Home | History | Annotate | Line # | Download | only in kern
subr_pool.c revision 1.190.2.1
      1  1.190.2.1      yamt /*	$NetBSD: subr_pool.c,v 1.190.2.1 2012/04/17 00:08:28 yamt Exp $	*/
      2        1.1        pk 
      3        1.1        pk /*-
      4      1.183        ad  * Copyright (c) 1997, 1999, 2000, 2002, 2007, 2008, 2010
      5      1.183        ad  *     The NetBSD Foundation, Inc.
      6        1.1        pk  * All rights reserved.
      7        1.1        pk  *
      8        1.1        pk  * This code is derived from software contributed to The NetBSD Foundation
      9       1.20   thorpej  * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
     10      1.134        ad  * Simulation Facility, NASA Ames Research Center, and by Andrew Doran.
     11        1.1        pk  *
     12        1.1        pk  * Redistribution and use in source and binary forms, with or without
     13        1.1        pk  * modification, are permitted provided that the following conditions
     14        1.1        pk  * are met:
     15        1.1        pk  * 1. Redistributions of source code must retain the above copyright
     16        1.1        pk  *    notice, this list of conditions and the following disclaimer.
     17        1.1        pk  * 2. Redistributions in binary form must reproduce the above copyright
     18        1.1        pk  *    notice, this list of conditions and the following disclaimer in the
     19        1.1        pk  *    documentation and/or other materials provided with the distribution.
     20        1.1        pk  *
     21        1.1        pk  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     22        1.1        pk  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     23        1.1        pk  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     24        1.1        pk  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     25        1.1        pk  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     26        1.1        pk  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     27        1.1        pk  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     28        1.1        pk  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     29        1.1        pk  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     30        1.1        pk  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     31        1.1        pk  * POSSIBILITY OF SUCH DAMAGE.
     32        1.1        pk  */
     33       1.64     lukem 
     34       1.64     lukem #include <sys/cdefs.h>
     35  1.190.2.1      yamt __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.190.2.1 2012/04/17 00:08:28 yamt Exp $");
     36       1.24    scottr 
     37      1.141      yamt #include "opt_ddb.h"
     38       1.25   thorpej #include "opt_pool.h"
     39       1.24    scottr #include "opt_poollog.h"
     40       1.28   thorpej #include "opt_lockdebug.h"
     41        1.1        pk 
     42        1.1        pk #include <sys/param.h>
     43        1.1        pk #include <sys/systm.h>
     44      1.135      yamt #include <sys/bitops.h>
     45        1.1        pk #include <sys/proc.h>
     46        1.1        pk #include <sys/errno.h>
     47        1.1        pk #include <sys/kernel.h>
     48        1.1        pk #include <sys/malloc.h>
     49  1.190.2.1      yamt #include <sys/vmem.h>
     50        1.1        pk #include <sys/pool.h>
     51       1.20   thorpej #include <sys/syslog.h>
     52      1.125        ad #include <sys/debug.h>
     53      1.134        ad #include <sys/lockdebug.h>
     54      1.134        ad #include <sys/xcall.h>
     55      1.134        ad #include <sys/cpu.h>
     56      1.145        ad #include <sys/atomic.h>
     57        1.3        pk 
     58      1.187  uebayasi #include <uvm/uvm_extern.h>
     59        1.3        pk 
     60        1.1        pk /*
     61        1.1        pk  * Pool resource management utility.
     62        1.3        pk  *
     63       1.88       chs  * Memory is allocated in pages which are split into pieces according to
     64       1.88       chs  * the pool item size. Each page is kept on one of three lists in the
     65       1.88       chs  * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
     66       1.88       chs  * for empty, full and partially-full pages respectively. The individual
     67       1.88       chs  * pool items are on a linked list headed by `ph_itemlist' in each page
     68       1.88       chs  * header. The memory for building the page list is either taken from
     69       1.88       chs  * the allocated pages themselves (for small pool items) or taken from
     70       1.88       chs  * an internal pool of page headers (`phpool').
     71        1.1        pk  */
     72        1.1        pk 
     73        1.3        pk /* List of all pools */
     74      1.173     rmind static TAILQ_HEAD(, pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
     75      1.134        ad 
     76        1.3        pk /* Private pool for page header structures */
     77       1.97      yamt #define	PHPOOL_MAX	8
     78       1.97      yamt static struct pool phpool[PHPOOL_MAX];
     79      1.135      yamt #define	PHPOOL_FREELIST_NELEM(idx) \
     80      1.135      yamt 	(((idx) == 0) ? 0 : BITMAP_SIZE * (1 << (idx)))
     81        1.3        pk 
     82       1.62     bjh21 #ifdef POOL_SUBPAGE
     83       1.62     bjh21 /* Pool of subpages for use by normal pools. */
     84       1.62     bjh21 static struct pool psppool;
     85       1.62     bjh21 #endif
     86       1.62     bjh21 
     87       1.98      yamt static void *pool_page_alloc_meta(struct pool *, int);
     88       1.98      yamt static void pool_page_free_meta(struct pool *, void *);
     89       1.98      yamt 
     90       1.98      yamt /* allocator for pool metadata */
     91      1.134        ad struct pool_allocator pool_allocator_meta = {
     92  1.190.2.1      yamt 	.pa_alloc = pool_page_alloc_meta,
     93  1.190.2.1      yamt 	.pa_free = pool_page_free_meta,
     94  1.190.2.1      yamt 	.pa_pagesz = 0
     95       1.98      yamt };
     96       1.98      yamt 
     97        1.3        pk /* # of seconds to retain page after last use */
     98        1.3        pk int pool_inactive_time = 10;
     99        1.3        pk 
    100        1.3        pk /* Next candidate for drainage (see pool_drain()) */
    101       1.23   thorpej static struct pool	*drainpp;
    102       1.23   thorpej 
    103      1.134        ad /* This lock protects both pool_head and drainpp. */
    104      1.134        ad static kmutex_t pool_head_lock;
    105      1.134        ad static kcondvar_t pool_busy;
    106        1.3        pk 
    107      1.178      elad /* This lock protects initialization of a potentially shared pool allocator */
    108      1.178      elad static kmutex_t pool_allocator_lock;
    109      1.178      elad 
    110      1.135      yamt typedef uint32_t pool_item_bitmap_t;
    111      1.135      yamt #define	BITMAP_SIZE	(CHAR_BIT * sizeof(pool_item_bitmap_t))
    112      1.135      yamt #define	BITMAP_MASK	(BITMAP_SIZE - 1)
    113       1.99      yamt 
    114        1.3        pk struct pool_item_header {
    115        1.3        pk 	/* Page headers */
    116       1.88       chs 	LIST_ENTRY(pool_item_header)
    117        1.3        pk 				ph_pagelist;	/* pool page list */
    118       1.88       chs 	SPLAY_ENTRY(pool_item_header)
    119       1.88       chs 				ph_node;	/* Off-page page headers */
    120      1.128  christos 	void *			ph_page;	/* this page's address */
    121      1.151      yamt 	uint32_t		ph_time;	/* last referenced */
    122      1.135      yamt 	uint16_t		ph_nmissing;	/* # of chunks in use */
    123      1.141      yamt 	uint16_t		ph_off;		/* start offset in page */
    124       1.97      yamt 	union {
    125       1.97      yamt 		/* !PR_NOTOUCH */
    126       1.97      yamt 		struct {
    127      1.102       chs 			LIST_HEAD(, pool_item)
    128       1.97      yamt 				phu_itemlist;	/* chunk list for this page */
    129       1.97      yamt 		} phu_normal;
    130       1.97      yamt 		/* PR_NOTOUCH */
    131       1.97      yamt 		struct {
    132      1.141      yamt 			pool_item_bitmap_t phu_bitmap[1];
    133       1.97      yamt 		} phu_notouch;
    134       1.97      yamt 	} ph_u;
    135        1.3        pk };
    136       1.97      yamt #define	ph_itemlist	ph_u.phu_normal.phu_itemlist
    137      1.135      yamt #define	ph_bitmap	ph_u.phu_notouch.phu_bitmap
    138        1.3        pk 
    139        1.1        pk struct pool_item {
    140        1.3        pk #ifdef DIAGNOSTIC
    141       1.82   thorpej 	u_int pi_magic;
    142       1.33       chs #endif
    143      1.134        ad #define	PI_MAGIC 0xdeaddeadU
    144        1.3        pk 	/* Other entries use only this list entry */
    145      1.102       chs 	LIST_ENTRY(pool_item)	pi_list;
    146        1.3        pk };
    147        1.3        pk 
    148       1.53   thorpej #define	POOL_NEEDS_CATCHUP(pp)						\
    149       1.53   thorpej 	((pp)->pr_nitems < (pp)->pr_minitems)
    150       1.53   thorpej 
    151       1.43   thorpej /*
    152       1.43   thorpej  * Pool cache management.
    153       1.43   thorpej  *
    154       1.43   thorpej  * Pool caches provide a way for constructed objects to be cached by the
    155       1.43   thorpej  * pool subsystem.  This can lead to performance improvements by avoiding
    156       1.43   thorpej  * needless object construction/destruction; it is deferred until absolutely
    157       1.43   thorpej  * necessary.
    158       1.43   thorpej  *
    159      1.134        ad  * Caches are grouped into cache groups.  Each cache group references up
    160      1.134        ad  * to PCG_NUMOBJECTS constructed objects.  When a cache allocates an
    161      1.134        ad  * object from the pool, it calls the object's constructor and places it
    162      1.134        ad  * into a cache group.  When a cache group frees an object back to the
    163      1.134        ad  * pool, it first calls the object's destructor.  This allows the object
    164      1.134        ad  * to persist in constructed form while freed to the cache.
    165      1.134        ad  *
    166      1.134        ad  * The pool references each cache, so that when a pool is drained by the
    167      1.134        ad  * pagedaemon, it can drain each individual cache as well.  Each time a
    168      1.134        ad  * cache is drained, the most idle cache group is freed to the pool in
    169      1.134        ad  * its entirety.
    170       1.43   thorpej  *
    171       1.43   thorpej  * Pool caches are layed on top of pools.  By layering them, we can avoid
    172       1.43   thorpej  * the complexity of cache management for pools which would not benefit
    173       1.43   thorpej  * from it.
