subr_pool.c revision 1.189 1 1.189 pooka /* $NetBSD: subr_pool.c,v 1.189 2011/03/22 15:16:23 pooka Exp $ */
2 1.1 pk
3 1.1 pk /*-
4 1.183 ad * Copyright (c) 1997, 1999, 2000, 2002, 2007, 2008, 2010
5 1.183 ad * The NetBSD Foundation, Inc.
6 1.1 pk * All rights reserved.
7 1.1 pk *
8 1.1 pk * This code is derived from software contributed to The NetBSD Foundation
9 1.20 thorpej * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
10 1.134 ad * Simulation Facility, NASA Ames Research Center, and by Andrew Doran.
11 1.1 pk *
12 1.1 pk * Redistribution and use in source and binary forms, with or without
13 1.1 pk * modification, are permitted provided that the following conditions
14 1.1 pk * are met:
15 1.1 pk * 1. Redistributions of source code must retain the above copyright
16 1.1 pk * notice, this list of conditions and the following disclaimer.
17 1.1 pk * 2. Redistributions in binary form must reproduce the above copyright
18 1.1 pk * notice, this list of conditions and the following disclaimer in the
19 1.1 pk * documentation and/or other materials provided with the distribution.
20 1.1 pk *
21 1.1 pk * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22 1.1 pk * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23 1.1 pk * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24 1.1 pk * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25 1.1 pk * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 1.1 pk * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 1.1 pk * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 1.1 pk * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 1.1 pk * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 1.1 pk * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 1.1 pk * POSSIBILITY OF SUCH DAMAGE.
32 1.1 pk */
33 1.64 lukem
34 1.64 lukem #include <sys/cdefs.h>
35 1.189 pooka __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.189 2011/03/22 15:16:23 pooka Exp $");
36 1.24 scottr
37 1.141 yamt #include "opt_ddb.h"
38 1.25 thorpej #include "opt_pool.h"
39 1.24 scottr #include "opt_poollog.h"
40 1.28 thorpej #include "opt_lockdebug.h"
41 1.1 pk
42 1.1 pk #include <sys/param.h>
43 1.1 pk #include <sys/systm.h>
44 1.135 yamt #include <sys/bitops.h>
45 1.1 pk #include <sys/proc.h>
46 1.1 pk #include <sys/errno.h>
47 1.1 pk #include <sys/kernel.h>
48 1.1 pk #include <sys/malloc.h>
49 1.1 pk #include <sys/pool.h>
50 1.20 thorpej #include <sys/syslog.h>
51 1.125 ad #include <sys/debug.h>
52 1.134 ad #include <sys/lockdebug.h>
53 1.134 ad #include <sys/xcall.h>
54 1.134 ad #include <sys/cpu.h>
55 1.145 ad #include <sys/atomic.h>
56 1.3 pk
57 1.187 uebayasi #include <uvm/uvm_extern.h>
58 1.188 uebayasi #ifdef DIAGNOSTIC
59 1.188 uebayasi #include <uvm/uvm_km.h> /* uvm_km_va_drain */
60 1.188 uebayasi #endif
61 1.3 pk
62 1.1 pk /*
63 1.1 pk * Pool resource management utility.
64 1.3 pk *
65 1.88 chs * Memory is allocated in pages which are split into pieces according to
66 1.88 chs * the pool item size. Each page is kept on one of three lists in the
67 1.88 chs * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
68 1.88 chs * for empty, full and partially-full pages respectively. The individual
69 1.88 chs * pool items are on a linked list headed by `ph_itemlist' in each page
70 1.88 chs * header. The memory for building the page list is either taken from
71 1.88 chs * the allocated pages themselves (for small pool items) or taken from
72 1.88 chs * an internal pool of page headers (`phpool').
73 1.1 pk */
74 1.1 pk
75 1.3 pk /* List of all pools */
76 1.173 rmind static TAILQ_HEAD(, pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
77 1.134 ad
78 1.3 pk /* Private pool for page header structures */
79 1.97 yamt #define PHPOOL_MAX 8
80 1.97 yamt static struct pool phpool[PHPOOL_MAX];
81 1.135 yamt #define PHPOOL_FREELIST_NELEM(idx) \
82 1.135 yamt (((idx) == 0) ? 0 : BITMAP_SIZE * (1 << (idx)))
83 1.3 pk
84 1.62 bjh21 #ifdef POOL_SUBPAGE
85 1.62 bjh21 /* Pool of subpages for use by normal pools. */
86 1.62 bjh21 static struct pool psppool;
87 1.62 bjh21 #endif
88 1.62 bjh21
89 1.117 yamt static SLIST_HEAD(, pool_allocator) pa_deferinitq =
90 1.117 yamt SLIST_HEAD_INITIALIZER(pa_deferinitq);
91 1.117 yamt
92 1.98 yamt static void *pool_page_alloc_meta(struct pool *, int);
93 1.98 yamt static void pool_page_free_meta(struct pool *, void *);
94 1.98 yamt
95 1.98 yamt /* allocator for pool metadata */
96 1.134 ad struct pool_allocator pool_allocator_meta = {
97 1.117 yamt pool_page_alloc_meta, pool_page_free_meta,
98 1.117 yamt .pa_backingmapptr = &kmem_map,
99 1.98 yamt };
100 1.98 yamt
101 1.3 pk /* # of seconds to retain page after last use */
102 1.3 pk int pool_inactive_time = 10;
103 1.3 pk
104 1.3 pk /* Next candidate for drainage (see pool_drain()) */
105 1.23 thorpej static struct pool *drainpp;
106 1.23 thorpej
107 1.134 ad /* This lock protects both pool_head and drainpp. */
108 1.134 ad static kmutex_t pool_head_lock;
109 1.134 ad static kcondvar_t pool_busy;
110 1.3 pk
111 1.178 elad /* This lock protects initialization of a potentially shared pool allocator */
112 1.178 elad static kmutex_t pool_allocator_lock;
113 1.178 elad
114 1.135 yamt typedef uint32_t pool_item_bitmap_t;
115 1.135 yamt #define BITMAP_SIZE (CHAR_BIT * sizeof(pool_item_bitmap_t))
116 1.135 yamt #define BITMAP_MASK (BITMAP_SIZE - 1)
117 1.99 yamt
118 1.3 pk struct pool_item_header {
119 1.3 pk /* Page headers */
120 1.88 chs LIST_ENTRY(pool_item_header)
121 1.3 pk ph_pagelist; /* pool page list */
122 1.88 chs SPLAY_ENTRY(pool_item_header)
123 1.88 chs ph_node; /* Off-page page headers */
124 1.128 christos void * ph_page; /* this page's address */
125 1.151 yamt uint32_t ph_time; /* last referenced */
126 1.135 yamt uint16_t ph_nmissing; /* # of chunks in use */
127 1.141 yamt uint16_t ph_off; /* start offset in page */
128 1.97 yamt union {
129 1.97 yamt /* !PR_NOTOUCH */
130 1.97 yamt struct {
131 1.102 chs LIST_HEAD(, pool_item)
132 1.97 yamt phu_itemlist; /* chunk list for this page */
133 1.97 yamt } phu_normal;
134 1.97 yamt /* PR_NOTOUCH */
135 1.97 yamt struct {
136 1.141 yamt pool_item_bitmap_t phu_bitmap[1];
137 1.97 yamt } phu_notouch;
138 1.97 yamt } ph_u;
139 1.3 pk };
140 1.97 yamt #define ph_itemlist ph_u.phu_normal.phu_itemlist
141 1.135 yamt #define ph_bitmap ph_u.phu_notouch.phu_bitmap
142 1.3 pk
143 1.1 pk struct pool_item {
144 1.3 pk #ifdef DIAGNOSTIC
145 1.82 thorpej u_int pi_magic;
146 1.33 chs #endif
147 1.134 ad #define PI_MAGIC 0xdeaddeadU
148 1.3 pk /* Other entries use only this list entry */
149 1.102 chs LIST_ENTRY(pool_item) pi_list;
150 1.3 pk };
151 1.3 pk
152 1.53 thorpej #define POOL_NEEDS_CATCHUP(pp) \
153 1.53 thorpej ((pp)->pr_nitems < (pp)->pr_minitems)
154 1.53 thorpej
155 1.43 thorpej /*
156 1.43 thorpej * Pool cache management.
157 1.43 thorpej *
158 1.43 thorpej * Pool caches provide a way for constructed objects to be cached by the
159 1.43 thorpej * pool subsystem. This can lead to performance improvements by avoiding
160 1.43 thorpej * needless object construction/destruction; it is deferred until absolutely
161 1.43 thorpej * necessary.
162 1.43 thorpej *
163 1.134 ad * Caches are grouped into cache groups. Each cache group references up
164 1.134 ad * to PCG_NUMOBJECTS constructed objects. When a cache allocates an
165 1.134 ad * object from the pool, it calls the object's constructor and places it
166 1.134 ad * into a cache group. When a cache group frees an object back to the
167 1.134 ad * pool, it first calls the object's destructor. This allows the object
168 1.134 ad * to persist in constructed form while freed to the cache.
169 1.134 ad *
170 1.134 ad * The pool references each cache, so that when a pool is drained by the
171 1.134 ad * pagedaemon, it can drain each individual cache as well. Each time a
172 1.134 ad * cache is drained, the most idle cache group is freed to the pool in
173 1.134 ad * its entirety.
174 1.43 thorpej *
175 1.43 thorpej * Pool caches are layed on top of pools. By layering them, we can avoid
176 1.43 thorpej * the complexity of cache management for pools which would not benefit
177 1.43 thorpej * from it.
178 1.43 thorpej */
179 1.43 thorpej
180 1.142 ad static struct pool pcg_normal_pool;
181 1.142 ad static struct pool pcg_large_pool;
182 1.134 ad static struct pool cache_pool;
183 1.134 ad static struct pool cache_cpu_pool;
184 1.3 pk
185 1.189 pooka pool_cache_t pnbuf_cache; /* pathname buffer cache */
186 1.189 pooka
187 1.145 ad /* List of all caches. */
188 1.145 ad TAILQ_HEAD(,pool_cache) pool_cache_head =
189 1.145 ad TAILQ_HEAD_INITIALIZER(pool_cache_head);
190 1.145 ad
191 1.162 ad int pool_cache_disable; /* global disable for caching */
192 1.169 yamt static const pcg_t pcg_dummy; /* zero sized: always empty, yet always full */
193 1.145 ad
194 1.162 ad static bool pool_cache_put_slow(pool_cache_cpu_t *, int,
195 1.162 ad void *);
196 1.162 ad static bool pool_cache_get_slow(pool_cache_cpu_t *, int,
197 1.162 ad void **, paddr_t *, int);
198 1.134 ad static void pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
199 1.134 ad static void pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
200 1.175 jym static void pool_cache_invalidate_cpu(pool_cache_t, u_int);
201 1.134 ad static void pool_cache_xcall(pool_cache_t);
202 1.3 pk
203 1.42 thorpej static int pool_catchup(struct pool *);
204 1.128 christos static void pool_prime_page(struct pool *, void *,
205 1.55 thorpej struct pool_item_header *);
206 1.88 chs static void pool_update_curpage(struct pool *);
207 1.66 thorpej
208 1.113 yamt static int pool_grow(struct pool *, int);
209 1.117 yamt static void *pool_allocator_alloc(struct pool *, int);
210 1.117 yamt static void pool_allocator_free(struct pool *, void *);
211 1.3 pk
212 1.97 yamt static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
213 1.88 chs void (*)(const char *, ...));
214 1.42 thorpej static void pool_print1(struct pool *, const char *,
215 1.42 thorpej void (*)(const char *, ...));
216 1.3 pk
217 1.88 chs static int pool_chk_page(struct pool *, const char *,
218 1.88 chs struct pool_item_header *);
219 1.88 chs
220 1.3 pk /*
221 1.52 thorpej * Pool log entry. An array of these is allocated in pool_init().
222 1.3 pk */
223 1.3 pk struct pool_log {
224 1.3 pk const char *pl_file;
225 1.3 pk long pl_line;
226 1.3 pk int pl_action;
227 1.25 thorpej #define PRLOG_GET 1
228 1.25 thorpej #define PRLOG_PUT 2
229 1.3 pk void *pl_addr;
230 1.1 pk };
231 1.1 pk
232 1.86 matt #ifdef POOL_DIAGNOSTIC
233 1.3 pk /* Number of entries in pool log buffers */
234 1.17 thorpej #ifndef POOL_LOGSIZE
235 1.17 thorpej #define POOL_LOGSIZE 10
236 1.17 thorpej #endif
237 1.17 thorpej
238 1.17 thorpej int pool_logsize = POOL_LOGSIZE;
239 1.1 pk
240 1.110 perry static inline void
241 1.42 thorpej pr_log(struct pool *pp, void *v, int action, const char *file, long line)
242 1.3 pk {
243 1.179 mlelstv int n;
244 1.3 pk struct pool_log *pl;
245 1.3 pk
246 1.20 thorpej if ((pp->pr_roflags & PR_LOGGING) == 0)
247 1.3 pk return;
248 1.3 pk
249 1.179 mlelstv if (pp->pr_log == NULL) {
250 1.179 mlelstv if (kmem_map != NULL)
251 1.179 mlelstv pp->pr_log = malloc(
252 1.179 mlelstv pool_logsize * sizeof(struct pool_log),
253 1.179 mlelstv M_TEMP, M_NOWAIT | M_ZERO);
254 1.179 mlelstv if (pp->pr_log == NULL)
255 1.179 mlelstv return;
256 1.179 mlelstv pp->pr_curlogentry = 0;
257 1.179 mlelstv pp->pr_logsize = pool_logsize;
258 1.179 mlelstv }
259 1.179 mlelstv
260 1.3 pk /*
261 1.3 pk * Fill in the current entry. Wrap around and overwrite
262 1.3 pk * the oldest entry if necessary.
263 1.3 pk */
264 1.179 mlelstv n = pp->pr_curlogentry;
265 1.3 pk pl = &pp->pr_log[n];
266 1.3 pk pl->pl_file = file;
267 1.3 pk pl->pl_line = line;
268 1.3 pk pl->pl_action = action;
269 1.3 pk pl->pl_addr = v;
270 1.3 pk if (++n >= pp->pr_logsize)
271 1.3 pk n = 0;
272 1.3 pk pp->pr_curlogentry = n;
273 1.3 pk }
274 1.3 pk
275 1.3 pk static void
276 1.42 thorpej pr_printlog(struct pool *pp, struct pool_item *pi,
277 1.42 thorpej void (*pr)(const char *, ...))
278 1.3 pk {
279 1.3 pk int i = pp->pr_logsize;
280 1.3 pk int n = pp->pr_curlogentry;
281 1.3 pk
282 1.179 mlelstv if (pp->pr_log == NULL)
283 1.3 pk return;
284 1.3 pk
285 1.3 pk /*
286 1.3 pk * Print all entries in this pool's log.
287 1.3 pk */
288 1.3 pk while (i-- > 0) {
289 1.3 pk struct pool_log *pl = &pp->pr_log[n];
290 1.3 pk if (pl->pl_action != 0) {
291 1.25 thorpej if (pi == NULL || pi == pl->pl_addr) {
292 1.25 thorpej (*pr)("\tlog entry %d:\n", i);
293 1.25 thorpej (*pr)("\t\taction = %s, addr = %p\n",
294 1.25 thorpej pl->pl_action == PRLOG_GET ? "get" : "put",
295 1.25 thorpej pl->pl_addr);
296 1.25 thorpej (*pr)("\t\tfile: %s at line %lu\n",
297 1.25 thorpej pl->pl_file, pl->pl_line);
298 1.25 thorpej }
299 1.3 pk }
300 1.3 pk if (++n >= pp->pr_logsize)
301 1.3 pk n = 0;
302 1.3 pk }
303 1.3 pk }
304 1.25 thorpej
305 1.110 perry static inline void
306 1.42 thorpej pr_enter(struct pool *pp, const char *file, long line)
307 1.25 thorpej {
308 1.25 thorpej
309 1.34 thorpej if (__predict_false(pp->pr_entered_file != NULL)) {
310 1.25 thorpej printf("pool %s: reentrancy at file %s line %ld\n",
311 1.25 thorpej pp->pr_wchan, file, line);
312 1.25 thorpej printf(" previous entry at file %s line %ld\n",
313 1.25 thorpej pp->pr_entered_file, pp->pr_entered_line);
314 1.25 thorpej panic("pr_enter");
315 1.25 thorpej }
316 1.25 thorpej
317 1.25 thorpej pp->pr_entered_file = file;
318 1.25 thorpej pp->pr_entered_line = line;
319 1.25 thorpej }
320 1.25 thorpej
321 1.110 perry static inline void
322 1.42 thorpej pr_leave(struct pool *pp)
323 1.25 thorpej {
324 1.25 thorpej
325 1.34 thorpej if (__predict_false(pp->pr_entered_file == NULL)) {
326 1.25 thorpej printf("pool %s not entered?\n", pp->pr_wchan);
327 1.25 thorpej panic("pr_leave");
328 1.25 thorpej }
329 1.25 thorpej
330 1.25 thorpej pp->pr_entered_file = NULL;
331 1.25 thorpej pp->pr_entered_line = 0;
332 1.25 thorpej }
333 1.25 thorpej
334 1.110 perry static inline void
335 1.42 thorpej pr_enter_check(struct pool *pp, void (*pr)(const char *, ...))
