subr_pool.c revision 1.188 1 1.187 uebayasi /* $NetBSD: subr_pool.c,v 1.188 2011/01/17 07:36:58 uebayasi Exp $ */
2 1.1 pk
3 1.1 pk /*-
4 1.183 ad * Copyright (c) 1997, 1999, 2000, 2002, 2007, 2008, 2010
5 1.183 ad * The NetBSD Foundation, Inc.
6 1.1 pk * All rights reserved.
7 1.1 pk *
8 1.1 pk * This code is derived from software contributed to The NetBSD Foundation
9 1.20 thorpej * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
10 1.134 ad * Simulation Facility, NASA Ames Research Center, and by Andrew Doran.
11 1.1 pk *
12 1.1 pk * Redistribution and use in source and binary forms, with or without
13 1.1 pk * modification, are permitted provided that the following conditions
14 1.1 pk * are met:
15 1.1 pk * 1. Redistributions of source code must retain the above copyright
16 1.1 pk * notice, this list of conditions and the following disclaimer.
17 1.1 pk * 2. Redistributions in binary form must reproduce the above copyright
18 1.1 pk * notice, this list of conditions and the following disclaimer in the
19 1.1 pk * documentation and/or other materials provided with the distribution.
20 1.1 pk *
21 1.1 pk * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22 1.1 pk * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23 1.1 pk * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24 1.1 pk * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25 1.1 pk * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 1.1 pk * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 1.1 pk * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 1.1 pk * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 1.1 pk * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 1.1 pk * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 1.1 pk * POSSIBILITY OF SUCH DAMAGE.
32 1.1 pk */
33 1.64 lukem
34 1.64 lukem #include <sys/cdefs.h>
35 1.187 uebayasi __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.188 2011/01/17 07:36:58 uebayasi Exp $");
36 1.24 scottr
37 1.141 yamt #include "opt_ddb.h"
38 1.25 thorpej #include "opt_pool.h"
39 1.24 scottr #include "opt_poollog.h"
40 1.28 thorpej #include "opt_lockdebug.h"
41 1.1 pk
42 1.1 pk #include <sys/param.h>
43 1.1 pk #include <sys/systm.h>
44 1.135 yamt #include <sys/bitops.h>
45 1.1 pk #include <sys/proc.h>
46 1.1 pk #include <sys/errno.h>
47 1.1 pk #include <sys/kernel.h>
48 1.1 pk #include <sys/malloc.h>
49 1.1 pk #include <sys/pool.h>
50 1.20 thorpej #include <sys/syslog.h>
51 1.125 ad #include <sys/debug.h>
52 1.134 ad #include <sys/lockdebug.h>
53 1.134 ad #include <sys/xcall.h>
54 1.134 ad #include <sys/cpu.h>
55 1.145 ad #include <sys/atomic.h>
56 1.3 pk
57 1.187 uebayasi #include <uvm/uvm_extern.h>
58 1.188 uebayasi #ifdef DIAGNOSTIC
59 1.188 uebayasi #include <uvm/uvm_km.h> /* uvm_km_va_drain */
60 1.188 uebayasi #endif
61 1.3 pk
62 1.1 pk /*
63 1.1 pk * Pool resource management utility.
64 1.3 pk *
65 1.88 chs * Memory is allocated in pages which are split into pieces according to
66 1.88 chs * the pool item size. Each page is kept on one of three lists in the
67 1.88 chs * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
68 1.88 chs * for empty, full and partially-full pages respectively. The individual
69 1.88 chs * pool items are on a linked list headed by `ph_itemlist' in each page
70 1.88 chs * header. The memory for building the page list is either taken from
71 1.88 chs * the allocated pages themselves (for small pool items) or taken from
72 1.88 chs * an internal pool of page headers (`phpool').
73 1.1 pk */
74 1.1 pk
75 1.3 pk /* List of all pools */
76 1.173 rmind static TAILQ_HEAD(, pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
77 1.134 ad
78 1.3 pk /* Private pool for page header structures */
79 1.97 yamt #define PHPOOL_MAX 8
80 1.97 yamt static struct pool phpool[PHPOOL_MAX];
81 1.135 yamt #define PHPOOL_FREELIST_NELEM(idx) \
82 1.135 yamt (((idx) == 0) ? 0 : BITMAP_SIZE * (1 << (idx)))
83 1.3 pk
84 1.62 bjh21 #ifdef POOL_SUBPAGE
85 1.62 bjh21 /* Pool of subpages for use by normal pools. */
86 1.62 bjh21 static struct pool psppool;
87 1.62 bjh21 #endif
88 1.62 bjh21
89 1.117 yamt static SLIST_HEAD(, pool_allocator) pa_deferinitq =
90 1.117 yamt SLIST_HEAD_INITIALIZER(pa_deferinitq);
91 1.117 yamt
92 1.98 yamt static void *pool_page_alloc_meta(struct pool *, int);
93 1.98 yamt static void pool_page_free_meta(struct pool *, void *);
94 1.98 yamt
95 1.98 yamt /* allocator for pool metadata */
96 1.134 ad struct pool_allocator pool_allocator_meta = {
97 1.117 yamt pool_page_alloc_meta, pool_page_free_meta,
98 1.117 yamt .pa_backingmapptr = &kmem_map,
99 1.98 yamt };
100 1.98 yamt
101 1.3 pk /* # of seconds to retain page after last use */
102 1.3 pk int pool_inactive_time = 10;
103 1.3 pk
104 1.3 pk /* Next candidate for drainage (see pool_drain()) */
105 1.23 thorpej static struct pool *drainpp;
106 1.23 thorpej
107 1.134 ad /* This lock protects both pool_head and drainpp. */
108 1.134 ad static kmutex_t pool_head_lock;
109 1.134 ad static kcondvar_t pool_busy;
110 1.3 pk
111 1.178 elad /* This lock protects initialization of a potentially shared pool allocator */
112 1.178 elad static kmutex_t pool_allocator_lock;
113 1.178 elad
114 1.135 yamt typedef uint32_t pool_item_bitmap_t;
115 1.135 yamt #define BITMAP_SIZE (CHAR_BIT * sizeof(pool_item_bitmap_t))
116 1.135 yamt #define BITMAP_MASK (BITMAP_SIZE - 1)
117 1.99 yamt
118 1.3 pk struct pool_item_header {
119 1.3 pk /* Page headers */
120 1.88 chs LIST_ENTRY(pool_item_header)
121 1.3 pk ph_pagelist; /* pool page list */
122 1.88 chs SPLAY_ENTRY(pool_item_header)
123 1.88 chs ph_node; /* Off-page page headers */
124 1.128 christos void * ph_page; /* this page's address */
125 1.151 yamt uint32_t ph_time; /* last referenced */
126 1.135 yamt uint16_t ph_nmissing; /* # of chunks in use */
127 1.141 yamt uint16_t ph_off; /* start offset in page */
128 1.97 yamt union {
129 1.97 yamt /* !PR_NOTOUCH */
130 1.97 yamt struct {
131 1.102 chs LIST_HEAD(, pool_item)
132 1.97 yamt phu_itemlist; /* chunk list for this page */
133 1.97 yamt } phu_normal;
134 1.97 yamt /* PR_NOTOUCH */
135 1.97 yamt struct {
136 1.141 yamt pool_item_bitmap_t phu_bitmap[1];
137 1.97 yamt } phu_notouch;
138 1.97 yamt } ph_u;
139 1.3 pk };
140 1.97 yamt #define ph_itemlist ph_u.phu_normal.phu_itemlist
141 1.135 yamt #define ph_bitmap ph_u.phu_notouch.phu_bitmap
142 1.3 pk
143 1.1 pk struct pool_item {
144 1.3 pk #ifdef DIAGNOSTIC
145 1.82 thorpej u_int pi_magic;
146 1.33 chs #endif
147 1.134 ad #define PI_MAGIC 0xdeaddeadU
148 1.3 pk /* Other entries use only this list entry */
149 1.102 chs LIST_ENTRY(pool_item) pi_list;
150 1.3 pk };
151 1.3 pk
152 1.53 thorpej #define POOL_NEEDS_CATCHUP(pp) \
153 1.53 thorpej ((pp)->pr_nitems < (pp)->pr_minitems)
154 1.53 thorpej
155 1.43 thorpej /*
156 1.43 thorpej * Pool cache management.
157 1.43 thorpej *
158 1.43 thorpej * Pool caches provide a way for constructed objects to be cached by the
159 1.43 thorpej * pool subsystem. This can lead to performance improvements by avoiding
160 1.43 thorpej * needless object construction/destruction; it is deferred until absolutely
161 1.43 thorpej * necessary.
162 1.43 thorpej *
163 1.134 ad * Caches are grouped into cache groups. Each cache group references up
164 1.134 ad * to PCG_NUMOBJECTS constructed objects. When a cache allocates an
165 1.134 ad * object from the pool, it calls the object's constructor and places it
166 1.134 ad * into a cache group. When a cache group frees an object back to the
167 1.134 ad * pool, it first calls the object's destructor. This allows the object
168 1.134 ad * to persist in constructed form while freed to the cache.
169 1.134 ad *
170 1.134 ad * The pool references each cache, so that when a pool is drained by the
171 1.134 ad * pagedaemon, it can drain each individual cache as well. Each time a
172 1.134 ad * cache is drained, the most idle cache group is freed to the pool in
173 1.134 ad * its entirety.
174 1.43 thorpej *
175 1.43 thorpej * Pool caches are layed on top of pools. By layering them, we can avoid
176 1.43 thorpej * the complexity of cache management for pools which would not benefit
177 1.43 thorpej * from it.
178 1.43 thorpej */
179 1.43 thorpej
180 1.142 ad static struct pool pcg_normal_pool;
181 1.142 ad static struct pool pcg_large_pool;
182 1.134 ad static struct pool cache_pool;
183 1.134 ad static struct pool cache_cpu_pool;
184 1.3 pk
185 1.145 ad /* List of all caches. */
186 1.145 ad TAILQ_HEAD(,pool_cache) pool_cache_head =
187 1.145 ad TAILQ_HEAD_INITIALIZER(pool_cache_head);
188 1.145 ad
189 1.162 ad int pool_cache_disable; /* global disable for caching */
190 1.169 yamt static const pcg_t pcg_dummy; /* zero sized: always empty, yet always full */
191 1.145 ad
192 1.162 ad static bool pool_cache_put_slow(pool_cache_cpu_t *, int,
193 1.162 ad void *);
194 1.162 ad static bool pool_cache_get_slow(pool_cache_cpu_t *, int,
195 1.162 ad void **, paddr_t *, int);
196 1.134 ad static void pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
197 1.134 ad static void pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
198 1.175 jym static void pool_cache_invalidate_cpu(pool_cache_t, u_int);
199 1.134 ad static void pool_cache_xcall(pool_cache_t);
200 1.3 pk
201 1.42 thorpej static int pool_catchup(struct pool *);
202 1.128 christos static void pool_prime_page(struct pool *, void *,
203 1.55 thorpej struct pool_item_header *);
204 1.88 chs static void pool_update_curpage(struct pool *);
205 1.66 thorpej
206 1.113 yamt static int pool_grow(struct pool *, int);
207 1.117 yamt static void *pool_allocator_alloc(struct pool *, int);
208 1.117 yamt static void pool_allocator_free(struct pool *, void *);
209 1.3 pk
210 1.97 yamt static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
211 1.88 chs void (*)(const char *, ...));
212 1.42 thorpej static void pool_print1(struct pool *, const char *,
213 1.42 thorpej void (*)(const char *, ...));
214 1.3 pk
215 1.88 chs static int pool_chk_page(struct pool *, const char *,
216 1.88 chs struct pool_item_header *);
217 1.88 chs
218 1.3 pk /*
219 1.52 thorpej * Pool log entry. An array of these is allocated in pool_init().
220 1.3 pk */
221 1.3 pk struct pool_log {
222 1.3 pk const char *pl_file;
223 1.3 pk long pl_line;
224 1.3 pk int pl_action;
225 1.25 thorpej #define PRLOG_GET 1
226 1.25 thorpej #define PRLOG_PUT 2
227 1.3 pk void *pl_addr;
228 1.1 pk };
229 1.1 pk
230 1.86 matt #ifdef POOL_DIAGNOSTIC
231 1.3 pk /* Number of entries in pool log buffers */
232 1.17 thorpej #ifndef POOL_LOGSIZE
233 1.17 thorpej #define POOL_LOGSIZE 10
234 1.17 thorpej #endif
235 1.17 thorpej
236 1.17 thorpej int pool_logsize = POOL_LOGSIZE;
237 1.1 pk
238 1.110 perry static inline void
239 1.42 thorpej pr_log(struct pool *pp, void *v, int action, const char *file, long line)
240 1.3 pk {
241 1.179 mlelstv int n;
242 1.3 pk struct pool_log *pl;
243 1.3 pk
244 1.20 thorpej if ((pp->pr_roflags & PR_LOGGING) == 0)
245 1.3 pk return;
246 1.3 pk
247 1.179 mlelstv if (pp->pr_log == NULL) {
248 1.179 mlelstv if (kmem_map != NULL)
249 1.179 mlelstv pp->pr_log = malloc(
250 1.179 mlelstv pool_logsize * sizeof(struct pool_log),
251 1.179 mlelstv M_TEMP, M_NOWAIT | M_ZERO);
252 1.179 mlelstv if (pp->pr_log == NULL)
253 1.179 mlelstv return;
254 1.179 mlelstv pp->pr_curlogentry = 0;
255 1.179 mlelstv pp->pr_logsize = pool_logsize;
256 1.179 mlelstv }
257 1.179 mlelstv
258 1.3 pk /*
259 1.3 pk * Fill in the current entry. Wrap around and overwrite
260 1.3 pk * the oldest entry if necessary.
261 1.3 pk */
262 1.179 mlelstv n = pp->pr_curlogentry;
263 1.3 pk pl = &pp->pr_log[n];
264 1.3 pk pl->pl_file = file;
265 1.3 pk pl->pl_line = line;
266 1.3 pk pl->pl_action = action;
267 1.3 pk pl->pl_addr = v;
268 1.3 pk if (++n >= pp->pr_logsize)
269 1.3 pk n = 0;
270 1.3 pk pp->pr_curlogentry = n;
271 1.3 pk }
272 1.3 pk
273 1.3 pk static void
274 1.42 thorpej pr_printlog(struct pool *pp, struct pool_item *pi,
275 1.42 thorpej void (*pr)(const char *, ...))
276 1.3 pk {
277 1.3 pk int i = pp->pr_logsize;
278 1.3 pk int n = pp->pr_curlogentry;
279 1.3 pk
280 1.179 mlelstv if (pp->pr_log == NULL)
281 1.3 pk return;
282 1.3 pk
283 1.3 pk /*
284 1.3 pk * Print all entries in this pool's log.
285 1.3 pk */
286 1.3 pk while (i-- > 0) {
287 1.3 pk struct pool_log *pl = &pp->pr_log[n];
288 1.3 pk if (pl->pl_action != 0) {
289 1.25 thorpej if (pi == NULL || pi == pl->pl_addr) {
290 1.25 thorpej (*pr)("\tlog entry %d:\n", i);
291 1.25 thorpej (*pr)("\t\taction = %s, addr = %p\n",
292 1.25 thorpej pl->pl_action == PRLOG_GET ? "get" : "put",
293 1.25 thorpej pl->pl_addr);
294 1.25 thorpej (*pr)("\t\tfile: %s at line %lu\n",
295 1.25 thorpej pl->pl_file, pl->pl_line);
296 1.25 thorpej }
297 1.3 pk }
298 1.3 pk if (++n >= pp->pr_logsize)
299 1.3 pk n = 0;
300 1.3 pk }
301 1.3 pk }
302 1.25 thorpej
303 1.110 perry static inline void
304 1.42 thorpej pr_enter(struct pool *pp, const char *file, long line)
305 1.25 thorpej {
306 1.25 thorpej
307 1.34 thorpej if (__predict_false(pp->pr_entered_file != NULL)) {
308 1.25 thorpej printf("pool %s: reentrancy at file %s line %ld\n",
309 1.25 thorpej pp->pr_wchan, file, line);
310 1.25 thorpej printf(" previous entry at file %s line %ld\n",
311 1.25 thorpej pp->pr_entered_file, pp->pr_entered_line);
312 1.25 thorpej panic("pr_enter");
313 1.25 thorpej }
314 1.25 thorpej
315 1.25 thorpej pp->pr_entered_file = file;
316 1.25 thorpej pp->pr_entered_line = line;
317 1.25 thorpej }
318 1.25 thorpej
319 1.110 perry static inline void
320 1.42 thorpej pr_leave(struct pool *pp)
321 1.25 thorpej {
322 1.25 thorpej
323 1.34 thorpej if (__predict_false(pp->pr_entered_file == NULL)) {
324 1.25 thorpej printf("pool %s not entered?\n", pp->pr_wchan);
325 1.25 thorpej panic("pr_leave");
326 1.25 thorpej }
327 1.25 thorpej
328 1.25 thorpej pp->pr_entered_file = NULL;
329 1.25 thorpej pp->pr_entered_line = 0;
330 1.25 thorpej }
331 1.25 thorpej
332 1.110 perry static inline void
333 1.42 thorpej pr_enter_check(struct pool *pp, void (*pr)(const char *, ...))