    174       1.43   thorpej  */
    175       1.43   thorpej 
    176      1.142        ad static struct pool pcg_normal_pool;
    177      1.142        ad static struct pool pcg_large_pool;
    178      1.134        ad static struct pool cache_pool;
    179      1.134        ad static struct pool cache_cpu_pool;
    180        1.3        pk 
    181      1.189     pooka pool_cache_t pnbuf_cache;	/* pathname buffer cache */
    182      1.189     pooka 
    183      1.145        ad /* List of all caches. */
    184      1.145        ad TAILQ_HEAD(,pool_cache) pool_cache_head =
    185      1.145        ad     TAILQ_HEAD_INITIALIZER(pool_cache_head);
    186      1.145        ad 
    187      1.162        ad int pool_cache_disable;		/* global disable for caching */
    188      1.169      yamt static const pcg_t pcg_dummy;	/* zero sized: always empty, yet always full */
    189      1.145        ad 
    190      1.162        ad static bool	pool_cache_put_slow(pool_cache_cpu_t *, int,
    191      1.162        ad 				    void *);
    192      1.162        ad static bool	pool_cache_get_slow(pool_cache_cpu_t *, int,
    193      1.162        ad 				    void **, paddr_t *, int);
    194      1.134        ad static void	pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
    195      1.134        ad static void	pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
    196      1.175       jym static void	pool_cache_invalidate_cpu(pool_cache_t, u_int);
    197      1.134        ad static void	pool_cache_xcall(pool_cache_t);
    198        1.3        pk 
    199       1.42   thorpej static int	pool_catchup(struct pool *);
    200      1.128  christos static void	pool_prime_page(struct pool *, void *,
    201       1.55   thorpej 		    struct pool_item_header *);
    202       1.88       chs static void	pool_update_curpage(struct pool *);
    203       1.66   thorpej 
    204      1.113      yamt static int	pool_grow(struct pool *, int);
    205      1.117      yamt static void	*pool_allocator_alloc(struct pool *, int);
    206      1.117      yamt static void	pool_allocator_free(struct pool *, void *);
    207        1.3        pk 
    208       1.97      yamt static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
    209       1.88       chs 	void (*)(const char *, ...));
    210       1.42   thorpej static void pool_print1(struct pool *, const char *,
    211       1.42   thorpej 	void (*)(const char *, ...));
    212        1.3        pk 
    213       1.88       chs static int pool_chk_page(struct pool *, const char *,
    214       1.88       chs 			 struct pool_item_header *);
    215       1.88       chs 
    216        1.3        pk /*
    217       1.52   thorpej  * Pool log entry. An array of these is allocated in pool_init().
    218        1.3        pk  */
    219        1.3        pk struct pool_log {
    220        1.3        pk 	const char	*pl_file;
    221        1.3        pk 	long		pl_line;
    222        1.3        pk 	int		pl_action;
    223       1.25   thorpej #define	PRLOG_GET	1
    224       1.25   thorpej #define	PRLOG_PUT	2
    225        1.3        pk 	void		*pl_addr;
    226        1.1        pk };
    227        1.1        pk 
    228       1.86      matt #ifdef POOL_DIAGNOSTIC
    229        1.3        pk /* Number of entries in pool log buffers */
    230       1.17   thorpej #ifndef POOL_LOGSIZE
    231       1.17   thorpej #define	POOL_LOGSIZE	10
    232       1.17   thorpej #endif
    233       1.17   thorpej 
    234       1.17   thorpej int pool_logsize = POOL_LOGSIZE;
    235        1.1        pk 
    236      1.110     perry static inline void
    237       1.42   thorpej pr_log(struct pool *pp, void *v, int action, const char *file, long line)
    238        1.3        pk {
    239      1.179   mlelstv 	int n;
    240        1.3        pk 	struct pool_log *pl;
    241        1.3        pk 
    242       1.20   thorpej 	if ((pp->pr_roflags & PR_LOGGING) == 0)
    243        1.3        pk 		return;
    244        1.3        pk 
    245      1.179   mlelstv 	if (pp->pr_log == NULL) {
    246      1.179   mlelstv 		if (kmem_map != NULL)
    247      1.179   mlelstv 			pp->pr_log = malloc(
    248      1.179   mlelstv 				pool_logsize * sizeof(struct pool_log),
    249      1.179   mlelstv 				M_TEMP, M_NOWAIT | M_ZERO);
    250      1.179   mlelstv 		if (pp->pr_log == NULL)
    251      1.179   mlelstv 			return;
    252      1.179   mlelstv 		pp->pr_curlogentry = 0;
    253      1.179   mlelstv 		pp->pr_logsize = pool_logsize;
    254      1.179   mlelstv 	}
    255      1.179   mlelstv 
    256        1.3        pk 	/*
    257        1.3        pk 	 * Fill in the current entry. Wrap around and overwrite
    258        1.3        pk 	 * the oldest entry if necessary.
    259        1.3        pk 	 */
    260      1.179   mlelstv 	n = pp->pr_curlogentry;
    261        1.3        pk 	pl = &pp->pr_log[n];
    262        1.3        pk 	pl->pl_file = file;
    263        1.3        pk 	pl->pl_line = line;
    264        1.3        pk 	pl->pl_action = action;
    265        1.3        pk 	pl->pl_addr = v;
    266        1.3        pk 	if (++n >= pp->pr_logsize)
    267        1.3        pk 		n = 0;
    268        1.3        pk 	pp->pr_curlogentry = n;
    269        1.3        pk }
    270        1.3        pk 
    271        1.3        pk static void
    272       1.42   thorpej pr_printlog(struct pool *pp, struct pool_item *pi,
    273       1.42   thorpej     void (*pr)(const char *, ...))
    274        1.3        pk {
    275        1.3        pk 	int i = pp->pr_logsize;
    276        1.3        pk 	int n = pp->pr_curlogentry;
    277        1.3        pk 
    278      1.179   mlelstv 	if (pp->pr_log == NULL)
    279        1.3        pk 		return;
    280        1.3        pk 
    281        1.3        pk 	/*
    282        1.3        pk 	 * Print all entries in this pool's log.
    283        1.3        pk 	 */
    284        1.3        pk 	while (i-- > 0) {
    285        1.3        pk 		struct pool_log *pl = &pp->pr_log[n];
    286        1.3        pk 		if (pl->pl_action != 0) {
    287       1.25   thorpej 			if (pi == NULL || pi == pl->pl_addr) {
    288       1.25   thorpej 				(*pr)("\tlog entry %d:\n", i);
    289       1.25   thorpej 				(*pr)("\t\taction = %s, addr = %p\n",
    290       1.25   thorpej 				    pl->pl_action == PRLOG_GET ? "get" : "put",
    291       1.25   thorpej 				    pl->pl_addr);
    292       1.25   thorpej 				(*pr)("\t\tfile: %s at line %lu\n",
    293       1.25   thorpej 				    pl->pl_file, pl->pl_line);
    294       1.25   thorpej 			}
    295        1.3        pk 		}
    296        1.3        pk 		if (++n >= pp->pr_logsize)
    297        1.3        pk 			n = 0;
    298        1.3        pk 	}
    299        1.3        pk }
    300       1.25   thorpej 
    301      1.110     perry static inline void
    302       1.42   thorpej pr_enter(struct pool *pp, const char *file, long line)
    303       1.25   thorpej {
    304       1.25   thorpej 
    305       1.34   thorpej 	if (__predict_false(pp->pr_entered_file != NULL)) {
    306       1.25   thorpej 		printf("pool %s: reentrancy at file %s line %ld\n",
    307       1.25   thorpej 		    pp->pr_wchan, file, line);
    308       1.25   thorpej 		printf("         previous entry at file %s line %ld\n",
    309       1.25   thorpej 		    pp->pr_entered_file, pp->pr_entered_line);
    310       1.25   thorpej 		panic("pr_enter");
    311       1.25   thorpej 	}
    312       1.25   thorpej 
    313       1.25   thorpej 	pp->pr_entered_file = file;
    314       1.25   thorpej 	pp->pr_entered_line = line;
    315       1.25   thorpej }
    316       1.25   thorpej 
    317      1.110     perry static inline void
    318       1.42   thorpej pr_leave(struct pool *pp)
    319       1.25   thorpej {
    320       1.25   thorpej 
    321       1.34   thorpej 	if (__predict_false(pp->pr_entered_file == NULL)) {
    322       1.25   thorpej 		printf("pool %s not entered?\n", pp->pr_wchan);
    323       1.25   thorpej 		panic("pr_leave");
    324       1.25   thorpej 	}
    325       1.25   thorpej 
    326       1.25   thorpej 	pp->pr_entered_file = NULL;
    327       1.25   thorpej 	pp->pr_entered_line = 0;
    328       1.25   thorpej }
    329       1.25   thorpej 
    330      1.110     perry static inline void
    331       1.42   thorpej pr_enter_check(struct pool *pp, void (*pr)(const char *, ...))
    332       1.25   thorpej {
    333       1.25   thorpej 
    334       1.25   thorpej 	if (pp->pr_entered_file != NULL)
    335       1.25   thorpej 		(*pr)("\n\tcurrently entered from file %s line %ld\n",
    336       1.25   thorpej 		    pp->pr_entered_file, pp->pr_entered_line);
    337       1.25   thorpej }
    338        1.3        pk #else
    339       1.25   thorpej #define	pr_log(pp, v, action, file, line)
    340       1.25   thorpej #define	pr_printlog(pp, pi, pr)
    341       1.25   thorpej #define	pr_enter(pp, file, line)
    342       1.25   thorpej #define	pr_leave(pp)
    343       1.25   thorpej #define	pr_enter_check(pp, pr)
    344       1.59   thorpej #endif /* POOL_DIAGNOSTIC */
    345        1.3        pk 
    346      1.135      yamt static inline unsigned int
    347       1.97      yamt pr_item_notouch_index(const struct pool *pp, const struct pool_item_header *ph,
    348       1.97      yamt     const void *v)
    349       1.97      yamt {
    350       1.97      yamt 	const char *cp = v;
    351      1.135      yamt 	unsigned int idx;
    352       1.97      yamt 
    353       1.97      yamt 	KASSERT(pp->pr_roflags & PR_NOTOUCH);
    354      1.128  christos 	idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
    355       1.97      yamt 	KASSERT(idx < pp->pr_itemsperpage);
    356       1.97      yamt 	return idx;
    357       1.97      yamt }
    358       1.97      yamt 
    359      1.110     perry static inline void
    360       1.97      yamt pr_item_notouch_put(const struct pool *pp, struct pool_item_header *ph,
    361       1.97      yamt     void *obj)
    362       1.97      yamt {
    363      1.135      yamt 	unsigned int idx = pr_item_notouch_index(pp, ph, obj);
    364      1.135      yamt 	pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE);
    365      1.135      yamt 	pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
    366       1.97      yamt 
    367      1.135      yamt 	KASSERT((*bitmap & mask) == 0);
    368      1.135      yamt 	*bitmap |= mask;
    369       1.97      yamt }
    370       1.97      yamt 
    371      1.110     perry static inline void *
    372       1.97      yamt pr_item_notouch_get(const struct pool *pp, struct pool_item_header *ph)
    373       1.97      yamt {
    374      1.135      yamt 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
    375      1.135      yamt 	unsigned int idx;
    376      1.135      yamt 	int i;
    377       1.97      yamt 
    378      1.135      yamt 	for (i = 0; ; i++) {
    379      1.135      yamt 		int bit;
    380       1.97      yamt 
    381      1.135      yamt 		KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage);
    382      1.135      yamt 		bit = ffs32(bitmap[i]);
    383      1.135      yamt 		if (bit) {
    384      1.135      yamt 			pool_item_bitmap_t mask;
    385      1.135      yamt 
    386      1.135      yamt 			bit--;
    387      1.135      yamt 			idx = (i * BITMAP_SIZE) + bit;
    388      1.135      yamt 			mask = 1 << bit;
    389      1.135      yamt 			KASSERT((bitmap[i] & mask) != 0);
    390      1.135      yamt 			bitmap[i] &= ~mask;
    391      1.135      yamt 			break;
    392      1.135      yamt 		}
    393      1.135      yamt 	}
    394      1.135      yamt 	KASSERT(idx < pp->pr_itemsperpage);
    395      1.128  christos 	return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
    396       1.97      yamt }
    397       1.97      yamt 
    398      1.135      yamt static inline void
    399      1.141      yamt pr_item_notouch_init(const struct pool *pp, struct pool_item_header *ph)
    400      1.135      yamt {
    401      1.135      yamt 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
    402      1.135      yamt 	const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE);
    403      1.135      yamt 	int i;
    404      1.135      yamt 
    405      1.135      yamt 	for (i = 0; i < n; i++) {
    406      1.135      yamt 		bitmap[i] = (pool_item_bitmap_t)-1;
    407      1.135      yamt 	}
    408      1.135      yamt }
    409      1.135      yamt 
    410      1.110     perry static inline int
    411       1.88       chs phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
    412       1.88       chs {
    413      1.121      yamt 
    414      1.121      yamt 	/*
    415      1.121      yamt 	 * we consider pool_item_header with smaller ph_page bigger.