336 1.25 thorpej {
337 1.25 thorpej
338 1.25 thorpej if (pp->pr_entered_file != NULL)
339 1.25 thorpej (*pr)("\n\tcurrently entered from file %s line %ld\n",
340 1.25 thorpej pp->pr_entered_file, pp->pr_entered_line);
341 1.25 thorpej }
342 1.3 pk #else
343 1.25 thorpej #define pr_log(pp, v, action, file, line)
344 1.25 thorpej #define pr_printlog(pp, pi, pr)
345 1.25 thorpej #define pr_enter(pp, file, line)
346 1.25 thorpej #define pr_leave(pp)
347 1.25 thorpej #define pr_enter_check(pp, pr)
348 1.59 thorpej #endif /* POOL_DIAGNOSTIC */
349 1.3 pk
350 1.135 yamt static inline unsigned int
351 1.97 yamt pr_item_notouch_index(const struct pool *pp, const struct pool_item_header *ph,
352 1.97 yamt const void *v)
353 1.97 yamt {
354 1.97 yamt const char *cp = v;
355 1.135 yamt unsigned int idx;
356 1.97 yamt
357 1.97 yamt KASSERT(pp->pr_roflags & PR_NOTOUCH);
358 1.128 christos idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
359 1.97 yamt KASSERT(idx < pp->pr_itemsperpage);
360 1.97 yamt return idx;
361 1.97 yamt }
362 1.97 yamt
363 1.110 perry static inline void
364 1.97 yamt pr_item_notouch_put(const struct pool *pp, struct pool_item_header *ph,
365 1.97 yamt void *obj)
366 1.97 yamt {
367 1.135 yamt unsigned int idx = pr_item_notouch_index(pp, ph, obj);
368 1.135 yamt pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE);
369 1.135 yamt pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
370 1.97 yamt
371 1.135 yamt KASSERT((*bitmap & mask) == 0);
372 1.135 yamt *bitmap |= mask;
373 1.97 yamt }
374 1.97 yamt
375 1.110 perry static inline void *
376 1.97 yamt pr_item_notouch_get(const struct pool *pp, struct pool_item_header *ph)
377 1.97 yamt {
378 1.135 yamt pool_item_bitmap_t *bitmap = ph->ph_bitmap;
379 1.135 yamt unsigned int idx;
380 1.135 yamt int i;
381 1.97 yamt
382 1.135 yamt for (i = 0; ; i++) {
383 1.135 yamt int bit;
384 1.97 yamt
385 1.135 yamt KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage);
386 1.135 yamt bit = ffs32(bitmap[i]);
387 1.135 yamt if (bit) {
388 1.135 yamt pool_item_bitmap_t mask;
389 1.135 yamt
390 1.135 yamt bit--;
391 1.135 yamt idx = (i * BITMAP_SIZE) + bit;
392 1.135 yamt mask = 1 << bit;
393 1.135 yamt KASSERT((bitmap[i] & mask) != 0);
394 1.135 yamt bitmap[i] &= ~mask;
395 1.135 yamt break;
396 1.135 yamt }
397 1.135 yamt }
398 1.135 yamt KASSERT(idx < pp->pr_itemsperpage);
399 1.128 christos return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
400 1.97 yamt }
401 1.97 yamt
402 1.135 yamt static inline void
403 1.141 yamt pr_item_notouch_init(const struct pool *pp, struct pool_item_header *ph)
404 1.135 yamt {
405 1.135 yamt pool_item_bitmap_t *bitmap = ph->ph_bitmap;
406 1.135 yamt const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE);
407 1.135 yamt int i;
408 1.135 yamt
409 1.135 yamt for (i = 0; i < n; i++) {
410 1.135 yamt bitmap[i] = (pool_item_bitmap_t)-1;
411 1.135 yamt }
412 1.135 yamt }
413 1.135 yamt
414 1.110 perry static inline int
415 1.88 chs phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
416 1.88 chs {
417 1.121 yamt
418 1.121 yamt /*
419 1.121 yamt * we consider pool_item_header with smaller ph_page bigger.
420 1.121 yamt * (this unnatural ordering is for the benefit of pr_find_pagehead.)
421 1.121 yamt */
422 1.121 yamt
423 1.88 chs if (a->ph_page < b->ph_page)
424 1.121 yamt return (1);
425 1.121 yamt else if (a->ph_page > b->ph_page)
426 1.88 chs return (-1);
427 1.88 chs else
428 1.88 chs return (0);
429 1.88 chs }
430 1.88 chs
431 1.88 chs SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
432 1.88 chs SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
433 1.88 chs
434 1.141 yamt static inline struct pool_item_header *
435 1.141 yamt pr_find_pagehead_noalign(struct pool *pp, void *v)
436 1.141 yamt {
437 1.141 yamt struct pool_item_header *ph, tmp;
438 1.141 yamt
439 1.141 yamt tmp.ph_page = (void *)(uintptr_t)v;
440 1.141 yamt ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
441 1.141 yamt if (ph == NULL) {
442 1.141 yamt ph = SPLAY_ROOT(&pp->pr_phtree);
443 1.141 yamt if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
444 1.141 yamt ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
445 1.141 yamt }
446 1.141 yamt KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
447 1.141 yamt }
448 1.141 yamt
449 1.141 yamt return ph;
450 1.141 yamt }
451 1.141 yamt
452 1.3 pk /*
453 1.121 yamt * Return the pool page header based on item address.
454 1.3 pk */
455 1.110 perry static inline struct pool_item_header *
456 1.121 yamt pr_find_pagehead(struct pool *pp, void *v)
457 1.3 pk {
458 1.88 chs struct pool_item_header *ph, tmp;
459 1.3 pk
460 1.121 yamt if ((pp->pr_roflags & PR_NOALIGN) != 0) {
461 1.141 yamt ph = pr_find_pagehead_noalign(pp, v);
462 1.121 yamt } else {
463 1.128 christos void *page =
464 1.128 christos (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask);
465 1.121 yamt
466 1.121 yamt if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
467 1.128 christos ph = (struct pool_item_header *)((char *)page + pp->pr_phoffset);
468 1.121 yamt } else {
469 1.121 yamt tmp.ph_page = page;
470 1.121 yamt ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
471 1.121 yamt }
472 1.121 yamt }
473 1.3 pk
474 1.121 yamt KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
475 1.128 christos ((char *)ph->ph_page <= (char *)v &&
476 1.128 christos (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
477 1.88 chs return ph;
478 1.3 pk }
479 1.3 pk
480 1.101 thorpej static void
481 1.101 thorpej pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
482 1.101 thorpej {
483 1.101 thorpej struct pool_item_header *ph;
484 1.101 thorpej
485 1.101 thorpej while ((ph = LIST_FIRST(pq)) != NULL) {
486 1.101 thorpej LIST_REMOVE(ph, ph_pagelist);
487 1.101 thorpej pool_allocator_free(pp, ph->ph_page);
488 1.134 ad if ((pp->pr_roflags & PR_PHINPAGE) == 0)
489 1.101 thorpej pool_put(pp->pr_phpool, ph);
490 1.101 thorpej }
491 1.101 thorpej }
492 1.101 thorpej
493 1.3 pk /*
494 1.3 pk * Remove a page from the pool.
495 1.3 pk */
496 1.110 perry static inline void
497 1.61 chs pr_rmpage(struct pool *pp, struct pool_item_header *ph,
498 1.61 chs struct pool_pagelist *pq)
499 1.3 pk {
500 1.3 pk
501 1.134 ad KASSERT(mutex_owned(&pp->pr_lock));
502 1.91 yamt
503 1.3 pk /*
504 1.7 thorpej * If the page was idle, decrement the idle page count.
505 1.3 pk */
506 1.6 thorpej if (ph->ph_nmissing == 0) {
507 1.6 thorpej #ifdef DIAGNOSTIC
508 1.6 thorpej if (pp->pr_nidle == 0)
509 1.6 thorpej panic("pr_rmpage: nidle inconsistent");
510 1.20 thorpej if (pp->pr_nitems < pp->pr_itemsperpage)
511 1.20 thorpej panic("pr_rmpage: nitems inconsistent");
512 1.6 thorpej #endif
513 1.6 thorpej pp->pr_nidle--;
514 1.6 thorpej }
515 1.7 thorpej
516 1.20 thorpej pp->pr_nitems -= pp->pr_itemsperpage;
517 1.20 thorpej
518 1.7 thorpej /*
519 1.101 thorpej * Unlink the page from the pool and queue it for release.
520 1.7 thorpej */
521 1.88 chs LIST_REMOVE(ph, ph_pagelist);
522 1.91 yamt if ((pp->pr_roflags & PR_PHINPAGE) == 0)
523 1.91 yamt SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
524 1.101 thorpej LIST_INSERT_HEAD(pq, ph, ph_pagelist);
525 1.101 thorpej
526 1.7 thorpej pp->pr_npages--;
527 1.7 thorpej pp->pr_npagefree++;
528 1.6 thorpej
529 1.88 chs pool_update_curpage(pp);
530 1.3 pk }
531 1.3 pk
532 1.126 thorpej static bool
533 1.117 yamt pa_starved_p(struct pool_allocator *pa)
534 1.117 yamt {
535 1.117 yamt
536 1.117 yamt if (pa->pa_backingmap != NULL) {
537 1.117 yamt return vm_map_starved_p(pa->pa_backingmap);
538 1.117 yamt }
539 1.127 thorpej return false;
540 1.117 yamt }
541 1.117 yamt
542 1.117 yamt static int
543 1.124 yamt pool_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
544 1.117 yamt {
545 1.117 yamt struct pool *pp = obj;
546 1.117 yamt struct pool_allocator *pa = pp->pr_alloc;
547 1.117 yamt
548 1.117 yamt KASSERT(&pp->pr_reclaimerentry == ce);
549 1.117 yamt pool_reclaim(pp);
550 1.117 yamt if (!pa_starved_p(pa)) {
551 1.117 yamt return CALLBACK_CHAIN_ABORT;
552 1.117 yamt }
553 1.117 yamt return CALLBACK_CHAIN_CONTINUE;
554 1.117 yamt }
555 1.117 yamt
556 1.117 yamt static void
557 1.117 yamt pool_reclaim_register(struct pool *pp)
558 1.117 yamt {
559 1.117 yamt struct vm_map *map = pp->pr_alloc->pa_backingmap;
560 1.117 yamt int s;
561 1.117 yamt
562 1.117 yamt if (map == NULL) {
563 1.117 yamt return;
564 1.117 yamt }
565 1.117 yamt
566 1.117 yamt s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
567 1.117 yamt callback_register(&vm_map_to_kernel(map)->vmk_reclaim_callback,
568 1.117 yamt &pp->pr_reclaimerentry, pp, pool_reclaim_callback);
569 1.117 yamt splx(s);
570 1.184 rmind
571 1.184 rmind #ifdef DIAGNOSTIC
572 1.184 rmind /* Diagnostic drain attempt. */
573 1.184 rmind uvm_km_va_drain(map, 0);
574 1.184 rmind #endif
575 1.117 yamt }
576 1.117 yamt
577 1.117 yamt static void
578 1.117 yamt pool_reclaim_unregister(struct pool *pp)
579 1.117 yamt {
580 1.117 yamt struct vm_map *map = pp->pr_alloc->pa_backingmap;
581 1.117 yamt int s;
582 1.117 yamt
583 1.117 yamt if (map == NULL) {
584 1.117 yamt return;
585 1.117 yamt }
586 1.117 yamt
587 1.117 yamt s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
588 1.117 yamt callback_unregister(&vm_map_to_kernel(map)->vmk_reclaim_callback,
589 1.117 yamt &pp->pr_reclaimerentry);
590 1.117 yamt splx(s);
591 1.117 yamt }
592 1.117 yamt
593 1.117 yamt static void
594 1.117 yamt pa_reclaim_register(struct pool_allocator *pa)
595 1.117 yamt {
596 1.117 yamt struct vm_map *map = *pa->pa_backingmapptr;
597 1.117 yamt struct pool *pp;
598 1.117 yamt
599 1.117 yamt KASSERT(pa->pa_backingmap == NULL);
600 1.117 yamt if (map == NULL) {
601 1.117 yamt SLIST_INSERT_HEAD(&pa_deferinitq, pa, pa_q);
602 1.117 yamt return;
603 1.117 yamt }
604 1.117 yamt pa->pa_backingmap = map;
605 1.117 yamt TAILQ_FOREACH(pp, &pa->pa_list, pr_alloc_list) {
606 1.117 yamt pool_reclaim_register(pp);
607 1.117 yamt }
608 1.117 yamt }
609 1.117 yamt
610 1.3 pk /*
611 1.94 simonb * Initialize all the pools listed in the "pools" link set.
612 1.94 simonb */
613 1.94 simonb void
614 1.117 yamt pool_subsystem_init(void)
615 1.94 simonb {
616 1.117 yamt struct pool_allocator *pa;
617 1.94 simonb
618 1.134 ad mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
619 1.179 mlelstv mutex_init(&pool_allocator_lock, MUTEX_DEFAULT, IPL_NONE);
620 1.134 ad cv_init(&pool_busy, "poolbusy");
621 1.134 ad
622 1.117 yamt while ((pa = SLIST_FIRST(&pa_deferinitq)) != NULL) {
623 1.117 yamt KASSERT(pa->pa_backingmapptr != NULL);
624 1.117 yamt KASSERT(*pa->pa_backingmapptr != NULL);
625 1.117 yamt SLIST_REMOVE_HEAD(&pa_deferinitq, pa_q);
626 1.117 yamt pa_reclaim_register(pa);
627 1.117 yamt }
628 1.134 ad
629 1.156 ad pool_init(&cache_pool, sizeof(struct pool_cache), coherency_unit,
630 1.134 ad 0, 0, "pcache", &pool_allocator_nointr, IPL_NONE);
631 1.134 ad
632 1.156 ad pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), coherency_unit,
633 1.134 ad 0, 0, "pcachecpu", &pool_allocator_nointr, IPL_NONE);
634 1.94 simonb }
635 1.94 simonb
636 1.94 simonb /*
637 1.3 pk * Initialize the given pool resource structure.
638 1.3 pk *
639 1.3 pk * We export this routine to allow other kernel parts to declare
640 1.3 pk * static pools that must be initialized before malloc() is available.
641 1.3 pk */
642 1.3 pk void
643 1.42 thorpej pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
644 1.129 ad const char *wchan, struct pool_allocator *palloc, int ipl)
645 1.3 pk {
646 1.116 simonb struct pool *pp1;
647 1.92 enami size_t trysize, phsize;
648 1.134 ad int off, slack;
649 1.3 pk
650 1.116 simonb #ifdef DEBUG
651 1.116 simonb /*
652 1.116 simonb * Check that the pool hasn't already been initialised and
653 1.116 simonb * added to the list of all pools.
654 1.116 simonb */
655 1.145 ad TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
656 1.116 simonb if (pp == pp1)
657 1.116 simonb panic("pool_init: pool %s already initialised",
658 1.116 simonb wchan);
659 1.116 simonb }
660 1.116 simonb #endif
661 1.116 simonb
662 1.25 thorpej #ifdef POOL_DIAGNOSTIC
663 1.25 thorpej /*
664 1.25 thorpej * Always log if POOL_DIAGNOSTIC is defined.
665 1.25 thorpej */
666 1.25 thorpej if (pool_logsize != 0)
667 1.25 thorpej flags |= PR_LOGGING;
668 1.25 thorpej #endif
669 1.25 thorpej
670 1.66 thorpej if (palloc == NULL)
671 1.66 thorpej palloc = &pool_allocator_kmem;
672 1.112 bjh21 #ifdef POOL_SUBPAGE
673 1.112 bjh21 if (size > palloc->pa_pagesz) {
674 1.112 bjh21 if (palloc == &pool_allocator_kmem)
675 1.112 bjh21 palloc = &pool_allocator_kmem_fullpage;
676 1.112 bjh21 else if (palloc == &pool_allocator_nointr)
677 1.112 bjh21 palloc = &pool_allocator_nointr_fullpage;
678 1.112 bjh21 }
679 1.66 thorpej #endif /* POOL_SUBPAGE */
680 1.180 mlelstv if (!cold)
681 1.180 mlelstv mutex_enter(&pool_allocator_lock);
682 1.178 elad if (palloc->pa_refcnt++ == 0) {
683 1.112 bjh21 if (palloc->pa_pagesz == 0)
684 1.66 thorpej palloc->pa_pagesz = PAGE_SIZE;
685 1.66 thorpej
686 1.66 thorpej TAILQ_INIT(&palloc->pa_list);
687 1.66 thorpej
688 1.134 ad mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
689 1.66 thorpej palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
690 1.66 thorpej palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
691 1.117 yamt
692 1.117 yamt if (palloc->pa_backingmapptr != NULL) {
693 1.117 yamt pa_reclaim_register(palloc);
694 1.117 yamt }
695 1.4 thorpej }
696 1.180 mlelstv if (!cold)
697 1.180 mlelstv mutex_exit(&pool_allocator_lock);
698 1.3 pk
699 1.3 pk if (align == 0)
700 1.3 pk align = ALIGN(1);
701 1.14 thorpej
702 1.120 yamt if ((flags & PR_NOTOUCH) == 0 && size < sizeof(struct pool_item))
703 1.14 thorpej size = sizeof(struct pool_item);
704 1.3 pk
705 1.78 thorpej size = roundup(size, align);
706 1.66 thorpej #ifdef DIAGNOSTIC
707 1.66 thorpej if (size > palloc->pa_pagesz)
708 1.121 yamt panic("pool_init: pool item size (%zu) too large", size);
709 1.66 thorpej #endif
710 1.35 pk
711 1.3 pk /*
712 1.3 pk * Initialize the pool structure.
713 1.3 pk */
714 1.88 chs LIST_INIT(&pp->pr_emptypages);
715 1.88 chs LIST_INIT(&pp->pr_fullpages);
716 1.88 chs LIST_INIT(&pp->pr_partpages);
717 1.134 ad pp->pr_cache = NULL;
718 1.3 pk pp->pr_curpage = NULL;
719 1.3 pk pp->pr_npages = 0;
720 1.3 pk pp->pr_minitems = 0;
721 1.3 pk pp->pr_minpages = 0;
722 1.3 pk pp->pr_maxpages = UINT_MAX;
723 1.20 thorpej pp->pr_roflags = flags;
724 1.20 thorpej pp->pr_flags = 0;
725 1.35 pk pp->pr_size = size;
726 1.3 pk pp->pr_align = align;
727 1.3 pk pp->pr_wchan = wchan;
728 1.66 thorpej pp->pr_alloc = palloc;
729 1.20 thorpej pp->pr_nitems = 0;
730 1.20 thorpej pp->pr_nout = 0;
731 1.20 thorpej pp->pr_hardlimit = UINT_MAX;
732 1.20 thorpej pp->pr_hardlimit_warning = NULL;
733 1.31 thorpej pp->pr_hardlimit_ratecap.tv_sec = 0;
734 1.31 thorpej pp->pr_hardlimit_ratecap.tv_usec = 0;
735 1.31 thorpej pp->pr_hardlimit_warning_last.tv_sec = 0;
736 1.31 thorpej pp->pr_hardlimit_warning_last.tv_usec = 0;
737 1.68 thorpej pp->pr_drain_hook = NULL;
738 1.68 thorpej pp->pr_drain_hook_arg = NULL;
739 1.125 ad pp->pr_freecheck = NULL;
740 1.3 pk
741 1.3 pk /*
742 1.3 pk * Decide whether to put the page header off page to avoid
743 1.92 enami * wasting too large a part of the page or too big item.
744 1.92 enami * Off-page page headers go on a hash table, so we can match
745 1.92 enami * a returned item with its header based on the page address.
746 1.92 enami * We use 1/16 of the page size and about 8 times of the item
747 1.92 enami * size as the threshold (XXX: tune)
748 1.92 enami *
749 1.92 enami * However, we'll put the header into the page if we can put
750 1.92 enami * it without wasting any items.
751 1.92 enami *
752 1.92 enami * Silently enforce `0 <= ioff < align'.
753 1.3 pk */
754 1.92 enami pp->pr_itemoffset = ioff %= align;
755 1.92 enami /* See the comment below about reserved bytes. */
756 1.92 enami trysize = palloc->pa_pagesz - ((align - ioff) % align);
757 1.92 enami phsize = ALIGN(sizeof(struct pool_item_header));
758 1.121 yamt if ((pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) == 0 &&
759 1.97 yamt (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) ||
760 1.97 yamt trysize / pp->pr_size == (trysize - phsize) / pp->pr_size)) {
761 1.3 pk /* Use the end of the page for the page header */
762 1.20 thorpej pp->pr_roflags |= PR_PHINPAGE;
763 1.92 enami pp->pr_phoffset = off = palloc->pa_pagesz - phsize;
764 1.2 pk } else {
765 1.3 pk /* The page header will be taken from our page header pool */
766 1.3 pk pp->pr_phoffset = 0;
767 1.66 thorpej off = palloc->pa_pagesz;
768 1.88 chs SPLAY_INIT(&pp->pr_phtree);
769 1.2 pk }
770 1.1 pk
771 1.3 pk /*
772 1.3 pk * Alignment is to take place at `ioff' within the item. This means
773 1.3 pk * we must reserve up to `align - 1' bytes on the page to allow
774 1.3 pk * appropriate positioning of each item.