334 1.25 thorpej {
335 1.25 thorpej
336 1.25 thorpej if (pp->pr_entered_file != NULL)
337 1.25 thorpej (*pr)("\n\tcurrently entered from file %s line %ld\n",
338 1.25 thorpej pp->pr_entered_file, pp->pr_entered_line);
339 1.25 thorpej }
340 1.3 pk #else
341 1.25 thorpej #define pr_log(pp, v, action, file, line)
342 1.25 thorpej #define pr_printlog(pp, pi, pr)
343 1.25 thorpej #define pr_enter(pp, file, line)
344 1.25 thorpej #define pr_leave(pp)
345 1.25 thorpej #define pr_enter_check(pp, pr)
346 1.59 thorpej #endif /* POOL_DIAGNOSTIC */
347 1.3 pk
348 1.135 yamt static inline unsigned int
349 1.97 yamt pr_item_notouch_index(const struct pool *pp, const struct pool_item_header *ph,
350 1.97 yamt const void *v)
351 1.97 yamt {
352 1.97 yamt const char *cp = v;
353 1.135 yamt unsigned int idx;
354 1.97 yamt
355 1.97 yamt KASSERT(pp->pr_roflags & PR_NOTOUCH);
356 1.128 christos idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
357 1.97 yamt KASSERT(idx < pp->pr_itemsperpage);
358 1.97 yamt return idx;
359 1.97 yamt }
360 1.97 yamt
361 1.110 perry static inline void
362 1.97 yamt pr_item_notouch_put(const struct pool *pp, struct pool_item_header *ph,
363 1.97 yamt void *obj)
364 1.97 yamt {
365 1.135 yamt unsigned int idx = pr_item_notouch_index(pp, ph, obj);
366 1.135 yamt pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE);
367 1.135 yamt pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
368 1.97 yamt
369 1.135 yamt KASSERT((*bitmap & mask) == 0);
370 1.135 yamt *bitmap |= mask;
371 1.97 yamt }
372 1.97 yamt
373 1.110 perry static inline void *
374 1.97 yamt pr_item_notouch_get(const struct pool *pp, struct pool_item_header *ph)
375 1.97 yamt {
376 1.135 yamt pool_item_bitmap_t *bitmap = ph->ph_bitmap;
377 1.135 yamt unsigned int idx;
378 1.135 yamt int i;
379 1.97 yamt
380 1.135 yamt for (i = 0; ; i++) {
381 1.135 yamt int bit;
382 1.97 yamt
383 1.135 yamt KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage);
384 1.135 yamt bit = ffs32(bitmap[i]);
385 1.135 yamt if (bit) {
386 1.135 yamt pool_item_bitmap_t mask;
387 1.135 yamt
388 1.135 yamt bit--;
389 1.135 yamt idx = (i * BITMAP_SIZE) + bit;
390 1.135 yamt mask = 1 << bit;
391 1.135 yamt KASSERT((bitmap[i] & mask) != 0);
392 1.135 yamt bitmap[i] &= ~mask;
393 1.135 yamt break;
394 1.135 yamt }
395 1.135 yamt }
396 1.135 yamt KASSERT(idx < pp->pr_itemsperpage);
397 1.128 christos return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
398 1.97 yamt }
399 1.97 yamt
400 1.135 yamt static inline void
401 1.141 yamt pr_item_notouch_init(const struct pool *pp, struct pool_item_header *ph)
402 1.135 yamt {
403 1.135 yamt pool_item_bitmap_t *bitmap = ph->ph_bitmap;
404 1.135 yamt const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE);
405 1.135 yamt int i;
406 1.135 yamt
407 1.135 yamt for (i = 0; i < n; i++) {
408 1.135 yamt bitmap[i] = (pool_item_bitmap_t)-1;
409 1.135 yamt }
410 1.135 yamt }
411 1.135 yamt
412 1.110 perry static inline int
413 1.88 chs phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
414 1.88 chs {
415 1.121 yamt
416 1.121 yamt /*
417 1.121 yamt * we consider pool_item_header with smaller ph_page bigger.
418 1.121 yamt * (this unnatural ordering is for the benefit of pr_find_pagehead.)
419 1.121 yamt */
420 1.121 yamt
421 1.88 chs if (a->ph_page < b->ph_page)
422 1.121 yamt return (1);
423 1.121 yamt else if (a->ph_page > b->ph_page)
424 1.88 chs return (-1);
425 1.88 chs else
426 1.88 chs return (0);
427 1.88 chs }
428 1.88 chs
429 1.88 chs SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
430 1.88 chs SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
431 1.88 chs
432 1.141 yamt static inline struct pool_item_header *
433 1.141 yamt pr_find_pagehead_noalign(struct pool *pp, void *v)
434 1.141 yamt {
435 1.141 yamt struct pool_item_header *ph, tmp;
436 1.141 yamt
437 1.141 yamt tmp.ph_page = (void *)(uintptr_t)v;
438 1.141 yamt ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
439 1.141 yamt if (ph == NULL) {
440 1.141 yamt ph = SPLAY_ROOT(&pp->pr_phtree);
441 1.141 yamt if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
442 1.141 yamt ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
443 1.141 yamt }
444 1.141 yamt KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
445 1.141 yamt }
446 1.141 yamt
447 1.141 yamt return ph;
448 1.141 yamt }
449 1.141 yamt
450 1.3 pk /*
451 1.121 yamt * Return the pool page header based on item address.
452 1.3 pk */
453 1.110 perry static inline struct pool_item_header *
454 1.121 yamt pr_find_pagehead(struct pool *pp, void *v)
455 1.3 pk {
456 1.88 chs struct pool_item_header *ph, tmp;
457 1.3 pk
458 1.121 yamt if ((pp->pr_roflags & PR_NOALIGN) != 0) {
459 1.141 yamt ph = pr_find_pagehead_noalign(pp, v);
460 1.121 yamt } else {
461 1.128 christos void *page =
462 1.128 christos (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask);
463 1.121 yamt
464 1.121 yamt if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
465 1.128 christos ph = (struct pool_item_header *)((char *)page + pp->pr_phoffset);
466 1.121 yamt } else {
467 1.121 yamt tmp.ph_page = page;
468 1.121 yamt ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
469 1.121 yamt }
470 1.121 yamt }
471 1.3 pk
472 1.121 yamt KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
473 1.128 christos ((char *)ph->ph_page <= (char *)v &&
474 1.128 christos (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
475 1.88 chs return ph;
476 1.3 pk }
477 1.3 pk
478 1.101 thorpej static void
479 1.101 thorpej pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
480 1.101 thorpej {
481 1.101 thorpej struct pool_item_header *ph;
482 1.101 thorpej
483 1.101 thorpej while ((ph = LIST_FIRST(pq)) != NULL) {
484 1.101 thorpej LIST_REMOVE(ph, ph_pagelist);
485 1.101 thorpej pool_allocator_free(pp, ph->ph_page);
486 1.134 ad if ((pp->pr_roflags & PR_PHINPAGE) == 0)
487 1.101 thorpej pool_put(pp->pr_phpool, ph);
488 1.101 thorpej }
489 1.101 thorpej }
490 1.101 thorpej
491 1.3 pk /*
492 1.3 pk * Remove a page from the pool.
493 1.3 pk */
494 1.110 perry static inline void
495 1.61 chs pr_rmpage(struct pool *pp, struct pool_item_header *ph,
496 1.61 chs struct pool_pagelist *pq)
497 1.3 pk {
498 1.3 pk
499 1.134 ad KASSERT(mutex_owned(&pp->pr_lock));
500 1.91 yamt
501 1.3 pk /*
502 1.7 thorpej * If the page was idle, decrement the idle page count.
503 1.3 pk */
504 1.6 thorpej if (ph->ph_nmissing == 0) {
505 1.6 thorpej #ifdef DIAGNOSTIC
506 1.6 thorpej if (pp->pr_nidle == 0)
507 1.6 thorpej panic("pr_rmpage: nidle inconsistent");
508 1.20 thorpej if (pp->pr_nitems < pp->pr_itemsperpage)
509 1.20 thorpej panic("pr_rmpage: nitems inconsistent");
510 1.6 thorpej #endif
511 1.6 thorpej pp->pr_nidle--;
512 1.6 thorpej }
513 1.7 thorpej
514 1.20 thorpej pp->pr_nitems -= pp->pr_itemsperpage;
515 1.20 thorpej
516 1.7 thorpej /*
517 1.101 thorpej * Unlink the page from the pool and queue it for release.
518 1.7 thorpej */
519 1.88 chs LIST_REMOVE(ph, ph_pagelist);
520 1.91 yamt if ((pp->pr_roflags & PR_PHINPAGE) == 0)
521 1.91 yamt SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
522 1.101 thorpej LIST_INSERT_HEAD(pq, ph, ph_pagelist);
523 1.101 thorpej
524 1.7 thorpej pp->pr_npages--;
525 1.7 thorpej pp->pr_npagefree++;
526 1.6 thorpej
527 1.88 chs pool_update_curpage(pp);
528 1.3 pk }
529 1.3 pk
530 1.126 thorpej static bool
531 1.117 yamt pa_starved_p(struct pool_allocator *pa)
532 1.117 yamt {
533 1.117 yamt
534 1.117 yamt if (pa->pa_backingmap != NULL) {
535 1.117 yamt return vm_map_starved_p(pa->pa_backingmap);
536 1.117 yamt }
537 1.127 thorpej return false;
538 1.117 yamt }
539 1.117 yamt
540 1.117 yamt static int
541 1.124 yamt pool_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
542 1.117 yamt {
543 1.117 yamt struct pool *pp = obj;
544 1.117 yamt struct pool_allocator *pa = pp->pr_alloc;
545 1.117 yamt
546 1.117 yamt KASSERT(&pp->pr_reclaimerentry == ce);
547 1.117 yamt pool_reclaim(pp);
548 1.117 yamt if (!pa_starved_p(pa)) {
549 1.117 yamt return CALLBACK_CHAIN_ABORT;
550 1.117 yamt }
551 1.117 yamt return CALLBACK_CHAIN_CONTINUE;
552 1.117 yamt }
553 1.117 yamt
554 1.117 yamt static void
555 1.117 yamt pool_reclaim_register(struct pool *pp)
556 1.117 yamt {
557 1.117 yamt struct vm_map *map = pp->pr_alloc->pa_backingmap;
558 1.117 yamt int s;
559 1.117 yamt
560 1.117 yamt if (map == NULL) {
561 1.117 yamt return;
562 1.117 yamt }
563 1.117 yamt
564 1.117 yamt s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
565 1.117 yamt callback_register(&vm_map_to_kernel(map)->vmk_reclaim_callback,
566 1.117 yamt &pp->pr_reclaimerentry, pp, pool_reclaim_callback);
567 1.117 yamt splx(s);
568 1.184 rmind
569 1.184 rmind #ifdef DIAGNOSTIC
570 1.184 rmind /* Diagnostic drain attempt. */
571 1.184 rmind uvm_km_va_drain(map, 0);
572 1.184 rmind #endif
573 1.117 yamt }
574 1.117 yamt
575 1.117 yamt static void
576 1.117 yamt pool_reclaim_unregister(struct pool *pp)
577 1.117 yamt {
578 1.117 yamt struct vm_map *map = pp->pr_alloc->pa_backingmap;
579 1.117 yamt int s;
580 1.117 yamt
581 1.117 yamt if (map == NULL) {
582 1.117 yamt return;
583 1.117 yamt }
584 1.117 yamt
585 1.117 yamt s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
586 1.117 yamt callback_unregister(&vm_map_to_kernel(map)->vmk_reclaim_callback,
587 1.117 yamt &pp->pr_reclaimerentry);
588 1.117 yamt splx(s);
589 1.117 yamt }
590 1.117 yamt
591 1.117 yamt static void
592 1.117 yamt pa_reclaim_register(struct pool_allocator *pa)
593 1.117 yamt {
594 1.117 yamt struct vm_map *map = *pa->pa_backingmapptr;
595 1.117 yamt struct pool *pp;
596 1.117 yamt
597 1.117 yamt KASSERT(pa->pa_backingmap == NULL);
598 1.117 yamt if (map == NULL) {
599 1.117 yamt SLIST_INSERT_HEAD(&pa_deferinitq, pa, pa_q);
600 1.117 yamt return;
601 1.117 yamt }
602 1.117 yamt pa->pa_backingmap = map;
603 1.117 yamt TAILQ_FOREACH(pp, &pa->pa_list, pr_alloc_list) {
604 1.117 yamt pool_reclaim_register(pp);
605 1.117 yamt }
606 1.117 yamt }
607 1.117 yamt
608 1.3 pk /*
609 1.94 simonb * Initialize all the pools listed in the "pools" link set.
610 1.94 simonb */
611 1.94 simonb void
612 1.117 yamt pool_subsystem_init(void)
613 1.94 simonb {
614 1.117 yamt struct pool_allocator *pa;
615 1.94 simonb
616 1.134 ad mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
617 1.179 mlelstv mutex_init(&pool_allocator_lock, MUTEX_DEFAULT, IPL_NONE);
618 1.134 ad cv_init(&pool_busy, "poolbusy");
619 1.134 ad
620 1.117 yamt while ((pa = SLIST_FIRST(&pa_deferinitq)) != NULL) {
621 1.117 yamt KASSERT(pa->pa_backingmapptr != NULL);
622 1.117 yamt KASSERT(*pa->pa_backingmapptr != NULL);
623 1.117 yamt SLIST_REMOVE_HEAD(&pa_deferinitq, pa_q);
624 1.117 yamt pa_reclaim_register(pa);
625 1.117 yamt }
626 1.134 ad
627 1.156 ad pool_init(&cache_pool, sizeof(struct pool_cache), coherency_unit,
628 1.134 ad 0, 0, "pcache", &pool_allocator_nointr, IPL_NONE);
629 1.134 ad
630 1.156 ad pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), coherency_unit,
631 1.134 ad 0, 0, "pcachecpu", &pool_allocator_nointr, IPL_NONE);
632 1.94 simonb }
633 1.94 simonb
634 1.94 simonb /*
635 1.3 pk * Initialize the given pool resource structure.
636 1.3 pk *
637 1.3 pk * We export this routine to allow other kernel parts to declare
638 1.3 pk * static pools that must be initialized before malloc() is available.
639 1.3 pk */
640 1.3 pk void
641 1.42 thorpej pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
642 1.129 ad const char *wchan, struct pool_allocator *palloc, int ipl)
643 1.3 pk {
644 1.116 simonb struct pool *pp1;
645 1.92 enami size_t trysize, phsize;
646 1.134 ad int off, slack;
647 1.3 pk
648 1.116 simonb #ifdef DEBUG
649 1.116 simonb /*
650 1.116 simonb * Check that the pool hasn't already been initialised and
651 1.116 simonb * added to the list of all pools.
652 1.116 simonb */
653 1.145 ad TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
654 1.116 simonb if (pp == pp1)
655 1.116 simonb panic("pool_init: pool %s already initialised",
656 1.116 simonb wchan);
657 1.116 simonb }
658 1.116 simonb #endif
659 1.116 simonb
660 1.25 thorpej #ifdef POOL_DIAGNOSTIC
661 1.25 thorpej /*
662 1.25 thorpej * Always log if POOL_DIAGNOSTIC is defined.
663 1.25 thorpej */
664 1.25 thorpej if (pool_logsize != 0)
665 1.25 thorpej flags |= PR_LOGGING;
666 1.25 thorpej #endif
667 1.25 thorpej
668 1.66 thorpej if (palloc == NULL)
669 1.66 thorpej palloc = &pool_allocator_kmem;
670 1.112 bjh21 #ifdef POOL_SUBPAGE
671 1.112 bjh21 if (size > palloc->pa_pagesz) {
672 1.112 bjh21 if (palloc == &pool_allocator_kmem)
673 1.112 bjh21 palloc = &pool_allocator_kmem_fullpage;
674 1.112 bjh21 else if (palloc == &pool_allocator_nointr)
675 1.112 bjh21 palloc = &pool_allocator_nointr_fullpage;
676 1.112 bjh21 }
677 1.66 thorpej #endif /* POOL_SUBPAGE */
678 1.180 mlelstv if (!cold)
679 1.180 mlelstv mutex_enter(&pool_allocator_lock);
680 1.178 elad if (palloc->pa_refcnt++ == 0) {
681 1.112 bjh21 if (palloc->pa_pagesz == 0)
682 1.66 thorpej palloc->pa_pagesz = PAGE_SIZE;
683 1.66 thorpej
684 1.66 thorpej TAILQ_INIT(&palloc->pa_list);
685 1.66 thorpej
686 1.134 ad mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
687 1.66 thorpej palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
688 1.66 thorpej palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
689 1.117 yamt
690 1.117 yamt if (palloc->pa_backingmapptr != NULL) {
691 1.117 yamt pa_reclaim_register(palloc);
692 1.117 yamt }
693 1.4 thorpej }
694 1.180 mlelstv if (!cold)
695 1.180 mlelstv mutex_exit(&pool_allocator_lock);
696 1.3 pk
697 1.3 pk if (align == 0)
698 1.3 pk align = ALIGN(1);
699 1.14 thorpej
700 1.120 yamt if ((flags & PR_NOTOUCH) == 0 && size < sizeof(struct pool_item))
701 1.14 thorpej size = sizeof(struct pool_item);
702 1.3 pk
703 1.78 thorpej size = roundup(size, align);
704 1.66 thorpej #ifdef DIAGNOSTIC
705 1.66 thorpej if (size > palloc->pa_pagesz)
706 1.121 yamt panic("pool_init: pool item size (%zu) too large", size);
707 1.66 thorpej #endif
708 1.35 pk
709 1.3 pk /*
710 1.3 pk * Initialize the pool structure.
711 1.3 pk */
712 1.88 chs LIST_INIT(&pp->pr_emptypages);
713 1.88 chs LIST_INIT(&pp->pr_fullpages);
714 1.88 chs LIST_INIT(&pp->pr_partpages);
715 1.134 ad pp->pr_cache = NULL;
716 1.3 pk pp->pr_curpage = NULL;
717 1.3 pk pp->pr_npages = 0;
718 1.3 pk pp->pr_minitems = 0;
719 1.3 pk pp->pr_minpages = 0;
720 1.3 pk pp->pr_maxpages = UINT_MAX;
721 1.20 thorpej pp->pr_roflags = flags;
722 1.20 thorpej pp->pr_flags = 0;
723 1.35 pk pp->pr_size = size;
724 1.3 pk pp->pr_align = align;
725 1.3 pk pp->pr_wchan = wchan;
726 1.66 thorpej pp->pr_alloc = palloc;
727 1.20 thorpej pp->pr_nitems = 0;
728 1.20 thorpej pp->pr_nout = 0;
729 1.20 thorpej pp->pr_hardlimit = UINT_MAX;
730 1.20 thorpej pp->pr_hardlimit_warning = NULL;
731 1.31 thorpej pp->pr_hardlimit_ratecap.tv_sec = 0;
732 1.31 thorpej pp->pr_hardlimit_ratecap.tv_usec = 0;
733 1.31 thorpej pp->pr_hardlimit_warning_last.tv_sec = 0;
734 1.31 thorpej pp->pr_hardlimit_warning_last.tv_usec = 0;
735 1.68 thorpej pp->pr_drain_hook = NULL;
736 1.68 thorpej pp->pr_drain_hook_arg = NULL;
737 1.125 ad pp->pr_freecheck = NULL;
738 1.3 pk
739 1.3 pk /*
740 1.3 pk * Decide whether to put the page header off page to avoid
741 1.92 enami * wasting too large a part of the page or too big item.
742 1.92 enami * Off-page page headers go on a hash table, so we can match
743 1.92 enami * a returned item with its header based on the page address.
744 1.92 enami * We use 1/16 of the page size and about 8 times of the item
745 1.92 enami * size as the threshold (XXX: tune)
746 1.92 enami *
747 1.92 enami * However, we'll put the header into the page if we can put
748 1.92 enami * it without wasting any items.
749 1.92 enami *
750 1.92 enami * Silently enforce `0 <= ioff < align'.
751 1.3 pk */
752 1.92 enami pp->pr_itemoffset = ioff %= align;
753 1.92 enami /* See the comment below about reserved bytes. */
754 1.92 enami trysize = palloc->pa_pagesz - ((align - ioff) % align);
755 1.92 enami phsize = ALIGN(sizeof(struct pool_item_header));
756 1.121 yamt if ((pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) == 0 &&
757 1.97 yamt (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) ||
758 1.97 yamt trysize / pp->pr_size == (trysize - phsize) / pp->pr_size)) {
759 1.3 pk /* Use the end of the page for the page header */
760 1.20 thorpej pp->pr_roflags |= PR_PHINPAGE;
761 1.92 enami pp->pr_phoffset = off = palloc->pa_pagesz - phsize;
762 1.2 pk } else {
763 1.3 pk /* The page header will be taken from our page header pool */
764 1.3 pk pp->pr_phoffset = 0;
765 1.66 thorpej off = palloc->pa_pagesz;
766 1.88 chs SPLAY_INIT(&pp->pr_phtree);
767 1.2 pk }
768 1.1 pk
769 1.3 pk /*
770 1.3 pk * Alignment is to take place at `ioff' within the item. This means
771 1.3 pk * we must reserve up to `align - 1' bytes on the page to allow
772 1.3 pk * appropriate positioning of each item.
