph->ph_page + ph->ph_off;
   3083  1.141      yamt 		item = item + rounddown(addr - item, pp->pr_size);
   3084  1.143      yamt 		(*pr)("%p is %p+%zu in POOL '%s' (%s)\n",
   3085  1.141      yamt 		    (void *)addr, item, (size_t)(addr - item),
   3086  1.143      yamt 		    pp->pr_wchan,
   3087  1.143      yamt 		    incpucache ? cpucachestr :
   3088  1.143      yamt 		    incache ? "cached" : allocated ? "allocated" : "free");
   3089  1.141      yamt 	}
   3090  1.141      yamt }
   3091  1.141      yamt #endif /* defined(DDB) */
   3092