775 1.3 pk */
776 1.3 pk pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
777 1.43 thorpej KASSERT(pp->pr_itemsperpage != 0);
778 1.97 yamt if ((pp->pr_roflags & PR_NOTOUCH)) {
779 1.97 yamt int idx;
780 1.97 yamt
781 1.97 yamt for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
782 1.97 yamt idx++) {
783 1.97 yamt /* nothing */
784 1.97 yamt }
785 1.97 yamt if (idx >= PHPOOL_MAX) {
786 1.97 yamt /*
787 1.97 yamt * if you see this panic, consider to tweak
788 1.97 yamt * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
789 1.97 yamt */
790 1.97 yamt panic("%s: too large itemsperpage(%d) for PR_NOTOUCH",
791 1.97 yamt pp->pr_wchan, pp->pr_itemsperpage);
792 1.97 yamt }
793 1.97 yamt pp->pr_phpool = &phpool[idx];
794 1.97 yamt } else if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
795 1.97 yamt pp->pr_phpool = &phpool[0];
796 1.97 yamt }
797 1.97 yamt #if defined(DIAGNOSTIC)
798 1.97 yamt else {
799 1.97 yamt pp->pr_phpool = NULL;
800 1.97 yamt }
801 1.97 yamt #endif
802 1.3 pk
803 1.3 pk /*
804 1.3 pk * Use the slack between the chunks and the page header
805 1.3 pk * for "cache coloring".
806 1.3 pk */
807 1.3 pk slack = off - pp->pr_itemsperpage * pp->pr_size;
808 1.3 pk pp->pr_maxcolor = (slack / align) * align;
809 1.3 pk pp->pr_curcolor = 0;
810 1.3 pk
811 1.3 pk pp->pr_nget = 0;
812 1.3 pk pp->pr_nfail = 0;
813 1.3 pk pp->pr_nput = 0;
814 1.3 pk pp->pr_npagealloc = 0;
815 1.3 pk pp->pr_npagefree = 0;
816 1.1 pk pp->pr_hiwat = 0;
817 1.8 thorpej pp->pr_nidle = 0;
818 1.134 ad pp->pr_refcnt = 0;
819 1.3 pk
820 1.179 mlelstv pp->pr_log = NULL;
821 1.25 thorpej
822 1.25 thorpej pp->pr_entered_file = NULL;
823 1.25 thorpej pp->pr_entered_line = 0;
824 1.3 pk
825 1.157 ad mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
826 1.134 ad cv_init(&pp->pr_cv, wchan);
827 1.134 ad pp->pr_ipl = ipl;
828 1.1 pk
829 1.3 pk /*
830 1.43 thorpej * Initialize private page header pool and cache magazine pool if we
831 1.43 thorpej * haven't done so yet.
832 1.23 thorpej * XXX LOCKING.
833 1.3 pk */
834 1.97 yamt if (phpool[0].pr_size == 0) {
835 1.97 yamt int idx;
836 1.97 yamt for (idx = 0; idx < PHPOOL_MAX; idx++) {
837 1.97 yamt static char phpool_names[PHPOOL_MAX][6+1+6+1];
838 1.97 yamt int nelem;
839 1.97 yamt size_t sz;
840 1.97 yamt
841 1.97 yamt nelem = PHPOOL_FREELIST_NELEM(idx);
842 1.97 yamt snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
843 1.97 yamt "phpool-%d", nelem);
844 1.97 yamt sz = sizeof(struct pool_item_header);
845 1.97 yamt if (nelem) {
846 1.135 yamt sz = offsetof(struct pool_item_header,
847 1.135 yamt ph_bitmap[howmany(nelem, BITMAP_SIZE)]);
848 1.97 yamt }
849 1.97 yamt pool_init(&phpool[idx], sz, 0, 0, 0,
850 1.129 ad phpool_names[idx], &pool_allocator_meta, IPL_VM);
851 1.97 yamt }
852 1.62 bjh21 #ifdef POOL_SUBPAGE
853 1.62 bjh21 pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
854 1.129 ad PR_RECURSIVE, "psppool", &pool_allocator_meta, IPL_VM);
855 1.62 bjh21 #endif
856 1.142 ad
857 1.142 ad size = sizeof(pcg_t) +
858 1.142 ad (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t);
859 1.156 ad pool_init(&pcg_normal_pool, size, coherency_unit, 0, 0,
860 1.142 ad "pcgnormal", &pool_allocator_meta, IPL_VM);
861 1.142 ad
862 1.142 ad size = sizeof(pcg_t) +
863 1.142 ad (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t);
864 1.156 ad pool_init(&pcg_large_pool, size, coherency_unit, 0, 0,
865 1.142 ad "pcglarge", &pool_allocator_meta, IPL_VM);
866 1.1 pk }
867 1.1 pk
868 1.145 ad /* Insert into the list of all pools. */
869 1.181 mlelstv if (!cold)
870 1.134 ad mutex_enter(&pool_head_lock);
871 1.145 ad TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
872 1.145 ad if (strcmp(pp1->pr_wchan, pp->pr_wchan) > 0)
873 1.145 ad break;
874 1.145 ad }
875 1.145 ad if (pp1 == NULL)
876 1.145 ad TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
877 1.145 ad else
878 1.145 ad TAILQ_INSERT_BEFORE(pp1, pp, pr_poollist);
879 1.181 mlelstv if (!cold)
880 1.134 ad mutex_exit(&pool_head_lock);
881 1.134 ad
882 1.167 skrll /* Insert this into the list of pools using this allocator. */
883 1.181 mlelstv if (!cold)
884 1.134 ad mutex_enter(&palloc->pa_lock);
885 1.145 ad TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
886 1.181 mlelstv if (!cold)
887 1.134 ad mutex_exit(&palloc->pa_lock);
888 1.66 thorpej
889 1.117 yamt pool_reclaim_register(pp);
890 1.1 pk }
891 1.1 pk
892 1.1 pk /*
893 1.1 pk * De-commision a pool resource.
894 1.1 pk */
895 1.1 pk void
896 1.42 thorpej pool_destroy(struct pool *pp)
897 1.1 pk {
898 1.101 thorpej struct pool_pagelist pq;
899 1.3 pk struct pool_item_header *ph;
900 1.43 thorpej
901 1.101 thorpej /* Remove from global pool list */
902 1.134 ad mutex_enter(&pool_head_lock);
903 1.134 ad while (pp->pr_refcnt != 0)
904 1.134 ad cv_wait(&pool_busy, &pool_head_lock);
905 1.145 ad TAILQ_REMOVE(&pool_head, pp, pr_poollist);
906 1.101 thorpej if (drainpp == pp)
907 1.101 thorpej drainpp = NULL;
908 1.134 ad mutex_exit(&pool_head_lock);
909 1.101 thorpej
910 1.101 thorpej /* Remove this pool from its allocator's list of pools. */
911 1.117 yamt pool_reclaim_unregister(pp);
912 1.134 ad mutex_enter(&pp->pr_alloc->pa_lock);
913 1.66 thorpej TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
914 1.134 ad mutex_exit(&pp->pr_alloc->pa_lock);
915 1.66 thorpej
916 1.178 elad mutex_enter(&pool_allocator_lock);
917 1.178 elad if (--pp->pr_alloc->pa_refcnt == 0)
918 1.178 elad mutex_destroy(&pp->pr_alloc->pa_lock);
919 1.178 elad mutex_exit(&pool_allocator_lock);
920 1.178 elad
921 1.134 ad mutex_enter(&pp->pr_lock);
922 1.101 thorpej
923 1.134 ad KASSERT(pp->pr_cache == NULL);
924 1.3 pk
925 1.3 pk #ifdef DIAGNOSTIC
926 1.20 thorpej if (pp->pr_nout != 0) {
927 1.25 thorpej pr_printlog(pp, NULL, printf);
928 1.80 provos panic("pool_destroy: pool busy: still out: %u",
929 1.20 thorpej pp->pr_nout);
930 1.3 pk }
931 1.3 pk #endif
932 1.1 pk
933 1.101 thorpej KASSERT(LIST_EMPTY(&pp->pr_fullpages));
934 1.101 thorpej KASSERT(LIST_EMPTY(&pp->pr_partpages));
935 1.101 thorpej
936 1.3 pk /* Remove all pages */
937 1.101 thorpej LIST_INIT(&pq);
938 1.88 chs while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
939 1.101 thorpej pr_rmpage(pp, ph, &pq);
940 1.101 thorpej
941 1.134 ad mutex_exit(&pp->pr_lock);
942 1.3 pk
943 1.101 thorpej pr_pagelist_free(pp, &pq);
944 1.3 pk
945 1.59 thorpej #ifdef POOL_DIAGNOSTIC
946 1.179 mlelstv if (pp->pr_log != NULL) {
947 1.3 pk free(pp->pr_log, M_TEMP);
948 1.179 mlelstv pp->pr_log = NULL;
949 1.179 mlelstv }
950 1.59 thorpej #endif
951 1.134 ad
952 1.134 ad cv_destroy(&pp->pr_cv);
953 1.134 ad mutex_destroy(&pp->pr_lock);
954 1.1 pk }
955 1.1 pk
956 1.68 thorpej void
957 1.68 thorpej pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
958 1.68 thorpej {
959 1.68 thorpej
960 1.68 thorpej /* XXX no locking -- must be used just after pool_init() */
961 1.68 thorpej #ifdef DIAGNOSTIC
962 1.68 thorpej if (pp->pr_drain_hook != NULL)
963 1.68 thorpej panic("pool_set_drain_hook(%s): already set", pp->pr_wchan);
964 1.68 thorpej #endif
965 1.68 thorpej pp->pr_drain_hook = fn;
966 1.68 thorpej pp->pr_drain_hook_arg = arg;
967 1.68 thorpej }
968 1.68 thorpej
969 1.88 chs static struct pool_item_header *
970 1.128 christos pool_alloc_item_header(struct pool *pp, void *storage, int flags)
971 1.55 thorpej {
972 1.55 thorpej struct pool_item_header *ph;
973 1.55 thorpej
974 1.55 thorpej if ((pp->pr_roflags & PR_PHINPAGE) != 0)
975 1.128 christos ph = (struct pool_item_header *) ((char *)storage + pp->pr_phoffset);
976 1.134 ad else
977 1.97 yamt ph = pool_get(pp->pr_phpool, flags);
978 1.55 thorpej
979 1.55 thorpej return (ph);
980 1.55 thorpej }
981 1.1 pk
982 1.1 pk /*
983 1.134 ad * Grab an item from the pool.
984 1.1 pk */
985 1.3 pk void *
986 1.59 thorpej #ifdef POOL_DIAGNOSTIC
987 1.42 thorpej _pool_get(struct pool *pp, int flags, const char *file, long line)
988 1.56 sommerfe #else
989 1.56 sommerfe pool_get(struct pool *pp, int flags)
990 1.56 sommerfe #endif
991 1.1 pk {
992 1.1 pk struct pool_item *pi;
993 1.3 pk struct pool_item_header *ph;
994 1.55 thorpej void *v;
995 1.1 pk
996 1.2 pk #ifdef DIAGNOSTIC
997 1.184 rmind if (pp->pr_itemsperpage == 0)
998 1.184 rmind panic("pool_get: pool '%s': pr_itemsperpage is zero, "
999 1.184 rmind "pool not initialized?", pp->pr_wchan);
1000 1.185 rmind if ((cpu_intr_p() || cpu_softintr_p()) && pp->pr_ipl == IPL_NONE &&
1001 1.185 rmind !cold && panicstr == NULL)
1002 1.184 rmind panic("pool '%s' is IPL_NONE, but called from "
1003 1.184 rmind "interrupt context\n", pp->pr_wchan);
1004 1.184 rmind #endif
1005 1.155 ad if (flags & PR_WAITOK) {
1006 1.154 yamt ASSERT_SLEEPABLE();
1007 1.155 ad }
1008 1.1 pk
1009 1.134 ad mutex_enter(&pp->pr_lock);
1010 1.25 thorpej pr_enter(pp, file, line);
1011 1.20 thorpej
1012 1.20 thorpej startover:
1013 1.20 thorpej /*
1014 1.20 thorpej * Check to see if we've reached the hard limit. If we have,
1015 1.20 thorpej * and we can wait, then wait until an item has been returned to
1016 1.20 thorpej * the pool.
1017 1.20 thorpej */
1018 1.20 thorpej #ifdef DIAGNOSTIC
1019 1.34 thorpej if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
1020 1.25 thorpej pr_leave(pp);
1021 1.134 ad mutex_exit(&pp->pr_lock);
1022 1.20 thorpej panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
1023 1.20 thorpej }
1024 1.20 thorpej #endif
1025 1.34 thorpej if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
1026 1.68 thorpej if (pp->pr_drain_hook != NULL) {
1027 1.68 thorpej /*
1028 1.68 thorpej * Since the drain hook is going to free things
1029 1.68 thorpej * back to the pool, unlock, call the hook, re-lock,
1030 1.68 thorpej * and check the hardlimit condition again.
1031 1.68 thorpej */
1032 1.68 thorpej pr_leave(pp);
1033 1.134 ad mutex_exit(&pp->pr_lock);
1034 1.68 thorpej (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
1035 1.134 ad mutex_enter(&pp->pr_lock);
1036 1.68 thorpej pr_enter(pp, file, line);
1037 1.68 thorpej if (pp->pr_nout < pp->pr_hardlimit)
1038 1.68 thorpej goto startover;
1039 1.68 thorpej }
1040 1.68 thorpej
1041 1.29 sommerfe if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
1042 1.20 thorpej /*
1043 1.20 thorpej * XXX: A warning isn't logged in this case. Should
1044 1.20 thorpej * it be?
1045 1.20 thorpej */
1046 1.20 thorpej pp->pr_flags |= PR_WANTED;
1047 1.25 thorpej pr_leave(pp);
1048 1.134 ad cv_wait(&pp->pr_cv, &pp->pr_lock);
1049 1.25 thorpej pr_enter(pp, file, line);
1050 1.20 thorpej goto startover;
1051 1.20 thorpej }
1052 1.31 thorpej
1053 1.31 thorpej /*
1054 1.31 thorpej * Log a message that the hard limit has been hit.
1055 1.31 thorpej */
1056 1.31 thorpej if (pp->pr_hardlimit_warning != NULL &&
1057 1.31 thorpej ratecheck(&pp->pr_hardlimit_warning_last,
1058 1.31 thorpej &pp->pr_hardlimit_ratecap))
1059 1.31 thorpej log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
1060 1.21 thorpej
1061 1.21 thorpej pp->pr_nfail++;
1062 1.21 thorpej
1063 1.25 thorpej pr_leave(pp);
1064 1.134 ad mutex_exit(&pp->pr_lock);
1065 1.20 thorpej return (NULL);
1066 1.20 thorpej }
1067 1.20 thorpej
1068 1.3 pk /*
1069 1.3 pk * The convention we use is that if `curpage' is not NULL, then
1070 1.3 pk * it points at a non-empty bucket. In particular, `curpage'
1071 1.3 pk * never points at a page header which has PR_PHINPAGE set and
1072 1.3 pk * has no items in its bucket.
1073 1.3 pk */
1074 1.20 thorpej if ((ph = pp->pr_curpage) == NULL) {
1075 1.113 yamt int error;
1076 1.113 yamt
1077 1.20 thorpej #ifdef DIAGNOSTIC
1078 1.20 thorpej if (pp->pr_nitems != 0) {
1079 1.134 ad mutex_exit(&pp->pr_lock);
1080 1.20 thorpej printf("pool_get: %s: curpage NULL, nitems %u\n",
1081 1.20 thorpej pp->pr_wchan, pp->pr_nitems);
1082 1.80 provos panic("pool_get: nitems inconsistent");
1083 1.20 thorpej }
1084 1.20 thorpej #endif
1085 1.20 thorpej
1086 1.21 thorpej /*
1087 1.21 thorpej * Call the back-end page allocator for more memory.
1088 1.21 thorpej * Release the pool lock, as the back-end page allocator
1089 1.21 thorpej * may block.
1090 1.21 thorpej */
1091 1.25 thorpej pr_leave(pp);
1092 1.113 yamt error = pool_grow(pp, flags);
1093 1.113 yamt pr_enter(pp, file, line);
1094 1.113 yamt if (error != 0) {
1095 1.21 thorpej /*
1096 1.55 thorpej * We were unable to allocate a page or item
1097 1.55 thorpej * header, but we released the lock during
1098 1.55 thorpej * allocation, so perhaps items were freed
1099 1.55 thorpej * back to the pool. Check for this case.
1100 1.21 thorpej */
1101 1.21 thorpej if (pp->pr_curpage != NULL)
1102 1.21 thorpej goto startover;
1103 1.15 pk
1104 1.117 yamt pp->pr_nfail++;
1105 1.25 thorpej pr_leave(pp);
1106 1.134 ad mutex_exit(&pp->pr_lock);
1107 1.117 yamt return (NULL);
1108 1.1 pk }
1109 1.3 pk
1110 1.20 thorpej /* Start the allocation process over. */
1111 1.20 thorpej goto startover;
1112 1.3 pk }
1113 1.97 yamt if (pp->pr_roflags & PR_NOTOUCH) {
1114 1.97 yamt #ifdef DIAGNOSTIC
1115 1.97 yamt if (__predict_false(ph->ph_nmissing == pp->pr_itemsperpage)) {
1116 1.97 yamt pr_leave(pp);
1117 1.134 ad mutex_exit(&pp->pr_lock);
1118 1.97 yamt panic("pool_get: %s: page empty", pp->pr_wchan);
1119 1.97 yamt }
1120 1.97 yamt #endif
1121 1.97 yamt v = pr_item_notouch_get(pp, ph);
1122 1.97 yamt #ifdef POOL_DIAGNOSTIC
1123 1.97 yamt pr_log(pp, v, PRLOG_GET, file, line);
1124 1.97 yamt #endif
1125 1.97 yamt } else {
1126 1.102 chs v = pi = LIST_FIRST(&ph->ph_itemlist);
1127 1.97 yamt if (__predict_false(v == NULL)) {
1128 1.97 yamt pr_leave(pp);
1129 1.134 ad mutex_exit(&pp->pr_lock);
1130 1.97 yamt panic("pool_get: %s: page empty", pp->pr_wchan);
1131 1.97 yamt }
1132 1.20 thorpej #ifdef DIAGNOSTIC
1133 1.97 yamt if (__predict_false(pp->pr_nitems == 0)) {
1134 1.97 yamt pr_leave(pp);
1135 1.134 ad mutex_exit(&pp->pr_lock);
1136 1.97 yamt printf("pool_get: %s: items on itemlist, nitems %u\n",
1137 1.97 yamt pp->pr_wchan, pp->pr_nitems);
1138 1.97 yamt panic("pool_get: nitems inconsistent");
1139 1.97 yamt }
1140 1.65 enami #endif
1141 1.56 sommerfe
1142 1.65 enami #ifdef POOL_DIAGNOSTIC
1143 1.97 yamt pr_log(pp, v, PRLOG_GET, file, line);
1144 1.65 enami #endif
1145 1.3 pk
1146 1.65 enami #ifdef DIAGNOSTIC
1147 1.97 yamt if (__predict_false(pi->pi_magic != PI_MAGIC)) {
1148 1.97 yamt pr_printlog(pp, pi, printf);
1149 1.97 yamt panic("pool_get(%s): free list modified: "
1150 1.97 yamt "magic=%x; page %p; item addr %p\n",
1151 1.97 yamt pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
1152 1.97 yamt }
1153 1.3 pk #endif
1154 1.3 pk
1155 1.97 yamt /*
1156 1.97 yamt * Remove from item list.