773 1.3 pk */
774 1.3 pk pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
775 1.43 thorpej KASSERT(pp->pr_itemsperpage != 0);
776 1.97 yamt if ((pp->pr_roflags & PR_NOTOUCH)) {
777 1.97 yamt int idx;
778 1.97 yamt
779 1.97 yamt for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
780 1.97 yamt idx++) {
781 1.97 yamt /* nothing */
782 1.97 yamt }
783 1.97 yamt if (idx >= PHPOOL_MAX) {
784 1.97 yamt /*
785 1.97 yamt * if you see this panic, consider to tweak
786 1.97 yamt * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
787 1.97 yamt */
788 1.97 yamt panic("%s: too large itemsperpage(%d) for PR_NOTOUCH",
789 1.97 yamt pp->pr_wchan, pp->pr_itemsperpage);
790 1.97 yamt }
791 1.97 yamt pp->pr_phpool = &phpool[idx];
792 1.97 yamt } else if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
793 1.97 yamt pp->pr_phpool = &phpool[0];
794 1.97 yamt }
795 1.97 yamt #if defined(DIAGNOSTIC)
796 1.97 yamt else {
797 1.97 yamt pp->pr_phpool = NULL;
798 1.97 yamt }
799 1.97 yamt #endif
800 1.3 pk
801 1.3 pk /*
802 1.3 pk * Use the slack between the chunks and the page header
803 1.3 pk * for "cache coloring".
804 1.3 pk */
805 1.3 pk slack = off - pp->pr_itemsperpage * pp->pr_size;
806 1.3 pk pp->pr_maxcolor = (slack / align) * align;
807 1.3 pk pp->pr_curcolor = 0;
808 1.3 pk
809 1.3 pk pp->pr_nget = 0;
810 1.3 pk pp->pr_nfail = 0;
811 1.3 pk pp->pr_nput = 0;
812 1.3 pk pp->pr_npagealloc = 0;
813 1.3 pk pp->pr_npagefree = 0;
814 1.1 pk pp->pr_hiwat = 0;
815 1.8 thorpej pp->pr_nidle = 0;
816 1.134 ad pp->pr_refcnt = 0;
817 1.3 pk
818 1.179 mlelstv pp->pr_log = NULL;
819 1.25 thorpej
820 1.25 thorpej pp->pr_entered_file = NULL;
821 1.25 thorpej pp->pr_entered_line = 0;
822 1.3 pk
823 1.157 ad mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
824 1.134 ad cv_init(&pp->pr_cv, wchan);
825 1.134 ad pp->pr_ipl = ipl;
826 1.1 pk
827 1.3 pk /*
828 1.43 thorpej * Initialize private page header pool and cache magazine pool if we
829 1.43 thorpej * haven't done so yet.
830 1.23 thorpej * XXX LOCKING.
831 1.3 pk */
832 1.97 yamt if (phpool[0].pr_size == 0) {
833 1.97 yamt int idx;
834 1.97 yamt for (idx = 0; idx < PHPOOL_MAX; idx++) {
835 1.97 yamt static char phpool_names[PHPOOL_MAX][6+1+6+1];
836 1.97 yamt int nelem;
837 1.97 yamt size_t sz;
838 1.97 yamt
839 1.97 yamt nelem = PHPOOL_FREELIST_NELEM(idx);
840 1.97 yamt snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
841 1.97 yamt "phpool-%d", nelem);
842 1.97 yamt sz = sizeof(struct pool_item_header);
843 1.97 yamt if (nelem) {
844 1.135 yamt sz = offsetof(struct pool_item_header,
845 1.135 yamt ph_bitmap[howmany(nelem, BITMAP_SIZE)]);
846 1.97 yamt }
847 1.97 yamt pool_init(&phpool[idx], sz, 0, 0, 0,
848 1.129 ad phpool_names[idx], &pool_allocator_meta, IPL_VM);
849 1.97 yamt }
850 1.62 bjh21 #ifdef POOL_SUBPAGE
851 1.62 bjh21 pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
852 1.129 ad PR_RECURSIVE, "psppool", &pool_allocator_meta, IPL_VM);
853 1.62 bjh21 #endif
854 1.142 ad
855 1.142 ad size = sizeof(pcg_t) +
856 1.142 ad (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t);
857 1.156 ad pool_init(&pcg_normal_pool, size, coherency_unit, 0, 0,
858 1.142 ad "pcgnormal", &pool_allocator_meta, IPL_VM);
859 1.142 ad
860 1.142 ad size = sizeof(pcg_t) +
861 1.142 ad (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t);
862 1.156 ad pool_init(&pcg_large_pool, size, coherency_unit, 0, 0,
863 1.142 ad "pcglarge", &pool_allocator_meta, IPL_VM);
864 1.1 pk }
865 1.1 pk
866 1.145 ad /* Insert into the list of all pools. */
867 1.181 mlelstv if (!cold)
868 1.134 ad mutex_enter(&pool_head_lock);
869 1.145 ad TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
870 1.145 ad if (strcmp(pp1->pr_wchan, pp->pr_wchan) > 0)
871 1.145 ad break;
872 1.145 ad }
873 1.145 ad if (pp1 == NULL)
874 1.145 ad TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
875 1.145 ad else
876 1.145 ad TAILQ_INSERT_BEFORE(pp1, pp, pr_poollist);
877 1.181 mlelstv if (!cold)
878 1.134 ad mutex_exit(&pool_head_lock);
879 1.134 ad
880 1.167 skrll /* Insert this into the list of pools using this allocator. */
881 1.181 mlelstv if (!cold)
882 1.134 ad mutex_enter(&palloc->pa_lock);
883 1.145 ad TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
884 1.181 mlelstv if (!cold)
885 1.134 ad mutex_exit(&palloc->pa_lock);
886 1.66 thorpej
887 1.117 yamt pool_reclaim_register(pp);
888 1.1 pk }
889 1.1 pk
890 1.1 pk /*
891 1.1 pk * De-commision a pool resource.
892 1.1 pk */
893 1.1 pk void
894 1.42 thorpej pool_destroy(struct pool *pp)
895 1.1 pk {
896 1.101 thorpej struct pool_pagelist pq;
897 1.3 pk struct pool_item_header *ph;
898 1.43 thorpej
899 1.101 thorpej /* Remove from global pool list */
900 1.134 ad mutex_enter(&pool_head_lock);
901 1.134 ad while (pp->pr_refcnt != 0)
902 1.134 ad cv_wait(&pool_busy, &pool_head_lock);
903 1.145 ad TAILQ_REMOVE(&pool_head, pp, pr_poollist);
904 1.101 thorpej if (drainpp == pp)
905 1.101 thorpej drainpp = NULL;
906 1.134 ad mutex_exit(&pool_head_lock);
907 1.101 thorpej
908 1.101 thorpej /* Remove this pool from its allocator's list of pools. */
909 1.117 yamt pool_reclaim_unregister(pp);
910 1.134 ad mutex_enter(&pp->pr_alloc->pa_lock);
911 1.66 thorpej TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
912 1.134 ad mutex_exit(&pp->pr_alloc->pa_lock);
913 1.66 thorpej
914 1.178 elad mutex_enter(&pool_allocator_lock);
915 1.178 elad if (--pp->pr_alloc->pa_refcnt == 0)
916 1.178 elad mutex_destroy(&pp->pr_alloc->pa_lock);
917 1.178 elad mutex_exit(&pool_allocator_lock);
918 1.178 elad
919 1.134 ad mutex_enter(&pp->pr_lock);
920 1.101 thorpej
921 1.134 ad KASSERT(pp->pr_cache == NULL);
922 1.3 pk
923 1.3 pk #ifdef DIAGNOSTIC
924 1.20 thorpej if (pp->pr_nout != 0) {
925 1.25 thorpej pr_printlog(pp, NULL, printf);
926 1.80 provos panic("pool_destroy: pool busy: still out: %u",
927 1.20 thorpej pp->pr_nout);
928 1.3 pk }
929 1.3 pk #endif
930 1.1 pk
931 1.101 thorpej KASSERT(LIST_EMPTY(&pp->pr_fullpages));
932 1.101 thorpej KASSERT(LIST_EMPTY(&pp->pr_partpages));
933 1.101 thorpej
934 1.3 pk /* Remove all pages */
935 1.101 thorpej LIST_INIT(&pq);
936 1.88 chs while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
937 1.101 thorpej pr_rmpage(pp, ph, &pq);
938 1.101 thorpej
939 1.134 ad mutex_exit(&pp->pr_lock);
940 1.3 pk
941 1.101 thorpej pr_pagelist_free(pp, &pq);
942 1.3 pk
943 1.59 thorpej #ifdef POOL_DIAGNOSTIC
944 1.179 mlelstv if (pp->pr_log != NULL) {
945 1.3 pk free(pp->pr_log, M_TEMP);
946 1.179 mlelstv pp->pr_log = NULL;
947 1.179 mlelstv }
948 1.59 thorpej #endif
949 1.134 ad
950 1.134 ad cv_destroy(&pp->pr_cv);
951 1.134 ad mutex_destroy(&pp->pr_lock);
952 1.1 pk }
953 1.1 pk
954 1.68 thorpej void
955 1.68 thorpej pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
956 1.68 thorpej {
957 1.68 thorpej
958 1.68 thorpej /* XXX no locking -- must be used just after pool_init() */
959 1.68 thorpej #ifdef DIAGNOSTIC
960 1.68 thorpej if (pp->pr_drain_hook != NULL)
961 1.68 thorpej panic("pool_set_drain_hook(%s): already set", pp->pr_wchan);
962 1.68 thorpej #endif
963 1.68 thorpej pp->pr_drain_hook = fn;
964 1.68 thorpej pp->pr_drain_hook_arg = arg;
965 1.68 thorpej }
966 1.68 thorpej
967 1.88 chs static struct pool_item_header *
968 1.128 christos pool_alloc_item_header(struct pool *pp, void *storage, int flags)
969 1.55 thorpej {
970 1.55 thorpej struct pool_item_header *ph;
971 1.55 thorpej
972 1.55 thorpej if ((pp->pr_roflags & PR_PHINPAGE) != 0)
973 1.128 christos ph = (struct pool_item_header *) ((char *)storage + pp->pr_phoffset);
974 1.134 ad else
975 1.97 yamt ph = pool_get(pp->pr_phpool, flags);
976 1.55 thorpej
977 1.55 thorpej return (ph);
978 1.55 thorpej }
979 1.1 pk
980 1.1 pk /*
981 1.134 ad * Grab an item from the pool.
982 1.1 pk */
983 1.3 pk void *
984 1.59 thorpej #ifdef POOL_DIAGNOSTIC
985 1.42 thorpej _pool_get(struct pool *pp, int flags, const char *file, long line)
986 1.56 sommerfe #else
987 1.56 sommerfe pool_get(struct pool *pp, int flags)
988 1.56 sommerfe #endif
989 1.1 pk {
990 1.1 pk struct pool_item *pi;
991 1.3 pk struct pool_item_header *ph;
992 1.55 thorpej void *v;
993 1.1 pk
994 1.2 pk #ifdef DIAGNOSTIC
995 1.184 rmind if (pp->pr_itemsperpage == 0)
996 1.184 rmind panic("pool_get: pool '%s': pr_itemsperpage is zero, "
997 1.184 rmind "pool not initialized?", pp->pr_wchan);
998 1.185 rmind if ((cpu_intr_p() || cpu_softintr_p()) && pp->pr_ipl == IPL_NONE &&
999 1.185 rmind !cold && panicstr == NULL)
1000 1.184 rmind panic("pool '%s' is IPL_NONE, but called from "
1001 1.184 rmind "interrupt context\n", pp->pr_wchan);
1002 1.184 rmind #endif
1003 1.155 ad if (flags & PR_WAITOK) {
1004 1.154 yamt ASSERT_SLEEPABLE();
1005 1.155 ad }
1006 1.1 pk
1007 1.134 ad mutex_enter(&pp->pr_lock);
1008 1.25 thorpej pr_enter(pp, file, line);
1009 1.20 thorpej
1010 1.20 thorpej startover:
1011 1.20 thorpej /*
1012 1.20 thorpej * Check to see if we've reached the hard limit. If we have,
1013 1.20 thorpej * and we can wait, then wait until an item has been returned to
1014 1.20 thorpej * the pool.
1015 1.20 thorpej */
1016 1.20 thorpej #ifdef DIAGNOSTIC
1017 1.34 thorpej if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
1018 1.25 thorpej pr_leave(pp);
1019 1.134 ad mutex_exit(&pp->pr_lock);
1020 1.20 thorpej panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
1021 1.20 thorpej }
1022 1.20 thorpej #endif
1023 1.34 thorpej if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
1024 1.68 thorpej if (pp->pr_drain_hook != NULL) {
1025 1.68 thorpej /*
1026 1.68 thorpej * Since the drain hook is going to free things
1027 1.68 thorpej * back to the pool, unlock, call the hook, re-lock,
1028 1.68 thorpej * and check the hardlimit condition again.
1029 1.68 thorpej */
1030 1.68 thorpej pr_leave(pp);
1031 1.134 ad mutex_exit(&pp->pr_lock);
1032 1.68 thorpej (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
1033 1.134 ad mutex_enter(&pp->pr_lock);
1034 1.68 thorpej pr_enter(pp, file, line);
1035 1.68 thorpej if (pp->pr_nout < pp->pr_hardlimit)
1036 1.68 thorpej goto startover;
1037 1.68 thorpej }
1038 1.68 thorpej
1039 1.29 sommerfe if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
1040 1.20 thorpej /*
1041 1.20 thorpej * XXX: A warning isn't logged in this case. Should
1042 1.20 thorpej * it be?
1043 1.20 thorpej */
1044 1.20 thorpej pp->pr_flags |= PR_WANTED;
1045 1.25 thorpej pr_leave(pp);
1046 1.134 ad cv_wait(&pp->pr_cv, &pp->pr_lock);
1047 1.25 thorpej pr_enter(pp, file, line);
1048 1.20 thorpej goto startover;
1049 1.20 thorpej }
1050 1.31 thorpej
1051 1.31 thorpej /*
1052 1.31 thorpej * Log a message that the hard limit has been hit.
1053 1.31 thorpej */
1054 1.31 thorpej if (pp->pr_hardlimit_warning != NULL &&
1055 1.31 thorpej ratecheck(&pp->pr_hardlimit_warning_last,
1056 1.31 thorpej &pp->pr_hardlimit_ratecap))
1057 1.31 thorpej log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
1058 1.21 thorpej
1059 1.21 thorpej pp->pr_nfail++;
1060 1.21 thorpej
1061 1.25 thorpej pr_leave(pp);
1062 1.134 ad mutex_exit(&pp->pr_lock);
1063 1.20 thorpej return (NULL);
1064 1.20 thorpej }
1065 1.20 thorpej
1066 1.3 pk /*
1067 1.3 pk * The convention we use is that if `curpage' is not NULL, then
1068 1.3 pk * it points at a non-empty bucket. In particular, `curpage'
1069 1.3 pk * never points at a page header which has PR_PHINPAGE set and
1070 1.3 pk * has no items in its bucket.
1071 1.3 pk */
1072 1.20 thorpej if ((ph = pp->pr_curpage) == NULL) {
1073 1.113 yamt int error;
1074 1.113 yamt
1075 1.20 thorpej #ifdef DIAGNOSTIC
1076 1.20 thorpej if (pp->pr_nitems != 0) {
1077 1.134 ad mutex_exit(&pp->pr_lock);
1078 1.20 thorpej printf("pool_get: %s: curpage NULL, nitems %u\n",
1079 1.20 thorpej pp->pr_wchan, pp->pr_nitems);
1080 1.80 provos panic("pool_get: nitems inconsistent");
1081 1.20 thorpej }
1082 1.20 thorpej #endif
1083 1.20 thorpej
1084 1.21 thorpej /*
1085 1.21 thorpej * Call the back-end page allocator for more memory.
1086 1.21 thorpej * Release the pool lock, as the back-end page allocator
1087 1.21 thorpej * may block.
1088 1.21 thorpej */
1089 1.25 thorpej pr_leave(pp);
1090 1.113 yamt error = pool_grow(pp, flags);
1091 1.113 yamt pr_enter(pp, file, line);
1092 1.113 yamt if (error != 0) {
1093 1.21 thorpej /*
1094 1.55 thorpej * We were unable to allocate a page or item
1095 1.55 thorpej * header, but we released the lock during
1096 1.55 thorpej * allocation, so perhaps items were freed
1097 1.55 thorpej * back to the pool. Check for this case.
1098 1.21 thorpej */
1099 1.21 thorpej if (pp->pr_curpage != NULL)
1100 1.21 thorpej goto startover;
1101 1.15 pk
1102 1.117 yamt pp->pr_nfail++;
1103 1.25 thorpej pr_leave(pp);
1104 1.134 ad mutex_exit(&pp->pr_lock);
1105 1.117 yamt return (NULL);
1106 1.1 pk }
1107 1.3 pk
1108 1.20 thorpej /* Start the allocation process over. */
1109 1.20 thorpej goto startover;
1110 1.3 pk }
1111 1.97 yamt if (pp->pr_roflags & PR_NOTOUCH) {
1112 1.97 yamt #ifdef DIAGNOSTIC
1113 1.97 yamt if (__predict_false(ph->ph_nmissing == pp->pr_itemsperpage)) {
1114 1.97 yamt pr_leave(pp);
1115 1.134 ad mutex_exit(&pp->pr_lock);
1116 1.97 yamt panic("pool_get: %s: page empty", pp->pr_wchan);
1117 1.97 yamt }
1118 1.97 yamt #endif
1119 1.97 yamt v = pr_item_notouch_get(pp, ph);
1120 1.97 yamt #ifdef POOL_DIAGNOSTIC
1121 1.97 yamt pr_log(pp, v, PRLOG_GET, file, line);
1122 1.97 yamt #endif
1123 1.97 yamt } else {
1124 1.102 chs v = pi = LIST_FIRST(&ph->ph_itemlist);
1125 1.97 yamt if (__predict_false(v == NULL)) {
1126 1.97 yamt pr_leave(pp);
1127 1.134 ad mutex_exit(&pp->pr_lock);
1128 1.97 yamt panic("pool_get: %s: page empty", pp->pr_wchan);
1129 1.97 yamt }
1130 1.20 thorpej #ifdef DIAGNOSTIC
1131 1.97 yamt if (__predict_false(pp->pr_nitems == 0)) {
1132 1.97 yamt pr_leave(pp);
1133 1.134 ad mutex_exit(&pp->pr_lock);
1134 1.97 yamt printf("pool_get: %s: items on itemlist, nitems %u\n",
1135 1.97 yamt pp->pr_wchan, pp->pr_nitems);
1136 1.97 yamt panic("pool_get: nitems inconsistent");
1137 1.97 yamt }
1138 1.65 enami #endif
1139 1.56 sommerfe
1140 1.65 enami #ifdef POOL_DIAGNOSTIC
1141 1.97 yamt pr_log(pp, v, PRLOG_GET, file, line);
1142 1.65 enami #endif
1143 1.3 pk
1144 1.65 enami #ifdef DIAGNOSTIC
1145 1.97 yamt if (__predict_false(pi->pi_magic != PI_MAGIC)) {
1146 1.97 yamt pr_printlog(pp, pi, printf);
1147 1.97 yamt panic("pool_get(%s): free list modified: "
1148 1.97 yamt "magic=%x; page %p; item addr %p\n",
1149 1.97 yamt pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
1150 1.97 yamt }
1151 1.3 pk #endif
1152 1.3 pk
1153 1.97 yamt /*
1154 1.97 yamt * Remove from item list.