    416      1.121      yamt 	 * (this unnatural ordering is for the benefit of pr_find_pagehead.)
    417      1.121      yamt 	 */
    418      1.121      yamt 
    419       1.88       chs 	if (a->ph_page < b->ph_page)
    420      1.121      yamt 		return (1);
    421      1.121      yamt 	else if (a->ph_page > b->ph_page)
    422       1.88       chs 		return (-1);
    423       1.88       chs 	else
    424       1.88       chs 		return (0);
    425       1.88       chs }
    426       1.88       chs 
    427       1.88       chs SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
    428       1.88       chs SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
    429       1.88       chs 
    430      1.141      yamt static inline struct pool_item_header *
    431      1.141      yamt pr_find_pagehead_noalign(struct pool *pp, void *v)
    432      1.141      yamt {
    433      1.141      yamt 	struct pool_item_header *ph, tmp;
    434      1.141      yamt 
    435      1.141      yamt 	tmp.ph_page = (void *)(uintptr_t)v;
    436      1.141      yamt 	ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
    437      1.141      yamt 	if (ph == NULL) {
    438      1.141      yamt 		ph = SPLAY_ROOT(&pp->pr_phtree);
    439      1.141      yamt 		if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
    440      1.141      yamt 			ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
    441      1.141      yamt 		}
    442      1.141      yamt 		KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
    443      1.141      yamt 	}
    444      1.141      yamt 
    445      1.141      yamt 	return ph;
    446      1.141      yamt }
    447      1.141      yamt 
    448        1.3        pk /*
    449      1.121      yamt  * Return the pool page header based on item address.
    450        1.3        pk  */
    451      1.110     perry static inline struct pool_item_header *
    452      1.121      yamt pr_find_pagehead(struct pool *pp, void *v)
    453        1.3        pk {
    454       1.88       chs 	struct pool_item_header *ph, tmp;
    455        1.3        pk 
    456      1.121      yamt 	if ((pp->pr_roflags & PR_NOALIGN) != 0) {
    457      1.141      yamt 		ph = pr_find_pagehead_noalign(pp, v);
    458      1.121      yamt 	} else {
    459      1.128  christos 		void *page =
    460      1.128  christos 		    (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask);
    461      1.121      yamt 
    462      1.121      yamt 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
    463      1.128  christos 			ph = (struct pool_item_header *)((char *)page + pp->pr_phoffset);
    464      1.121      yamt 		} else {
    465      1.121      yamt 			tmp.ph_page = page;
    466      1.121      yamt 			ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
    467      1.121      yamt 		}
    468      1.121      yamt 	}
    469        1.3        pk 
    470      1.121      yamt 	KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
    471      1.128  christos 	    ((char *)ph->ph_page <= (char *)v &&
    472      1.128  christos 	    (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
    473       1.88       chs 	return ph;
    474        1.3        pk }
    475        1.3        pk 
    476      1.101   thorpej static void
    477      1.101   thorpej pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
    478      1.101   thorpej {
    479      1.101   thorpej 	struct pool_item_header *ph;
    480      1.101   thorpej 
    481      1.101   thorpej 	while ((ph = LIST_FIRST(pq)) != NULL) {
    482      1.101   thorpej 		LIST_REMOVE(ph, ph_pagelist);
    483      1.101   thorpej 		pool_allocator_free(pp, ph->ph_page);
    484      1.134        ad 		if ((pp->pr_roflags & PR_PHINPAGE) == 0)
    485      1.101   thorpej 			pool_put(pp->pr_phpool, ph);
    486      1.101   thorpej 	}
    487      1.101   thorpej }
    488      1.101   thorpej 
    489        1.3        pk /*
    490        1.3        pk  * Remove a page from the pool.
    491        1.3        pk  */
    492      1.110     perry static inline void
    493       1.61       chs pr_rmpage(struct pool *pp, struct pool_item_header *ph,
    494       1.61       chs      struct pool_pagelist *pq)
    495        1.3        pk {
    496        1.3        pk 
    497      1.134        ad 	KASSERT(mutex_owned(&pp->pr_lock));
    498       1.91      yamt 
    499        1.3        pk 	/*
    500        1.7   thorpej 	 * If the page was idle, decrement the idle page count.
    501        1.3        pk 	 */
    502        1.6   thorpej 	if (ph->ph_nmissing == 0) {
    503        1.6   thorpej #ifdef DIAGNOSTIC
    504        1.6   thorpej 		if (pp->pr_nidle == 0)
    505        1.6   thorpej 			panic("pr_rmpage: nidle inconsistent");
    506       1.20   thorpej 		if (pp->pr_nitems < pp->pr_itemsperpage)
    507       1.20   thorpej 			panic("pr_rmpage: nitems inconsistent");
    508        1.6   thorpej #endif
    509        1.6   thorpej 		pp->pr_nidle--;
    510        1.6   thorpej 	}
    511        1.7   thorpej 
    512       1.20   thorpej 	pp->pr_nitems -= pp->pr_itemsperpage;
    513       1.20   thorpej 
    514        1.7   thorpej 	/*
    515      1.101   thorpej 	 * Unlink the page from the pool and queue it for release.
    516        1.7   thorpej 	 */
    517       1.88       chs 	LIST_REMOVE(ph, ph_pagelist);
    518       1.91      yamt 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
    519       1.91      yamt 		SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
    520      1.101   thorpej 	LIST_INSERT_HEAD(pq, ph, ph_pagelist);
    521      1.101   thorpej 
    522        1.7   thorpej 	pp->pr_npages--;
    523        1.7   thorpej 	pp->pr_npagefree++;
    524        1.6   thorpej 
    525       1.88       chs 	pool_update_curpage(pp);
    526        1.3        pk }
    527        1.3        pk 
    528        1.3        pk /*
    529       1.94    simonb  * Initialize all the pools listed in the "pools" link set.
    530       1.94    simonb  */
    531       1.94    simonb void
    532      1.117      yamt pool_subsystem_init(void)
    533       1.94    simonb {
    534  1.190.2.1      yamt 	size_t size;
    535  1.190.2.1      yamt 	int idx;
    536       1.94    simonb 
    537      1.134        ad 	mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
    538      1.179   mlelstv 	mutex_init(&pool_allocator_lock, MUTEX_DEFAULT, IPL_NONE);
    539      1.134        ad 	cv_init(&pool_busy, "poolbusy");
    540      1.134        ad 
    541  1.190.2.1      yamt 	/*
    542  1.190.2.1      yamt 	 * Initialize private page header pool and cache magazine pool if we
    543  1.190.2.1      yamt 	 * haven't done so yet.
    544  1.190.2.1      yamt 	 */
    545  1.190.2.1      yamt 	for (idx = 0; idx < PHPOOL_MAX; idx++) {
    546  1.190.2.1      yamt 		static char phpool_names[PHPOOL_MAX][6+1+6+1];
    547  1.190.2.1      yamt 		int nelem;
    548  1.190.2.1      yamt 		size_t sz;
    549  1.190.2.1      yamt 
    550  1.190.2.1      yamt 		nelem = PHPOOL_FREELIST_NELEM(idx);
    551  1.190.2.1      yamt 		snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
    552  1.190.2.1      yamt 		    "phpool-%d", nelem);
    553  1.190.2.1      yamt 		sz = sizeof(struct pool_item_header);
    554  1.190.2.1      yamt 		if (nelem) {
    555  1.190.2.1      yamt 			sz = offsetof(struct pool_item_header,
    556  1.190.2.1      yamt 			    ph_bitmap[howmany(nelem, BITMAP_SIZE)]);
    557  1.190.2.1      yamt 		}
    558  1.190.2.1      yamt 		pool_init(&phpool[idx], sz, 0, 0, 0,
    559  1.190.2.1      yamt 		    phpool_names[idx], &pool_allocator_meta, IPL_VM);
    560      1.117      yamt 	}
    561  1.190.2.1      yamt #ifdef POOL_SUBPAGE
    562  1.190.2.1      yamt 	pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
    563  1.190.2.1      yamt 	    PR_RECURSIVE, "psppool", &pool_allocator_meta, IPL_VM);
    564  1.190.2.1      yamt #endif
    565  1.190.2.1      yamt 
    566  1.190.2.1      yamt 	size = sizeof(pcg_t) +
    567  1.190.2.1      yamt 	    (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t);
    568  1.190.2.1      yamt 	pool_init(&pcg_normal_pool, size, coherency_unit, 0, 0,
    569  1.190.2.1      yamt 	    "pcgnormal", &pool_allocator_meta, IPL_VM);
    570  1.190.2.1      yamt 
    571  1.190.2.1      yamt 	size = sizeof(pcg_t) +
    572  1.190.2.1      yamt 	    (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t);
    573  1.190.2.1      yamt 	pool_init(&pcg_large_pool, size, coherency_unit, 0, 0,
    574  1.190.2.1      yamt 	    "pcglarge", &pool_allocator_meta, IPL_VM);
    575      1.134        ad 
    576      1.156        ad 	pool_init(&cache_pool, sizeof(struct pool_cache), coherency_unit,
    577  1.190.2.1      yamt 	    0, 0, "pcache", &pool_allocator_meta, IPL_NONE);
    578      1.134        ad 
    579      1.156        ad 	pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), coherency_unit,
    580  1.190.2.1      yamt 	    0, 0, "pcachecpu", &pool_allocator_meta, IPL_NONE);
    581       1.94    simonb }
    582       1.94    simonb 
    583       1.94    simonb /*
    584        1.3        pk  * Initialize the given pool resource structure.