1157 1.97 yamt */
1158 1.102 chs LIST_REMOVE(pi, pi_list);
1159 1.97 yamt }
1160 1.20 thorpej pp->pr_nitems--;
1161 1.20 thorpej pp->pr_nout++;
1162 1.6 thorpej if (ph->ph_nmissing == 0) {
1163 1.6 thorpej #ifdef DIAGNOSTIC
1164 1.34 thorpej if (__predict_false(pp->pr_nidle == 0))
1165 1.6 thorpej panic("pool_get: nidle inconsistent");
1166 1.6 thorpej #endif
1167 1.6 thorpej pp->pr_nidle--;
1168 1.88 chs
1169 1.88 chs /*
1170 1.88 chs * This page was previously empty. Move it to the list of
1171 1.88 chs * partially-full pages. This page is already curpage.
1172 1.88 chs */
1173 1.88 chs LIST_REMOVE(ph, ph_pagelist);
1174 1.88 chs LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1175 1.6 thorpej }
1176 1.3 pk ph->ph_nmissing++;
1177 1.97 yamt if (ph->ph_nmissing == pp->pr_itemsperpage) {
1178 1.21 thorpej #ifdef DIAGNOSTIC
1179 1.97 yamt if (__predict_false((pp->pr_roflags & PR_NOTOUCH) == 0 &&
1180 1.102 chs !LIST_EMPTY(&ph->ph_itemlist))) {
1181 1.25 thorpej pr_leave(pp);
1182 1.134 ad mutex_exit(&pp->pr_lock);
1183 1.21 thorpej panic("pool_get: %s: nmissing inconsistent",
1184 1.21 thorpej pp->pr_wchan);
1185 1.21 thorpej }
1186 1.21 thorpej #endif
1187 1.3 pk /*
1188 1.88 chs * This page is now full. Move it to the full list
1189 1.88 chs * and select a new current page.
1190 1.3 pk */
1191 1.88 chs LIST_REMOVE(ph, ph_pagelist);
1192 1.88 chs LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
1193 1.88 chs pool_update_curpage(pp);
1194 1.1 pk }
1195 1.3 pk
1196 1.3 pk pp->pr_nget++;
1197 1.111 christos pr_leave(pp);
1198 1.20 thorpej
1199 1.20 thorpej /*
1200 1.20 thorpej * If we have a low water mark and we are now below that low
1201 1.20 thorpej * water mark, add more items to the pool.
1202 1.20 thorpej */
1203 1.53 thorpej if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1204 1.20 thorpej /*
1205 1.20 thorpej * XXX: Should we log a warning? Should we set up a timeout
1206 1.20 thorpej * to try again in a second or so? The latter could break
1207 1.20 thorpej * a caller's assumptions about interrupt protection, etc.
1208 1.20 thorpej */
1209 1.20 thorpej }
1210 1.20 thorpej
1211 1.134 ad mutex_exit(&pp->pr_lock);
1212 1.125 ad KASSERT((((vaddr_t)v + pp->pr_itemoffset) & (pp->pr_align - 1)) == 0);
1213 1.125 ad FREECHECK_OUT(&pp->pr_freecheck, v);
1214 1.1 pk return (v);
1215 1.1 pk }
1216 1.1 pk
1217 1.1 pk /*
1218 1.43 thorpej * Internal version of pool_put(). Pool is already locked/entered.
1219 1.1 pk */
1220 1.43 thorpej static void
1221 1.101 thorpej pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
1222 1.1 pk {
1223 1.1 pk struct pool_item *pi = v;
1224 1.3 pk struct pool_item_header *ph;
1225 1.3 pk
1226 1.134 ad KASSERT(mutex_owned(&pp->pr_lock));
1227 1.125 ad FREECHECK_IN(&pp->pr_freecheck, v);
1228 1.134 ad LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
1229 1.61 chs
1230 1.30 thorpej #ifdef DIAGNOSTIC
1231 1.34 thorpej if (__predict_false(pp->pr_nout == 0)) {
1232 1.30 thorpej printf("pool %s: putting with none out\n",
1233 1.30 thorpej pp->pr_wchan);
1234 1.30 thorpej panic("pool_put");
1235 1.30 thorpej }
1236 1.30 thorpej #endif
1237 1.3 pk
1238 1.121 yamt if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
1239 1.25 thorpej pr_printlog(pp, NULL, printf);
1240 1.3 pk panic("pool_put: %s: page header missing", pp->pr_wchan);
1241 1.3 pk }
1242 1.28 thorpej
1243 1.3 pk /*
1244 1.3 pk * Return to item list.
1245 1.3 pk */
1246 1.97 yamt if (pp->pr_roflags & PR_NOTOUCH) {
1247 1.97 yamt pr_item_notouch_put(pp, ph, v);
1248 1.97 yamt } else {
1249 1.2 pk #ifdef DIAGNOSTIC
1250 1.97 yamt pi->pi_magic = PI_MAGIC;
1251 1.3 pk #endif
1252 1.32 chs #ifdef DEBUG
1253 1.97 yamt {
1254 1.97 yamt int i, *ip = v;
1255 1.32 chs
1256 1.97 yamt for (i = 0; i < pp->pr_size / sizeof(int); i++) {
1257 1.97 yamt *ip++ = PI_MAGIC;
1258 1.97 yamt }
1259 1.32 chs }
1260 1.32 chs #endif
1261 1.32 chs
1262 1.102 chs LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1263 1.97 yamt }
1264 1.79 thorpej KDASSERT(ph->ph_nmissing != 0);
1265 1.3 pk ph->ph_nmissing--;
1266 1.3 pk pp->pr_nput++;
1267 1.20 thorpej pp->pr_nitems++;
1268 1.20 thorpej pp->pr_nout--;
1269 1.3 pk
1270 1.3 pk /* Cancel "pool empty" condition if it exists */
1271 1.3 pk if (pp->pr_curpage == NULL)
1272 1.3 pk pp->pr_curpage = ph;
1273 1.3 pk
1274 1.3 pk if (pp->pr_flags & PR_WANTED) {
1275 1.3 pk pp->pr_flags &= ~PR_WANTED;
1276 1.134 ad cv_broadcast(&pp->pr_cv);
1277 1.3 pk }
1278 1.3 pk
1279 1.3 pk /*
1280 1.88 chs * If this page is now empty, do one of two things:
1281 1.21 thorpej *
1282 1.88 chs * (1) If we have more pages than the page high water mark,
1283 1.96 thorpej * free the page back to the system. ONLY CONSIDER
1284 1.90 thorpej * FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
1285 1.90 thorpej * CLAIM.
1286 1.21 thorpej *
1287 1.88 chs * (2) Otherwise, move the page to the empty page list.
1288 1.88 chs *
1289 1.88 chs * Either way, select a new current page (so we use a partially-full
1290 1.88 chs * page if one is available).
1291 1.3 pk */
1292 1.3 pk if (ph->ph_nmissing == 0) {
1293 1.6 thorpej pp->pr_nidle++;
1294 1.90 thorpej if (pp->pr_npages > pp->pr_minpages &&
1295 1.152 yamt pp->pr_npages > pp->pr_maxpages) {
1296 1.101 thorpej pr_rmpage(pp, ph, pq);
1297 1.3 pk } else {
1298 1.88 chs LIST_REMOVE(ph, ph_pagelist);
1299 1.88 chs LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1300 1.3 pk
1301 1.21 thorpej /*
1302 1.21 thorpej * Update the timestamp on the page. A page must
1303 1.21 thorpej * be idle for some period of time before it can
1304 1.21 thorpej * be reclaimed by the pagedaemon. This minimizes
1305 1.21 thorpej * ping-pong'ing for memory.
1306 1.151 yamt *
1307 1.151 yamt * note for 64-bit time_t: truncating to 32-bit is not
1308 1.151 yamt * a problem for our usage.
1309 1.21 thorpej */
1310 1.151 yamt ph->ph_time = time_uptime;
1311 1.1 pk }
1312 1.88 chs pool_update_curpage(pp);
1313 1.1 pk }
1314 1.88 chs
1315 1.21 thorpej /*
1316 1.88 chs * If the page was previously completely full, move it to the
1317 1.88 chs * partially-full list and make it the current page. The next
1318 1.88 chs * allocation will get the item from this page, instead of
1319 1.88 chs * further fragmenting the pool.
1320 1.21 thorpej */
1321 1.21 thorpej else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
1322 1.88 chs LIST_REMOVE(ph, ph_pagelist);
1323 1.88 chs LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1324 1.21 thorpej pp->pr_curpage = ph;
1325 1.21 thorpej }
1326 1.43 thorpej }
1327 1.43 thorpej
1328 1.43 thorpej /*
1329 1.134 ad * Return resource to the pool.
1330 1.43 thorpej */
1331 1.59 thorpej #ifdef POOL_DIAGNOSTIC
1332 1.43 thorpej void
1333 1.43 thorpej _pool_put(struct pool *pp, void *v, const char *file, long line)
1334 1.43 thorpej {
1335 1.101 thorpej struct pool_pagelist pq;
1336 1.101 thorpej
1337 1.101 thorpej LIST_INIT(&pq);
1338 1.43 thorpej
1339 1.134 ad mutex_enter(&pp->pr_lock);
1340 1.43 thorpej pr_enter(pp, file, line);
1341 1.43 thorpej
1342 1.56 sommerfe pr_log(pp, v, PRLOG_PUT, file, line);
1343 1.56 sommerfe
1344 1.101 thorpej pool_do_put(pp, v, &pq);
1345 1.21 thorpej
1346 1.25 thorpej pr_leave(pp);
1347 1.134 ad mutex_exit(&pp->pr_lock);
1348 1.101 thorpej
1349 1.102 chs pr_pagelist_free(pp, &pq);
1350 1.1 pk }
1351 1.57 sommerfe #undef pool_put
1352 1.59 thorpej #endif /* POOL_DIAGNOSTIC */
1353 1.1 pk
1354 1.56 sommerfe void
1355 1.56 sommerfe pool_put(struct pool *pp, void *v)
1356 1.56 sommerfe {
1357 1.101 thorpej struct pool_pagelist pq;
1358 1.101 thorpej
1359 1.101 thorpej LIST_INIT(&pq);
1360 1.56 sommerfe
1361 1.134 ad mutex_enter(&pp->pr_lock);
1362 1.101 thorpej pool_do_put(pp, v, &pq);
1363 1.134 ad mutex_exit(&pp->pr_lock);
1364 1.56 sommerfe
1365 1.102 chs pr_pagelist_free(pp, &pq);
1366 1.56 sommerfe }
1367 1.57 sommerfe
1368 1.59 thorpej #ifdef POOL_DIAGNOSTIC
1369 1.57 sommerfe #define pool_put(h, v) _pool_put((h), (v), __FILE__, __LINE__)
1370 1.56 sommerfe #endif
1371 1.74 thorpej
1372 1.74 thorpej /*
1373 1.113 yamt * pool_grow: grow a pool by a page.
1374 1.113 yamt *
1375 1.113 yamt * => called with pool locked.
1376 1.113 yamt * => unlock and relock the pool.
1377 1.113 yamt * => return with pool locked.
1378 1.113 yamt */
1379 1.113 yamt
1380 1.113 yamt static int
1381 1.113 yamt pool_grow(struct pool *pp, int flags)
1382 1.113 yamt {
1383 1.113 yamt struct pool_item_header *ph = NULL;
1384 1.113 yamt char *cp;
1385 1.113 yamt
1386 1.134 ad mutex_exit(&pp->pr_lock);
1387 1.113 yamt cp = pool_allocator_alloc(pp, flags);
1388 1.113 yamt if (__predict_true(cp != NULL)) {
1389 1.113 yamt ph = pool_alloc_item_header(pp, cp, flags);
1390 1.113 yamt }
1391 1.113 yamt if (__predict_false(cp == NULL || ph == NULL)) {
1392 1.113 yamt if (cp != NULL) {
1393 1.113 yamt pool_allocator_free(pp, cp);
1394 1.113 yamt }
1395 1.134 ad mutex_enter(&pp->pr_lock);
1396 1.113 yamt return ENOMEM;
1397 1.113 yamt }
1398 1.113 yamt
1399 1.134 ad mutex_enter(&pp->pr_lock);
1400 1.113 yamt pool_prime_page(pp, cp, ph);
1401 1.113 yamt pp->pr_npagealloc++;
1402 1.113 yamt return 0;
1403 1.113 yamt }
1404 1.113 yamt
1405 1.113 yamt /*
1406 1.74 thorpej * Add N items to the pool.
1407 1.74 thorpej */
1408 1.74 thorpej int
1409 1.74 thorpej pool_prime(struct pool *pp, int n)
1410 1.74 thorpej {
1411 1.75 simonb int newpages;
1412 1.113 yamt int error = 0;
1413 1.74 thorpej
1414 1.134 ad mutex_enter(&pp->pr_lock);
1415 1.74 thorpej
1416 1.74 thorpej newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1417 1.74 thorpej
1418 1.74 thorpej while (newpages-- > 0) {
1419 1.113 yamt error = pool_grow(pp, PR_NOWAIT);
1420 1.113 yamt if (error) {
1421 1.74 thorpej break;
1422 1.74 thorpej }
1423 1.74 thorpej pp->pr_minpages++;
1424 1.74 thorpej }
1425 1.74 thorpej
1426 1.74 thorpej if (pp->pr_minpages >= pp->pr_maxpages)
1427 1.74 thorpej pp->pr_maxpages = pp->pr_minpages + 1; /* XXX */
1428 1.74 thorpej
1429 1.134 ad mutex_exit(&pp->pr_lock);
1430 1.113 yamt return error;
1431 1.74 thorpej }
1432 1.55 thorpej
1433 1.55 thorpej /*
1434 1.3 pk * Add a page worth of items to the pool.
1435 1.21 thorpej *
1436 1.21 thorpej * Note, we must be called with the pool descriptor LOCKED.
1437 1.3 pk */
1438 1.55 thorpej static void
1439 1.128 christos pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
1440 1.3 pk {
1441 1.3 pk struct pool_item *pi;
1442 1.128 christos void *cp = storage;
1443 1.125 ad const unsigned int align = pp->pr_align;
1444 1.125 ad const unsigned int ioff = pp->pr_itemoffset;
1445 1.55 thorpej int n;
1446 1.36 pk
1447 1.134 ad KASSERT(mutex_owned(&pp->pr_lock));
1448 1.91 yamt
1449 1.66 thorpej #ifdef DIAGNOSTIC
1450 1.121 yamt if ((pp->pr_roflags & PR_NOALIGN) == 0 &&
1451 1.150 skrll ((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) != 0)
1452 1.36 pk panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
1453 1.66 thorpej #endif
1454 1.3 pk
1455 1.3 pk /*
1456 1.3 pk * Insert page header.
1457 1.3 pk */
1458 1.88 chs LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1459 1.102 chs LIST_INIT(&ph->ph_itemlist);
1460 1.3 pk ph->ph_page = storage;
1461 1.3 pk ph->ph_nmissing = 0;
1462 1.151 yamt ph->ph_time = time_uptime;
1463 1.88 chs if ((pp->pr_roflags & PR_PHINPAGE) == 0)
1464 1.88 chs SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
1465 1.3 pk
1466 1.6 thorpej pp->pr_nidle++;
1467 1.6 thorpej
1468 1.3 pk /*
1469 1.3 pk * Color this page.
1470 1.3 pk */
1471 1.141 yamt ph->ph_off = pp->pr_curcolor;
1472 1.141 yamt cp = (char *)cp + ph->ph_off;
1473 1.3 pk if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
1474 1.3 pk pp->pr_curcolor = 0;
1475 1.3 pk
1476 1.3 pk /*
1477 1.3 pk * Adjust storage to apply aligment to `pr_itemoffset' in each item.
1478 1.3 pk */
1479 1.3 pk if (ioff != 0)
1480 1.128 christos cp = (char *)cp + align - ioff;
1481 1.3 pk
1482 1.125 ad KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
1483 1.125 ad
1484 1.3 pk /*
1485 1.3 pk * Insert remaining chunks on the bucket list.
1486 1.3 pk */
1487 1.3 pk n = pp->pr_itemsperpage;
1488 1.20 thorpej pp->pr_nitems += n;
1489 1.3 pk
1490 1.97 yamt if (pp->pr_roflags & PR_NOTOUCH) {
1491 1.141 yamt pr_item_notouch_init(pp, ph);
1492 1.97 yamt } else {
1493 1.97 yamt while (n--) {
1494 1.97 yamt pi = (struct pool_item *)cp;
1495 1.78 thorpej
1496 1.97 yamt KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0);
1497 1.3 pk
1498 1.97 yamt /* Insert on page list */
1499 1.102 chs LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1500 1.3 pk #ifdef DIAGNOSTIC
1501 1.97 yamt pi->pi_magic = PI_MAGIC;
1502 1.3 pk #endif
1503 1.128 christos cp = (char *)cp + pp->pr_size;
1504 1.125 ad
1505 1.125 ad KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
1506 1.97 yamt }
1507 1.3 pk }
1508 1.3 pk
1509 1.3 pk /*
1510 1.3 pk * If the pool was depleted, point at the new page.
1511 1.3 pk */
1512 1.3 pk if (pp->pr_curpage == NULL)
1513 1.3 pk pp->pr_curpage = ph;
1514 1.3 pk
1515 1.3 pk if (++pp->pr_npages > pp->pr_hiwat)
1516 1.3 pk pp->pr_hiwat = pp->pr_npages;
1517 1.3 pk }
1518 1.3 pk
1519 1.20 thorpej /*
1520 1.52 thorpej * Used by pool_get() when nitems drops below the low water mark. This
1521 1.88 chs * is used to catch up pr_nitems with the low water mark.
1522 1.20 thorpej *
1523 1.21 thorpej * Note 1, we never wait for memory here, we let the caller decide what to do.
1524 1.20 thorpej *
1525 1.73 thorpej * Note 2, we must be called with the pool already locked, and we return
1526 1.20 thorpej * with it locked.