1155 1.97 yamt */
1156 1.102 chs LIST_REMOVE(pi, pi_list);
1157 1.97 yamt }
1158 1.20 thorpej pp->pr_nitems--;
1159 1.20 thorpej pp->pr_nout++;
1160 1.6 thorpej if (ph->ph_nmissing == 0) {
1161 1.6 thorpej #ifdef DIAGNOSTIC
1162 1.34 thorpej if (__predict_false(pp->pr_nidle == 0))
1163 1.6 thorpej panic("pool_get: nidle inconsistent");
1164 1.6 thorpej #endif
1165 1.6 thorpej pp->pr_nidle--;
1166 1.88 chs
1167 1.88 chs /*
1168 1.88 chs * This page was previously empty. Move it to the list of
1169 1.88 chs * partially-full pages. This page is already curpage.
1170 1.88 chs */
1171 1.88 chs LIST_REMOVE(ph, ph_pagelist);
1172 1.88 chs LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1173 1.6 thorpej }
1174 1.3 pk ph->ph_nmissing++;
1175 1.97 yamt if (ph->ph_nmissing == pp->pr_itemsperpage) {
1176 1.21 thorpej #ifdef DIAGNOSTIC
1177 1.97 yamt if (__predict_false((pp->pr_roflags & PR_NOTOUCH) == 0 &&
1178 1.102 chs !LIST_EMPTY(&ph->ph_itemlist))) {
1179 1.25 thorpej pr_leave(pp);
1180 1.134 ad mutex_exit(&pp->pr_lock);
1181 1.21 thorpej panic("pool_get: %s: nmissing inconsistent",
1182 1.21 thorpej pp->pr_wchan);
1183 1.21 thorpej }
1184 1.21 thorpej #endif
1185 1.3 pk /*
1186 1.88 chs * This page is now full. Move it to the full list
1187 1.88 chs * and select a new current page.
1188 1.3 pk */
1189 1.88 chs LIST_REMOVE(ph, ph_pagelist);
1190 1.88 chs LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
1191 1.88 chs pool_update_curpage(pp);
1192 1.1 pk }
1193 1.3 pk
1194 1.3 pk pp->pr_nget++;
1195 1.111 christos pr_leave(pp);
1196 1.20 thorpej
1197 1.20 thorpej /*
1198 1.20 thorpej * If we have a low water mark and we are now below that low
1199 1.20 thorpej * water mark, add more items to the pool.
1200 1.20 thorpej */
1201 1.53 thorpej if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1202 1.20 thorpej /*
1203 1.20 thorpej * XXX: Should we log a warning? Should we set up a timeout
1204 1.20 thorpej * to try again in a second or so? The latter could break
1205 1.20 thorpej * a caller's assumptions about interrupt protection, etc.
1206 1.20 thorpej */
1207 1.20 thorpej }
1208 1.20 thorpej
1209 1.134 ad mutex_exit(&pp->pr_lock);
1210 1.125 ad KASSERT((((vaddr_t)v + pp->pr_itemoffset) & (pp->pr_align - 1)) == 0);
1211 1.125 ad FREECHECK_OUT(&pp->pr_freecheck, v);
1212 1.1 pk return (v);
1213 1.1 pk }
1214 1.1 pk
1215 1.1 pk /*
1216 1.43 thorpej * Internal version of pool_put(). Pool is already locked/entered.
1217 1.1 pk */
1218 1.43 thorpej static void
1219 1.101 thorpej pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
1220 1.1 pk {
1221 1.1 pk struct pool_item *pi = v;
1222 1.3 pk struct pool_item_header *ph;
1223 1.3 pk
1224 1.134 ad KASSERT(mutex_owned(&pp->pr_lock));
1225 1.125 ad FREECHECK_IN(&pp->pr_freecheck, v);
1226 1.134 ad LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
1227 1.61 chs
1228 1.30 thorpej #ifdef DIAGNOSTIC
1229 1.34 thorpej if (__predict_false(pp->pr_nout == 0)) {
1230 1.30 thorpej printf("pool %s: putting with none out\n",
1231 1.30 thorpej pp->pr_wchan);
1232 1.30 thorpej panic("pool_put");
1233 1.30 thorpej }
1234 1.30 thorpej #endif
1235 1.3 pk
1236 1.121 yamt if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
1237 1.25 thorpej pr_printlog(pp, NULL, printf);
1238 1.3 pk panic("pool_put: %s: page header missing", pp->pr_wchan);
1239 1.3 pk }
1240 1.28 thorpej
1241 1.3 pk /*
1242 1.3 pk * Return to item list.
1243 1.3 pk */
1244 1.97 yamt if (pp->pr_roflags & PR_NOTOUCH) {
1245 1.97 yamt pr_item_notouch_put(pp, ph, v);
1246 1.97 yamt } else {
1247 1.2 pk #ifdef DIAGNOSTIC
1248 1.97 yamt pi->pi_magic = PI_MAGIC;
1249 1.3 pk #endif
1250 1.32 chs #ifdef DEBUG
1251 1.97 yamt {
1252 1.97 yamt int i, *ip = v;
1253 1.32 chs
1254 1.97 yamt for (i = 0; i < pp->pr_size / sizeof(int); i++) {
1255 1.97 yamt *ip++ = PI_MAGIC;
1256 1.97 yamt }
1257 1.32 chs }
1258 1.32 chs #endif
1259 1.32 chs
1260 1.102 chs LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1261 1.97 yamt }
1262 1.79 thorpej KDASSERT(ph->ph_nmissing != 0);
1263 1.3 pk ph->ph_nmissing--;
1264 1.3 pk pp->pr_nput++;
1265 1.20 thorpej pp->pr_nitems++;
1266 1.20 thorpej pp->pr_nout--;
1267 1.3 pk
1268 1.3 pk /* Cancel "pool empty" condition if it exists */
1269 1.3 pk if (pp->pr_curpage == NULL)
1270 1.3 pk pp->pr_curpage = ph;
1271 1.3 pk
1272 1.3 pk if (pp->pr_flags & PR_WANTED) {
1273 1.3 pk pp->pr_flags &= ~PR_WANTED;
1274 1.134 ad cv_broadcast(&pp->pr_cv);
1275 1.3 pk }
1276 1.3 pk
1277 1.3 pk /*
1278 1.88 chs * If this page is now empty, do one of two things:
1279 1.21 thorpej *
1280 1.88 chs * (1) If we have more pages than the page high water mark,
1281 1.96 thorpej * free the page back to the system. ONLY CONSIDER
1282 1.90 thorpej * FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
1283 1.90 thorpej * CLAIM.
1284 1.21 thorpej *
1285 1.88 chs * (2) Otherwise, move the page to the empty page list.
1286 1.88 chs *
1287 1.88 chs * Either way, select a new current page (so we use a partially-full
1288 1.88 chs * page if one is available).
1289 1.3 pk */
1290 1.3 pk if (ph->ph_nmissing == 0) {
1291 1.6 thorpej pp->pr_nidle++;
1292 1.90 thorpej if (pp->pr_npages > pp->pr_minpages &&
1293 1.152 yamt pp->pr_npages > pp->pr_maxpages) {
1294 1.101 thorpej pr_rmpage(pp, ph, pq);
1295 1.3 pk } else {
1296 1.88 chs LIST_REMOVE(ph, ph_pagelist);
1297 1.88 chs LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1298 1.3 pk
1299 1.21 thorpej /*
1300 1.21 thorpej * Update the timestamp on the page. A page must
1301 1.21 thorpej * be idle for some period of time before it can
1302 1.21 thorpej * be reclaimed by the pagedaemon. This minimizes
1303 1.21 thorpej * ping-pong'ing for memory.
1304 1.151 yamt *
1305 1.151 yamt * note for 64-bit time_t: truncating to 32-bit is not
1306 1.151 yamt * a problem for our usage.
1307 1.21 thorpej */
1308 1.151 yamt ph->ph_time = time_uptime;
1309 1.1 pk }
1310 1.88 chs pool_update_curpage(pp);
1311 1.1 pk }
1312 1.88 chs
1313 1.21 thorpej /*
1314 1.88 chs * If the page was previously completely full, move it to the
1315 1.88 chs * partially-full list and make it the current page. The next
1316 1.88 chs * allocation will get the item from this page, instead of
1317 1.88 chs * further fragmenting the pool.
1318 1.21 thorpej */
1319 1.21 thorpej else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
1320 1.88 chs LIST_REMOVE(ph, ph_pagelist);
1321 1.88 chs LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1322 1.21 thorpej pp->pr_curpage = ph;
1323 1.21 thorpej }
1324 1.43 thorpej }
1325 1.43 thorpej
1326 1.43 thorpej /*
1327 1.134 ad * Return resource to the pool.
1328 1.43 thorpej */
1329 1.59 thorpej #ifdef POOL_DIAGNOSTIC
1330 1.43 thorpej void
1331 1.43 thorpej _pool_put(struct pool *pp, void *v, const char *file, long line)
1332 1.43 thorpej {
1333 1.101 thorpej struct pool_pagelist pq;
1334 1.101 thorpej
1335 1.101 thorpej LIST_INIT(&pq);
1336 1.43 thorpej
1337 1.134 ad mutex_enter(&pp->pr_lock);
1338 1.43 thorpej pr_enter(pp, file, line);
1339 1.43 thorpej
1340 1.56 sommerfe pr_log(pp, v, PRLOG_PUT, file, line);
1341 1.56 sommerfe
1342 1.101 thorpej pool_do_put(pp, v, &pq);
1343 1.21 thorpej
1344 1.25 thorpej pr_leave(pp);
1345 1.134 ad mutex_exit(&pp->pr_lock);
1346 1.101 thorpej
1347 1.102 chs pr_pagelist_free(pp, &pq);
1348 1.1 pk }
1349 1.57 sommerfe #undef pool_put
1350 1.59 thorpej #endif /* POOL_DIAGNOSTIC */
1351 1.1 pk
1352 1.56 sommerfe void
1353 1.56 sommerfe pool_put(struct pool *pp, void *v)
1354 1.56 sommerfe {
1355 1.101 thorpej struct pool_pagelist pq;
1356 1.101 thorpej
1357 1.101 thorpej LIST_INIT(&pq);
1358 1.56 sommerfe
1359 1.134 ad mutex_enter(&pp->pr_lock);
1360 1.101 thorpej pool_do_put(pp, v, &pq);
1361 1.134 ad mutex_exit(&pp->pr_lock);
1362 1.56 sommerfe
1363 1.102 chs pr_pagelist_free(pp, &pq);
1364 1.56 sommerfe }
1365 1.57 sommerfe
1366 1.59 thorpej #ifdef POOL_DIAGNOSTIC
1367 1.57 sommerfe #define pool_put(h, v) _pool_put((h), (v), __FILE__, __LINE__)
1368 1.56 sommerfe #endif
1369 1.74 thorpej
1370 1.74 thorpej /*
1371 1.113 yamt * pool_grow: grow a pool by a page.
1372 1.113 yamt *
1373 1.113 yamt * => called with pool locked.
1374 1.113 yamt * => unlock and relock the pool.
1375 1.113 yamt * => return with pool locked.
1376 1.113 yamt */
1377 1.113 yamt
1378 1.113 yamt static int
1379 1.113 yamt pool_grow(struct pool *pp, int flags)
1380 1.113 yamt {
1381 1.113 yamt struct pool_item_header *ph = NULL;
1382 1.113 yamt char *cp;
1383 1.113 yamt
1384 1.134 ad mutex_exit(&pp->pr_lock);
1385 1.113 yamt cp = pool_allocator_alloc(pp, flags);
1386 1.113 yamt if (__predict_true(cp != NULL)) {
1387 1.113 yamt ph = pool_alloc_item_header(pp, cp, flags);
1388 1.113 yamt }
1389 1.113 yamt if (__predict_false(cp == NULL || ph == NULL)) {
1390 1.113 yamt if (cp != NULL) {
1391 1.113 yamt pool_allocator_free(pp, cp);
1392 1.113 yamt }
1393 1.134 ad mutex_enter(&pp->pr_lock);
1394 1.113 yamt return ENOMEM;
1395 1.113 yamt }
1396 1.113 yamt
1397 1.134 ad mutex_enter(&pp->pr_lock);
1398 1.113 yamt pool_prime_page(pp, cp, ph);
1399 1.113 yamt pp->pr_npagealloc++;
1400 1.113 yamt return 0;
1401 1.113 yamt }
1402 1.113 yamt
1403 1.113 yamt /*
1404 1.74 thorpej * Add N items to the pool.
1405 1.74 thorpej */
1406 1.74 thorpej int
1407 1.74 thorpej pool_prime(struct pool *pp, int n)
1408 1.74 thorpej {
1409 1.75 simonb int newpages;
1410 1.113 yamt int error = 0;
1411 1.74 thorpej
1412 1.134 ad mutex_enter(&pp->pr_lock);
1413 1.74 thorpej
1414 1.74 thorpej newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1415 1.74 thorpej
1416 1.74 thorpej while (newpages-- > 0) {
1417 1.113 yamt error = pool_grow(pp, PR_NOWAIT);
1418 1.113 yamt if (error) {
1419 1.74 thorpej break;
1420 1.74 thorpej }
1421 1.74 thorpej pp->pr_minpages++;
1422 1.74 thorpej }
1423 1.74 thorpej
1424 1.74 thorpej if (pp->pr_minpages >= pp->pr_maxpages)
1425 1.74 thorpej pp->pr_maxpages = pp->pr_minpages + 1; /* XXX */
1426 1.74 thorpej
1427 1.134 ad mutex_exit(&pp->pr_lock);
1428 1.113 yamt return error;
1429 1.74 thorpej }
1430 1.55 thorpej
1431 1.55 thorpej /*
1432 1.3 pk * Add a page worth of items to the pool.
1433 1.21 thorpej *
1434 1.21 thorpej * Note, we must be called with the pool descriptor LOCKED.
1435 1.3 pk */
1436 1.55 thorpej static void
1437 1.128 christos pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
1438 1.3 pk {
1439 1.3 pk struct pool_item *pi;
1440 1.128 christos void *cp = storage;
1441 1.125 ad const unsigned int align = pp->pr_align;
1442 1.125 ad const unsigned int ioff = pp->pr_itemoffset;
1443 1.55 thorpej int n;
1444 1.36 pk
1445 1.134 ad KASSERT(mutex_owned(&pp->pr_lock));
1446 1.91 yamt
1447 1.66 thorpej #ifdef DIAGNOSTIC
1448 1.121 yamt if ((pp->pr_roflags & PR_NOALIGN) == 0 &&
1449 1.150 skrll ((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) != 0)
1450 1.36 pk panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
1451 1.66 thorpej #endif
1452 1.3 pk
1453 1.3 pk /*
1454 1.3 pk * Insert page header.
1455 1.3 pk */
1456 1.88 chs LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1457 1.102 chs LIST_INIT(&ph->ph_itemlist);
1458 1.3 pk ph->ph_page = storage;
1459 1.3 pk ph->ph_nmissing = 0;
1460 1.151 yamt ph->ph_time = time_uptime;
1461 1.88 chs if ((pp->pr_roflags & PR_PHINPAGE) == 0)
1462 1.88 chs SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
1463 1.3 pk
1464 1.6 thorpej pp->pr_nidle++;
1465 1.6 thorpej
1466 1.3 pk /*
1467 1.3 pk * Color this page.
1468 1.3 pk */
1469 1.141 yamt ph->ph_off = pp->pr_curcolor;
1470 1.141 yamt cp = (char *)cp + ph->ph_off;
1471 1.3 pk if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
1472 1.3 pk pp->pr_curcolor = 0;
1473 1.3 pk
1474 1.3 pk /*
1475 1.3 pk * Adjust storage to apply aligment to `pr_itemoffset' in each item.
1476 1.3 pk */
1477 1.3 pk if (ioff != 0)
1478 1.128 christos cp = (char *)cp + align - ioff;
1479 1.3 pk
1480 1.125 ad KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
1481 1.125 ad
1482 1.3 pk /*
1483 1.3 pk * Insert remaining chunks on the bucket list.
1484 1.3 pk */
1485 1.3 pk n = pp->pr_itemsperpage;
1486 1.20 thorpej pp->pr_nitems += n;
1487 1.3 pk
1488 1.97 yamt if (pp->pr_roflags & PR_NOTOUCH) {
1489 1.141 yamt pr_item_notouch_init(pp, ph);
1490 1.97 yamt } else {
1491 1.97 yamt while (n--) {
1492 1.97 yamt pi = (struct pool_item *)cp;
1493 1.78 thorpej
1494 1.97 yamt KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0);
1495 1.3 pk
1496 1.97 yamt /* Insert on page list */
1497 1.102 chs LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1498 1.3 pk #ifdef DIAGNOSTIC
1499 1.97 yamt pi->pi_magic = PI_MAGIC;
1500 1.3 pk #endif
1501 1.128 christos cp = (char *)cp + pp->pr_size;
1502 1.125 ad
1503 1.125 ad KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
1504 1.97 yamt }
1505 1.3 pk }
1506 1.3 pk
1507 1.3 pk /*
1508 1.3 pk * If the pool was depleted, point at the new page.
1509 1.3 pk */
1510 1.3 pk if (pp->pr_curpage == NULL)
1511 1.3 pk pp->pr_curpage = ph;
1512 1.3 pk
1513 1.3 pk if (++pp->pr_npages > pp->pr_hiwat)
1514 1.3 pk pp->pr_hiwat = pp->pr_npages;
1515 1.3 pk }
1516 1.3 pk
1517 1.20 thorpej /*
1518 1.52 thorpej * Used by pool_get() when nitems drops below the low water mark. This
1519 1.88 chs * is used to catch up pr_nitems with the low water mark.
1520 1.20 thorpej *
1521 1.21 thorpej * Note 1, we never wait for memory here, we let the caller decide what to do.
1522 1.20 thorpej *
1523 1.73 thorpej * Note 2, we must be called with the pool already locked, and we return
1524 1.20 thorpej * with it locked.