    585        1.3        pk  *
    586        1.3        pk  * We export this routine to allow other kernel parts to declare
    587        1.3        pk  * static pools that must be initialized before malloc() is available.
    588        1.3        pk  */
    589        1.3        pk void
    590       1.42   thorpej pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
    591      1.129        ad     const char *wchan, struct pool_allocator *palloc, int ipl)
    592        1.3        pk {
    593      1.116    simonb 	struct pool *pp1;
    594       1.92     enami 	size_t trysize, phsize;
    595      1.134        ad 	int off, slack;
    596        1.3        pk 
    597      1.116    simonb #ifdef DEBUG
    598      1.116    simonb 	/*
    599      1.116    simonb 	 * Check that the pool hasn't already been initialised and
    600      1.116    simonb 	 * added to the list of all pools.
    601      1.116    simonb 	 */
    602      1.145        ad 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
    603      1.116    simonb 		if (pp == pp1)
    604      1.116    simonb 			panic("pool_init: pool %s already initialised",
    605      1.116    simonb 			    wchan);
    606      1.116    simonb 	}
    607      1.116    simonb #endif
    608      1.116    simonb 
    609       1.25   thorpej #ifdef POOL_DIAGNOSTIC
    610       1.25   thorpej 	/*
    611       1.25   thorpej 	 * Always log if POOL_DIAGNOSTIC is defined.
    612       1.25   thorpej 	 */
    613       1.25   thorpej 	if (pool_logsize != 0)
    614       1.25   thorpej 		flags |= PR_LOGGING;
    615       1.25   thorpej #endif
    616       1.25   thorpej 
    617       1.66   thorpej 	if (palloc == NULL)
    618       1.66   thorpej 		palloc = &pool_allocator_kmem;
    619      1.112     bjh21 #ifdef POOL_SUBPAGE
    620      1.112     bjh21 	if (size > palloc->pa_pagesz) {
    621      1.112     bjh21 		if (palloc == &pool_allocator_kmem)
    622      1.112     bjh21 			palloc = &pool_allocator_kmem_fullpage;
    623      1.112     bjh21 		else if (palloc == &pool_allocator_nointr)
    624      1.112     bjh21 			palloc = &pool_allocator_nointr_fullpage;
    625      1.112     bjh21 	}
    626       1.66   thorpej #endif /* POOL_SUBPAGE */
    627      1.180   mlelstv 	if (!cold)
    628      1.180   mlelstv 		mutex_enter(&pool_allocator_lock);
    629      1.178      elad 	if (palloc->pa_refcnt++ == 0) {
    630      1.112     bjh21 		if (palloc->pa_pagesz == 0)
    631       1.66   thorpej 			palloc->pa_pagesz = PAGE_SIZE;
    632       1.66   thorpej 
    633       1.66   thorpej 		TAILQ_INIT(&palloc->pa_list);
    634       1.66   thorpej 
    635      1.134        ad 		mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
    636       1.66   thorpej 		palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
    637       1.66   thorpej 		palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
    638        1.4   thorpej 	}
    639      1.180   mlelstv 	if (!cold)
    640      1.180   mlelstv 		mutex_exit(&pool_allocator_lock);
    641        1.3        pk 
    642        1.3        pk 	if (align == 0)
    643        1.3        pk 		align = ALIGN(1);
    644       1.14   thorpej 
    645      1.120      yamt 	if ((flags & PR_NOTOUCH) == 0 && size < sizeof(struct pool_item))
    646       1.14   thorpej 		size = sizeof(struct pool_item);
    647        1.3        pk 
    648       1.78   thorpej 	size = roundup(size, align);
    649       1.66   thorpej #ifdef DIAGNOSTIC
    650       1.66   thorpej 	if (size > palloc->pa_pagesz)
    651      1.121      yamt 		panic("pool_init: pool item size (%zu) too large", size);
    652       1.66   thorpej #endif
    653       1.35        pk 
    654        1.3        pk 	/*
    655        1.3        pk 	 * Initialize the pool structure.
    656        1.3        pk 	 */
    657       1.88       chs 	LIST_INIT(&pp->pr_emptypages);
    658       1.88       chs 	LIST_INIT(&pp->pr_fullpages);
    659       1.88       chs 	LIST_INIT(&pp->pr_partpages);
    660      1.134        ad 	pp->pr_cache = NULL;
    661        1.3        pk 	pp->pr_curpage = NULL;
    662        1.3        pk 	pp->pr_npages = 0;
    663        1.3        pk 	pp->pr_minitems = 0;
    664        1.3        pk 	pp->pr_minpages = 0;
    665        1.3        pk 	pp->pr_maxpages = UINT_MAX;
    666       1.20   thorpej 	pp->pr_roflags = flags;
    667       1.20   thorpej 	pp->pr_flags = 0;
    668       1.35        pk 	pp->pr_size = size;
    669        1.3        pk 	pp->pr_align = align;
    670        1.3        pk 	pp->pr_wchan = wchan;
    671       1.66   thorpej 	pp->pr_alloc = palloc;
    672       1.20   thorpej 	pp->pr_nitems = 0;
    673       1.20   thorpej 	pp->pr_nout = 0;
    674       1.20   thorpej 	pp->pr_hardlimit = UINT_MAX;
    675       1.20   thorpej 	pp->pr_hardlimit_warning = NULL;
    676       1.31   thorpej 	pp->pr_hardlimit_ratecap.tv_sec = 0;
    677       1.31   thorpej 	pp->pr_hardlimit_ratecap.tv_usec = 0;
    678       1.31   thorpej 	pp->pr_hardlimit_warning_last.tv_sec = 0;
    679       1.31   thorpej 	pp->pr_hardlimit_warning_last.tv_usec = 0;
    680       1.68   thorpej 	pp->pr_drain_hook = NULL;
    681       1.68   thorpej 	pp->pr_drain_hook_arg = NULL;
    682      1.125        ad 	pp->pr_freecheck = NULL;
    683        1.3        pk 
    684        1.3        pk 	/*
    685        1.3        pk 	 * Decide whether to put the page header off page to avoid
    686       1.92     enami 	 * wasting too large a part of the page or too big item.
    687       1.92     enami 	 * Off-page page headers go on a hash table, so we can match
    688       1.92     enami 	 * a returned item with its header based on the page address.
    689       1.92     enami 	 * We use 1/16 of the page size and about 8 times of the item
    690       1.92     enami 	 * size as the threshold (XXX: tune)
    691       1.92     enami 	 *
    692       1.92     enami 	 * However, we'll put the header into the page if we can put
    693       1.92     enami 	 * it without wasting any items.
    694       1.92     enami 	 *
    695       1.92     enami 	 * Silently enforce `0 <= ioff < align'.
    696        1.3        pk 	 */
    697       1.92     enami 	pp->pr_itemoffset = ioff %= align;
    698       1.92     enami 	/* See the comment below about reserved bytes. */
    699       1.92     enami 	trysize = palloc->pa_pagesz - ((align - ioff) % align);
    700       1.92     enami 	phsize = ALIGN(sizeof(struct pool_item_header));
    701      1.121      yamt 	if ((pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) == 0 &&
    702       1.97      yamt 	    (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) ||
    703       1.97      yamt 	    trysize / pp->pr_size == (trysize - phsize) / pp->pr_size)) {
    704        1.3        pk 		/* Use the end of the page for the page header */
    705       1.20   thorpej 		pp->pr_roflags |= PR_PHINPAGE;
    706       1.92     enami 		pp->pr_phoffset = off = palloc->pa_pagesz - phsize;
    707        1.2        pk 	} else {
    708        1.3        pk 		/* The page header will be taken from our page header pool */
    709        1.3        pk 		pp->pr_phoffset = 0;
    710       1.66   thorpej 		off = palloc->pa_pagesz;
    711       1.88       chs 		SPLAY_INIT(&pp->pr_phtree);
    712        1.2        pk 	}
    713        1.1        pk 
    714        1.3        pk 	/*
    715        1.3        pk 	 * Alignment is to take place at `ioff' within the item. This means
    716        1.3        pk 	 * we must reserve up to `align - 1' bytes on the page to allow
    717        1.3        pk 	 * appropriate positioning of each item.
    718        1.3        pk 	 */
    719        1.3        pk 	pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
    720       1.43   thorpej 	KASSERT(pp->pr_itemsperpage != 0);
    721       1.97      yamt 	if ((pp->pr_roflags & PR_NOTOUCH)) {
    722       1.97      yamt 		int idx;
    723       1.97      yamt 
    724       1.97      yamt 		for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
    725       1.97      yamt 		    idx++) {
    726       1.97      yamt 			/* nothing */
    727       1.97      yamt 		}
    728       1.97      yamt 		if (idx >= PHPOOL_MAX) {
    729       1.97      yamt 			/*
    730       1.97      yamt 			 * if you see this panic, consider to tweak
    731       1.97      yamt 			 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
    732       1.97      yamt 			 */
    733       1.97      yamt 			panic("%s: too large itemsperpage(%d) for PR_NOTOUCH",
    734       1.97      yamt 			    pp->pr_wchan, pp->pr_itemsperpage);
    735       1.97      yamt 		}
    736       1.97      yamt 		pp->pr_phpool = &phpool[idx];
    737       1.97      yamt 	} else if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
    738       1.97      yamt 		pp->pr_phpool = &phpool[0];
    739       1.97      yamt 	}
    740       1.97      yamt #if defined(DIAGNOSTIC)
    741       1.97      yamt 	else {
    742       1.97      yamt 		pp->pr_phpool = NULL;
    743       1.97      yamt 	}
    744       1.97      yamt #endif
    745        1.3        pk 
    746        1.3        pk 	/*
    747        1.3        pk 	 * Use the slack between the chunks and the page header
    748        1.3        pk 	 * for "cache coloring".