1527 1.20 thorpej */
1528 1.20 thorpej static int
1529 1.42 thorpej pool_catchup(struct pool *pp)
1530 1.20 thorpej {
1531 1.20 thorpej int error = 0;
1532 1.20 thorpej
1533 1.54 thorpej while (POOL_NEEDS_CATCHUP(pp)) {
1534 1.113 yamt error = pool_grow(pp, PR_NOWAIT);
1535 1.113 yamt if (error) {
1536 1.20 thorpej break;
1537 1.20 thorpej }
1538 1.20 thorpej }
1539 1.113 yamt return error;
1540 1.20 thorpej }
1541 1.20 thorpej
1542 1.88 chs static void
1543 1.88 chs pool_update_curpage(struct pool *pp)
1544 1.88 chs {
1545 1.88 chs
1546 1.88 chs pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
1547 1.88 chs if (pp->pr_curpage == NULL) {
1548 1.88 chs pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
1549 1.88 chs }
1550 1.168 yamt KASSERT((pp->pr_curpage == NULL && pp->pr_nitems == 0) ||
1551 1.168 yamt (pp->pr_curpage != NULL && pp->pr_nitems > 0));
1552 1.88 chs }
1553 1.88 chs
1554 1.3 pk void
1555 1.42 thorpej pool_setlowat(struct pool *pp, int n)
1556 1.3 pk {
1557 1.15 pk
1558 1.134 ad mutex_enter(&pp->pr_lock);
1559 1.21 thorpej
1560 1.3 pk pp->pr_minitems = n;
1561 1.15 pk pp->pr_minpages = (n == 0)
1562 1.15 pk ? 0
1563 1.18 thorpej : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1564 1.20 thorpej
1565 1.20 thorpej /* Make sure we're caught up with the newly-set low water mark. */
1566 1.75 simonb if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1567 1.20 thorpej /*
1568 1.20 thorpej * XXX: Should we log a warning? Should we set up a timeout
1569 1.20 thorpej * to try again in a second or so? The latter could break
1570 1.20 thorpej * a caller's assumptions about interrupt protection, etc.
1571 1.20 thorpej */
1572 1.20 thorpej }
1573 1.21 thorpej
1574 1.134 ad mutex_exit(&pp->pr_lock);
1575 1.3 pk }
1576 1.3 pk
1577 1.3 pk void
1578 1.42 thorpej pool_sethiwat(struct pool *pp, int n)
1579 1.3 pk {
1580 1.15 pk
1581 1.134 ad mutex_enter(&pp->pr_lock);
1582 1.21 thorpej
1583 1.15 pk pp->pr_maxpages = (n == 0)
1584 1.15 pk ? 0
1585 1.18 thorpej : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1586 1.21 thorpej
1587 1.134 ad mutex_exit(&pp->pr_lock);
1588 1.3 pk }
1589 1.3 pk
1590 1.20 thorpej void
1591 1.42 thorpej pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
1592 1.20 thorpej {
1593 1.20 thorpej
1594 1.134 ad mutex_enter(&pp->pr_lock);
1595 1.20 thorpej
1596 1.20 thorpej pp->pr_hardlimit = n;
1597 1.20 thorpej pp->pr_hardlimit_warning = warnmess;
1598 1.31 thorpej pp->pr_hardlimit_ratecap.tv_sec = ratecap;
1599 1.31 thorpej pp->pr_hardlimit_warning_last.tv_sec = 0;
1600 1.31 thorpej pp->pr_hardlimit_warning_last.tv_usec = 0;
1601 1.20 thorpej
1602 1.20 thorpej /*
1603 1.21 thorpej * In-line version of pool_sethiwat(), because we don't want to
1604 1.21 thorpej * release the lock.
1605 1.20 thorpej */
1606 1.20 thorpej pp->pr_maxpages = (n == 0)
1607 1.20 thorpej ? 0
1608 1.20 thorpej : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1609 1.21 thorpej
1610 1.134 ad mutex_exit(&pp->pr_lock);
1611 1.20 thorpej }
1612 1.3 pk
1613 1.3 pk /*
1614 1.3 pk * Release all complete pages that have not been used recently.
1615 1.184 rmind *
1616 1.184 rmind * Might be called from interrupt context.
1617 1.3 pk */
1618 1.66 thorpej int
1619 1.59 thorpej #ifdef POOL_DIAGNOSTIC
1620 1.42 thorpej _pool_reclaim(struct pool *pp, const char *file, long line)
1621 1.56 sommerfe #else
1622 1.56 sommerfe pool_reclaim(struct pool *pp)
1623 1.56 sommerfe #endif
1624 1.3 pk {
1625 1.3 pk struct pool_item_header *ph, *phnext;
1626 1.61 chs struct pool_pagelist pq;
1627 1.151 yamt uint32_t curtime;
1628 1.134 ad bool klock;
1629 1.134 ad int rv;
1630 1.3 pk
1631 1.184 rmind if (cpu_intr_p() || cpu_softintr_p()) {
1632 1.184 rmind KASSERT(pp->pr_ipl != IPL_NONE);
1633 1.184 rmind }
1634 1.184 rmind
1635 1.68 thorpej if (pp->pr_drain_hook != NULL) {
1636 1.68 thorpej /*
1637 1.68 thorpej * The drain hook must be called with the pool unlocked.
1638 1.68 thorpej */
1639 1.68 thorpej (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
1640 1.68 thorpej }
1641 1.68 thorpej
1642 1.134 ad /*
1643 1.157 ad * XXXSMP Because we do not want to cause non-MPSAFE code
1644 1.157 ad * to block.
1645 1.134 ad */
1646 1.134 ad if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK ||
1647 1.134 ad pp->pr_ipl == IPL_SOFTSERIAL) {
1648 1.134 ad KERNEL_LOCK(1, NULL);
1649 1.134 ad klock = true;
1650 1.134 ad } else
1651 1.134 ad klock = false;
1652 1.134 ad
1653 1.134 ad /* Reclaim items from the pool's cache (if any). */
1654 1.134 ad if (pp->pr_cache != NULL)
1655 1.134 ad pool_cache_invalidate(pp->pr_cache);
1656 1.134 ad
1657 1.134 ad if (mutex_tryenter(&pp->pr_lock) == 0) {
1658 1.134 ad if (klock) {
1659 1.134 ad KERNEL_UNLOCK_ONE(NULL);
1660 1.134 ad }
1661 1.66 thorpej return (0);
1662 1.134 ad }
1663 1.25 thorpej pr_enter(pp, file, line);
1664 1.68 thorpej
1665 1.88 chs LIST_INIT(&pq);
1666 1.43 thorpej
1667 1.151 yamt curtime = time_uptime;
1668 1.21 thorpej
1669 1.88 chs for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
1670 1.88 chs phnext = LIST_NEXT(ph, ph_pagelist);
1671 1.3 pk
1672 1.3 pk /* Check our minimum page claim */
1673 1.3 pk if (pp->pr_npages <= pp->pr_minpages)
1674 1.3 pk break;
1675 1.3 pk
1676 1.88 chs KASSERT(ph->ph_nmissing == 0);
1677 1.151 yamt if (curtime - ph->ph_time < pool_inactive_time
1678 1.117 yamt && !pa_starved_p(pp->pr_alloc))
1679 1.88 chs continue;
1680 1.21 thorpej
1681 1.88 chs /*
1682 1.88 chs * If freeing this page would put us below
1683 1.88 chs * the low water mark, stop now.
1684 1.88 chs */
1685 1.88 chs if ((pp->pr_nitems - pp->pr_itemsperpage) <
1686 1.88 chs pp->pr_minitems)
1687 1.88 chs break;
1688 1.21 thorpej
1689 1.88 chs pr_rmpage(pp, ph, &pq);
1690 1.3 pk }
1691 1.3 pk
1692 1.25 thorpej pr_leave(pp);
1693 1.134 ad mutex_exit(&pp->pr_lock);
1694 1.134 ad
1695 1.134 ad if (LIST_EMPTY(&pq))
1696 1.134 ad rv = 0;
1697 1.134 ad else {
1698 1.134 ad pr_pagelist_free(pp, &pq);
1699 1.134 ad rv = 1;
1700 1.134 ad }
1701 1.134 ad
1702 1.134 ad if (klock) {
1703 1.134 ad KERNEL_UNLOCK_ONE(NULL);
1704 1.134 ad }
1705 1.66 thorpej
1706 1.134 ad return (rv);
1707 1.3 pk }
1708 1.3 pk
1709 1.3 pk /*
1710 1.134 ad * Drain pools, one at a time. This is a two stage process;
1711 1.134 ad * drain_start kicks off a cross call to drain CPU-level caches
1712 1.134 ad * if the pool has an associated pool_cache. drain_end waits
1713 1.134 ad * for those cross calls to finish, and then drains the cache
1714 1.134 ad * (if any) and pool.
1715 1.131 ad *
1716 1.134 ad * Note, must never be called from interrupt context.
1717 1.3 pk */
1718 1.3 pk void
1719 1.134 ad pool_drain_start(struct pool **ppp, uint64_t *wp)
1720 1.3 pk {
1721 1.3 pk struct pool *pp;
1722 1.134 ad
1723 1.145 ad KASSERT(!TAILQ_EMPTY(&pool_head));
1724 1.3 pk
1725 1.61 chs pp = NULL;
1726 1.134 ad
1727 1.134 ad /* Find next pool to drain, and add a reference. */
1728 1.134 ad mutex_enter(&pool_head_lock);
1729 1.134 ad do {
1730 1.134 ad if (drainpp == NULL) {
1731 1.145 ad drainpp = TAILQ_FIRST(&pool_head);
1732 1.134 ad }
1733 1.134 ad if (drainpp != NULL) {
1734 1.134 ad pp = drainpp;
1735 1.145 ad drainpp = TAILQ_NEXT(pp, pr_poollist);
1736 1.134 ad }
1737 1.134 ad /*
1738 1.134 ad * Skip completely idle pools. We depend on at least
1739 1.134 ad * one pool in the system being active.
1740 1.134 ad */
1741 1.134 ad } while (pp == NULL || pp->pr_npages == 0);
1742 1.134 ad pp->pr_refcnt++;
1743 1.134 ad mutex_exit(&pool_head_lock);
1744 1.134 ad
1745 1.134 ad /* If there is a pool_cache, drain CPU level caches. */
1746 1.134 ad *ppp = pp;
1747 1.134 ad if (pp->pr_cache != NULL) {
1748 1.134 ad *wp = xc_broadcast(0, (xcfunc_t)pool_cache_xcall,
1749 1.134 ad pp->pr_cache, NULL);
1750 1.134 ad }
1751 1.134 ad }
1752 1.134 ad
1753 1.186 pooka bool
1754 1.134 ad pool_drain_end(struct pool *pp, uint64_t where)
1755 1.134 ad {
1756 1.186 pooka bool reclaimed;
1757 1.134 ad
1758 1.134 ad if (pp == NULL)
1759 1.186 pooka return false;
1760 1.134 ad
1761 1.134 ad KASSERT(pp->pr_refcnt > 0);
1762 1.134 ad
1763 1.134 ad /* Wait for remote draining to complete. */
1764 1.134 ad if (pp->pr_cache != NULL)
1765 1.134 ad xc_wait(where);
1766 1.134 ad
1767 1.134 ad /* Drain the cache (if any) and pool.. */
1768 1.186 pooka reclaimed = pool_reclaim(pp);
1769 1.134 ad
1770 1.134 ad /* Finally, unlock the pool. */
1771 1.134 ad mutex_enter(&pool_head_lock);
1772 1.134 ad pp->pr_refcnt--;
1773 1.134 ad cv_broadcast(&pool_busy);
1774 1.134 ad mutex_exit(&pool_head_lock);
1775 1.186 pooka
1776 1.186 pooka return reclaimed;
1777 1.3 pk }
1778 1.3 pk
1779 1.3 pk /*
1780 1.3 pk * Diagnostic helpers.
1781 1.3 pk */
1782 1.3 pk void
1783 1.42 thorpej pool_print(struct pool *pp, const char *modif)
1784 1.21 thorpej {
1785 1.21 thorpej
1786 1.25 thorpej pool_print1(pp, modif, printf);
1787 1.21 thorpej }
1788 1.21 thorpej
1789 1.25 thorpej void
1790 1.108 yamt pool_printall(const char *modif, void (*pr)(const char *, ...))
1791 1.108 yamt {
1792 1.108 yamt struct pool *pp;
1793 1.108 yamt
1794 1.145 ad TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
1795 1.108 yamt pool_printit(pp, modif, pr);
1796 1.108 yamt }
1797 1.108 yamt }
1798 1.108 yamt
1799 1.108 yamt void
1800 1.42 thorpej pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1801 1.25 thorpej {
1802 1.25 thorpej
1803 1.25 thorpej if (pp == NULL) {
1804 1.25 thorpej (*pr)("Must specify a pool to print.\n");
1805 1.25 thorpej return;
1806 1.25 thorpej }
1807 1.25 thorpej
1808 1.25 thorpej pool_print1(pp, modif, pr);
1809 1.25 thorpej }
1810 1.25 thorpej
1811 1.21 thorpej static void
1812 1.124 yamt pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
1813 1.97 yamt void (*pr)(const char *, ...))
1814 1.88 chs {
1815 1.88 chs struct pool_item_header *ph;
1816 1.88 chs #ifdef DIAGNOSTIC
1817 1.88 chs struct pool_item *pi;
1818 1.88 chs #endif
1819 1.88 chs
1820 1.88 chs LIST_FOREACH(ph, pl, ph_pagelist) {
1821 1.151 yamt (*pr)("\t\tpage %p, nmissing %d, time %" PRIu32 "\n",
1822 1.151 yamt ph->ph_page, ph->ph_nmissing, ph->ph_time);
1823 1.88 chs #ifdef DIAGNOSTIC
1824 1.97 yamt if (!(pp->pr_roflags & PR_NOTOUCH)) {
1825 1.102 chs LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
1826 1.97 yamt if (pi->pi_magic != PI_MAGIC) {
1827 1.97 yamt (*pr)("\t\t\titem %p, magic 0x%x\n",
1828 1.97 yamt pi, pi->pi_magic);
1829 1.97 yamt }
1830 1.88 chs }
1831 1.88 chs }
1832 1.88 chs #endif
1833 1.88 chs }
1834 1.88 chs }
1835 1.88 chs
1836 1.88 chs static void
1837 1.42 thorpej pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1838 1.3 pk {
1839 1.25 thorpej struct pool_item_header *ph;
1840 1.134 ad pool_cache_t pc;
1841 1.134 ad pcg_t *pcg;
1842 1.134 ad pool_cache_cpu_t *cc;
1843 1.134 ad uint64_t cpuhit, cpumiss;
1844 1.44 thorpej int i, print_log = 0, print_pagelist = 0, print_cache = 0;
1845 1.25 thorpej char c;
1846 1.25 thorpej
1847 1.25 thorpej while ((c = *modif++) != '\0') {
1848 1.25 thorpej if (c == 'l')
1849 1.25 thorpej print_log = 1;
1850 1.25 thorpej if (c == 'p')
1851 1.25 thorpej print_pagelist = 1;
1852 1.44 thorpej if (c == 'c')
1853 1.44 thorpej print_cache = 1;
1854 1.25 thorpej }
1855 1.25 thorpej
1856 1.134 ad if ((pc = pp->pr_cache) != NULL) {
1857 1.134 ad (*pr)("POOL CACHE");
1858 1.134 ad } else {
1859 1.134 ad (*pr)("POOL");
1860 1.134 ad }
1861 1.134 ad
1862 1.134 ad (*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
1863 1.25 thorpej pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
1864 1.25 thorpej pp->pr_roflags);
1865 1.66 thorpej (*pr)("\talloc %p\n", pp->pr_alloc);
1866 1.25 thorpej (*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
1867 1.25 thorpej pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
1868 1.25 thorpej (*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
1869 1.25 thorpej pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
1870 1.25 thorpej
1871 1.134 ad (*pr)("\tnget %lu, nfail %lu, nput %lu\n",
1872 1.25 thorpej pp->pr_nget, pp->pr_nfail, pp->pr_nput);
1873 1.25 thorpej (*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
1874 1.25 thorpej pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
1875 1.25 thorpej
1876 1.25 thorpej if (print_pagelist == 0)
1877 1.25 thorpej goto skip_pagelist;
1878 1.25 thorpej
1879 1.88 chs if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
1880 1.88 chs (*pr)("\n\tempty page list:\n");
1881 1.97 yamt pool_print_pagelist(pp, &pp->pr_emptypages, pr);
1882 1.88 chs if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
1883 1.88 chs (*pr)("\n\tfull page list:\n");
1884 1.97 yamt pool_print_pagelist(pp, &pp->pr_fullpages, pr);
1885 1.88 chs if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
1886 1.88 chs (*pr)("\n\tpartial-page list:\n");
1887 1.97 yamt pool_print_pagelist(pp, &pp->pr_partpages, pr);
1888 1.88 chs
1889 1.25 thorpej if (pp->pr_curpage == NULL)
1890 1.25 thorpej (*pr)("\tno current page\n");
1891 1.25 thorpej else
1892 1.25 thorpej (*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
1893 1.25 thorpej
1894 1.25 thorpej skip_pagelist:
1895 1.25 thorpej if (print_log == 0)
1896 1.25 thorpej goto skip_log;
1897 1.25 thorpej
1898 1.25 thorpej (*pr)("\n");
1899 1.25 thorpej if ((pp->pr_roflags & PR_LOGGING) == 0)
1900 1.25 thorpej (*pr)("\tno log\n");
1901 1.122 christos else {
1902 1.25 thorpej pr_printlog(pp, NULL, pr);
1903 1.122 christos }
1904 1.3 pk
1905 1.25 thorpej skip_log:
1906 1.44 thorpej
1907 1.102 chs #define PR_GROUPLIST(pcg) \
1908 1.102 chs (*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail); \
1909 1.142 ad for (i = 0; i < pcg->pcg_size; i++) { \
1910 1.102 chs if (pcg->pcg_objects[i].pcgo_pa != \
1911 1.102 chs POOL_PADDR_INVALID) { \
1912 1.102 chs (*pr)("\t\t\t%p, 0x%llx\n", \
1913 1.102 chs pcg->pcg_objects[i].pcgo_va, \
1914 1.102 chs (unsigned long long) \
1915 1.102 chs pcg->pcg_objects[i].pcgo_pa); \
1916 1.102 chs } else { \
1917 1.102 chs (*pr)("\t\t\t%p\n", \
1918 1.102 chs pcg->pcg_objects[i].pcgo_va); \
1919 1.102 chs } \
1920 1.102 chs }
1921 1.102 chs
1922 1.134 ad if (pc != NULL) {
1923 1.134 ad cpuhit = 0;
1924 1.134 ad cpumiss = 0;
1925 1.183 ad for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
1926 1.134 ad if ((cc = pc->pc_cpus[i]) == NULL)
1927 1.134 ad continue;
1928 1.134 ad cpuhit += cc->cc_hits;
1929 1.134 ad cpumiss += cc->cc_misses;
1930 1.134 ad }
1931 1.134 ad (*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
1932 1.134 ad (*pr)("\tcache layer hits %llu misses %llu\n",
1933 1.134 ad pc->pc_hits, pc->pc_misses);
1934 1.134 ad (*pr)("\tcache layer entry uncontended %llu contended %llu\n",
1935 1.134 ad pc->pc_hits + pc->pc_misses - pc->pc_contended,
1936 1.134 ad pc->pc_contended);
1937 1.134 ad (*pr)("\tcache layer empty groups %u full groups %u\n",
1938 1.134 ad pc->pc_nempty, pc->pc_nfull);
1939 1.134 ad if (print_cache) {
1940 1.134 ad (*pr)("\tfull cache groups:\n");
1941 1.134 ad for (pcg = pc->pc_fullgroups; pcg != NULL;
1942 1.134 ad pcg = pcg->pcg_next) {
1943 1.134 ad PR_GROUPLIST(pcg);
1944 1.134 ad }
1945 1.134 ad (*pr)("\tempty cache groups:\n");
1946 1.134 ad for (pcg = pc->pc_emptygroups; pcg != NULL;
1947 1.134 ad pcg = pcg->pcg_next) {
1948 1.134 ad PR_GROUPLIST(pcg);
1949 1.134 ad }
1950 1.103 chs }
1951 1.44 thorpej }
1952 1.102 chs #undef PR_GROUPLIST
1953 1.44 thorpej
1954 1.88 chs pr_enter_check(pp, pr);
1955 1.88 chs }
1956 1.88 chs
1957 1.88 chs static int
1958 1.88 chs pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
1959 1.88 chs {
1960 1.88 chs struct pool_item *pi;
1961 1.128 christos void *page;
1962 1.88 chs int n;
1963 1.88 chs
1964 1.121 yamt if ((pp->pr_roflags & PR_NOALIGN) == 0) {
1965 1.128 christos page = (void *)((uintptr_t)ph & pp->pr_alloc->pa_pagemask);
1966 1.121 yamt if (page != ph->ph_page &&
1967 1.121 yamt (pp->pr_roflags & PR_PHINPAGE) != 0) {
1968 1.121 yamt if (label != NULL)
1969 1.121 yamt printf("%s: ", label);
1970 1.121 yamt printf("pool(%p:%s): page inconsistency: page %p;"
1971 1.121 yamt " at page head addr %p (p %p)\n", pp,
1972 1.121 yamt pp->pr_wchan, ph->ph_page,
1973 1.121 yamt ph, page);
1974 1.121 yamt return 1;
1975 1.121 yamt }
1976 1.88 chs }
1977 1.3 pk
1978 1.97 yamt if ((pp->pr_roflags & PR_NOTOUCH) != 0)
1979 1.97 yamt return 0;
1980 1.97 yamt
1981 1.102 chs for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
1982 1.88 chs pi != NULL;
1983 1.102 chs pi = LIST_NEXT(pi,pi_list), n++) {
1984 1.88 chs
1985 1.88 chs #ifdef DIAGNOSTIC
1986 1.88 chs if (pi->pi_magic != PI_MAGIC) {
1987 1.88 chs if (label != NULL)
1988 1.88 chs printf("%s: ", label);
1989 1.88 chs printf("pool(%s): free list modified: magic=%x;"
1990 1.121 yamt " page %p; item ordinal %d; addr %p\n",
1991 1.88 chs pp->pr_wchan, pi->pi_magic, ph->ph_page,
1992 1.121 yamt n, pi);
1993 1.88 chs panic("pool");
1994 1.88 chs }
1995 1.88 chs #endif
1996 1.121 yamt if ((pp->pr_roflags & PR_NOALIGN) != 0) {
1997 1.121 yamt continue;
1998 1.121 yamt }
1999 1.128 christos page = (void *)((uintptr_t)pi & pp->pr_alloc->pa_pagemask);
2000 1.88 chs if (page == ph->ph_page)
2001 1.88 chs continue;
2002 1.88 chs
2003 1.88 chs if (label != NULL)
2004 1.88 chs printf("%s: ", label);
2005 1.88 chs printf("pool(%p:%s): page inconsistency: page %p;"
2006 1.88 chs " item ordinal %d; addr %p (p %p)\n", pp,
2007 1.88 chs pp->pr_wchan, ph->ph_page,
2008 1.88 chs n, pi, page);
2009 1.88 chs return 1;
2010 1.88 chs }
2011 1.88 chs return 0;
2012 1.3 pk }
2013 1.3 pk
2014 1.88 chs
2015 1.3 pk int
2016 1.42 thorpej pool_chk(struct pool *pp, const char *label)
2017 1.3 pk {
2018 1.3 pk struct pool_item_header *ph;
2019 1.3 pk int r = 0;
2020 1.3 pk
2021 1.134 ad mutex_enter(&pp->pr_lock);
2022 1.88 chs LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
2023 1.88 chs r = pool_chk_page(pp, label, ph);
2024 1.88 chs if (r) {
2025 1.88 chs goto out;
2026 1.88 chs }
2027 1.88 chs }
2028 1.88 chs LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
2029 1.88 chs r = pool_chk_page(pp, label, ph);
2030 1.88 chs if (r) {
2031 1.3 pk goto out;
2032 1.3 pk }
2033 1.88 chs }
2034 1.88 chs LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
2035 1.88 chs r = pool_chk_page(pp, label, ph);
2036 1.88 chs if (r) {
2037 1.3 pk goto out;
2038 1.3 pk }
2039 1.3 pk }
2040 1.88 chs
2041 1.3 pk out:
2042 1.134 ad mutex_exit(&pp->pr_lock);
2043 1.3 pk return (r);
2044 1.43 thorpej }
2045 1.43 thorpej
2046 1.43 thorpej /*
2047 1.43 thorpej * pool_cache_init:
2048 1.43 thorpej *
2049 1.43 thorpej * Initialize a pool cache.