1525 1.20 thorpej */
1526 1.20 thorpej static int
1527 1.42 thorpej pool_catchup(struct pool *pp)
1528 1.20 thorpej {
1529 1.20 thorpej int error = 0;
1530 1.20 thorpej
1531 1.54 thorpej while (POOL_NEEDS_CATCHUP(pp)) {
1532 1.113 yamt error = pool_grow(pp, PR_NOWAIT);
1533 1.113 yamt if (error) {
1534 1.20 thorpej break;
1535 1.20 thorpej }
1536 1.20 thorpej }
1537 1.113 yamt return error;
1538 1.20 thorpej }
1539 1.20 thorpej
1540 1.88 chs static void
1541 1.88 chs pool_update_curpage(struct pool *pp)
1542 1.88 chs {
1543 1.88 chs
1544 1.88 chs pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
1545 1.88 chs if (pp->pr_curpage == NULL) {
1546 1.88 chs pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
1547 1.88 chs }
1548 1.168 yamt KASSERT((pp->pr_curpage == NULL && pp->pr_nitems == 0) ||
1549 1.168 yamt (pp->pr_curpage != NULL && pp->pr_nitems > 0));
1550 1.88 chs }
1551 1.88 chs
1552 1.3 pk void
1553 1.42 thorpej pool_setlowat(struct pool *pp, int n)
1554 1.3 pk {
1555 1.15 pk
1556 1.134 ad mutex_enter(&pp->pr_lock);
1557 1.21 thorpej
1558 1.3 pk pp->pr_minitems = n;
1559 1.15 pk pp->pr_minpages = (n == 0)
1560 1.15 pk ? 0
1561 1.18 thorpej : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1562 1.20 thorpej
1563 1.20 thorpej /* Make sure we're caught up with the newly-set low water mark. */
1564 1.75 simonb if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1565 1.20 thorpej /*
1566 1.20 thorpej * XXX: Should we log a warning? Should we set up a timeout
1567 1.20 thorpej * to try again in a second or so? The latter could break
1568 1.20 thorpej * a caller's assumptions about interrupt protection, etc.
1569 1.20 thorpej */
1570 1.20 thorpej }
1571 1.21 thorpej
1572 1.134 ad mutex_exit(&pp->pr_lock);
1573 1.3 pk }
1574 1.3 pk
1575 1.3 pk void
1576 1.42 thorpej pool_sethiwat(struct pool *pp, int n)
1577 1.3 pk {
1578 1.15 pk
1579 1.134 ad mutex_enter(&pp->pr_lock);
1580 1.21 thorpej
1581 1.15 pk pp->pr_maxpages = (n == 0)
1582 1.15 pk ? 0
1583 1.18 thorpej : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1584 1.21 thorpej
1585 1.134 ad mutex_exit(&pp->pr_lock);
1586 1.3 pk }
1587 1.3 pk
1588 1.20 thorpej void
1589 1.42 thorpej pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
1590 1.20 thorpej {
1591 1.20 thorpej
1592 1.134 ad mutex_enter(&pp->pr_lock);
1593 1.20 thorpej
1594 1.20 thorpej pp->pr_hardlimit = n;
1595 1.20 thorpej pp->pr_hardlimit_warning = warnmess;
1596 1.31 thorpej pp->pr_hardlimit_ratecap.tv_sec = ratecap;
1597 1.31 thorpej pp->pr_hardlimit_warning_last.tv_sec = 0;
1598 1.31 thorpej pp->pr_hardlimit_warning_last.tv_usec = 0;
1599 1.20 thorpej
1600 1.20 thorpej /*
1601 1.21 thorpej * In-line version of pool_sethiwat(), because we don't want to
1602 1.21 thorpej * release the lock.
1603 1.20 thorpej */
1604 1.20 thorpej pp->pr_maxpages = (n == 0)
1605 1.20 thorpej ? 0
1606 1.20 thorpej : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1607 1.21 thorpej
1608 1.134 ad mutex_exit(&pp->pr_lock);
1609 1.20 thorpej }
1610 1.3 pk
1611 1.3 pk /*
1612 1.3 pk * Release all complete pages that have not been used recently.
1613 1.184 rmind *
1614 1.184 rmind * Might be called from interrupt context.
1615 1.3 pk */
1616 1.66 thorpej int
1617 1.59 thorpej #ifdef POOL_DIAGNOSTIC
1618 1.42 thorpej _pool_reclaim(struct pool *pp, const char *file, long line)
1619 1.56 sommerfe #else
1620 1.56 sommerfe pool_reclaim(struct pool *pp)
1621 1.56 sommerfe #endif
1622 1.3 pk {
1623 1.3 pk struct pool_item_header *ph, *phnext;
1624 1.61 chs struct pool_pagelist pq;
1625 1.151 yamt uint32_t curtime;
1626 1.134 ad bool klock;
1627 1.134 ad int rv;
1628 1.3 pk
1629 1.184 rmind if (cpu_intr_p() || cpu_softintr_p()) {
1630 1.184 rmind KASSERT(pp->pr_ipl != IPL_NONE);
1631 1.184 rmind }
1632 1.184 rmind
1633 1.68 thorpej if (pp->pr_drain_hook != NULL) {
1634 1.68 thorpej /*
1635 1.68 thorpej * The drain hook must be called with the pool unlocked.
1636 1.68 thorpej */
1637 1.68 thorpej (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
1638 1.68 thorpej }
1639 1.68 thorpej
1640 1.134 ad /*
1641 1.157 ad * XXXSMP Because we do not want to cause non-MPSAFE code
1642 1.157 ad * to block.
1643 1.134 ad */
1644 1.134 ad if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK ||
1645 1.134 ad pp->pr_ipl == IPL_SOFTSERIAL) {
1646 1.134 ad KERNEL_LOCK(1, NULL);
1647 1.134 ad klock = true;
1648 1.134 ad } else
1649 1.134 ad klock = false;
1650 1.134 ad
1651 1.134 ad /* Reclaim items from the pool's cache (if any). */
1652 1.134 ad if (pp->pr_cache != NULL)
1653 1.134 ad pool_cache_invalidate(pp->pr_cache);
1654 1.134 ad
1655 1.134 ad if (mutex_tryenter(&pp->pr_lock) == 0) {
1656 1.134 ad if (klock) {
1657 1.134 ad KERNEL_UNLOCK_ONE(NULL);
1658 1.134 ad }
1659 1.66 thorpej return (0);
1660 1.134 ad }
1661 1.25 thorpej pr_enter(pp, file, line);
1662 1.68 thorpej
1663 1.88 chs LIST_INIT(&pq);
1664 1.43 thorpej
1665 1.151 yamt curtime = time_uptime;
1666 1.21 thorpej
1667 1.88 chs for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
1668 1.88 chs phnext = LIST_NEXT(ph, ph_pagelist);
1669 1.3 pk
1670 1.3 pk /* Check our minimum page claim */
1671 1.3 pk if (pp->pr_npages <= pp->pr_minpages)
1672 1.3 pk break;
1673 1.3 pk
1674 1.88 chs KASSERT(ph->ph_nmissing == 0);
1675 1.151 yamt if (curtime - ph->ph_time < pool_inactive_time
1676 1.117 yamt && !pa_starved_p(pp->pr_alloc))
1677 1.88 chs continue;
1678 1.21 thorpej
1679 1.88 chs /*
1680 1.88 chs * If freeing this page would put us below
1681 1.88 chs * the low water mark, stop now.
1682 1.88 chs */
1683 1.88 chs if ((pp->pr_nitems - pp->pr_itemsperpage) <
1684 1.88 chs pp->pr_minitems)
1685 1.88 chs break;
1686 1.21 thorpej
1687 1.88 chs pr_rmpage(pp, ph, &pq);
1688 1.3 pk }
1689 1.3 pk
1690 1.25 thorpej pr_leave(pp);
1691 1.134 ad mutex_exit(&pp->pr_lock);
1692 1.134 ad
1693 1.134 ad if (LIST_EMPTY(&pq))
1694 1.134 ad rv = 0;
1695 1.134 ad else {
1696 1.134 ad pr_pagelist_free(pp, &pq);
1697 1.134 ad rv = 1;
1698 1.134 ad }
1699 1.134 ad
1700 1.134 ad if (klock) {
1701 1.134 ad KERNEL_UNLOCK_ONE(NULL);
1702 1.134 ad }
1703 1.66 thorpej
1704 1.134 ad return (rv);
1705 1.3 pk }
1706 1.3 pk
1707 1.3 pk /*
1708 1.134 ad * Drain pools, one at a time. This is a two stage process;
1709 1.134 ad * drain_start kicks off a cross call to drain CPU-level caches
1710 1.134 ad * if the pool has an associated pool_cache. drain_end waits
1711 1.134 ad * for those cross calls to finish, and then drains the cache
1712 1.134 ad * (if any) and pool.
1713 1.131 ad *
1714 1.134 ad * Note, must never be called from interrupt context.
1715 1.3 pk */
1716 1.3 pk void
1717 1.134 ad pool_drain_start(struct pool **ppp, uint64_t *wp)
1718 1.3 pk {
1719 1.3 pk struct pool *pp;
1720 1.134 ad
1721 1.145 ad KASSERT(!TAILQ_EMPTY(&pool_head));
1722 1.3 pk
1723 1.61 chs pp = NULL;
1724 1.134 ad
1725 1.134 ad /* Find next pool to drain, and add a reference. */
1726 1.134 ad mutex_enter(&pool_head_lock);
1727 1.134 ad do {
1728 1.134 ad if (drainpp == NULL) {
1729 1.145 ad drainpp = TAILQ_FIRST(&pool_head);
1730 1.134 ad }
1731 1.134 ad if (drainpp != NULL) {
1732 1.134 ad pp = drainpp;
1733 1.145 ad drainpp = TAILQ_NEXT(pp, pr_poollist);
1734 1.134 ad }
1735 1.134 ad /*
1736 1.134 ad * Skip completely idle pools. We depend on at least
1737 1.134 ad * one pool in the system being active.
1738 1.134 ad */
1739 1.134 ad } while (pp == NULL || pp->pr_npages == 0);
1740 1.134 ad pp->pr_refcnt++;
1741 1.134 ad mutex_exit(&pool_head_lock);
1742 1.134 ad
1743 1.134 ad /* If there is a pool_cache, drain CPU level caches. */
1744 1.134 ad *ppp = pp;
1745 1.134 ad if (pp->pr_cache != NULL) {
1746 1.134 ad *wp = xc_broadcast(0, (xcfunc_t)pool_cache_xcall,
1747 1.134 ad pp->pr_cache, NULL);
1748 1.134 ad }
1749 1.134 ad }
1750 1.134 ad
1751 1.186 pooka bool
1752 1.134 ad pool_drain_end(struct pool *pp, uint64_t where)
1753 1.134 ad {
1754 1.186 pooka bool reclaimed;
1755 1.134 ad
1756 1.134 ad if (pp == NULL)
1757 1.186 pooka return false;
1758 1.134 ad
1759 1.134 ad KASSERT(pp->pr_refcnt > 0);
1760 1.134 ad
1761 1.134 ad /* Wait for remote draining to complete. */
1762 1.134 ad if (pp->pr_cache != NULL)
1763 1.134 ad xc_wait(where);
1764 1.134 ad
1765 1.134 ad /* Drain the cache (if any) and pool.. */
1766 1.186 pooka reclaimed = pool_reclaim(pp);
1767 1.134 ad
1768 1.134 ad /* Finally, unlock the pool. */
1769 1.134 ad mutex_enter(&pool_head_lock);
1770 1.134 ad pp->pr_refcnt--;
1771 1.134 ad cv_broadcast(&pool_busy);
1772 1.134 ad mutex_exit(&pool_head_lock);
1773 1.186 pooka
1774 1.186 pooka return reclaimed;
1775 1.3 pk }
1776 1.3 pk
1777 1.3 pk /*
1778 1.3 pk * Diagnostic helpers.
1779 1.3 pk */
1780 1.3 pk void
1781 1.42 thorpej pool_print(struct pool *pp, const char *modif)
1782 1.21 thorpej {
1783 1.21 thorpej
1784 1.25 thorpej pool_print1(pp, modif, printf);
1785 1.21 thorpej }
1786 1.21 thorpej
1787 1.25 thorpej void
1788 1.108 yamt pool_printall(const char *modif, void (*pr)(const char *, ...))
1789 1.108 yamt {
1790 1.108 yamt struct pool *pp;
1791 1.108 yamt
1792 1.145 ad TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
1793 1.108 yamt pool_printit(pp, modif, pr);
1794 1.108 yamt }
1795 1.108 yamt }
1796 1.108 yamt
1797 1.108 yamt void
1798 1.42 thorpej pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1799 1.25 thorpej {
1800 1.25 thorpej
1801 1.25 thorpej if (pp == NULL) {
1802 1.25 thorpej (*pr)("Must specify a pool to print.\n");
1803 1.25 thorpej return;
1804 1.25 thorpej }
1805 1.25 thorpej
1806 1.25 thorpej pool_print1(pp, modif, pr);
1807 1.25 thorpej }
1808 1.25 thorpej
1809 1.21 thorpej static void
1810 1.124 yamt pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
1811 1.97 yamt void (*pr)(const char *, ...))
1812 1.88 chs {
1813 1.88 chs struct pool_item_header *ph;
1814 1.88 chs #ifdef DIAGNOSTIC
1815 1.88 chs struct pool_item *pi;
1816 1.88 chs #endif
1817 1.88 chs
1818 1.88 chs LIST_FOREACH(ph, pl, ph_pagelist) {
1819 1.151 yamt (*pr)("\t\tpage %p, nmissing %d, time %" PRIu32 "\n",
1820 1.151 yamt ph->ph_page, ph->ph_nmissing, ph->ph_time);
1821 1.88 chs #ifdef DIAGNOSTIC
1822 1.97 yamt if (!(pp->pr_roflags & PR_NOTOUCH)) {
1823 1.102 chs LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
1824 1.97 yamt if (pi->pi_magic != PI_MAGIC) {
1825 1.97 yamt (*pr)("\t\t\titem %p, magic 0x%x\n",
1826 1.97 yamt pi, pi->pi_magic);
1827 1.97 yamt }
1828 1.88 chs }
1829 1.88 chs }
1830 1.88 chs #endif
1831 1.88 chs }
1832 1.88 chs }
1833 1.88 chs
1834 1.88 chs static void
1835 1.42 thorpej pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1836 1.3 pk {
1837 1.25 thorpej struct pool_item_header *ph;
1838 1.134 ad pool_cache_t pc;
1839 1.134 ad pcg_t *pcg;
1840 1.134 ad pool_cache_cpu_t *cc;
1841 1.134 ad uint64_t cpuhit, cpumiss;
1842 1.44 thorpej int i, print_log = 0, print_pagelist = 0, print_cache = 0;
1843 1.25 thorpej char c;
1844 1.25 thorpej
1845 1.25 thorpej while ((c = *modif++) != '\0') {
1846 1.25 thorpej if (c == 'l')
1847 1.25 thorpej print_log = 1;
1848 1.25 thorpej if (c == 'p')
1849 1.25 thorpej print_pagelist = 1;
1850 1.44 thorpej if (c == 'c')
1851 1.44 thorpej print_cache = 1;
1852 1.25 thorpej }
1853 1.25 thorpej
1854 1.134 ad if ((pc = pp->pr_cache) != NULL) {
1855 1.134 ad (*pr)("POOL CACHE");
1856 1.134 ad } else {
1857 1.134 ad (*pr)("POOL");
1858 1.134 ad }
1859 1.134 ad
1860 1.134 ad (*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
1861 1.25 thorpej pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
1862 1.25 thorpej pp->pr_roflags);
1863 1.66 thorpej (*pr)("\talloc %p\n", pp->pr_alloc);
1864 1.25 thorpej (*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
1865 1.25 thorpej pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
1866 1.25 thorpej (*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
1867 1.25 thorpej pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
1868 1.25 thorpej
1869 1.134 ad (*pr)("\tnget %lu, nfail %lu, nput %lu\n",
1870 1.25 thorpej pp->pr_nget, pp->pr_nfail, pp->pr_nput);
1871 1.25 thorpej (*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
1872 1.25 thorpej pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
1873 1.25 thorpej
1874 1.25 thorpej if (print_pagelist == 0)
1875 1.25 thorpej goto skip_pagelist;
1876 1.25 thorpej
1877 1.88 chs if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
1878 1.88 chs (*pr)("\n\tempty page list:\n");
1879 1.97 yamt pool_print_pagelist(pp, &pp->pr_emptypages, pr);
1880 1.88 chs if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
1881 1.88 chs (*pr)("\n\tfull page list:\n");
1882 1.97 yamt pool_print_pagelist(pp, &pp->pr_fullpages, pr);
1883 1.88 chs if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
1884 1.88 chs (*pr)("\n\tpartial-page list:\n");
1885 1.97 yamt pool_print_pagelist(pp, &pp->pr_partpages, pr);
1886 1.88 chs
1887 1.25 thorpej if (pp->pr_curpage == NULL)
1888 1.25 thorpej (*pr)("\tno current page\n");
1889 1.25 thorpej else
1890 1.25 thorpej (*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
1891 1.25 thorpej
1892 1.25 thorpej skip_pagelist:
1893 1.25 thorpej if (print_log == 0)
1894 1.25 thorpej goto skip_log;
1895 1.25 thorpej
1896 1.25 thorpej (*pr)("\n");
1897 1.25 thorpej if ((pp->pr_roflags & PR_LOGGING) == 0)
1898 1.25 thorpej (*pr)("\tno log\n");
1899 1.122 christos else {
1900 1.25 thorpej pr_printlog(pp, NULL, pr);
1901 1.122 christos }
1902 1.3 pk
1903 1.25 thorpej skip_log:
1904 1.44 thorpej
1905 1.102 chs #define PR_GROUPLIST(pcg) \
1906 1.102 chs (*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail); \
1907 1.142 ad for (i = 0; i < pcg->pcg_size; i++) { \
1908 1.102 chs if (pcg->pcg_objects[i].pcgo_pa != \
1909 1.102 chs POOL_PADDR_INVALID) { \
1910 1.102 chs (*pr)("\t\t\t%p, 0x%llx\n", \
1911 1.102 chs pcg->pcg_objects[i].pcgo_va, \
1912 1.102 chs (unsigned long long) \
1913 1.102 chs pcg->pcg_objects[i].pcgo_pa); \
1914 1.102 chs } else { \
1915 1.102 chs (*pr)("\t\t\t%p\n", \
1916 1.102 chs pcg->pcg_objects[i].pcgo_va); \
1917 1.102 chs } \
1918 1.102 chs }
1919 1.102 chs
1920 1.134 ad if (pc != NULL) {
1921 1.134 ad cpuhit = 0;
1922 1.134 ad cpumiss = 0;
1923 1.183 ad for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
1924 1.134 ad if ((cc = pc->pc_cpus[i]) == NULL)
1925 1.134 ad continue;
1926 1.134 ad cpuhit += cc->cc_hits;
1927 1.134 ad cpumiss += cc->cc_misses;
1928 1.134 ad }
1929 1.134 ad (*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
1930 1.134 ad (*pr)("\tcache layer hits %llu misses %llu\n",
1931 1.134 ad pc->pc_hits, pc->pc_misses);
1932 1.134 ad (*pr)("\tcache layer entry uncontended %llu contended %llu\n",
1933 1.134 ad pc->pc_hits + pc->pc_misses - pc->pc_contended,
1934 1.134 ad pc->pc_contended);
1935 1.134 ad (*pr)("\tcache layer empty groups %u full groups %u\n",
1936 1.134 ad pc->pc_nempty, pc->pc_nfull);
1937 1.134 ad if (print_cache) {
1938 1.134 ad (*pr)("\tfull cache groups:\n");
1939 1.134 ad for (pcg = pc->pc_fullgroups; pcg != NULL;
1940 1.134 ad pcg = pcg->pcg_next) {
1941 1.134 ad PR_GROUPLIST(pcg);
1942 1.134 ad }
1943 1.134 ad (*pr)("\tempty cache groups:\n");
1944 1.134 ad for (pcg = pc->pc_emptygroups; pcg != NULL;
1945 1.134 ad pcg = pcg->pcg_next) {
1946 1.134 ad PR_GROUPLIST(pcg);
1947 1.134 ad }
1948 1.103 chs }
1949 1.44 thorpej }
1950 1.102 chs #undef PR_GROUPLIST
1951 1.44 thorpej
1952 1.88 chs pr_enter_check(pp, pr);
1953 1.88 chs }
1954 1.88 chs
1955 1.88 chs static int
1956 1.88 chs pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
1957 1.88 chs {
1958 1.88 chs struct pool_item *pi;
1959 1.128 christos void *page;
1960 1.88 chs int n;
1961 1.88 chs
1962 1.121 yamt if ((pp->pr_roflags & PR_NOALIGN) == 0) {
1963 1.128 christos page = (void *)((uintptr_t)ph & pp->pr_alloc->pa_pagemask);
1964 1.121 yamt if (page != ph->ph_page &&
1965 1.121 yamt (pp->pr_roflags & PR_PHINPAGE) != 0) {
1966 1.121 yamt if (label != NULL)
1967 1.121 yamt printf("%s: ", label);
1968 1.121 yamt printf("pool(%p:%s): page inconsistency: page %p;"
1969 1.121 yamt " at page head addr %p (p %p)\n", pp,
1970 1.121 yamt pp->pr_wchan, ph->ph_page,
1971 1.121 yamt ph, page);
1972 1.121 yamt return 1;
1973 1.121 yamt }
1974 1.88 chs }
1975 1.3 pk
1976 1.97 yamt if ((pp->pr_roflags & PR_NOTOUCH) != 0)
1977 1.97 yamt return 0;
1978 1.97 yamt
1979 1.102 chs for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
1980 1.88 chs pi != NULL;
1981 1.102 chs pi = LIST_NEXT(pi,pi_list), n++) {
1982 1.88 chs
1983 1.88 chs #ifdef DIAGNOSTIC
1984 1.88 chs if (pi->pi_magic != PI_MAGIC) {
1985 1.88 chs if (label != NULL)
1986 1.88 chs printf("%s: ", label);
1987 1.88 chs printf("pool(%s): free list modified: magic=%x;"
1988 1.121 yamt " page %p; item ordinal %d; addr %p\n",
1989 1.88 chs pp->pr_wchan, pi->pi_magic, ph->ph_page,
1990 1.121 yamt n, pi);
1991 1.88 chs panic("pool");
1992 1.88 chs }
1993 1.88 chs #endif
1994 1.121 yamt if ((pp->pr_roflags & PR_NOALIGN) != 0) {
1995 1.121 yamt continue;
1996 1.121 yamt }
1997 1.128 christos page = (void *)((uintptr_t)pi & pp->pr_alloc->pa_pagemask);
1998 1.88 chs if (page == ph->ph_page)
1999 1.88 chs continue;
2000 1.88 chs
2001 1.88 chs if (label != NULL)
2002 1.88 chs printf("%s: ", label);
2003 1.88 chs printf("pool(%p:%s): page inconsistency: page %p;"
2004 1.88 chs " item ordinal %d; addr %p (p %p)\n", pp,
2005 1.88 chs pp->pr_wchan, ph->ph_page,
2006 1.88 chs n, pi, page);
2007 1.88 chs return 1;
2008 1.88 chs }
2009 1.88 chs return 0;
2010 1.3 pk }
2011 1.3 pk
2012 1.88 chs
2013 1.3 pk int
2014 1.42 thorpej pool_chk(struct pool *pp, const char *label)
2015 1.3 pk {
2016 1.3 pk struct pool_item_header *ph;
2017 1.3 pk int r = 0;
2018 1.3 pk
2019 1.134 ad mutex_enter(&pp->pr_lock);
2020 1.88 chs LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
2021 1.88 chs r = pool_chk_page(pp, label, ph);
2022 1.88 chs if (r) {
2023 1.88 chs goto out;
2024 1.88 chs }
2025 1.88 chs }
2026 1.88 chs LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
2027 1.88 chs r = pool_chk_page(pp, label, ph);
2028 1.88 chs if (r) {
2029 1.3 pk goto out;
2030 1.3 pk }
2031 1.88 chs }
2032 1.88 chs LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
2033 1.88 chs r = pool_chk_page(pp, label, ph);
2034 1.88 chs if (r) {
2035 1.3 pk goto out;
2036 1.3 pk }
2037 1.3 pk }
2038 1.88 chs
2039 1.3 pk out:
2040 1.134 ad mutex_exit(&pp->pr_lock);
2041 1.3 pk return (r);
2042 1.43 thorpej }
2043 1.43 thorpej
2044 1.43 thorpej /*
2045 1.43 thorpej * pool_cache_init:
2046 1.43 thorpej *
2047 1.43 thorpej * Initialize a pool cache.