    749        1.3        pk 	 */
    750        1.3        pk 	slack = off - pp->pr_itemsperpage * pp->pr_size;
    751        1.3        pk 	pp->pr_maxcolor = (slack / align) * align;
    752        1.3        pk 	pp->pr_curcolor = 0;
    753        1.3        pk 
    754        1.3        pk 	pp->pr_nget = 0;
    755        1.3        pk 	pp->pr_nfail = 0;
    756        1.3        pk 	pp->pr_nput = 0;
    757        1.3        pk 	pp->pr_npagealloc = 0;
    758        1.3        pk 	pp->pr_npagefree = 0;
    759        1.1        pk 	pp->pr_hiwat = 0;
    760        1.8   thorpej 	pp->pr_nidle = 0;
    761      1.134        ad 	pp->pr_refcnt = 0;
    762        1.3        pk 
    763      1.179   mlelstv 	pp->pr_log = NULL;
    764       1.25   thorpej 
    765       1.25   thorpej 	pp->pr_entered_file = NULL;
    766       1.25   thorpej 	pp->pr_entered_line = 0;
    767        1.3        pk 
    768      1.157        ad 	mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
    769      1.134        ad 	cv_init(&pp->pr_cv, wchan);
    770      1.134        ad 	pp->pr_ipl = ipl;
    771        1.1        pk 
    772      1.145        ad 	/* Insert into the list of all pools. */
    773      1.181   mlelstv 	if (!cold)
    774      1.134        ad 		mutex_enter(&pool_head_lock);
    775      1.145        ad 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
    776      1.145        ad 		if (strcmp(pp1->pr_wchan, pp->pr_wchan) > 0)
    777      1.145        ad 			break;
    778      1.145        ad 	}
    779      1.145        ad 	if (pp1 == NULL)
    780      1.145        ad 		TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
    781      1.145        ad 	else
    782      1.145        ad 		TAILQ_INSERT_BEFORE(pp1, pp, pr_poollist);
    783      1.181   mlelstv 	if (!cold)
    784      1.134        ad 		mutex_exit(&pool_head_lock);
    785      1.134        ad 
    786      1.167     skrll 	/* Insert this into the list of pools using this allocator. */
    787      1.181   mlelstv 	if (!cold)
    788      1.134        ad 		mutex_enter(&palloc->pa_lock);
    789      1.145        ad 	TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
    790      1.181   mlelstv 	if (!cold)
    791      1.134        ad 		mutex_exit(&palloc->pa_lock);
    792        1.1        pk }
    793        1.1        pk 
    794        1.1        pk /*
    795        1.1        pk  * De-commision a pool resource.
    796        1.1        pk  */
    797        1.1        pk void
    798       1.42   thorpej pool_destroy(struct pool *pp)
    799        1.1        pk {
    800      1.101   thorpej 	struct pool_pagelist pq;
    801        1.3        pk 	struct pool_item_header *ph;
    802       1.43   thorpej 
    803      1.101   thorpej 	/* Remove from global pool list */
    804      1.134        ad 	mutex_enter(&pool_head_lock);
    805      1.134        ad 	while (pp->pr_refcnt != 0)
    806      1.134        ad 		cv_wait(&pool_busy, &pool_head_lock);
    807      1.145        ad 	TAILQ_REMOVE(&pool_head, pp, pr_poollist);
    808      1.101   thorpej 	if (drainpp == pp)
    809      1.101   thorpej 		drainpp = NULL;
    810      1.134        ad 	mutex_exit(&pool_head_lock);
    811      1.101   thorpej 
    812      1.101   thorpej 	/* Remove this pool from its allocator's list of pools. */
    813      1.134        ad 	mutex_enter(&pp->pr_alloc->pa_lock);
    814       1.66   thorpej 	TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
    815      1.134        ad 	mutex_exit(&pp->pr_alloc->pa_lock);
    816       1.66   thorpej 
    817      1.178      elad 	mutex_enter(&pool_allocator_lock);
    818      1.178      elad 	if (--pp->pr_alloc->pa_refcnt == 0)
    819      1.178      elad 		mutex_destroy(&pp->pr_alloc->pa_lock);
    820      1.178      elad 	mutex_exit(&pool_allocator_lock);
    821      1.178      elad 
    822      1.134        ad 	mutex_enter(&pp->pr_lock);
    823      1.101   thorpej 
    824      1.134        ad 	KASSERT(pp->pr_cache == NULL);
    825        1.3        pk 
    826        1.3        pk #ifdef DIAGNOSTIC
    827       1.20   thorpej 	if (pp->pr_nout != 0) {
    828       1.25   thorpej 		pr_printlog(pp, NULL, printf);
    829       1.80    provos 		panic("pool_destroy: pool busy: still out: %u",
    830       1.20   thorpej 		    pp->pr_nout);
    831        1.3        pk 	}
    832        1.3        pk #endif
    833        1.1        pk 
    834      1.101   thorpej 	KASSERT(LIST_EMPTY(&pp->pr_fullpages));
    835      1.101   thorpej 	KASSERT(LIST_EMPTY(&pp->pr_partpages));
    836      1.101   thorpej 
    837        1.3        pk 	/* Remove all pages */
    838      1.101   thorpej 	LIST_INIT(&pq);
    839       1.88       chs 	while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
    840      1.101   thorpej 		pr_rmpage(pp, ph, &pq);
    841      1.101   thorpej 
    842      1.134        ad 	mutex_exit(&pp->pr_lock);
    843        1.3        pk 
    844      1.101   thorpej 	pr_pagelist_free(pp, &pq);
    845        1.3        pk 
    846       1.59   thorpej #ifdef POOL_DIAGNOSTIC
    847      1.179   mlelstv 	if (pp->pr_log != NULL) {
    848        1.3        pk 		free(pp->pr_log, M_TEMP);
    849      1.179   mlelstv 		pp->pr_log = NULL;
    850      1.179   mlelstv 	}
    851       1.59   thorpej #endif
    852      1.134        ad 
    853      1.134        ad 	cv_destroy(&pp->pr_cv);
    854      1.134        ad 	mutex_destroy(&pp->pr_lock);
    855        1.1        pk }
    856        1.1        pk 
    857       1.68   thorpej void
    858       1.68   thorpej pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
    859       1.68   thorpej {
    860       1.68   thorpej 
    861       1.68   thorpej 	/* XXX no locking -- must be used just after pool_init() */
    862       1.68   thorpej #ifdef DIAGNOSTIC
    863       1.68   thorpej 	if (pp->pr_drain_hook != NULL)
    864       1.68   thorpej 		panic("pool_set_drain_hook(%s): already set", pp->pr_wchan);
    865       1.68   thorpej #endif
    866       1.68   thorpej 	pp->pr_drain_hook = fn;
    867       1.68   thorpej 	pp->pr_drain_hook_arg = arg;
    868       1.68   thorpej }
    869       1.68   thorpej 
    870       1.88       chs static struct pool_item_header *
    871      1.128  christos pool_alloc_item_header(struct pool *pp, void *storage, int flags)
    872       1.55   thorpej {
    873       1.55   thorpej 	struct pool_item_header *ph;
    874       1.55   thorpej 
    875       1.55   thorpej 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
    876      1.128  christos 		ph = (struct pool_item_header *) ((char *)storage + pp->pr_phoffset);
    877      1.134        ad 	else
    878       1.97      yamt 		ph = pool_get(pp->pr_phpool, flags);
    879       1.55   thorpej 
    880       1.55   thorpej 	return (ph);
    881       1.55   thorpej }
    882        1.1        pk 
    883        1.1        pk /*
    884      1.134        ad  * Grab an item from the pool.
    885        1.1        pk  */
    886        1.3        pk void *
    887       1.59   thorpej #ifdef POOL_DIAGNOSTIC
    888       1.42   thorpej _pool_get(struct pool *pp, int flags, const char *file, long line)
    889       1.56  sommerfe #else
    890       1.56  sommerfe pool_get(struct pool *pp, int flags)
    891       1.56  sommerfe #endif
    892        1.1        pk {
    893        1.1        pk 	struct pool_item *pi;
    894        1.3        pk 	struct pool_item_header *ph;
    895       1.55   thorpej 	void *v;
    896        1.1        pk 
    897        1.2        pk #ifdef DIAGNOSTIC
    898      1.184     rmind 	if (pp->pr_itemsperpage == 0)
    899      1.184     rmind 		panic("pool_get: pool '%s': pr_itemsperpage is zero, "
    900      1.184     rmind 		    "pool not initialized?", pp->pr_wchan);
    901      1.185     rmind 	if ((cpu_intr_p() || cpu_softintr_p()) && pp->pr_ipl == IPL_NONE &&
    902      1.185     rmind 	    !cold && panicstr == NULL)
    903      1.184     rmind 		panic("pool '%s' is IPL_NONE, but called from "
    904      1.184     rmind 		    "interrupt context\n", pp->pr_wchan);
    905      1.184     rmind #endif
    906      1.155        ad 	if (flags & PR_WAITOK) {
    907      1.154      yamt 		ASSERT_SLEEPABLE();
    908      1.155        ad 	}
    909        1.1        pk 
    910      1.134        ad 	mutex_enter(&pp->pr_lock);
    911       1.25   thorpej 	pr_enter(pp, file, line);
    912       1.20   thorpej 
    913       1.20   thorpej  startover:
    914       1.20   thorpej 	/*
    915       1.20   thorpej 	 * Check to see if we've reached the hard limit.  If we have,
    916       1.20   thorpej 	 * and we can wait, then wait until an item has been returned to
    917       1.20   thorpej 	 * the pool.
    918       1.20   thorpej 	 */
    919       1.20   thorpej #ifdef DIAGNOSTIC
    920       1.34   thorpej 	if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
    921       1.25   thorpej 		pr_leave(pp);
    922      1.134        ad 		mutex_exit(&pp->pr_lock);
    923       1.20   thorpej 		panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
    924       1.20   thorpej 	}
    925       1.20   thorpej #endif
    926       1.34   thorpej 	if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
    927       1.68   thorpej 		if (pp->pr_drain_hook != NULL) {
    928       1.68   thorpej 			/*
    929       1.68   thorpej 			 * Since the drain hook is going to free things
    930       1.68   thorpej 			 * back to the pool, unlock, call the hook, re-lock,
    931       1.68   thorpej 			 * and check the hardlimit condition again.