2050 1.134 ad */
2051 1.134 ad pool_cache_t
2052 1.134 ad pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
2053 1.134 ad const char *wchan, struct pool_allocator *palloc, int ipl,
2054 1.134 ad int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
2055 1.134 ad {
2056 1.134 ad pool_cache_t pc;
2057 1.134 ad
2058 1.134 ad pc = pool_get(&cache_pool, PR_WAITOK);
2059 1.134 ad if (pc == NULL)
2060 1.134 ad return NULL;
2061 1.134 ad
2062 1.134 ad pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
2063 1.134 ad palloc, ipl, ctor, dtor, arg);
2064 1.134 ad
2065 1.134 ad return pc;
2066 1.134 ad }
2067 1.134 ad
2068 1.134 ad /*
2069 1.134 ad * pool_cache_bootstrap:
2070 1.43 thorpej *
2071 1.134 ad * Kernel-private version of pool_cache_init(). The caller
2072 1.134 ad * provides initial storage.
2073 1.43 thorpej */
2074 1.43 thorpej void
2075 1.134 ad pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
2076 1.134 ad u_int align_offset, u_int flags, const char *wchan,
2077 1.134 ad struct pool_allocator *palloc, int ipl,
2078 1.134 ad int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
2079 1.43 thorpej void *arg)
2080 1.43 thorpej {
2081 1.134 ad CPU_INFO_ITERATOR cii;
2082 1.145 ad pool_cache_t pc1;
2083 1.134 ad struct cpu_info *ci;
2084 1.134 ad struct pool *pp;
2085 1.134 ad
2086 1.134 ad pp = &pc->pc_pool;
2087 1.134 ad if (palloc == NULL && ipl == IPL_NONE)
2088 1.134 ad palloc = &pool_allocator_nointr;
2089 1.134 ad pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl);
2090 1.157 ad mutex_init(&pc->pc_lock, MUTEX_DEFAULT, ipl);
2091 1.43 thorpej
2092 1.134 ad if (ctor == NULL) {
2093 1.134 ad ctor = (int (*)(void *, void *, int))nullop;
2094 1.134 ad }
2095 1.134 ad if (dtor == NULL) {
2096 1.134 ad dtor = (void (*)(void *, void *))nullop;
2097 1.134 ad }
2098 1.43 thorpej
2099 1.134 ad pc->pc_emptygroups = NULL;
2100 1.134 ad pc->pc_fullgroups = NULL;
2101 1.134 ad pc->pc_partgroups = NULL;
2102 1.43 thorpej pc->pc_ctor = ctor;
2103 1.43 thorpej pc->pc_dtor = dtor;
2104 1.43 thorpej pc->pc_arg = arg;
2105 1.134 ad pc->pc_hits = 0;
2106 1.48 thorpej pc->pc_misses = 0;
2107 1.134 ad pc->pc_nempty = 0;
2108 1.134 ad pc->pc_npart = 0;
2109 1.134 ad pc->pc_nfull = 0;
2110 1.134 ad pc->pc_contended = 0;
2111 1.134 ad pc->pc_refcnt = 0;
2112 1.136 yamt pc->pc_freecheck = NULL;
2113 1.134 ad
2114 1.142 ad if ((flags & PR_LARGECACHE) != 0) {
2115 1.142 ad pc->pc_pcgsize = PCG_NOBJECTS_LARGE;
2116 1.163 ad pc->pc_pcgpool = &pcg_large_pool;
2117 1.142 ad } else {
2118 1.142 ad pc->pc_pcgsize = PCG_NOBJECTS_NORMAL;
2119 1.163 ad pc->pc_pcgpool = &pcg_normal_pool;
2120 1.142 ad }
2121 1.142 ad
2122 1.134 ad /* Allocate per-CPU caches. */
2123 1.134 ad memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
2124 1.134 ad pc->pc_ncpu = 0;
2125 1.139 ad if (ncpu < 2) {
2126 1.137 ad /* XXX For sparc: boot CPU is not attached yet. */
2127 1.137 ad pool_cache_cpu_init1(curcpu(), pc);
2128 1.137 ad } else {
2129 1.137 ad for (CPU_INFO_FOREACH(cii, ci)) {
2130 1.137 ad pool_cache_cpu_init1(ci, pc);
2131 1.137 ad }
2132 1.134 ad }
2133 1.145 ad
2134 1.145 ad /* Add to list of all pools. */
2135 1.145 ad if (__predict_true(!cold))
2136 1.134 ad mutex_enter(&pool_head_lock);
2137 1.145 ad TAILQ_FOREACH(pc1, &pool_cache_head, pc_cachelist) {
2138 1.145 ad if (strcmp(pc1->pc_pool.pr_wchan, pc->pc_pool.pr_wchan) > 0)
2139 1.145 ad break;
2140 1.145 ad }
2141 1.145 ad if (pc1 == NULL)
2142 1.145 ad TAILQ_INSERT_TAIL(&pool_cache_head, pc, pc_cachelist);
2143 1.145 ad else
2144 1.145 ad TAILQ_INSERT_BEFORE(pc1, pc, pc_cachelist);
2145 1.145 ad if (__predict_true(!cold))
2146 1.134 ad mutex_exit(&pool_head_lock);
2147 1.145 ad
2148 1.145 ad membar_sync();
2149 1.145 ad pp->pr_cache = pc;
2150 1.43 thorpej }
2151 1.43 thorpej
2152 1.43 thorpej /*
2153 1.43 thorpej * pool_cache_destroy:
2154 1.43 thorpej *
2155 1.43 thorpej * Destroy a pool cache.
2156 1.43 thorpej */
2157 1.43 thorpej void
2158 1.134 ad pool_cache_destroy(pool_cache_t pc)
2159 1.43 thorpej {
2160 1.134 ad struct pool *pp = &pc->pc_pool;
2161 1.175 jym u_int i;
2162 1.134 ad
2163 1.134 ad /* Remove it from the global list. */
2164 1.134 ad mutex_enter(&pool_head_lock);
2165 1.134 ad while (pc->pc_refcnt != 0)
2166 1.134 ad cv_wait(&pool_busy, &pool_head_lock);
2167 1.145 ad TAILQ_REMOVE(&pool_cache_head, pc, pc_cachelist);
2168 1.134 ad mutex_exit(&pool_head_lock);
2169 1.43 thorpej
2170 1.43 thorpej /* First, invalidate the entire cache. */
2171 1.43 thorpej pool_cache_invalidate(pc);
2172 1.43 thorpej
2173 1.134 ad /* Disassociate it from the pool. */
2174 1.134 ad mutex_enter(&pp->pr_lock);
2175 1.134 ad pp->pr_cache = NULL;
2176 1.134 ad mutex_exit(&pp->pr_lock);
2177 1.134 ad
2178 1.134 ad /* Destroy per-CPU data */
2179 1.183 ad for (i = 0; i < __arraycount(pc->pc_cpus); i++)
2180 1.175 jym pool_cache_invalidate_cpu(pc, i);
2181 1.134 ad
2182 1.134 ad /* Finally, destroy it. */
2183 1.134 ad mutex_destroy(&pc->pc_lock);
2184 1.134 ad pool_destroy(pp);
2185 1.134 ad pool_put(&cache_pool, pc);
2186 1.134 ad }
2187 1.134 ad
2188 1.134 ad /*
2189 1.134 ad * pool_cache_cpu_init1:
2190 1.134 ad *
2191 1.134 ad * Called for each pool_cache whenever a new CPU is attached.
2192 1.134 ad */
2193 1.134 ad static void
2194 1.134 ad pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
2195 1.134 ad {
2196 1.134 ad pool_cache_cpu_t *cc;
2197 1.137 ad int index;
2198 1.134 ad
2199 1.137 ad index = ci->ci_index;
2200 1.137 ad
2201 1.183 ad KASSERT(index < __arraycount(pc->pc_cpus));
2202 1.134 ad
2203 1.137 ad if ((cc = pc->pc_cpus[index]) != NULL) {
2204 1.137 ad KASSERT(cc->cc_cpuindex == index);
2205 1.134 ad return;
2206 1.134 ad }
2207 1.134 ad
2208 1.134 ad /*
2209 1.134 ad * The first CPU is 'free'. This needs to be the case for
2210 1.134 ad * bootstrap - we may not be able to allocate yet.
2211 1.134 ad */
2212 1.134 ad if (pc->pc_ncpu == 0) {
2213 1.134 ad cc = &pc->pc_cpu0;
2214 1.134 ad pc->pc_ncpu = 1;
2215 1.134 ad } else {
2216 1.134 ad mutex_enter(&pc->pc_lock);
2217 1.134 ad pc->pc_ncpu++;
2218 1.134 ad mutex_exit(&pc->pc_lock);
2219 1.134 ad cc = pool_get(&cache_cpu_pool, PR_WAITOK);
2220 1.134 ad }
2221 1.134 ad
2222 1.134 ad cc->cc_ipl = pc->pc_pool.pr_ipl;
2223 1.134 ad cc->cc_iplcookie = makeiplcookie(cc->cc_ipl);
2224 1.134 ad cc->cc_cache = pc;
2225 1.137 ad cc->cc_cpuindex = index;
2226 1.134 ad cc->cc_hits = 0;
2227 1.134 ad cc->cc_misses = 0;
2228 1.169 yamt cc->cc_current = __UNCONST(&pcg_dummy);
2229 1.169 yamt cc->cc_previous = __UNCONST(&pcg_dummy);
2230 1.134 ad
2231 1.137 ad pc->pc_cpus[index] = cc;
2232 1.43 thorpej }
2233 1.43 thorpej
2234 1.134 ad /*
2235 1.134 ad * pool_cache_cpu_init:
2236 1.134 ad *
2237 1.134 ad * Called whenever a new CPU is attached.
2238 1.134 ad */
2239 1.134 ad void
2240 1.134 ad pool_cache_cpu_init(struct cpu_info *ci)
2241 1.43 thorpej {
2242 1.134 ad pool_cache_t pc;
2243 1.134 ad
2244 1.134 ad mutex_enter(&pool_head_lock);
2245 1.145 ad TAILQ_FOREACH(pc, &pool_cache_head, pc_cachelist) {
2246 1.134 ad pc->pc_refcnt++;
2247 1.134 ad mutex_exit(&pool_head_lock);
2248 1.43 thorpej
2249 1.134 ad pool_cache_cpu_init1(ci, pc);
2250 1.43 thorpej
2251 1.134 ad mutex_enter(&pool_head_lock);
2252 1.134 ad pc->pc_refcnt--;
2253 1.134 ad cv_broadcast(&pool_busy);
2254 1.134 ad }
2255 1.134 ad mutex_exit(&pool_head_lock);
2256 1.43 thorpej }
2257 1.43 thorpej
2258 1.134 ad /*
2259 1.134 ad * pool_cache_reclaim:
2260 1.134 ad *
2261 1.134 ad * Reclaim memory from a pool cache.
2262 1.134 ad */
2263 1.134 ad bool
2264 1.134 ad pool_cache_reclaim(pool_cache_t pc)
2265 1.43 thorpej {
2266 1.43 thorpej
2267 1.134 ad return pool_reclaim(&pc->pc_pool);
2268 1.134 ad }
2269 1.43 thorpej
2270 1.136 yamt static void
2271 1.136 yamt pool_cache_destruct_object1(pool_cache_t pc, void *object)
2272 1.136 yamt {
2273 1.136 yamt
2274 1.136 yamt (*pc->pc_dtor)(pc->pc_arg, object);
2275 1.136 yamt pool_put(&pc->pc_pool, object);
2276 1.136 yamt }
2277 1.136 yamt
2278 1.134 ad /*
2279 1.134 ad * pool_cache_destruct_object:
2280 1.134 ad *
2281 1.134 ad * Force destruction of an object and its release back into
2282 1.134 ad * the pool.
2283 1.134 ad */
2284 1.134 ad void
2285 1.134 ad pool_cache_destruct_object(pool_cache_t pc, void *object)
2286 1.134 ad {
2287 1.134 ad
2288 1.136 yamt FREECHECK_IN(&pc->pc_freecheck, object);
2289 1.136 yamt
2290 1.136 yamt pool_cache_destruct_object1(pc, object);
2291 1.43 thorpej }
2292 1.43 thorpej
2293 1.134 ad /*
2294 1.134 ad * pool_cache_invalidate_groups:
2295 1.134 ad *
2296 1.134 ad * Invalidate a chain of groups and destruct all objects.
2297 1.134 ad */
2298 1.102 chs static void
2299 1.134 ad pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
2300 1.102 chs {
2301 1.134 ad void *object;
2302 1.134 ad pcg_t *next;
2303 1.134 ad int i;
2304 1.134 ad
2305 1.134 ad for (; pcg != NULL; pcg = next) {
2306 1.134 ad next = pcg->pcg_next;
2307 1.134 ad
2308 1.134 ad for (i = 0; i < pcg->pcg_avail; i++) {
2309 1.134 ad object = pcg->pcg_objects[i].pcgo_va;
2310 1.136 yamt pool_cache_destruct_object1(pc, object);
2311 1.134 ad }
2312 1.102 chs
2313 1.142 ad if (pcg->pcg_size == PCG_NOBJECTS_LARGE) {
2314 1.142 ad pool_put(&pcg_large_pool, pcg);
2315 1.142 ad } else {
2316 1.142 ad KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL);
2317 1.142 ad pool_put(&pcg_normal_pool, pcg);
2318 1.142 ad }
2319 1.102 chs }
2320 1.102 chs }
2321 1.102 chs
2322 1.43 thorpej /*
2323 1.134 ad * pool_cache_invalidate:
2324 1.43 thorpej *
2325 1.134 ad * Invalidate a pool cache (destruct and release all of the
2326 1.134 ad * cached objects). Does not reclaim objects from the pool.