2048 1.134 ad */
2049 1.134 ad pool_cache_t
2050 1.134 ad pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
2051 1.134 ad const char *wchan, struct pool_allocator *palloc, int ipl,
2052 1.134 ad int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
2053 1.134 ad {
2054 1.134 ad pool_cache_t pc;
2055 1.134 ad
2056 1.134 ad pc = pool_get(&cache_pool, PR_WAITOK);
2057 1.134 ad if (pc == NULL)
2058 1.134 ad return NULL;
2059 1.134 ad
2060 1.134 ad pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
2061 1.134 ad palloc, ipl, ctor, dtor, arg);
2062 1.134 ad
2063 1.134 ad return pc;
2064 1.134 ad }
2065 1.134 ad
2066 1.134 ad /*
2067 1.134 ad * pool_cache_bootstrap:
2068 1.43 thorpej *
2069 1.134 ad * Kernel-private version of pool_cache_init(). The caller
2070 1.134 ad * provides initial storage.
2071 1.43 thorpej */
2072 1.43 thorpej void
2073 1.134 ad pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
2074 1.134 ad u_int align_offset, u_int flags, const char *wchan,
2075 1.134 ad struct pool_allocator *palloc, int ipl,
2076 1.134 ad int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
2077 1.43 thorpej void *arg)
2078 1.43 thorpej {
2079 1.134 ad CPU_INFO_ITERATOR cii;
2080 1.145 ad pool_cache_t pc1;
2081 1.134 ad struct cpu_info *ci;
2082 1.134 ad struct pool *pp;
2083 1.134 ad
2084 1.134 ad pp = &pc->pc_pool;
2085 1.134 ad if (palloc == NULL && ipl == IPL_NONE)
2086 1.134 ad palloc = &pool_allocator_nointr;
2087 1.134 ad pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl);
2088 1.157 ad mutex_init(&pc->pc_lock, MUTEX_DEFAULT, ipl);
2089 1.43 thorpej
2090 1.134 ad if (ctor == NULL) {
2091 1.134 ad ctor = (int (*)(void *, void *, int))nullop;
2092 1.134 ad }
2093 1.134 ad if (dtor == NULL) {
2094 1.134 ad dtor = (void (*)(void *, void *))nullop;
2095 1.134 ad }
2096 1.43 thorpej
2097 1.134 ad pc->pc_emptygroups = NULL;
2098 1.134 ad pc->pc_fullgroups = NULL;
2099 1.134 ad pc->pc_partgroups = NULL;
2100 1.43 thorpej pc->pc_ctor = ctor;
2101 1.43 thorpej pc->pc_dtor = dtor;
2102 1.43 thorpej pc->pc_arg = arg;
2103 1.134 ad pc->pc_hits = 0;
2104 1.48 thorpej pc->pc_misses = 0;
2105 1.134 ad pc->pc_nempty = 0;
2106 1.134 ad pc->pc_npart = 0;
2107 1.134 ad pc->pc_nfull = 0;
2108 1.134 ad pc->pc_contended = 0;
2109 1.134 ad pc->pc_refcnt = 0;
2110 1.136 yamt pc->pc_freecheck = NULL;
2111 1.134 ad
2112 1.142 ad if ((flags & PR_LARGECACHE) != 0) {
2113 1.142 ad pc->pc_pcgsize = PCG_NOBJECTS_LARGE;
2114 1.163 ad pc->pc_pcgpool = &pcg_large_pool;
2115 1.142 ad } else {
2116 1.142 ad pc->pc_pcgsize = PCG_NOBJECTS_NORMAL;
2117 1.163 ad pc->pc_pcgpool = &pcg_normal_pool;
2118 1.142 ad }
2119 1.142 ad
2120 1.134 ad /* Allocate per-CPU caches. */
2121 1.134 ad memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
2122 1.134 ad pc->pc_ncpu = 0;
2123 1.139 ad if (ncpu < 2) {
2124 1.137 ad /* XXX For sparc: boot CPU is not attached yet. */
2125 1.137 ad pool_cache_cpu_init1(curcpu(), pc);
2126 1.137 ad } else {
2127 1.137 ad for (CPU_INFO_FOREACH(cii, ci)) {
2128 1.137 ad pool_cache_cpu_init1(ci, pc);
2129 1.137 ad }
2130 1.134 ad }
2131 1.145 ad
2132 1.145 ad /* Add to list of all pools. */
2133 1.145 ad if (__predict_true(!cold))
2134 1.134 ad mutex_enter(&pool_head_lock);
2135 1.145 ad TAILQ_FOREACH(pc1, &pool_cache_head, pc_cachelist) {
2136 1.145 ad if (strcmp(pc1->pc_pool.pr_wchan, pc->pc_pool.pr_wchan) > 0)
2137 1.145 ad break;
2138 1.145 ad }
2139 1.145 ad if (pc1 == NULL)
2140 1.145 ad TAILQ_INSERT_TAIL(&pool_cache_head, pc, pc_cachelist);
2141 1.145 ad else
2142 1.145 ad TAILQ_INSERT_BEFORE(pc1, pc, pc_cachelist);
2143 1.145 ad if (__predict_true(!cold))
2144 1.134 ad mutex_exit(&pool_head_lock);
2145 1.145 ad
2146 1.145 ad membar_sync();
2147 1.145 ad pp->pr_cache = pc;
2148 1.43 thorpej }
2149 1.43 thorpej
2150 1.43 thorpej /*
2151 1.43 thorpej * pool_cache_destroy:
2152 1.43 thorpej *
2153 1.43 thorpej * Destroy a pool cache.
2154 1.43 thorpej */
2155 1.43 thorpej void
2156 1.134 ad pool_cache_destroy(pool_cache_t pc)
2157 1.43 thorpej {
2158 1.134 ad struct pool *pp = &pc->pc_pool;
2159 1.175 jym u_int i;
2160 1.134 ad
2161 1.134 ad /* Remove it from the global list. */
2162 1.134 ad mutex_enter(&pool_head_lock);
2163 1.134 ad while (pc->pc_refcnt != 0)
2164 1.134 ad cv_wait(&pool_busy, &pool_head_lock);
2165 1.145 ad TAILQ_REMOVE(&pool_cache_head, pc, pc_cachelist);
2166 1.134 ad mutex_exit(&pool_head_lock);
2167 1.43 thorpej
2168 1.43 thorpej /* First, invalidate the entire cache. */
2169 1.43 thorpej pool_cache_invalidate(pc);
2170 1.43 thorpej
2171 1.134 ad /* Disassociate it from the pool. */
2172 1.134 ad mutex_enter(&pp->pr_lock);
2173 1.134 ad pp->pr_cache = NULL;
2174 1.134 ad mutex_exit(&pp->pr_lock);
2175 1.134 ad
2176 1.134 ad /* Destroy per-CPU data */
2177 1.183 ad for (i = 0; i < __arraycount(pc->pc_cpus); i++)
2178 1.175 jym pool_cache_invalidate_cpu(pc, i);
2179 1.134 ad
2180 1.134 ad /* Finally, destroy it. */
2181 1.134 ad mutex_destroy(&pc->pc_lock);
2182 1.134 ad pool_destroy(pp);
2183 1.134 ad pool_put(&cache_pool, pc);
2184 1.134 ad }
2185 1.134 ad
2186 1.134 ad /*
2187 1.134 ad * pool_cache_cpu_init1:
2188 1.134 ad *
2189 1.134 ad * Called for each pool_cache whenever a new CPU is attached.
2190 1.134 ad */
2191 1.134 ad static void
2192 1.134 ad pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
2193 1.134 ad {
2194 1.134 ad pool_cache_cpu_t *cc;
2195 1.137 ad int index;
2196 1.134 ad
2197 1.137 ad index = ci->ci_index;
2198 1.137 ad
2199 1.183 ad KASSERT(index < __arraycount(pc->pc_cpus));
2200 1.134 ad
2201 1.137 ad if ((cc = pc->pc_cpus[index]) != NULL) {
2202 1.137 ad KASSERT(cc->cc_cpuindex == index);
2203 1.134 ad return;
2204 1.134 ad }
2205 1.134 ad
2206 1.134 ad /*
2207 1.134 ad * The first CPU is 'free'. This needs to be the case for
2208 1.134 ad * bootstrap - we may not be able to allocate yet.
2209 1.134 ad */
2210 1.134 ad if (pc->pc_ncpu == 0) {
2211 1.134 ad cc = &pc->pc_cpu0;
2212 1.134 ad pc->pc_ncpu = 1;
2213 1.134 ad } else {
2214 1.134 ad mutex_enter(&pc->pc_lock);
2215 1.134 ad pc->pc_ncpu++;
2216 1.134 ad mutex_exit(&pc->pc_lock);
2217 1.134 ad cc = pool_get(&cache_cpu_pool, PR_WAITOK);
2218 1.134 ad }
2219 1.134 ad
2220 1.134 ad cc->cc_ipl = pc->pc_pool.pr_ipl;
2221 1.134 ad cc->cc_iplcookie = makeiplcookie(cc->cc_ipl);
2222 1.134 ad cc->cc_cache = pc;
2223 1.137 ad cc->cc_cpuindex = index;
2224 1.134 ad cc->cc_hits = 0;
2225 1.134 ad cc->cc_misses = 0;
2226 1.169 yamt cc->cc_current = __UNCONST(&pcg_dummy);
2227 1.169 yamt cc->cc_previous = __UNCONST(&pcg_dummy);
2228 1.134 ad
2229 1.137 ad pc->pc_cpus[index] = cc;
2230 1.43 thorpej }
2231 1.43 thorpej
2232 1.134 ad /*
2233 1.134 ad * pool_cache_cpu_init:
2234 1.134 ad *
2235 1.134 ad * Called whenever a new CPU is attached.
2236 1.134 ad */
2237 1.134 ad void
2238 1.134 ad pool_cache_cpu_init(struct cpu_info *ci)
2239 1.43 thorpej {
2240 1.134 ad pool_cache_t pc;
2241 1.134 ad
2242 1.134 ad mutex_enter(&pool_head_lock);
2243 1.145 ad TAILQ_FOREACH(pc, &pool_cache_head, pc_cachelist) {
2244 1.134 ad pc->pc_refcnt++;
2245 1.134 ad mutex_exit(&pool_head_lock);
2246 1.43 thorpej
2247 1.134 ad pool_cache_cpu_init1(ci, pc);
2248 1.43 thorpej
2249 1.134 ad mutex_enter(&pool_head_lock);
2250 1.134 ad pc->pc_refcnt--;
2251 1.134 ad cv_broadcast(&pool_busy);
2252 1.134 ad }
2253 1.134 ad mutex_exit(&pool_head_lock);
2254 1.43 thorpej }
2255 1.43 thorpej
2256 1.134 ad /*
2257 1.134 ad * pool_cache_reclaim:
2258 1.134 ad *
2259 1.134 ad * Reclaim memory from a pool cache.
2260 1.134 ad */
2261 1.134 ad bool
2262 1.134 ad pool_cache_reclaim(pool_cache_t pc)
2263 1.43 thorpej {
2264 1.43 thorpej
2265 1.134 ad return pool_reclaim(&pc->pc_pool);
2266 1.134 ad }
2267 1.43 thorpej
2268 1.136 yamt static void
2269 1.136 yamt pool_cache_destruct_object1(pool_cache_t pc, void *object)
2270 1.136 yamt {
2271 1.136 yamt
2272 1.136 yamt (*pc->pc_dtor)(pc->pc_arg, object);
2273 1.136 yamt pool_put(&pc->pc_pool, object);
2274 1.136 yamt }
2275 1.136 yamt
2276 1.134 ad /*
2277 1.134 ad * pool_cache_destruct_object:
2278 1.134 ad *
2279 1.134 ad * Force destruction of an object and its release back into
2280 1.134 ad * the pool.
2281 1.134 ad */
2282 1.134 ad void
2283 1.134 ad pool_cache_destruct_object(pool_cache_t pc, void *object)
2284 1.134 ad {
2285 1.134 ad
2286 1.136 yamt FREECHECK_IN(&pc->pc_freecheck, object);
2287 1.136 yamt
2288 1.136 yamt pool_cache_destruct_object1(pc, object);
2289 1.43 thorpej }
2290 1.43 thorpej
2291 1.134 ad /*
2292 1.134 ad * pool_cache_invalidate_groups:
2293 1.134 ad *
2294 1.134 ad * Invalidate a chain of groups and destruct all objects.
2295 1.134 ad */
2296 1.102 chs static void
2297 1.134 ad pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
2298 1.102 chs {
2299 1.134 ad void *object;
2300 1.134 ad pcg_t *next;
2301 1.134 ad int i;
2302 1.134 ad
2303 1.134 ad for (; pcg != NULL; pcg = next) {
2304 1.134 ad next = pcg->pcg_next;
2305 1.134 ad
2306 1.134 ad for (i = 0; i < pcg->pcg_avail; i++) {
2307 1.134 ad object = pcg->pcg_objects[i].pcgo_va;
2308 1.136 yamt pool_cache_destruct_object1(pc, object);
2309 1.134 ad }
2310 1.102 chs
2311 1.142 ad if (pcg->pcg_size == PCG_NOBJECTS_LARGE) {
2312 1.142 ad pool_put(&pcg_large_pool, pcg);
2313 1.142 ad } else {
2314 1.142 ad KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL);
2315 1.142 ad pool_put(&pcg_normal_pool, pcg);
2316 1.142 ad }
2317 1.102 chs }
2318 1.102 chs }
2319 1.102 chs
2320 1.43 thorpej /*
2321 1.134 ad * pool_cache_invalidate:
2322 1.43 thorpej *
2323 1.134 ad * Invalidate a pool cache (destruct and release all of the
2324 1.134 ad * cached objects). Does not reclaim objects from the pool.