    932       1.68   thorpej 			 */
    933       1.68   thorpej 			pr_leave(pp);
    934      1.134        ad 			mutex_exit(&pp->pr_lock);
    935       1.68   thorpej 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
    936      1.134        ad 			mutex_enter(&pp->pr_lock);
    937       1.68   thorpej 			pr_enter(pp, file, line);
    938       1.68   thorpej 			if (pp->pr_nout < pp->pr_hardlimit)
    939       1.68   thorpej 				goto startover;
    940       1.68   thorpej 		}
    941       1.68   thorpej 
    942       1.29  sommerfe 		if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
    943       1.20   thorpej 			/*
    944       1.20   thorpej 			 * XXX: A warning isn't logged in this case.  Should
    945       1.20   thorpej 			 * it be?
    946       1.20   thorpej 			 */
    947       1.20   thorpej 			pp->pr_flags |= PR_WANTED;
    948       1.25   thorpej 			pr_leave(pp);
    949      1.134        ad 			cv_wait(&pp->pr_cv, &pp->pr_lock);
    950       1.25   thorpej 			pr_enter(pp, file, line);
    951       1.20   thorpej 			goto startover;
    952       1.20   thorpej 		}
    953       1.31   thorpej 
    954       1.31   thorpej 		/*
    955       1.31   thorpej 		 * Log a message that the hard limit has been hit.
    956       1.31   thorpej 		 */
    957       1.31   thorpej 		if (pp->pr_hardlimit_warning != NULL &&
    958       1.31   thorpej 		    ratecheck(&pp->pr_hardlimit_warning_last,
    959       1.31   thorpej 			      &pp->pr_hardlimit_ratecap))
    960       1.31   thorpej 			log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
    961       1.21   thorpej 
    962       1.21   thorpej 		pp->pr_nfail++;
    963       1.21   thorpej 
    964       1.25   thorpej 		pr_leave(pp);
    965      1.134        ad 		mutex_exit(&pp->pr_lock);
    966       1.20   thorpej 		return (NULL);
    967       1.20   thorpej 	}
    968       1.20   thorpej 
    969        1.3        pk 	/*
    970        1.3        pk 	 * The convention we use is that if `curpage' is not NULL, then
    971        1.3        pk 	 * it points at a non-empty bucket. In particular, `curpage'
    972        1.3        pk 	 * never points at a page header which has PR_PHINPAGE set and
    973        1.3        pk 	 * has no items in its bucket.
    974        1.3        pk 	 */
    975       1.20   thorpej 	if ((ph = pp->pr_curpage) == NULL) {
    976      1.113      yamt 		int error;
    977      1.113      yamt 
    978       1.20   thorpej #ifdef DIAGNOSTIC
    979       1.20   thorpej 		if (pp->pr_nitems != 0) {
    980      1.134        ad 			mutex_exit(&pp->pr_lock);
    981       1.20   thorpej 			printf("pool_get: %s: curpage NULL, nitems %u\n",
    982       1.20   thorpej 			    pp->pr_wchan, pp->pr_nitems);
    983       1.80    provos 			panic("pool_get: nitems inconsistent");
    984       1.20   thorpej 		}
    985       1.20   thorpej #endif
    986       1.20   thorpej 
    987       1.21   thorpej 		/*
    988       1.21   thorpej 		 * Call the back-end page allocator for more memory.
    989       1.21   thorpej 		 * Release the pool lock, as the back-end page allocator
    990       1.21   thorpej 		 * may block.
    991       1.21   thorpej 		 */
    992       1.25   thorpej 		pr_leave(pp);
    993      1.113      yamt 		error = pool_grow(pp, flags);
    994      1.113      yamt 		pr_enter(pp, file, line);
    995      1.113      yamt 		if (error != 0) {
    996       1.21   thorpej 			/*
    997       1.55   thorpej 			 * We were unable to allocate a page or item
    998       1.55   thorpej 			 * header, but we released the lock during
    999       1.55   thorpej 			 * allocation, so perhaps items were freed
   1000       1.55   thorpej 			 * back to the pool.  Check for this case.
   1001       1.21   thorpej 			 */
   1002       1.21   thorpej 			if (pp->pr_curpage != NULL)
   1003       1.21   thorpej 				goto startover;
   1004       1.15        pk 
   1005      1.117      yamt 			pp->pr_nfail++;
   1006       1.25   thorpej 			pr_leave(pp);
   1007      1.134        ad 			mutex_exit(&pp->pr_lock);
   1008      1.117      yamt 			return (NULL);
   1009        1.1        pk 		}
   1010        1.3        pk 
   1011       1.20   thorpej 		/* Start the allocation process over. */
   1012       1.20   thorpej 		goto startover;
   1013        1.3        pk 	}
   1014       1.97      yamt 	if (pp->pr_roflags & PR_NOTOUCH) {
   1015       1.97      yamt #ifdef DIAGNOSTIC
   1016       1.97      yamt 		if (__predict_false(ph->ph_nmissing == pp->pr_itemsperpage)) {
   1017       1.97      yamt 			pr_leave(pp);
   1018      1.134        ad 			mutex_exit(&pp->pr_lock);
   1019       1.97      yamt 			panic("pool_get: %s: page empty", pp->pr_wchan);
   1020       1.97      yamt 		}
   1021       1.97      yamt #endif
   1022       1.97      yamt 		v = pr_item_notouch_get(pp, ph);
   1023       1.97      yamt #ifdef POOL_DIAGNOSTIC
   1024       1.97      yamt 		pr_log(pp, v, PRLOG_GET, file, line);
   1025       1.97      yamt #endif
   1026       1.97      yamt 	} else {
   1027      1.102       chs 		v = pi = LIST_FIRST(&ph->ph_itemlist);
   1028       1.97      yamt 		if (__predict_false(v == NULL)) {
   1029       1.97      yamt 			pr_leave(pp);
   1030      1.134        ad 			mutex_exit(&pp->pr_lock);
   1031       1.97      yamt 			panic("pool_get: %s: page empty", pp->pr_wchan);
   1032       1.97      yamt 		}
   1033       1.20   thorpej #ifdef DIAGNOSTIC
   1034       1.97      yamt 		if (__predict_false(pp->pr_nitems == 0)) {
   1035       1.97      yamt 			pr_leave(pp);
   1036      1.134        ad 			mutex_exit(&pp->pr_lock);
   1037       1.97      yamt 			printf("pool_get: %s: items on itemlist, nitems %u\n",
   1038       1.97      yamt 			    pp->pr_wchan, pp->pr_nitems);
   1039       1.97      yamt 			panic("pool_get: nitems inconsistent");
   1040       1.97      yamt 		}
   1041       1.65     enami #endif
   1042       1.56  sommerfe 
   1043       1.65     enami #ifdef POOL_DIAGNOSTIC
   1044       1.97      yamt 		pr_log(pp, v, PRLOG_GET, file, line);
   1045       1.65     enami #endif
   1046        1.3        pk 
   1047       1.65     enami #ifdef DIAGNOSTIC
   1048       1.97      yamt 		if (__predict_false(pi->pi_magic != PI_MAGIC)) {
   1049       1.97      yamt 			pr_printlog(pp, pi, printf);
   1050       1.97      yamt 			panic("pool_get(%s): free list modified: "
   1051       1.97      yamt 			    "magic=%x; page %p; item addr %p\n",
   1052       1.97      yamt 			    pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
   1053       1.97      yamt 		}
   1054        1.3        pk #endif
   1055        1.3        pk 
   1056       1.97      yamt 		/*
   1057       1.97      yamt 		 * Remove from item list.
   1058       1.97      yamt 		 */
   1059      1.102       chs 		LIST_REMOVE(pi, pi_list);
   1060       1.97      yamt 	}
   1061       1.20   thorpej 	pp->pr_nitems--;
   1062       1.20   thorpej 	pp->pr_nout++;
   1063        1.6   thorpej 	if (ph->ph_nmissing == 0) {
   1064        1.6   thorpej #ifdef DIAGNOSTIC
   1065       1.34   thorpej 		if (__predict_false(pp->pr_nidle == 0))
   1066        1.6   thorpej 			panic("pool_get: nidle inconsistent");
   1067        1.6   thorpej #endif
   1068        1.6   thorpej 		pp->pr_nidle--;
   1069       1.88       chs 
   1070       1.88       chs 		/*
   1071       1.88       chs 		 * This page was previously empty.  Move it to the list of
   1072       1.88       chs 		 * partially-full pages.  This page is already curpage.
   1073       1.88       chs 		 */
   1074       1.88       chs 		LIST_REMOVE(ph, ph_pagelist);
   1075       1.88       chs 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
   1076        1.6   thorpej 	}
   1077        1.3        pk 	ph->ph_nmissing++;
   1078       1.97      yamt 	if (ph->ph_nmissing == pp->pr_itemsperpage) {
   1079       1.21   thorpej #ifdef DIAGNOSTIC
   1080       1.97      yamt 		if (__predict_false((pp->pr_roflags & PR_NOTOUCH) == 0 &&
   1081      1.102       chs 		    !LIST_EMPTY(&ph->ph_itemlist))) {
   1082       1.25   thorpej 			pr_leave(pp);
   1083      1.134        ad 			mutex_exit(&pp->pr_lock);
   1084       1.21   thorpej 			panic("pool_get: %s: nmissing inconsistent",
   1085       1.21   thorpej 			    pp->pr_wchan);
   1086       1.21   thorpej 		}
   1087       1.21   thorpej #endif
   1088        1.3        pk 		/*
   1089       1.88       chs 		 * This page is now full.  Move it to the full list
   1090       1.88       chs 		 * and select a new current page.
   1091        1.3        pk 		 */
   1092       1.88       chs 		LIST_REMOVE(ph, ph_pagelist);
   1093       1.88       chs 		LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
   1094       1.88       chs 		pool_update_curpage(pp);
   1095        1.1        pk 	}
   1096        1.3        pk 
   1097        1.3        pk 	pp->pr_nget++;
   1098      1.111  christos 	pr_leave(pp);
   1099       1.20   thorpej 
   1100       1.20   thorpej 	/*
   1101       1.20   thorpej 	 * If we have a low water mark and we are now below that low
   1102       1.20   thorpej 	 * water mark, add more items to the pool.
   1103       1.20   thorpej 	 */
   1104       1.53   thorpej 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
   1105       1.20   thorpej 		/*
   1106       1.20   thorpej 		 * XXX: Should we log a warning?  Should we set up a timeout
   1107       1.20   thorpej 		 * to try again in a second or so?  The latter could break
   1108       1.20   thorpej 		 * a caller's assumptions about interrupt protection, etc.
   1109       1.20   thorpej 		 */
   1110       1.20   thorpej 	}
   1111       1.20   thorpej 
   1112      1.134        ad 	mutex_exit(&pp->pr_lock);
   1113      1.125        ad 	KASSERT((((vaddr_t)v + pp->pr_itemoffset) & (pp->pr_align - 1)) == 0);
   1114      1.125        ad 	FREECHECK_OUT(&pp->pr_freecheck, v);
   1115        1.1        pk 	return (v);
   1116        1.1        pk }
   1117        1.1        pk 
   1118        1.1        pk /*
   1119       1.43   thorpej  * Internal version of pool_put().  Pool is already locked/entered.