2327 1.176 thorpej *
2328 1.176 thorpej * Note: For pool caches that provide constructed objects, there
2329 1.176 thorpej * is an assumption that another level of synchronization is occurring
2330 1.176 thorpej * between the input to the constructor and the cache invalidation.
2331 1.43 thorpej */
2332 1.134 ad void
2333 1.134 ad pool_cache_invalidate(pool_cache_t pc)
2334 1.134 ad {
2335 1.134 ad pcg_t *full, *empty, *part;
2336 1.182 rmind #if 0
2337 1.176 thorpej uint64_t where;
2338 1.176 thorpej
2339 1.177 jym if (ncpu < 2 || !mp_online) {
2340 1.176 thorpej /*
2341 1.176 thorpej * We might be called early enough in the boot process
2342 1.176 thorpej * for the CPU data structures to not be fully initialized.
2343 1.176 thorpej * In this case, simply gather the local CPU's cache now
2344 1.176 thorpej * since it will be the only one running.
2345 1.176 thorpej */
2346 1.176 thorpej pool_cache_xcall(pc);
2347 1.176 thorpej } else {
2348 1.176 thorpej /*
2349 1.176 thorpej * Gather all of the CPU-specific caches into the
2350 1.176 thorpej * global cache.
2351 1.176 thorpej */
2352 1.176 thorpej where = xc_broadcast(0, (xcfunc_t)pool_cache_xcall, pc, NULL);
2353 1.176 thorpej xc_wait(where);
2354 1.176 thorpej }
2355 1.182 rmind #endif
2356 1.134 ad mutex_enter(&pc->pc_lock);
2357 1.134 ad full = pc->pc_fullgroups;
2358 1.134 ad empty = pc->pc_emptygroups;
2359 1.134 ad part = pc->pc_partgroups;
2360 1.134 ad pc->pc_fullgroups = NULL;
2361 1.134 ad pc->pc_emptygroups = NULL;
2362 1.134 ad pc->pc_partgroups = NULL;
2363 1.134 ad pc->pc_nfull = 0;
2364 1.134 ad pc->pc_nempty = 0;
2365 1.134 ad pc->pc_npart = 0;
2366 1.134 ad mutex_exit(&pc->pc_lock);
2367 1.134 ad
2368 1.134 ad pool_cache_invalidate_groups(pc, full);
2369 1.134 ad pool_cache_invalidate_groups(pc, empty);
2370 1.134 ad pool_cache_invalidate_groups(pc, part);
2371 1.134 ad }
2372 1.134 ad
2373 1.175 jym /*
2374 1.175 jym * pool_cache_invalidate_cpu:
2375 1.175 jym *
2376 1.175 jym * Invalidate all CPU-bound cached objects in pool cache, the CPU being
2377 1.175 jym * identified by its associated index.
2378 1.175 jym * It is caller's responsibility to ensure that no operation is
2379 1.175 jym * taking place on this pool cache while doing this invalidation.
2380 1.175 jym * WARNING: as no inter-CPU locking is enforced, trying to invalidate
2381 1.175 jym * pool cached objects from a CPU different from the one currently running
2382 1.175 jym * may result in an undefined behaviour.
2383 1.175 jym */
2384 1.175 jym static void
2385 1.175 jym pool_cache_invalidate_cpu(pool_cache_t pc, u_int index)
2386 1.175 jym {
2387 1.175 jym
2388 1.175 jym pool_cache_cpu_t *cc;
2389 1.175 jym pcg_t *pcg;
2390 1.175 jym
2391 1.175 jym if ((cc = pc->pc_cpus[index]) == NULL)
2392 1.175 jym return;
2393 1.175 jym
2394 1.175 jym if ((pcg = cc->cc_current) != &pcg_dummy) {
2395 1.175 jym pcg->pcg_next = NULL;
2396 1.175 jym pool_cache_invalidate_groups(pc, pcg);
2397 1.175 jym }
2398 1.175 jym if ((pcg = cc->cc_previous) != &pcg_dummy) {
2399 1.175 jym pcg->pcg_next = NULL;
2400 1.175 jym pool_cache_invalidate_groups(pc, pcg);
2401 1.175 jym }
2402 1.175 jym if (cc != &pc->pc_cpu0)
2403 1.175 jym pool_put(&cache_cpu_pool, cc);
2404 1.175 jym
2405 1.175 jym }
2406 1.175 jym
2407 1.134 ad void
2408 1.134 ad pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
2409 1.134 ad {
2410 1.134 ad
2411 1.134 ad pool_set_drain_hook(&pc->pc_pool, fn, arg);
2412 1.134 ad }
2413 1.134 ad
2414 1.134 ad void
2415 1.134 ad pool_cache_setlowat(pool_cache_t pc, int n)
2416 1.134 ad {
2417 1.134 ad
2418 1.134 ad pool_setlowat(&pc->pc_pool, n);
2419 1.134 ad }
2420 1.134 ad
2421 1.134 ad void
2422 1.134 ad pool_cache_sethiwat(pool_cache_t pc, int n)
2423 1.134 ad {
2424 1.134 ad
2425 1.134 ad pool_sethiwat(&pc->pc_pool, n);
2426 1.134 ad }
2427 1.134 ad
2428 1.134 ad void
2429 1.134 ad pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
2430 1.134 ad {
2431 1.134 ad
2432 1.134 ad pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
2433 1.134 ad }
2434 1.134 ad
2435 1.162 ad static bool __noinline
2436 1.162 ad pool_cache_get_slow(pool_cache_cpu_t *cc, int s, void **objectp,
2437 1.134 ad paddr_t *pap, int flags)
2438 1.43 thorpej {
2439 1.134 ad pcg_t *pcg, *cur;
2440 1.134 ad uint64_t ncsw;
2441 1.134 ad pool_cache_t pc;
2442 1.43 thorpej void *object;
2443 1.58 thorpej
2444 1.168 yamt KASSERT(cc->cc_current->pcg_avail == 0);
2445 1.168 yamt KASSERT(cc->cc_previous->pcg_avail == 0);
2446 1.168 yamt
2447 1.134 ad pc = cc->cc_cache;
2448 1.134 ad cc->cc_misses++;
2449 1.43 thorpej
2450 1.134 ad /*
2451 1.134 ad * Nothing was available locally. Try and grab a group
2452 1.134 ad * from the cache.
2453 1.134 ad */
2454 1.162 ad if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
2455 1.134 ad ncsw = curlwp->l_ncsw;
2456 1.134 ad mutex_enter(&pc->pc_lock);
2457 1.134 ad pc->pc_contended++;
2458 1.43 thorpej
2459 1.134 ad /*
2460 1.134 ad * If we context switched while locking, then
2461 1.134 ad * our view of the per-CPU data is invalid:
2462 1.134 ad * retry.
2463 1.134 ad */
2464 1.134 ad if (curlwp->l_ncsw != ncsw) {
2465 1.134 ad mutex_exit(&pc->pc_lock);
2466 1.162 ad return true;
2467 1.43 thorpej }
2468 1.102 chs }
2469 1.43 thorpej
2470 1.162 ad if (__predict_true((pcg = pc->pc_fullgroups) != NULL)) {
2471 1.43 thorpej /*
2472 1.134 ad * If there's a full group, release our empty
2473 1.134 ad * group back to the cache. Install the full
2474 1.134 ad * group as cc_current and return.
2475 1.43 thorpej */
2476 1.162 ad if (__predict_true((cur = cc->cc_current) != &pcg_dummy)) {
2477 1.134 ad KASSERT(cur->pcg_avail == 0);
2478 1.134 ad cur->pcg_next = pc->pc_emptygroups;
2479 1.134 ad pc->pc_emptygroups = cur;
2480 1.134 ad pc->pc_nempty++;
2481 1.87 thorpej }
2482 1.142 ad KASSERT(pcg->pcg_avail == pcg->pcg_size);
2483 1.134 ad cc->cc_current = pcg;
2484 1.134 ad pc->pc_fullgroups = pcg->pcg_next;
2485 1.134 ad pc->pc_hits++;
2486 1.134 ad pc->pc_nfull--;
2487 1.134 ad mutex_exit(&pc->pc_lock);
2488 1.162 ad return true;
2489 1.134 ad }
2490 1.134 ad
2491 1.134 ad /*
2492 1.134 ad * Nothing available locally or in cache. Take the slow
2493 1.134 ad * path: fetch a new object from the pool and construct
2494 1.134 ad * it.
2495 1.134 ad */
2496 1.134 ad pc->pc_misses++;
2497 1.134 ad mutex_exit(&pc->pc_lock);
2498 1.162 ad splx(s);
2499 1.134 ad
2500 1.134 ad object = pool_get(&pc->pc_pool, flags);
2501 1.134 ad *objectp = object;
2502 1.162 ad if (__predict_false(object == NULL))
2503 1.162 ad return false;
2504 1.125 ad
2505 1.162 ad if (__predict_false((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0)) {
2506 1.134 ad pool_put(&pc->pc_pool, object);
2507 1.134 ad *objectp = NULL;
2508 1.162 ad return false;
2509 1.43 thorpej }
2510 1.43 thorpej
2511 1.134 ad KASSERT((((vaddr_t)object + pc->pc_pool.pr_itemoffset) &
2512 1.134 ad (pc->pc_pool.pr_align - 1)) == 0);
2513 1.43 thorpej
2514 1.134 ad if (pap != NULL) {
2515 1.134 ad #ifdef POOL_VTOPHYS
2516 1.134 ad *pap = POOL_VTOPHYS(object);
2517 1.134 ad #else
2518 1.134 ad *pap = POOL_PADDR_INVALID;
2519 1.134 ad #endif
2520 1.102 chs }
2521 1.43 thorpej
2522 1.125 ad FREECHECK_OUT(&pc->pc_freecheck, object);
2523 1.162 ad return false;
2524 1.43 thorpej }
2525 1.43 thorpej
2526 1.43 thorpej /*
2527 1.134 ad * pool_cache_get{,_paddr}:
2528 1.43 thorpej *
2529 1.134 ad * Get an object from a pool cache (optionally returning
2530 1.134 ad * the physical address of the object).
2531 1.43 thorpej */
2532 1.134 ad void *
2533 1.134 ad pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
2534 1.43 thorpej {
2535 1.134 ad pool_cache_cpu_t *cc;
2536 1.134 ad pcg_t *pcg;
2537 1.134 ad void *object;
2538 1.60 thorpej int s;
2539 1.43 thorpej
2540 1.184 rmind KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()) ||
2541 1.185 rmind (pc->pc_pool.pr_ipl != IPL_NONE || cold || panicstr != NULL),
2542 1.184 rmind ("pool '%s' is IPL_NONE, but called from interrupt context\n",
2543 1.184 rmind pc->pc_pool.pr_wchan));
2544 1.184 rmind
2545 1.155 ad if (flags & PR_WAITOK) {
2546 1.154 yamt ASSERT_SLEEPABLE();
2547 1.155 ad }
2548 1.125 ad
2549 1.162 ad /* Lock out interrupts and disable preemption. */
2550 1.162 ad s = splvm();
2551 1.165 yamt while (/* CONSTCOND */ true) {
2552 1.134 ad /* Try and allocate an object from the current group. */
2553 1.162 ad cc = pc->pc_cpus[curcpu()->ci_index];
2554 1.162 ad KASSERT(cc->cc_cache == pc);
2555 1.134 ad pcg = cc->cc_current;
2556 1.162 ad if (__predict_true(pcg->pcg_avail > 0)) {
2557 1.134 ad object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;
2558 1.162 ad if (__predict_false(pap != NULL))
2559 1.134 ad *pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa;
2560 1.148 yamt #if defined(DIAGNOSTIC)
2561 1.134 ad pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL;
2562 1.163 ad KASSERT(pcg->pcg_avail < pcg->pcg_size);
2563 1.134 ad KASSERT(object != NULL);
2564 1.163 ad #endif
2565 1.134 ad cc->cc_hits++;
2566 1.162 ad splx(s);
2567 1.134 ad FREECHECK_OUT(&pc->pc_freecheck, object);
2568 1.134 ad return object;
2569 1.43 thorpej }
2570 1.43 thorpej
2571 1.43 thorpej /*
2572 1.134 ad * That failed. If the previous group isn't empty, swap
2573 1.134 ad * it with the current group and allocate from there.
2574 1.43 thorpej */
2575 1.134 ad pcg = cc->cc_previous;
2576 1.162 ad if (__predict_true(pcg->pcg_avail > 0)) {
2577 1.134 ad cc->cc_previous = cc->cc_current;
2578 1.134 ad cc->cc_current = pcg;
2579 1.134 ad continue;
2580 1.43 thorpej }
2581 1.43 thorpej
2582 1.134 ad /*
2583 1.134 ad * Can't allocate from either group: try the slow path.
2584 1.134 ad * If get_slow() allocated an object for us, or if
2585 1.162 ad * no more objects are available, it will return false.
2586 1.134 ad * Otherwise, we need to retry.
2587 1.134 ad */
2588 1.165 yamt if (!pool_cache_get_slow(cc, s, &object, pap, flags))
2589 1.165 yamt break;
2590 1.165 yamt }
2591 1.43 thorpej
2592 1.134 ad return object;
2593 1.51 thorpej }
2594 1.51 thorpej
2595 1.162 ad static bool __noinline
2596 1.162 ad pool_cache_put_slow(pool_cache_cpu_t *cc, int s, void *object)
2597 1.51 thorpej {
2598 1.163 ad pcg_t *pcg, *cur;
2599 1.134 ad uint64_t ncsw;
2600 1.134 ad pool_cache_t pc;
2601 1.51 thorpej
2602 1.168 yamt KASSERT(cc->cc_current->pcg_avail == cc->cc_current->pcg_size);
2603 1.168 yamt KASSERT(cc->cc_previous->pcg_avail == cc->cc_previous->pcg_size);
2604 1.168 yamt
2605 1.134 ad pc = cc->cc_cache;
2606 1.171 ad pcg = NULL;
2607 1.134 ad cc->cc_misses++;
2608 1.43 thorpej
2609 1.171 ad /*
2610 1.171 ad * If there are no empty groups in the cache then allocate one
2611 1.171 ad * while still unlocked.
2612 1.171 ad */
2613 1.171 ad if (__predict_false(pc->pc_emptygroups == NULL)) {
2614 1.171 ad if (__predict_true(!pool_cache_disable)) {
2615 1.171 ad pcg = pool_get(pc->pc_pcgpool, PR_NOWAIT);
2616 1.171 ad }
2617 1.171 ad if (__predict_true(pcg != NULL)) {
2618 1.171 ad pcg->pcg_avail = 0;
2619 1.171 ad pcg->pcg_size = pc->pc_pcgsize;
2620 1.171 ad }
2621 1.171 ad }
2622 1.171 ad
2623 1.162 ad /* Lock the cache. */
2624 1.162 ad if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
2625 1.164 ad ncsw = curlwp->l_ncsw;
2626 1.134 ad mutex_enter(&pc->pc_lock);
2627 1.134 ad pc->pc_contended++;
2628 1.162 ad
2629 1.163 ad /*
2630 1.163 ad * If we context switched while locking, then our view of
2631 1.163 ad * the per-CPU data is invalid: retry.
2632 1.163 ad */
2633 1.163 ad if (__predict_false(curlwp->l_ncsw != ncsw)) {
2634 1.163 ad mutex_exit(&pc->pc_lock);
2635 1.171 ad if (pcg != NULL) {
2636 1.171 ad pool_put(pc->pc_pcgpool, pcg);
2637 1.171 ad }
2638 1.163 ad return true;
2639 1.163 ad }
2640 1.162 ad }
2641 1.102 chs
2642 1.163 ad /* If there are no empty groups in the cache then allocate one. */
2643 1.171 ad if (pcg == NULL && pc->pc_emptygroups != NULL) {
2644 1.171 ad pcg = pc->pc_emptygroups;
2645 1.163 ad pc->pc_emptygroups = pcg->pcg_next;
2646 1.163 ad pc->pc_nempty--;
2647 1.134 ad }
2648 1.130 ad
2649 1.162 ad /*
2650 1.162 ad * If there's a empty group, release our full group back
2651 1.162 ad * to the cache. Install the empty group to the local CPU
2652 1.162 ad * and return.
2653 1.162 ad */
2654 1.163 ad if (pcg != NULL) {
2655 1.134 ad KASSERT(pcg->pcg_avail == 0);
2656 1.162 ad if (__predict_false(cc->cc_previous == &pcg_dummy)) {
2657 1.146 ad cc->cc_previous = pcg;
2658 1.146 ad } else {
2659 1.162 ad cur = cc->cc_current;
2660 1.162 ad if (__predict_true(cur != &pcg_dummy)) {
2661 1.163 ad KASSERT(cur->pcg_avail == cur->pcg_size);
2662 1.146 ad cur->pcg_next = pc->pc_fullgroups;
2663 1.146 ad pc->pc_fullgroups = cur;
2664 1.146 ad pc->pc_nfull++;
2665 1.146 ad }
2666 1.146 ad cc->cc_current = pcg;
2667 1.146 ad }
2668 1.163 ad pc->pc_hits++;
2669 1.134 ad mutex_exit(&pc->pc_lock);
2670 1.162 ad return true;
2671 1.102 chs }
2672 1.105 christos
2673 1.134 ad /*
2674 1.162 ad * Nothing available locally or in cache, and we didn't
2675 1.162 ad * allocate an empty group. Take the slow path and destroy
2676 1.162 ad * the object here and now.
2677 1.134 ad */
2678 1.134 ad pc->pc_misses++;
2679 1.134 ad mutex_exit(&pc->pc_lock);
2680 1.162 ad splx(s);
2681 1.162 ad pool_cache_destruct_object(pc, object);
2682 1.105 christos
2683 1.162 ad return false;
2684 1.134 ad }
2685 1.102 chs
2686 1.43 thorpej /*
2687 1.134 ad * pool_cache_put{,_paddr}:
2688 1.43 thorpej *
2689 1.134 ad * Put an object back to the pool cache (optionally caching the
2690 1.134 ad * physical address of the object).
2691 1.43 thorpej */
2692 1.101 thorpej void
2693 1.134 ad pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
2694 1.43 thorpej {
2695 1.134 ad pool_cache_cpu_t *cc;
2696 1.134 ad pcg_t *pcg;
2697 1.134 ad int s;
2698 1.101 thorpej
2699 1.172 yamt KASSERT(object != NULL);
2700 1.134 ad FREECHECK_IN(&pc->pc_freecheck, object);
2701 1.101 thorpej
2702 1.162 ad /* Lock out interrupts and disable preemption. */
2703 1.162 ad s = splvm();
2704 1.165 yamt while (/* CONSTCOND */ true) {
2705 1.134 ad /* If the current group isn't full, release it there. */
2706 1.162 ad cc = pc->pc_cpus[curcpu()->ci_index];
2707 1.162 ad KASSERT(cc->cc_cache == pc);
2708 1.134 ad pcg = cc->cc_current;
2709 1.162 ad if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
2710 1.134 ad pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object;
2711 1.134 ad pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa;
2712 1.134 ad pcg->pcg_avail++;
2713 1.134 ad cc->cc_hits++;
2714 1.162 ad splx(s);
2715 1.134 ad return;
2716 1.134 ad }
2717 1.43 thorpej
2718 1.134 ad /*
2719 1.162 ad * That failed. If the previous group isn't full, swap
2720 1.134 ad * it with the current group and try again.