2325 1.176 thorpej *
2326 1.176 thorpej * Note: For pool caches that provide constructed objects, there
2327 1.176 thorpej * is an assumption that another level of synchronization is occurring
2328 1.176 thorpej * between the input to the constructor and the cache invalidation.
2329 1.43 thorpej */
2330 1.134 ad void
2331 1.134 ad pool_cache_invalidate(pool_cache_t pc)
2332 1.134 ad {
2333 1.134 ad pcg_t *full, *empty, *part;
2334 1.182 rmind #if 0
2335 1.176 thorpej uint64_t where;
2336 1.176 thorpej
2337 1.177 jym if (ncpu < 2 || !mp_online) {
2338 1.176 thorpej /*
2339 1.176 thorpej * We might be called early enough in the boot process
2340 1.176 thorpej * for the CPU data structures to not be fully initialized.
2341 1.176 thorpej * In this case, simply gather the local CPU's cache now
2342 1.176 thorpej * since it will be the only one running.
2343 1.176 thorpej */
2344 1.176 thorpej pool_cache_xcall(pc);
2345 1.176 thorpej } else {
2346 1.176 thorpej /*
2347 1.176 thorpej * Gather all of the CPU-specific caches into the
2348 1.176 thorpej * global cache.
2349 1.176 thorpej */
2350 1.176 thorpej where = xc_broadcast(0, (xcfunc_t)pool_cache_xcall, pc, NULL);
2351 1.176 thorpej xc_wait(where);
2352 1.176 thorpej }
2353 1.182 rmind #endif
2354 1.134 ad mutex_enter(&pc->pc_lock);
2355 1.134 ad full = pc->pc_fullgroups;
2356 1.134 ad empty = pc->pc_emptygroups;
2357 1.134 ad part = pc->pc_partgroups;
2358 1.134 ad pc->pc_fullgroups = NULL;
2359 1.134 ad pc->pc_emptygroups = NULL;
2360 1.134 ad pc->pc_partgroups = NULL;
2361 1.134 ad pc->pc_nfull = 0;
2362 1.134 ad pc->pc_nempty = 0;
2363 1.134 ad pc->pc_npart = 0;
2364 1.134 ad mutex_exit(&pc->pc_lock);
2365 1.134 ad
2366 1.134 ad pool_cache_invalidate_groups(pc, full);
2367 1.134 ad pool_cache_invalidate_groups(pc, empty);
2368 1.134 ad pool_cache_invalidate_groups(pc, part);
2369 1.134 ad }
2370 1.134 ad
2371 1.175 jym /*
2372 1.175 jym * pool_cache_invalidate_cpu:
2373 1.175 jym *
2374 1.175 jym * Invalidate all CPU-bound cached objects in pool cache, the CPU being
2375 1.175 jym * identified by its associated index.
2376 1.175 jym * It is caller's responsibility to ensure that no operation is
2377 1.175 jym * taking place on this pool cache while doing this invalidation.
2378 1.175 jym * WARNING: as no inter-CPU locking is enforced, trying to invalidate
2379 1.175 jym * pool cached objects from a CPU different from the one currently running
2380 1.175 jym * may result in an undefined behaviour.
2381 1.175 jym */
2382 1.175 jym static void
2383 1.175 jym pool_cache_invalidate_cpu(pool_cache_t pc, u_int index)
2384 1.175 jym {
2385 1.175 jym
2386 1.175 jym pool_cache_cpu_t *cc;
2387 1.175 jym pcg_t *pcg;
2388 1.175 jym
2389 1.175 jym if ((cc = pc->pc_cpus[index]) == NULL)
2390 1.175 jym return;
2391 1.175 jym
2392 1.175 jym if ((pcg = cc->cc_current) != &pcg_dummy) {
2393 1.175 jym pcg->pcg_next = NULL;
2394 1.175 jym pool_cache_invalidate_groups(pc, pcg);
2395 1.175 jym }
2396 1.175 jym if ((pcg = cc->cc_previous) != &pcg_dummy) {
2397 1.175 jym pcg->pcg_next = NULL;
2398 1.175 jym pool_cache_invalidate_groups(pc, pcg);
2399 1.175 jym }
2400 1.175 jym if (cc != &pc->pc_cpu0)
2401 1.175 jym pool_put(&cache_cpu_pool, cc);
2402 1.175 jym
2403 1.175 jym }
2404 1.175 jym
2405 1.134 ad void
2406 1.134 ad pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
2407 1.134 ad {
2408 1.134 ad
2409 1.134 ad pool_set_drain_hook(&pc->pc_pool, fn, arg);
2410 1.134 ad }
2411 1.134 ad
2412 1.134 ad void
2413 1.134 ad pool_cache_setlowat(pool_cache_t pc, int n)
2414 1.134 ad {
2415 1.134 ad
2416 1.134 ad pool_setlowat(&pc->pc_pool, n);
2417 1.134 ad }
2418 1.134 ad
2419 1.134 ad void
2420 1.134 ad pool_cache_sethiwat(pool_cache_t pc, int n)
2421 1.134 ad {
2422 1.134 ad
2423 1.134 ad pool_sethiwat(&pc->pc_pool, n);
2424 1.134 ad }
2425 1.134 ad
2426 1.134 ad void
2427 1.134 ad pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
2428 1.134 ad {
2429 1.134 ad
2430 1.134 ad pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
2431 1.134 ad }
2432 1.134 ad
2433 1.162 ad static bool __noinline
2434 1.162 ad pool_cache_get_slow(pool_cache_cpu_t *cc, int s, void **objectp,
2435 1.134 ad paddr_t *pap, int flags)
2436 1.43 thorpej {
2437 1.134 ad pcg_t *pcg, *cur;
2438 1.134 ad uint64_t ncsw;
2439 1.134 ad pool_cache_t pc;
2440 1.43 thorpej void *object;
2441 1.58 thorpej
2442 1.168 yamt KASSERT(cc->cc_current->pcg_avail == 0);
2443 1.168 yamt KASSERT(cc->cc_previous->pcg_avail == 0);
2444 1.168 yamt
2445 1.134 ad pc = cc->cc_cache;
2446 1.134 ad cc->cc_misses++;
2447 1.43 thorpej
2448 1.134 ad /*
2449 1.134 ad * Nothing was available locally. Try and grab a group
2450 1.134 ad * from the cache.
2451 1.134 ad */
2452 1.162 ad if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
2453 1.134 ad ncsw = curlwp->l_ncsw;
2454 1.134 ad mutex_enter(&pc->pc_lock);
2455 1.134 ad pc->pc_contended++;
2456 1.43 thorpej
2457 1.134 ad /*
2458 1.134 ad * If we context switched while locking, then
2459 1.134 ad * our view of the per-CPU data is invalid:
2460 1.134 ad * retry.
2461 1.134 ad */
2462 1.134 ad if (curlwp->l_ncsw != ncsw) {
2463 1.134 ad mutex_exit(&pc->pc_lock);
2464 1.162 ad return true;
2465 1.43 thorpej }
2466 1.102 chs }
2467 1.43 thorpej
2468 1.162 ad if (__predict_true((pcg = pc->pc_fullgroups) != NULL)) {
2469 1.43 thorpej /*
2470 1.134 ad * If there's a full group, release our empty
2471 1.134 ad * group back to the cache. Install the full
2472 1.134 ad * group as cc_current and return.
2473 1.43 thorpej */
2474 1.162 ad if (__predict_true((cur = cc->cc_current) != &pcg_dummy)) {
2475 1.134 ad KASSERT(cur->pcg_avail == 0);
2476 1.134 ad cur->pcg_next = pc->pc_emptygroups;
2477 1.134 ad pc->pc_emptygroups = cur;
2478 1.134 ad pc->pc_nempty++;
2479 1.87 thorpej }
2480 1.142 ad KASSERT(pcg->pcg_avail == pcg->pcg_size);
2481 1.134 ad cc->cc_current = pcg;
2482 1.134 ad pc->pc_fullgroups = pcg->pcg_next;
2483 1.134 ad pc->pc_hits++;
2484 1.134 ad pc->pc_nfull--;
2485 1.134 ad mutex_exit(&pc->pc_lock);
2486 1.162 ad return true;
2487 1.134 ad }
2488 1.134 ad
2489 1.134 ad /*
2490 1.134 ad * Nothing available locally or in cache. Take the slow
2491 1.134 ad * path: fetch a new object from the pool and construct
2492 1.134 ad * it.
2493 1.134 ad */
2494 1.134 ad pc->pc_misses++;
2495 1.134 ad mutex_exit(&pc->pc_lock);
2496 1.162 ad splx(s);
2497 1.134 ad
2498 1.134 ad object = pool_get(&pc->pc_pool, flags);
2499 1.134 ad *objectp = object;
2500 1.162 ad if (__predict_false(object == NULL))
2501 1.162 ad return false;
2502 1.125 ad
2503 1.162 ad if (__predict_false((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0)) {
2504 1.134 ad pool_put(&pc->pc_pool, object);
2505 1.134 ad *objectp = NULL;
2506 1.162 ad return false;
2507 1.43 thorpej }
2508 1.43 thorpej
2509 1.134 ad KASSERT((((vaddr_t)object + pc->pc_pool.pr_itemoffset) &
2510 1.134 ad (pc->pc_pool.pr_align - 1)) == 0);
2511 1.43 thorpej
2512 1.134 ad if (pap != NULL) {
2513 1.134 ad #ifdef POOL_VTOPHYS
2514 1.134 ad *pap = POOL_VTOPHYS(object);
2515 1.134 ad #else
2516 1.134 ad *pap = POOL_PADDR_INVALID;
2517 1.134 ad #endif
2518 1.102 chs }
2519 1.43 thorpej
2520 1.125 ad FREECHECK_OUT(&pc->pc_freecheck, object);
2521 1.162 ad return false;
2522 1.43 thorpej }
2523 1.43 thorpej
2524 1.43 thorpej /*
2525 1.134 ad * pool_cache_get{,_paddr}:
2526 1.43 thorpej *
2527 1.134 ad * Get an object from a pool cache (optionally returning
2528 1.134 ad * the physical address of the object).
2529 1.43 thorpej */
2530 1.134 ad void *
2531 1.134 ad pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
2532 1.43 thorpej {
2533 1.134 ad pool_cache_cpu_t *cc;
2534 1.134 ad pcg_t *pcg;
2535 1.134 ad void *object;
2536 1.60 thorpej int s;
2537 1.43 thorpej
2538 1.184 rmind KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()) ||
2539 1.185 rmind (pc->pc_pool.pr_ipl != IPL_NONE || cold || panicstr != NULL),
2540 1.184 rmind ("pool '%s' is IPL_NONE, but called from interrupt context\n",
2541 1.184 rmind pc->pc_pool.pr_wchan));
2542 1.184 rmind
2543 1.155 ad if (flags & PR_WAITOK) {
2544 1.154 yamt ASSERT_SLEEPABLE();
2545 1.155 ad }
2546 1.125 ad
2547 1.162 ad /* Lock out interrupts and disable preemption. */
2548 1.162 ad s = splvm();
2549 1.165 yamt while (/* CONSTCOND */ true) {
2550 1.134 ad /* Try and allocate an object from the current group. */
2551 1.162 ad cc = pc->pc_cpus[curcpu()->ci_index];
2552 1.162 ad KASSERT(cc->cc_cache == pc);
2553 1.134 ad pcg = cc->cc_current;
2554 1.162 ad if (__predict_true(pcg->pcg_avail > 0)) {
2555 1.134 ad object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;
2556 1.162 ad if (__predict_false(pap != NULL))
2557 1.134 ad *pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa;
2558 1.148 yamt #if defined(DIAGNOSTIC)
2559 1.134 ad pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL;
2560 1.163 ad KASSERT(pcg->pcg_avail < pcg->pcg_size);
2561 1.134 ad KASSERT(object != NULL);
2562 1.163 ad #endif
2563 1.134 ad cc->cc_hits++;
2564 1.162 ad splx(s);
2565 1.134 ad FREECHECK_OUT(&pc->pc_freecheck, object);
2566 1.134 ad return object;
2567 1.43 thorpej }
2568 1.43 thorpej
2569 1.43 thorpej /*
2570 1.134 ad * That failed. If the previous group isn't empty, swap
2571 1.134 ad * it with the current group and allocate from there.
2572 1.43 thorpej */
2573 1.134 ad pcg = cc->cc_previous;
2574 1.162 ad if (__predict_true(pcg->pcg_avail > 0)) {
2575 1.134 ad cc->cc_previous = cc->cc_current;
2576 1.134 ad cc->cc_current = pcg;
2577 1.134 ad continue;
2578 1.43 thorpej }
2579 1.43 thorpej
2580 1.134 ad /*
2581 1.134 ad * Can't allocate from either group: try the slow path.
2582 1.134 ad * If get_slow() allocated an object for us, or if
2583 1.162 ad * no more objects are available, it will return false.
2584 1.134 ad * Otherwise, we need to retry.
2585 1.134 ad */
2586 1.165 yamt if (!pool_cache_get_slow(cc, s, &object, pap, flags))
2587 1.165 yamt break;
2588 1.165 yamt }
2589 1.43 thorpej
2590 1.134 ad return object;
2591 1.51 thorpej }
2592 1.51 thorpej
2593 1.162 ad static bool __noinline
2594 1.162 ad pool_cache_put_slow(pool_cache_cpu_t *cc, int s, void *object)
2595 1.51 thorpej {
2596 1.163 ad pcg_t *pcg, *cur;
2597 1.134 ad uint64_t ncsw;
2598 1.134 ad pool_cache_t pc;
2599 1.51 thorpej
2600 1.168 yamt KASSERT(cc->cc_current->pcg_avail == cc->cc_current->pcg_size);
2601 1.168 yamt KASSERT(cc->cc_previous->pcg_avail == cc->cc_previous->pcg_size);
2602 1.168 yamt
2603 1.134 ad pc = cc->cc_cache;
2604 1.171 ad pcg = NULL;
2605 1.134 ad cc->cc_misses++;
2606 1.43 thorpej
2607 1.171 ad /*
2608 1.171 ad * If there are no empty groups in the cache then allocate one
2609 1.171 ad * while still unlocked.
2610 1.171 ad */
2611 1.171 ad if (__predict_false(pc->pc_emptygroups == NULL)) {
2612 1.171 ad if (__predict_true(!pool_cache_disable)) {
2613 1.171 ad pcg = pool_get(pc->pc_pcgpool, PR_NOWAIT);
2614 1.171 ad }
2615 1.171 ad if (__predict_true(pcg != NULL)) {
2616 1.171 ad pcg->pcg_avail = 0;
2617 1.171 ad pcg->pcg_size = pc->pc_pcgsize;
2618 1.171 ad }
2619 1.171 ad }
2620 1.171 ad
2621 1.162 ad /* Lock the cache. */
2622 1.162 ad if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
2623 1.164 ad ncsw = curlwp->l_ncsw;
2624 1.134 ad mutex_enter(&pc->pc_lock);
2625 1.134 ad pc->pc_contended++;
2626 1.162 ad
2627 1.163 ad /*
2628 1.163 ad * If we context switched while locking, then our view of
2629 1.163 ad * the per-CPU data is invalid: retry.
2630 1.163 ad */
2631 1.163 ad if (__predict_false(curlwp->l_ncsw != ncsw)) {
2632 1.163 ad mutex_exit(&pc->pc_lock);
2633 1.171 ad if (pcg != NULL) {
2634 1.171 ad pool_put(pc->pc_pcgpool, pcg);
2635 1.171 ad }
2636 1.163 ad return true;
2637 1.163 ad }
2638 1.162 ad }
2639 1.102 chs
2640 1.163 ad /* If there are no empty groups in the cache then allocate one. */
2641 1.171 ad if (pcg == NULL && pc->pc_emptygroups != NULL) {
2642 1.171 ad pcg = pc->pc_emptygroups;
2643 1.163 ad pc->pc_emptygroups = pcg->pcg_next;
2644 1.163 ad pc->pc_nempty--;
2645 1.134 ad }
2646 1.130 ad
2647 1.162 ad /*
2648 1.162 ad * If there's a empty group, release our full group back
2649 1.162 ad * to the cache. Install the empty group to the local CPU
2650 1.162 ad * and return.
2651 1.162 ad */
2652 1.163 ad if (pcg != NULL) {
2653 1.134 ad KASSERT(pcg->pcg_avail == 0);
2654 1.162 ad if (__predict_false(cc->cc_previous == &pcg_dummy)) {
2655 1.146 ad cc->cc_previous = pcg;
2656 1.146 ad } else {
2657 1.162 ad cur = cc->cc_current;
2658 1.162 ad if (__predict_true(cur != &pcg_dummy)) {
2659 1.163 ad KASSERT(cur->pcg_avail == cur->pcg_size);
2660 1.146 ad cur->pcg_next = pc->pc_fullgroups;
2661 1.146 ad pc->pc_fullgroups = cur;
2662 1.146 ad pc->pc_nfull++;
2663 1.146 ad }
2664 1.146 ad cc->cc_current = pcg;
2665 1.146 ad }
2666 1.163 ad pc->pc_hits++;
2667 1.134 ad mutex_exit(&pc->pc_lock);
2668 1.162 ad return true;
2669 1.102 chs }
2670 1.105 christos
2671 1.134 ad /*
2672 1.162 ad * Nothing available locally or in cache, and we didn't
2673 1.162 ad * allocate an empty group. Take the slow path and destroy
2674 1.162 ad * the object here and now.
2675 1.134 ad */
2676 1.134 ad pc->pc_misses++;
2677 1.134 ad mutex_exit(&pc->pc_lock);
2678 1.162 ad splx(s);
2679 1.162 ad pool_cache_destruct_object(pc, object);
2680 1.105 christos
2681 1.162 ad return false;
2682 1.134 ad }
2683 1.102 chs
2684 1.43 thorpej /*
2685 1.134 ad * pool_cache_put{,_paddr}:
2686 1.43 thorpej *
2687 1.134 ad * Put an object back to the pool cache (optionally caching the
2688 1.134 ad * physical address of the object).
2689 1.43 thorpej */
2690 1.101 thorpej void
2691 1.134 ad pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
2692 1.43 thorpej {
2693 1.134 ad pool_cache_cpu_t *cc;
2694 1.134 ad pcg_t *pcg;
2695 1.134 ad int s;
2696 1.101 thorpej
2697 1.172 yamt KASSERT(object != NULL);
2698 1.134 ad FREECHECK_IN(&pc->pc_freecheck, object);
2699 1.101 thorpej
2700 1.162 ad /* Lock out interrupts and disable preemption. */
2701 1.162 ad s = splvm();
2702 1.165 yamt while (/* CONSTCOND */ true) {
2703 1.134 ad /* If the current group isn't full, release it there. */
2704 1.162 ad cc = pc->pc_cpus[curcpu()->ci_index];
2705 1.162 ad KASSERT(cc->cc_cache == pc);
2706 1.134 ad pcg = cc->cc_current;
2707 1.162 ad if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
2708 1.134 ad pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object;
2709 1.134 ad pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa;
2710 1.134 ad pcg->pcg_avail++;
2711 1.134 ad cc->cc_hits++;
2712 1.162 ad splx(s);
2713 1.134 ad return;
2714 1.134 ad }
2715 1.43 thorpej
2716 1.134 ad /*
2717 1.162 ad * That failed. If the previous group isn't full, swap
2718 1.134 ad * it with the current group and try again.