   1120        1.1        pk  */
   1121       1.43   thorpej static void
   1122      1.101   thorpej pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
   1123        1.1        pk {
   1124        1.1        pk 	struct pool_item *pi = v;
   1125        1.3        pk 	struct pool_item_header *ph;
   1126        1.3        pk 
   1127      1.134        ad 	KASSERT(mutex_owned(&pp->pr_lock));
   1128      1.125        ad 	FREECHECK_IN(&pp->pr_freecheck, v);
   1129      1.134        ad 	LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
   1130       1.61       chs 
   1131       1.30   thorpej #ifdef DIAGNOSTIC
   1132       1.34   thorpej 	if (__predict_false(pp->pr_nout == 0)) {
   1133       1.30   thorpej 		printf("pool %s: putting with none out\n",
   1134       1.30   thorpej 		    pp->pr_wchan);
   1135       1.30   thorpej 		panic("pool_put");
   1136       1.30   thorpej 	}
   1137       1.30   thorpej #endif
   1138        1.3        pk 
   1139      1.121      yamt 	if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
   1140       1.25   thorpej 		pr_printlog(pp, NULL, printf);
   1141        1.3        pk 		panic("pool_put: %s: page header missing", pp->pr_wchan);
   1142        1.3        pk 	}
   1143       1.28   thorpej 
   1144        1.3        pk 	/*
   1145        1.3        pk 	 * Return to item list.
   1146        1.3        pk 	 */
   1147       1.97      yamt 	if (pp->pr_roflags & PR_NOTOUCH) {
   1148       1.97      yamt 		pr_item_notouch_put(pp, ph, v);
   1149       1.97      yamt 	} else {
   1150        1.2        pk #ifdef DIAGNOSTIC
   1151       1.97      yamt 		pi->pi_magic = PI_MAGIC;
   1152        1.3        pk #endif
   1153       1.32       chs #ifdef DEBUG
   1154       1.97      yamt 		{
   1155       1.97      yamt 			int i, *ip = v;
   1156       1.32       chs 
   1157       1.97      yamt 			for (i = 0; i < pp->pr_size / sizeof(int); i++) {
   1158       1.97      yamt 				*ip++ = PI_MAGIC;
   1159       1.97      yamt 			}
   1160       1.32       chs 		}
   1161       1.32       chs #endif
   1162       1.32       chs 
   1163      1.102       chs 		LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
   1164       1.97      yamt 	}
   1165       1.79   thorpej 	KDASSERT(ph->ph_nmissing != 0);
   1166        1.3        pk 	ph->ph_nmissing--;
   1167        1.3        pk 	pp->pr_nput++;
   1168       1.20   thorpej 	pp->pr_nitems++;
   1169       1.20   thorpej 	pp->pr_nout--;
   1170        1.3        pk 
   1171        1.3        pk 	/* Cancel "pool empty" condition if it exists */
   1172        1.3        pk 	if (pp->pr_curpage == NULL)
   1173        1.3        pk 		pp->pr_curpage = ph;
   1174        1.3        pk 
   1175        1.3        pk 	if (pp->pr_flags & PR_WANTED) {
   1176        1.3        pk 		pp->pr_flags &= ~PR_WANTED;
   1177      1.134        ad 		cv_broadcast(&pp->pr_cv);
   1178        1.3        pk 	}
   1179        1.3        pk 
   1180        1.3        pk 	/*
   1181       1.88       chs 	 * If this page is now empty, do one of two things:
   1182       1.21   thorpej 	 *
   1183       1.88       chs 	 *	(1) If we have more pages than the page high water mark,
   1184       1.96   thorpej 	 *	    free the page back to the system.  ONLY CONSIDER
   1185       1.90   thorpej 	 *	    FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
   1186       1.90   thorpej 	 *	    CLAIM.
   1187       1.21   thorpej 	 *
   1188       1.88       chs 	 *	(2) Otherwise, move the page to the empty page list.
   1189       1.88       chs 	 *
   1190       1.88       chs 	 * Either way, select a new current page (so we use a partially-full
   1191       1.88       chs 	 * page if one is available).
   1192        1.3        pk 	 */
   1193        1.3        pk 	if (ph->ph_nmissing == 0) {
   1194        1.6   thorpej 		pp->pr_nidle++;
   1195       1.90   thorpej 		if (pp->pr_npages > pp->pr_minpages &&
   1196      1.152      yamt 		    pp->pr_npages > pp->pr_maxpages) {
   1197      1.101   thorpej 			pr_rmpage(pp, ph, pq);
   1198        1.3        pk 		} else {
   1199       1.88       chs 			LIST_REMOVE(ph, ph_pagelist);
   1200       1.88       chs 			LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
   1201        1.3        pk 
   1202       1.21   thorpej 			/*
   1203       1.21   thorpej 			 * Update the timestamp on the page.  A page must
   1204       1.21   thorpej 			 * be idle for some period of time before it can
   1205       1.21   thorpej 			 * be reclaimed by the pagedaemon.  This minimizes
   1206       1.21   thorpej 			 * ping-pong'ing for memory.
   1207      1.151      yamt 			 *
   1208      1.151      yamt 			 * note for 64-bit time_t: truncating to 32-bit is not
   1209      1.151      yamt 			 * a problem for our usage.
   1210       1.21   thorpej 			 */
   1211      1.151      yamt 			ph->ph_time = time_uptime;
   1212        1.1        pk 		}
   1213       1.88       chs 		pool_update_curpage(pp);
   1214        1.1        pk 	}
   1215       1.88       chs 
   1216       1.21   thorpej 	/*
   1217       1.88       chs 	 * If the page was previously completely full, move it to the
   1218       1.88       chs 	 * partially-full list and make it the current page.  The next
   1219       1.88       chs 	 * allocation will get the item from this page, instead of
   1220       1.88       chs 	 * further fragmenting the pool.
   1221       1.21   thorpej 	 */
   1222       1.21   thorpej 	else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
   1223       1.88       chs 		LIST_REMOVE(ph, ph_pagelist);
   1224       1.88       chs 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
   1225       1.21   thorpej 		pp->pr_curpage = ph;
   1226       1.21   thorpej 	}
   1227       1.43   thorpej }
   1228       1.43   thorpej 
   1229       1.43   thorpej /*
   1230      1.134        ad  * Return resource to the pool.
   1231       1.43   thorpej  */
   1232       1.59   thorpej #ifdef POOL_DIAGNOSTIC
   1233       1.43   thorpej void
   1234       1.43   thorpej _pool_put(struct pool *pp, void *v, const char *file, long line)
   1235       1.43   thorpej {
   1236      1.101   thorpej 	struct pool_pagelist pq;
   1237      1.101   thorpej 
   1238      1.101   thorpej 	LIST_INIT(&pq);
   1239       1.43   thorpej 
   1240      1.134        ad 	mutex_enter(&pp->pr_lock);
   1241       1.43   thorpej 	pr_enter(pp, file, line);
   1242       1.43   thorpej 
   1243       1.56  sommerfe 	pr_log(pp, v, PRLOG_PUT, file, line);
   1244       1.56  sommerfe 
   1245      1.101   thorpej 	pool_do_put(pp, v, &pq);
   1246       1.21   thorpej 
   1247       1.25   thorpej 	pr_leave(pp);
   1248      1.134        ad 	mutex_exit(&pp->pr_lock);
   1249      1.101   thorpej 
   1250      1.102       chs 	pr_pagelist_free(pp, &pq);
   1251        1.1        pk }
   1252       1.57  sommerfe #undef pool_put
   1253       1.59   thorpej #endif /* POOL_DIAGNOSTIC */
   1254        1.1        pk 
   1255       1.56  sommerfe void
   1256       1.56  sommerfe pool_put(struct pool *pp, void *v)
   1257       1.56  sommerfe {
   1258      1.101   thorpej 	struct pool_pagelist pq;
   1259      1.101   thorpej 
   1260      1.101   thorpej 	LIST_INIT(&pq);
   1261       1.56  sommerfe 
   1262      1.134        ad 	mutex_enter(&pp->pr_lock);
   1263      1.101   thorpej 	pool_do_put(pp, v, &pq);
   1264      1.134        ad 	mutex_exit(&pp->pr_lock);
   1265       1.56  sommerfe 
   1266      1.102       chs 	pr_pagelist_free(pp, &pq);
   1267       1.56  sommerfe }
   1268       1.57  sommerfe 
   1269       1.59   thorpej #ifdef POOL_DIAGNOSTIC
   1270       1.57  sommerfe #define		pool_put(h, v)	_pool_put((h), (v), __FILE__, __LINE__)
   1271       1.56  sommerfe #endif
   1272       1.74   thorpej 
   1273       1.74   thorpej /*
   1274      1.113      yamt  * pool_grow: grow a pool by a page.
   1275      1.113      yamt  *
   1276      1.113      yamt  * => called with pool locked.
   1277      1.113      yamt  * => unlock and relock the pool.
   1278      1.113      yamt  * => return with pool locked.
   1279      1.113      yamt  */
   1280      1.113      yamt 
   1281      1.113      yamt static int
   1282      1.113      yamt pool_grow(struct pool *pp, int flags)
   1283      1.113      yamt {
   1284      1.113      yamt 	struct pool_item_header *ph = NULL;
   1285      1.113      yamt 	char *cp;
   1286      1.113      yamt 
   1287      1.134        ad 	mutex_exit(&pp->pr_lock);
   1288      1.113      yamt 	cp = pool_allocator_alloc(pp, flags);
   1289      1.113      yamt 	if (__predict_true(cp != NULL)) {
   1290      1.113      yamt 		ph = pool_alloc_item_header(pp, cp, flags);
   1291      1.113      yamt 	}
   1292      1.113      yamt 	if (__predict_false(cp == NULL || ph == NULL)) {
   1293      1.113      yamt 		if (cp != NULL) {
   1294      1.113      yamt 			pool_allocator_free(pp, cp);
   1295      1.113      yamt 		}
   1296      1.134        ad 		mutex_enter(&pp->pr_lock);
   1297      1.113      yamt 		return ENOMEM;
   1298      1.113      yamt 	}
   1299      1.113      yamt 
   1300      1.134        ad 	mutex_enter(&pp->pr_lock);
   1301      1.113      yamt 	pool_prime_page(pp, cp, ph);
   1302      1.113      yamt 	pp->pr_npagealloc++;
   1303      1.113      yamt 	return 0;
   1304      1.113      yamt }
   1305      1.113      yamt 
   1306      1.113      yamt /*
   1307       1.74   thorpej  * Add N items to the pool.