2721 1.134 ad */
2722 1.134 ad pcg = cc->cc_previous;
2723 1.162 ad if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
2724 1.134 ad cc->cc_previous = cc->cc_current;
2725 1.134 ad cc->cc_current = pcg;
2726 1.134 ad continue;
2727 1.134 ad }
2728 1.43 thorpej
2729 1.134 ad /*
2730 1.134 ad * Can't free to either group: try the slow path.
2731 1.134 ad * If put_slow() releases the object for us, it
2732 1.162 ad * will return false. Otherwise we need to retry.
2733 1.134 ad */
2734 1.165 yamt if (!pool_cache_put_slow(cc, s, object))
2735 1.165 yamt break;
2736 1.165 yamt }
2737 1.43 thorpej }
2738 1.43 thorpej
2739 1.43 thorpej /*
2740 1.134 ad * pool_cache_xcall:
2741 1.43 thorpej *
2742 1.134 ad * Transfer objects from the per-CPU cache to the global cache.
2743 1.134 ad * Run within a cross-call thread.
2744 1.43 thorpej */
2745 1.43 thorpej static void
2746 1.134 ad pool_cache_xcall(pool_cache_t pc)
2747 1.43 thorpej {
2748 1.134 ad pool_cache_cpu_t *cc;
2749 1.134 ad pcg_t *prev, *cur, **list;
2750 1.162 ad int s;
2751 1.134 ad
2752 1.162 ad s = splvm();
2753 1.162 ad mutex_enter(&pc->pc_lock);
2754 1.162 ad cc = pc->pc_cpus[curcpu()->ci_index];
2755 1.134 ad cur = cc->cc_current;
2756 1.169 yamt cc->cc_current = __UNCONST(&pcg_dummy);
2757 1.134 ad prev = cc->cc_previous;
2758 1.169 yamt cc->cc_previous = __UNCONST(&pcg_dummy);
2759 1.162 ad if (cur != &pcg_dummy) {
2760 1.142 ad if (cur->pcg_avail == cur->pcg_size) {
2761 1.134 ad list = &pc->pc_fullgroups;
2762 1.134 ad pc->pc_nfull++;
2763 1.134 ad } else if (cur->pcg_avail == 0) {
2764 1.134 ad list = &pc->pc_emptygroups;
2765 1.134 ad pc->pc_nempty++;
2766 1.134 ad } else {
2767 1.134 ad list = &pc->pc_partgroups;
2768 1.134 ad pc->pc_npart++;
2769 1.134 ad }
2770 1.134 ad cur->pcg_next = *list;
2771 1.134 ad *list = cur;
2772 1.134 ad }
2773 1.162 ad if (prev != &pcg_dummy) {
2774 1.142 ad if (prev->pcg_avail == prev->pcg_size) {
2775 1.134 ad list = &pc->pc_fullgroups;
2776 1.134 ad pc->pc_nfull++;
2777 1.134 ad } else if (prev->pcg_avail == 0) {
2778 1.134 ad list = &pc->pc_emptygroups;
2779 1.134 ad pc->pc_nempty++;
2780 1.134 ad } else {
2781 1.134 ad list = &pc->pc_partgroups;
2782 1.134 ad pc->pc_npart++;
2783 1.134 ad }
2784 1.134 ad prev->pcg_next = *list;
2785 1.134 ad *list = prev;
2786 1.134 ad }
2787 1.134 ad mutex_exit(&pc->pc_lock);
2788 1.134 ad splx(s);
2789 1.3 pk }
2790 1.66 thorpej
2791 1.66 thorpej /*
2792 1.66 thorpej * Pool backend allocators.
2793 1.66 thorpej *
2794 1.66 thorpej * Each pool has a backend allocator that handles allocation, deallocation,
2795 1.66 thorpej * and any additional draining that might be needed.
2796 1.66 thorpej *
2797 1.66 thorpej * We provide two standard allocators:
2798 1.66 thorpej *
2799 1.66 thorpej * pool_allocator_kmem - the default when no allocator is specified
2800 1.66 thorpej *
2801 1.66 thorpej * pool_allocator_nointr - used for pools that will not be accessed
2802 1.66 thorpej * in interrupt context.
2803 1.66 thorpej */
2804 1.66 thorpej void *pool_page_alloc(struct pool *, int);
2805 1.66 thorpej void pool_page_free(struct pool *, void *);
2806 1.66 thorpej
2807 1.112 bjh21 #ifdef POOL_SUBPAGE
2808 1.112 bjh21 struct pool_allocator pool_allocator_kmem_fullpage = {
2809 1.112 bjh21 pool_page_alloc, pool_page_free, 0,
2810 1.117 yamt .pa_backingmapptr = &kmem_map,
2811 1.112 bjh21 };
2812 1.112 bjh21 #else
2813 1.66 thorpej struct pool_allocator pool_allocator_kmem = {
2814 1.66 thorpej pool_page_alloc, pool_page_free, 0,
2815 1.117 yamt .pa_backingmapptr = &kmem_map,
2816 1.66 thorpej };
2817 1.112 bjh21 #endif
2818 1.66 thorpej
2819 1.66 thorpej void *pool_page_alloc_nointr(struct pool *, int);
2820 1.66 thorpej void pool_page_free_nointr(struct pool *, void *);
2821 1.66 thorpej
2822 1.112 bjh21 #ifdef POOL_SUBPAGE
2823 1.112 bjh21 struct pool_allocator pool_allocator_nointr_fullpage = {
2824 1.112 bjh21 pool_page_alloc_nointr, pool_page_free_nointr, 0,
2825 1.117 yamt .pa_backingmapptr = &kernel_map,
2826 1.112 bjh21 };
2827 1.112 bjh21 #else
2828 1.66 thorpej struct pool_allocator pool_allocator_nointr = {
2829 1.66 thorpej pool_page_alloc_nointr, pool_page_free_nointr, 0,
2830 1.117 yamt .pa_backingmapptr = &kernel_map,
2831 1.66 thorpej };
2832 1.112 bjh21 #endif
2833 1.66 thorpej
2834 1.66 thorpej #ifdef POOL_SUBPAGE
2835 1.66 thorpej void *pool_subpage_alloc(struct pool *, int);
2836 1.66 thorpej void pool_subpage_free(struct pool *, void *);
2837 1.66 thorpej
2838 1.112 bjh21 struct pool_allocator pool_allocator_kmem = {
2839 1.112 bjh21 pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
2840 1.117 yamt .pa_backingmapptr = &kmem_map,
2841 1.112 bjh21 };
2842 1.112 bjh21
2843 1.112 bjh21 void *pool_subpage_alloc_nointr(struct pool *, int);
2844 1.112 bjh21 void pool_subpage_free_nointr(struct pool *, void *);
2845 1.112 bjh21
2846 1.112 bjh21 struct pool_allocator pool_allocator_nointr = {
2847 1.112 bjh21 pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
2848 1.117 yamt .pa_backingmapptr = &kmem_map,
2849 1.66 thorpej };
2850 1.66 thorpej #endif /* POOL_SUBPAGE */
2851 1.66 thorpej
2852 1.117 yamt static void *
2853 1.117 yamt pool_allocator_alloc(struct pool *pp, int flags)
2854 1.66 thorpej {
2855 1.117 yamt struct pool_allocator *pa = pp->pr_alloc;
2856 1.66 thorpej void *res;
2857 1.66 thorpej
2858 1.117 yamt res = (*pa->pa_alloc)(pp, flags);
2859 1.117 yamt if (res == NULL && (flags & PR_WAITOK) == 0) {
2860 1.66 thorpej /*
2861 1.117 yamt * We only run the drain hook here if PR_NOWAIT.
2862 1.117 yamt * In other cases, the hook will be run in
2863 1.117 yamt * pool_reclaim().
2864 1.66 thorpej */
2865 1.117 yamt if (pp->pr_drain_hook != NULL) {
2866 1.117 yamt (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
2867 1.117 yamt res = (*pa->pa_alloc)(pp, flags);
2868 1.66 thorpej }
2869 1.117 yamt }
2870 1.117 yamt return res;
2871 1.66 thorpej }
2872 1.66 thorpej
2873 1.117 yamt static void
2874 1.66 thorpej pool_allocator_free(struct pool *pp, void *v)
2875 1.66 thorpej {
2876 1.66 thorpej struct pool_allocator *pa = pp->pr_alloc;
2877 1.66 thorpej
2878 1.66 thorpej (*pa->pa_free)(pp, v);
2879 1.66 thorpej }
2880 1.66 thorpej
2881 1.66 thorpej void *
2882 1.124 yamt pool_page_alloc(struct pool *pp, int flags)
2883 1.66 thorpej {
2884 1.127 thorpej bool waitok = (flags & PR_WAITOK) ? true : false;
2885 1.66 thorpej
2886 1.100 yamt return ((void *) uvm_km_alloc_poolpage_cache(kmem_map, waitok));
2887 1.66 thorpej }
2888 1.66 thorpej
2889 1.66 thorpej void
2890 1.124 yamt pool_page_free(struct pool *pp, void *v)
2891 1.66 thorpej {
2892 1.66 thorpej
2893 1.98 yamt uvm_km_free_poolpage_cache(kmem_map, (vaddr_t) v);
2894 1.98 yamt }
2895 1.98 yamt
2896 1.98 yamt static void *
2897 1.124 yamt pool_page_alloc_meta(struct pool *pp, int flags)
2898 1.98 yamt {
2899 1.127 thorpej bool waitok = (flags & PR_WAITOK) ? true : false;
2900 1.98 yamt
2901 1.100 yamt return ((void *) uvm_km_alloc_poolpage(kmem_map, waitok));
2902 1.98 yamt }
2903 1.98 yamt
2904 1.98 yamt static void
2905 1.124 yamt pool_page_free_meta(struct pool *pp, void *v)
2906 1.98 yamt {
2907 1.98 yamt
2908 1.100 yamt uvm_km_free_poolpage(kmem_map, (vaddr_t) v);
2909 1.66 thorpej }
2910 1.66 thorpej
2911 1.66 thorpej #ifdef POOL_SUBPAGE
2912 1.66 thorpej /* Sub-page allocator, for machines with large hardware pages. */
2913 1.66 thorpej void *
2914 1.66 thorpej pool_subpage_alloc(struct pool *pp, int flags)
2915 1.66 thorpej {
2916 1.134 ad return pool_get(&psppool, flags);
2917 1.66 thorpej }
2918 1.66 thorpej
2919 1.66 thorpej void
2920 1.66 thorpej pool_subpage_free(struct pool *pp, void *v)
2921 1.66 thorpej {
2922 1.66 thorpej pool_put(&psppool, v);
2923 1.66 thorpej }
2924 1.66 thorpej
2925 1.66 thorpej /* We don't provide a real nointr allocator. Maybe later. */
2926 1.66 thorpej void *
2927 1.112 bjh21 pool_subpage_alloc_nointr(struct pool *pp, int flags)
2928 1.66 thorpej {
2929 1.66 thorpej
2930 1.66 thorpej return (pool_subpage_alloc(pp, flags));
2931 1.66 thorpej }
2932 1.66 thorpej
2933 1.66 thorpej void
2934 1.112 bjh21 pool_subpage_free_nointr(struct pool *pp, void *v)
2935 1.66 thorpej {
2936 1.66 thorpej
2937 1.66 thorpej pool_subpage_free(pp, v);
2938 1.66 thorpej }
2939 1.112 bjh21 #endif /* POOL_SUBPAGE */
2940 1.66 thorpej void *
2941 1.124 yamt pool_page_alloc_nointr(struct pool *pp, int flags)
2942 1.66 thorpej {
2943 1.127 thorpej bool waitok = (flags & PR_WAITOK) ? true : false;
2944 1.66 thorpej
2945 1.100 yamt return ((void *) uvm_km_alloc_poolpage_cache(kernel_map, waitok));
2946 1.66 thorpej }
2947 1.66 thorpej
2948 1.66 thorpej void
2949 1.124 yamt pool_page_free_nointr(struct pool *pp, void *v)
2950 1.66 thorpej {
2951 1.66 thorpej
2952 1.98 yamt uvm_km_free_poolpage_cache(kernel_map, (vaddr_t) v);
2953 1.66 thorpej }
2954 1.141 yamt
2955 1.141 yamt #if defined(DDB)
2956 1.141 yamt static bool
2957 1.141 yamt pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
2958 1.141 yamt {
2959 1.141 yamt
2960 1.141 yamt return (uintptr_t)ph->ph_page <= addr &&
2961 1.141 yamt addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz;
2962 1.141 yamt }
2963 1.141 yamt
2964 1.143 yamt static bool
2965 1.143 yamt pool_in_item(struct pool *pp, void *item, uintptr_t addr)
2966 1.143 yamt {
2967 1.143 yamt
2968 1.143 yamt return (uintptr_t)item <= addr && addr < (uintptr_t)item + pp->pr_size;
2969 1.143 yamt }
2970 1.143 yamt
2971 1.143 yamt static bool
2972 1.143 yamt pool_in_cg(struct pool *pp, struct pool_cache_group *pcg, uintptr_t addr)
2973 1.143 yamt {
2974 1.143 yamt int i;
2975 1.143 yamt
2976 1.143 yamt if (pcg == NULL) {
2977 1.143 yamt return false;
2978 1.143 yamt }
2979 1.144 yamt for (i = 0; i < pcg->pcg_avail; i++) {
2980 1.143 yamt if (pool_in_item(pp, pcg->pcg_objects[i].pcgo_va, addr)) {
2981 1.143 yamt return true;
2982 1.143 yamt }
2983 1.143 yamt }
2984 1.143 yamt return false;
2985 1.143 yamt }
2986 1.143 yamt
2987 1.143 yamt static bool
2988 1.143 yamt pool_allocated(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
2989 1.143 yamt {
2990 1.143 yamt
2991 1.143 yamt if ((pp->pr_roflags & PR_NOTOUCH) != 0) {
2992 1.143 yamt unsigned int idx = pr_item_notouch_index(pp, ph, (void *)addr);
2993 1.143 yamt pool_item_bitmap_t *bitmap =
2994 1.143 yamt ph->ph_bitmap + (idx / BITMAP_SIZE);
2995 1.143 yamt pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
2996 1.143 yamt
2997 1.143 yamt return (*bitmap & mask) == 0;
2998 1.143 yamt } else {
2999 1.143 yamt struct pool_item *pi;
3000 1.143 yamt
3001 1.143 yamt LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
3002 1.143 yamt if (pool_in_item(pp, pi, addr)) {
3003 1.143 yamt return false;
3004 1.143 yamt }
3005 1.143 yamt }
3006 1.143 yamt return true;
3007 1.143 yamt }
3008 1.143 yamt }
3009 1.143 yamt
3010 1.141 yamt void
3011 1.141 yamt pool_whatis(uintptr_t addr, void (*pr)(const char *, ...))
3012 1.141 yamt {
3013 1.141 yamt struct pool *pp;
3014 1.141 yamt
3015 1.145 ad TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
3016 1.141 yamt struct pool_item_header *ph;
3017 1.141 yamt uintptr_t item;
3018 1.143 yamt bool allocated = true;
3019 1.143 yamt bool incache = false;
3020 1.143 yamt bool incpucache = false;
3021 1.143 yamt char cpucachestr[32];
3022 1.141 yamt
3023 1.141 yamt if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
3024 1.141 yamt LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
3025 1.141 yamt if (pool_in_page(pp, ph, addr)) {
3026 1.141 yamt goto found;
3027 1.141 yamt }
3028 1.141 yamt }
3029 1.141 yamt LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
3030 1.141 yamt if (pool_in_page(pp, ph, addr)) {
3031 1.143 yamt allocated =
3032 1.143 yamt pool_allocated(pp, ph, addr);
3033 1.143 yamt goto found;
3034 1.143 yamt }
3035 1.143 yamt }
3036 1.143 yamt LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
3037 1.143 yamt if (pool_in_page(pp, ph, addr)) {
3038 1.143 yamt allocated = false;
3039 1.141 yamt goto found;
3040 1.141 yamt }
3041 1.141 yamt }
3042 1.141 yamt continue;
3043 1.141 yamt } else {
3044 1.141 yamt ph = pr_find_pagehead_noalign(pp, (void *)addr);
3045 1.141 yamt if (ph == NULL || !pool_in_page(pp, ph, addr)) {
3046 1.141 yamt continue;
3047 1.141 yamt }
3048 1.143 yamt allocated = pool_allocated(pp, ph, addr);
3049 1.141 yamt }
3050 1.141 yamt found:
3051 1.143 yamt if (allocated && pp->pr_cache) {
3052 1.143 yamt pool_cache_t pc = pp->pr_cache;
3053 1.143 yamt struct pool_cache_group *pcg;
3054 1.143 yamt int i;
3055 1.143 yamt
3056 1.143 yamt for (pcg = pc->pc_fullgroups; pcg != NULL;
3057 1.143 yamt pcg = pcg->pcg_next) {
3058 1.143 yamt if (pool_in_cg(pp, pcg, addr)) {
3059 1.143 yamt incache = true;
3060 1.143 yamt goto print;
3061 1.143 yamt }
3062 1.143 yamt }
3063 1.183 ad for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
3064 1.143 yamt pool_cache_cpu_t *cc;
3065 1.143 yamt
3066 1.143 yamt if ((cc = pc->pc_cpus[i]) == NULL) {
3067 1.143 yamt continue;
3068 1.143 yamt }
3069 1.143 yamt if (pool_in_cg(pp, cc->cc_current, addr) ||
3070 1.143 yamt pool_in_cg(pp, cc->cc_previous, addr)) {
3071 1.143 yamt struct cpu_info *ci =
3072 1.170 ad cpu_lookup(i);
3073 1.143 yamt
3074 1.143 yamt incpucache = true;
3075 1.143 yamt snprintf(cpucachestr,
3076 1.143 yamt sizeof(cpucachestr),
3077 1.143 yamt "cached by CPU %u",
3078 1.153 martin ci->ci_index);
3079 1.143 yamt goto print;
3080 1.143 yamt }
3081 1.143 yamt }
3082 1.143 yamt }
3083 1.143 yamt print:
3084 1.141 yamt item = (uintptr_t)ph->ph_page + ph->ph_off;
3085 1.141 yamt item = item + rounddown(addr - item, pp->pr_size);
3086 1.143 yamt (*pr)("%p is %p+%zu in POOL '%s' (%s)\n",
3087 1.141 yamt (void *)addr, item, (size_t)(addr - item),
3088 1.143 yamt pp->pr_wchan,
3089 1.143 yamt incpucache ? cpucachestr :
3090 1.143 yamt incache ? "cached" : allocated ? "allocated" : "free");
3091 1.141 yamt }
3092 1.141 yamt }
3093 1.141 yamt #endif /* defined(DDB) */
3094