2719 1.134 ad */
2720 1.134 ad pcg = cc->cc_previous;
2721 1.162 ad if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
2722 1.134 ad cc->cc_previous = cc->cc_current;
2723 1.134 ad cc->cc_current = pcg;
2724 1.134 ad continue;
2725 1.134 ad }
2726 1.43 thorpej
2727 1.134 ad /*
2728 1.134 ad * Can't free to either group: try the slow path.
2729 1.134 ad * If put_slow() releases the object for us, it
2730 1.162 ad * will return false. Otherwise we need to retry.
2731 1.134 ad */
2732 1.165 yamt if (!pool_cache_put_slow(cc, s, object))
2733 1.165 yamt break;
2734 1.165 yamt }
2735 1.43 thorpej }
2736 1.43 thorpej
2737 1.43 thorpej /*
2738 1.134 ad * pool_cache_xcall:
2739 1.43 thorpej *
2740 1.134 ad * Transfer objects from the per-CPU cache to the global cache.
2741 1.134 ad * Run within a cross-call thread.
2742 1.43 thorpej */
2743 1.43 thorpej static void
2744 1.134 ad pool_cache_xcall(pool_cache_t pc)
2745 1.43 thorpej {
2746 1.134 ad pool_cache_cpu_t *cc;
2747 1.134 ad pcg_t *prev, *cur, **list;
2748 1.162 ad int s;
2749 1.134 ad
2750 1.162 ad s = splvm();
2751 1.162 ad mutex_enter(&pc->pc_lock);
2752 1.162 ad cc = pc->pc_cpus[curcpu()->ci_index];
2753 1.134 ad cur = cc->cc_current;
2754 1.169 yamt cc->cc_current = __UNCONST(&pcg_dummy);
2755 1.134 ad prev = cc->cc_previous;
2756 1.169 yamt cc->cc_previous = __UNCONST(&pcg_dummy);
2757 1.162 ad if (cur != &pcg_dummy) {
2758 1.142 ad if (cur->pcg_avail == cur->pcg_size) {
2759 1.134 ad list = &pc->pc_fullgroups;
2760 1.134 ad pc->pc_nfull++;
2761 1.134 ad } else if (cur->pcg_avail == 0) {
2762 1.134 ad list = &pc->pc_emptygroups;
2763 1.134 ad pc->pc_nempty++;
2764 1.134 ad } else {
2765 1.134 ad list = &pc->pc_partgroups;
2766 1.134 ad pc->pc_npart++;
2767 1.134 ad }
2768 1.134 ad cur->pcg_next = *list;
2769 1.134 ad *list = cur;
2770 1.134 ad }
2771 1.162 ad if (prev != &pcg_dummy) {
2772 1.142 ad if (prev->pcg_avail == prev->pcg_size) {
2773 1.134 ad list = &pc->pc_fullgroups;
2774 1.134 ad pc->pc_nfull++;
2775 1.134 ad } else if (prev->pcg_avail == 0) {
2776 1.134 ad list = &pc->pc_emptygroups;
2777 1.134 ad pc->pc_nempty++;
2778 1.134 ad } else {
2779 1.134 ad list = &pc->pc_partgroups;
2780 1.134 ad pc->pc_npart++;
2781 1.134 ad }
2782 1.134 ad prev->pcg_next = *list;
2783 1.134 ad *list = prev;
2784 1.134 ad }
2785 1.134 ad mutex_exit(&pc->pc_lock);
2786 1.134 ad splx(s);
2787 1.3 pk }
2788 1.66 thorpej
2789 1.66 thorpej /*
2790 1.66 thorpej * Pool backend allocators.
2791 1.66 thorpej *
2792 1.66 thorpej * Each pool has a backend allocator that handles allocation, deallocation,
2793 1.66 thorpej * and any additional draining that might be needed.
2794 1.66 thorpej *
2795 1.66 thorpej * We provide two standard allocators:
2796 1.66 thorpej *
2797 1.66 thorpej * pool_allocator_kmem - the default when no allocator is specified
2798 1.66 thorpej *
2799 1.66 thorpej * pool_allocator_nointr - used for pools that will not be accessed
2800 1.66 thorpej * in interrupt context.
2801 1.66 thorpej */
2802 1.66 thorpej void *pool_page_alloc(struct pool *, int);
2803 1.66 thorpej void pool_page_free(struct pool *, void *);
2804 1.66 thorpej
2805 1.112 bjh21 #ifdef POOL_SUBPAGE
2806 1.112 bjh21 struct pool_allocator pool_allocator_kmem_fullpage = {
2807 1.112 bjh21 pool_page_alloc, pool_page_free, 0,
2808 1.117 yamt .pa_backingmapptr = &kmem_map,
2809 1.112 bjh21 };
2810 1.112 bjh21 #else
2811 1.66 thorpej struct pool_allocator pool_allocator_kmem = {
2812 1.66 thorpej pool_page_alloc, pool_page_free, 0,
2813 1.117 yamt .pa_backingmapptr = &kmem_map,
2814 1.66 thorpej };
2815 1.112 bjh21 #endif
2816 1.66 thorpej
2817 1.66 thorpej void *pool_page_alloc_nointr(struct pool *, int);
2818 1.66 thorpej void pool_page_free_nointr(struct pool *, void *);
2819 1.66 thorpej
2820 1.112 bjh21 #ifdef POOL_SUBPAGE
2821 1.112 bjh21 struct pool_allocator pool_allocator_nointr_fullpage = {
2822 1.112 bjh21 pool_page_alloc_nointr, pool_page_free_nointr, 0,
2823 1.117 yamt .pa_backingmapptr = &kernel_map,
2824 1.112 bjh21 };
2825 1.112 bjh21 #else
2826 1.66 thorpej struct pool_allocator pool_allocator_nointr = {
2827 1.66 thorpej pool_page_alloc_nointr, pool_page_free_nointr, 0,
2828 1.117 yamt .pa_backingmapptr = &kernel_map,
2829 1.66 thorpej };
2830 1.112 bjh21 #endif
2831 1.66 thorpej
2832 1.66 thorpej #ifdef POOL_SUBPAGE
2833 1.66 thorpej void *pool_subpage_alloc(struct pool *, int);
2834 1.66 thorpej void pool_subpage_free(struct pool *, void *);
2835 1.66 thorpej
2836 1.112 bjh21 struct pool_allocator pool_allocator_kmem = {
2837 1.112 bjh21 pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
2838 1.117 yamt .pa_backingmapptr = &kmem_map,
2839 1.112 bjh21 };
2840 1.112 bjh21
2841 1.112 bjh21 void *pool_subpage_alloc_nointr(struct pool *, int);
2842 1.112 bjh21 void pool_subpage_free_nointr(struct pool *, void *);
2843 1.112 bjh21
2844 1.112 bjh21 struct pool_allocator pool_allocator_nointr = {
2845 1.112 bjh21 pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
2846 1.117 yamt .pa_backingmapptr = &kmem_map,
2847 1.66 thorpej };
2848 1.66 thorpej #endif /* POOL_SUBPAGE */
2849 1.66 thorpej
2850 1.117 yamt static void *
2851 1.117 yamt pool_allocator_alloc(struct pool *pp, int flags)
2852 1.66 thorpej {
2853 1.117 yamt struct pool_allocator *pa = pp->pr_alloc;
2854 1.66 thorpej void *res;
2855 1.66 thorpej
2856 1.117 yamt res = (*pa->pa_alloc)(pp, flags);
2857 1.117 yamt if (res == NULL && (flags & PR_WAITOK) == 0) {
2858 1.66 thorpej /*
2859 1.117 yamt * We only run the drain hook here if PR_NOWAIT.
2860 1.117 yamt * In other cases, the hook will be run in
2861 1.117 yamt * pool_reclaim().
2862 1.66 thorpej */
2863 1.117 yamt if (pp->pr_drain_hook != NULL) {
2864 1.117 yamt (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
2865 1.117 yamt res = (*pa->pa_alloc)(pp, flags);
2866 1.66 thorpej }
2867 1.117 yamt }
2868 1.117 yamt return res;
2869 1.66 thorpej }
2870 1.66 thorpej
2871 1.117 yamt static void
2872 1.66 thorpej pool_allocator_free(struct pool *pp, void *v)
2873 1.66 thorpej {
2874 1.66 thorpej struct pool_allocator *pa = pp->pr_alloc;
2875 1.66 thorpej
2876 1.66 thorpej (*pa->pa_free)(pp, v);
2877 1.66 thorpej }
2878 1.66 thorpej
2879 1.66 thorpej void *
2880 1.124 yamt pool_page_alloc(struct pool *pp, int flags)
2881 1.66 thorpej {
2882 1.127 thorpej bool waitok = (flags & PR_WAITOK) ? true : false;
2883 1.66 thorpej
2884 1.100 yamt return ((void *) uvm_km_alloc_poolpage_cache(kmem_map, waitok));
2885 1.66 thorpej }
2886 1.66 thorpej
2887 1.66 thorpej void
2888 1.124 yamt pool_page_free(struct pool *pp, void *v)
2889 1.66 thorpej {
2890 1.66 thorpej
2891 1.98 yamt uvm_km_free_poolpage_cache(kmem_map, (vaddr_t) v);
2892 1.98 yamt }
2893 1.98 yamt
2894 1.98 yamt static void *
2895 1.124 yamt pool_page_alloc_meta(struct pool *pp, int flags)
2896 1.98 yamt {
2897 1.127 thorpej bool waitok = (flags & PR_WAITOK) ? true : false;
2898 1.98 yamt
2899 1.100 yamt return ((void *) uvm_km_alloc_poolpage(kmem_map, waitok));
2900 1.98 yamt }
2901 1.98 yamt
2902 1.98 yamt static void
2903 1.124 yamt pool_page_free_meta(struct pool *pp, void *v)
2904 1.98 yamt {
2905 1.98 yamt
2906 1.100 yamt uvm_km_free_poolpage(kmem_map, (vaddr_t) v);
2907 1.66 thorpej }
2908 1.66 thorpej
2909 1.66 thorpej #ifdef POOL_SUBPAGE
2910 1.66 thorpej /* Sub-page allocator, for machines with large hardware pages. */
2911 1.66 thorpej void *
2912 1.66 thorpej pool_subpage_alloc(struct pool *pp, int flags)
2913 1.66 thorpej {
2914 1.134 ad return pool_get(&psppool, flags);
2915 1.66 thorpej }
2916 1.66 thorpej
2917 1.66 thorpej void
2918 1.66 thorpej pool_subpage_free(struct pool *pp, void *v)
2919 1.66 thorpej {
2920 1.66 thorpej pool_put(&psppool, v);
2921 1.66 thorpej }
2922 1.66 thorpej
2923 1.66 thorpej /* We don't provide a real nointr allocator. Maybe later. */
2924 1.66 thorpej void *
2925 1.112 bjh21 pool_subpage_alloc_nointr(struct pool *pp, int flags)
2926 1.66 thorpej {
2927 1.66 thorpej
2928 1.66 thorpej return (pool_subpage_alloc(pp, flags));
2929 1.66 thorpej }
2930 1.66 thorpej
2931 1.66 thorpej void
2932 1.112 bjh21 pool_subpage_free_nointr(struct pool *pp, void *v)
2933 1.66 thorpej {
2934 1.66 thorpej
2935 1.66 thorpej pool_subpage_free(pp, v);
2936 1.66 thorpej }
2937 1.112 bjh21 #endif /* POOL_SUBPAGE */
2938 1.66 thorpej void *
2939 1.124 yamt pool_page_alloc_nointr(struct pool *pp, int flags)
2940 1.66 thorpej {
2941 1.127 thorpej bool waitok = (flags & PR_WAITOK) ? true : false;
2942 1.66 thorpej
2943 1.100 yamt return ((void *) uvm_km_alloc_poolpage_cache(kernel_map, waitok));
2944 1.66 thorpej }
2945 1.66 thorpej
2946 1.66 thorpej void
2947 1.124 yamt pool_page_free_nointr(struct pool *pp, void *v)
2948 1.66 thorpej {
2949 1.66 thorpej
2950 1.98 yamt uvm_km_free_poolpage_cache(kernel_map, (vaddr_t) v);
2951 1.66 thorpej }
2952 1.141 yamt
2953 1.141 yamt #if defined(DDB)
2954 1.141 yamt static bool
2955 1.141 yamt pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
2956 1.141 yamt {
2957 1.141 yamt
2958 1.141 yamt return (uintptr_t)ph->ph_page <= addr &&
2959 1.141 yamt addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz;
2960 1.141 yamt }
2961 1.141 yamt
2962 1.143 yamt static bool
2963 1.143 yamt pool_in_item(struct pool *pp, void *item, uintptr_t addr)
2964 1.143 yamt {
2965 1.143 yamt
2966 1.143 yamt return (uintptr_t)item <= addr && addr < (uintptr_t)item + pp->pr_size;
2967 1.143 yamt }
2968 1.143 yamt
2969 1.143 yamt static bool
2970 1.143 yamt pool_in_cg(struct pool *pp, struct pool_cache_group *pcg, uintptr_t addr)
2971 1.143 yamt {
2972 1.143 yamt int i;
2973 1.143 yamt
2974 1.143 yamt if (pcg == NULL) {
2975 1.143 yamt return false;
2976 1.143 yamt }
2977 1.144 yamt for (i = 0; i < pcg->pcg_avail; i++) {
2978 1.143 yamt if (pool_in_item(pp, pcg->pcg_objects[i].pcgo_va, addr)) {
2979 1.143 yamt return true;
2980 1.143 yamt }
2981 1.143 yamt }
2982 1.143 yamt return false;
2983 1.143 yamt }
2984 1.143 yamt
2985 1.143 yamt static bool
2986 1.143 yamt pool_allocated(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
2987 1.143 yamt {
2988 1.143 yamt
2989 1.143 yamt if ((pp->pr_roflags & PR_NOTOUCH) != 0) {
2990 1.143 yamt unsigned int idx = pr_item_notouch_index(pp, ph, (void *)addr);
2991 1.143 yamt pool_item_bitmap_t *bitmap =
2992 1.143 yamt ph->ph_bitmap + (idx / BITMAP_SIZE);
2993 1.143 yamt pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
2994 1.143 yamt
2995 1.143 yamt return (*bitmap & mask) == 0;
2996 1.143 yamt } else {
2997 1.143 yamt struct pool_item *pi;
2998 1.143 yamt
2999 1.143 yamt LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
3000 1.143 yamt if (pool_in_item(pp, pi, addr)) {
3001 1.143 yamt return false;
3002 1.143 yamt }
3003 1.143 yamt }
3004 1.143 yamt return true;
3005 1.143 yamt }
3006 1.143 yamt }
3007 1.143 yamt
3008 1.141 yamt void
3009 1.141 yamt pool_whatis(uintptr_t addr, void (*pr)(const char *, ...))
3010 1.141 yamt {
3011 1.141 yamt struct pool *pp;
3012 1.141 yamt
3013 1.145 ad TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
3014 1.141 yamt struct pool_item_header *ph;
3015 1.141 yamt uintptr_t item;
3016 1.143 yamt bool allocated = true;
3017 1.143 yamt bool incache = false;
3018 1.143 yamt bool incpucache = false;
3019 1.143 yamt char cpucachestr[32];
3020 1.141 yamt
3021 1.141 yamt if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
3022 1.141 yamt LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
3023 1.141 yamt if (pool_in_page(pp, ph, addr)) {
3024 1.141 yamt goto found;
3025 1.141 yamt }
3026 1.141 yamt }
3027 1.141 yamt LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
3028 1.141 yamt if (pool_in_page(pp, ph, addr)) {
3029 1.143 yamt allocated =
3030 1.143 yamt pool_allocated(pp, ph, addr);
3031 1.143 yamt goto found;
3032 1.143 yamt }
3033 1.143 yamt }
3034 1.143 yamt LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
3035 1.143 yamt if (pool_in_page(pp, ph, addr)) {
3036 1.143 yamt allocated = false;
3037 1.141 yamt goto found;
3038 1.141 yamt }
3039 1.141 yamt }
3040 1.141 yamt continue;
3041 1.141 yamt } else {
3042 1.141 yamt ph = pr_find_pagehead_noalign(pp, (void *)addr);
3043 1.141 yamt if (ph == NULL || !pool_in_page(pp, ph, addr)) {
3044 1.141 yamt continue;
3045 1.141 yamt }
3046 1.143 yamt allocated = pool_allocated(pp, ph, addr);
3047 1.141 yamt }
3048 1.141 yamt found:
3049 1.143 yamt if (allocated && pp->pr_cache) {
3050 1.143 yamt pool_cache_t pc = pp->pr_cache;
3051 1.143 yamt struct pool_cache_group *pcg;
3052 1.143 yamt int i;
3053 1.143 yamt
3054 1.143 yamt for (pcg = pc->pc_fullgroups; pcg != NULL;
3055 1.143 yamt pcg = pcg->pcg_next) {
3056 1.143 yamt if (pool_in_cg(pp, pcg, addr)) {
3057 1.143 yamt incache = true;
3058 1.143 yamt goto print;
3059 1.143 yamt }
3060 1.143 yamt }
3061 1.183 ad for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
3062 1.143 yamt pool_cache_cpu_t *cc;
3063 1.143 yamt
3064 1.143 yamt if ((cc = pc->pc_cpus[i]) == NULL) {
3065 1.143 yamt continue;
3066 1.143 yamt }
3067 1.143 yamt if (pool_in_cg(pp, cc->cc_current, addr) ||
3068 1.143 yamt pool_in_cg(pp, cc->cc_previous, addr)) {
3069 1.143 yamt struct cpu_info *ci =
3070 1.170 ad cpu_lookup(i);
3071 1.143 yamt
3072 1.143 yamt incpucache = true;
3073 1.143 yamt snprintf(cpucachestr,
3074 1.143 yamt sizeof(cpucachestr),
3075 1.143 yamt "cached by CPU %u",
3076 1.153 martin ci->ci_index);
3077 1.143 yamt goto print;
3078 1.143 yamt }
3079 1.143 yamt }
3080 1.143 yamt }
3081 1.143 yamt print:
3082 1.141 yamt item = (uintptr_t)ph->ph_page + ph->ph_off;
3083 1.141 yamt item = item + rounddown(addr - item, pp->pr_size);
3084 1.143 yamt (*pr)("%p is %p+%zu in POOL '%s' (%s)\n",
3085 1.141 yamt (void *)addr, item, (size_t)(addr - item),
3086 1.143 yamt pp->pr_wchan,
3087 1.143 yamt incpucache ? cpucachestr :
3088 1.143 yamt incache ? "cached" : allocated ? "allocated" : "free");
3089 1.141 yamt }
3090 1.141 yamt }
3091 1.141 yamt #endif /* defined(DDB) */
3092