   1308       1.74   thorpej  */
   1309       1.74   thorpej int
   1310       1.74   thorpej pool_prime(struct pool *pp, int n)
   1311       1.74   thorpej {
   1312       1.75    simonb 	int newpages;
   1313      1.113      yamt 	int error = 0;
   1314       1.74   thorpej 
   1315      1.134        ad 	mutex_enter(&pp->pr_lock);
   1316       1.74   thorpej 
   1317       1.74   thorpej 	newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1318       1.74   thorpej 
   1319       1.74   thorpej 	while (newpages-- > 0) {
   1320      1.113      yamt 		error = pool_grow(pp, PR_NOWAIT);
   1321      1.113      yamt 		if (error) {
   1322       1.74   thorpej 			break;
   1323       1.74   thorpej 		}
   1324       1.74   thorpej 		pp->pr_minpages++;
   1325       1.74   thorpej 	}
   1326       1.74   thorpej 
   1327       1.74   thorpej 	if (pp->pr_minpages >= pp->pr_maxpages)
   1328       1.74   thorpej 		pp->pr_maxpages = pp->pr_minpages + 1;	/* XXX */
   1329       1.74   thorpej 
   1330      1.134        ad 	mutex_exit(&pp->pr_lock);
   1331      1.113      yamt 	return error;
   1332       1.74   thorpej }
   1333       1.55   thorpej 
   1334       1.55   thorpej /*
   1335        1.3        pk  * Add a page worth of items to the pool.
   1336       1.21   thorpej  *
   1337       1.21   thorpej  * Note, we must be called with the pool descriptor LOCKED.
   1338        1.3        pk  */
   1339       1.55   thorpej static void
   1340      1.128  christos pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
   1341        1.3        pk {
   1342        1.3        pk 	struct pool_item *pi;
   1343      1.128  christos 	void *cp = storage;
   1344      1.125        ad 	const unsigned int align = pp->pr_align;
   1345      1.125        ad 	const unsigned int ioff = pp->pr_itemoffset;
   1346       1.55   thorpej 	int n;
   1347       1.36        pk 
   1348      1.134        ad 	KASSERT(mutex_owned(&pp->pr_lock));
   1349       1.91      yamt 
   1350       1.66   thorpej #ifdef DIAGNOSTIC
   1351      1.121      yamt 	if ((pp->pr_roflags & PR_NOALIGN) == 0 &&
   1352      1.150     skrll 	    ((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) != 0)
   1353       1.36        pk 		panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
   1354       1.66   thorpej #endif
   1355        1.3        pk 
   1356        1.3        pk 	/*
   1357        1.3        pk 	 * Insert page header.
   1358        1.3        pk 	 */
   1359       1.88       chs 	LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
   1360      1.102       chs 	LIST_INIT(&ph->ph_itemlist);
   1361        1.3        pk 	ph->ph_page = storage;
   1362        1.3        pk 	ph->ph_nmissing = 0;
   1363      1.151      yamt 	ph->ph_time = time_uptime;
   1364       1.88       chs 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
   1365       1.88       chs 		SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
   1366        1.3        pk 
   1367        1.6   thorpej 	pp->pr_nidle++;
   1368        1.6   thorpej 
   1369        1.3        pk 	/*
   1370        1.3        pk 	 * Color this page.
   1371        1.3        pk 	 */
   1372      1.141      yamt 	ph->ph_off = pp->pr_curcolor;
   1373      1.141      yamt 	cp = (char *)cp + ph->ph_off;
   1374        1.3        pk 	if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
   1375        1.3        pk 		pp->pr_curcolor = 0;
   1376        1.3        pk 
   1377        1.3        pk 	/*
   1378        1.3        pk 	 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
   1379        1.3        pk 	 */
   1380        1.3        pk 	if (ioff != 0)
   1381      1.128  christos 		cp = (char *)cp + align - ioff;
   1382        1.3        pk 
   1383      1.125        ad 	KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
   1384      1.125        ad 
   1385        1.3        pk 	/*
   1386        1.3        pk 	 * Insert remaining chunks on the bucket list.
   1387        1.3        pk 	 */
   1388        1.3        pk 	n = pp->pr_itemsperpage;
   1389       1.20   thorpej 	pp->pr_nitems += n;
   1390        1.3        pk 
   1391       1.97      yamt 	if (pp->pr_roflags & PR_NOTOUCH) {
   1392      1.141      yamt 		pr_item_notouch_init(pp, ph);
   1393       1.97      yamt 	} else {
   1394       1.97      yamt 		while (n--) {
   1395       1.97      yamt 			pi = (struct pool_item *)cp;
   1396       1.78   thorpej 
   1397       1.97      yamt 			KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0);
   1398        1.3        pk 
   1399       1.97      yamt 			/* Insert on page list */
   1400      1.102       chs 			LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
   1401        1.3        pk #ifdef DIAGNOSTIC
   1402       1.97      yamt 			pi->pi_magic = PI_MAGIC;
   1403        1.3        pk #endif
   1404      1.128  christos 			cp = (char *)cp + pp->pr_size;
   1405      1.125        ad 
   1406      1.125        ad 			KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
   1407       1.97      yamt 		}
   1408        1.3        pk 	}
   1409        1.3        pk 
   1410        1.3        pk 	/*
   1411        1.3        pk 	 * If the pool was depleted, point at the new page.
   1412        1.3        pk 	 */
   1413        1.3        pk 	if (pp->pr_curpage == NULL)
   1414        1.3        pk 		pp->pr_curpage = ph;
   1415        1.3        pk 
   1416        1.3        pk 	if (++pp->pr_npages > pp->pr_hiwat)
   1417        1.3        pk 		pp->pr_hiwat = pp->pr_npages;
   1418        1.3        pk }
   1419        1.3        pk 
   1420       1.20   thorpej /*
   1421       1.52   thorpej  * Used by pool_get() when nitems drops below the low water mark.  This
   1422       1.88       chs  * is used to catch up pr_nitems with the low water mark.
   1423       1.20   thorpej  *
   1424       1.21   thorpej  * Note 1, we never wait for memory here, we let the caller decide what to do.
   1425       1.20   thorpej  *
   1426       1.73   thorpej  * Note 2, we must be called with the pool already locked, and we return
   1427       1.20   thorpej  * with it locked.
   1428       1.20   thorpej  */
   1429       1.20   thorpej static int
   1430       1.42   thorpej pool_catchup(struct pool *pp)
   1431       1.20   thorpej {
   1432       1.20   thorpej 	int error = 0;
   1433       1.20   thorpej 
   1434       1.54   thorpej 	while (POOL_NEEDS_CATCHUP(pp)) {
   1435      1.113      yamt 		error = pool_grow(pp, PR_NOWAIT);
   1436      1.113      yamt 		if (error) {
   1437       1.20   thorpej 			break;
   1438       1.20   thorpej 		}
   1439       1.20   thorpej 	}
   1440      1.113      yamt 	return error;
   1441       1.20   thorpej }
   1442       1.20   thorpej 
   1443       1.88       chs static void
   1444       1.88       chs pool_update_curpage(struct pool *pp)
   1445       1.88       chs {
   1446       1.88       chs 
   1447       1.88       chs 	pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
   1448       1.88       chs 	if (pp->pr_curpage == NULL) {
   1449       1.88       chs 		pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
   1450       1.88       chs 	}
   1451      1.168      yamt 	KASSERT((pp->pr_curpage == NULL && pp->pr_nitems == 0) ||
   1452      1.168      yamt 	    (pp->pr_curpage != NULL && pp->pr_nitems > 0));
   1453       1.88       chs }
   1454       1.88       chs 
   1455        1.3        pk void
   1456       1.42   thorpej pool_setlowat(struct pool *pp, int n)
   1457        1.3        pk {
   1458       1.15        pk 
   1459      1.134        ad 	mutex_enter(&pp->pr_lock);
   1460       1.21   thorpej 
   1461        1.3        pk 	pp->pr_minitems = n;
   1462       1.15        pk 	pp->pr_minpages = (n == 0)
   1463       1.15        pk 		? 0
   1464       1.18   thorpej 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1465       1.20   thorpej 
   1466       1.20   thorpej 	/* Make sure we're caught up with the newly-set low water mark. */
   1467       1.75    simonb 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
   1468       1.20   thorpej 		/*
   1469       1.20   thorpej 		 * XXX: Should we log a warning?  Should we set up a timeout
   1470       1.20   thorpej 		 * to try again in a second or so?  The latter could break
   1471       1.20   thorpej 		 * a caller's assumptions about interrupt protection, etc.
   1472       1.20   thorpej 		 */
   1473       1.20   thorpej 	}
   1474       1.21   thorpej 
   1475      1.134        ad 	mutex_exit(&pp->pr_lock);
   1476        1.3        pk }
   1477        1.3        pk 
   1478        1.3        pk void
   1479       1.42   thorpej pool_sethiwat(struct pool *pp, int n)
   1480        1.3        pk {
   1481       1.15        pk 
   1482      1.134        ad 	mutex_enter(&pp->pr_lock);
   1483       1.21   thorpej 
   1484       1.15        pk 	pp->pr_maxpages = (n == 0)
   1485       1.15        pk 		? 0
   1486       1.18   thorpej 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1487       1.21   thorpej 
   1488      1.134        ad 	mutex_exit(&pp->pr_lock);
   1489        1.3        pk }
   1490        1.3        pk 
   1491       1.20   thorpej void
   1492       1.42   thorpej pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
   1493       1.20   thorpej {
   1494       1.20   thorpej 
   1495      1.134        ad 	mutex_enter(&pp->pr_lock);
   1496       1.20   thorpej 
   1497       1.20   thorpej 	pp->pr_hardlimit = n;
   1498       1.20   thorpej 	pp->pr_hardlimit_warning = warnmess;
   1499       1.31   thorpej 	pp->pr_hardlimit_ratecap.tv_sec = ratecap;
   1500       1.31   thorpej 	pp->pr_hardlimit_warning_last.tv_sec = 0;
   1501       1.31   thorpej 	pp->pr_hardlimit_warning_last.tv_usec = 0;
   1502       1.20   thorpej 
   1503       1.20   thorpej 	/*
   1504       1.21   thorpej 	 * In-line version of pool_sethiwat(), because we don't want to
   1505       1.21   thorpej 	 * release the lock.
   1506       1.20   thorpej 	 */
   1507       1.20   thorpej 	pp->pr_maxpages = (n == 0)
   1508       1.20   thorpej 		? 0
   1509       1.20   thorpej 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1510       1.21   thorpej 
   1511      1.134        ad 	mutex_exit(&pp->pr_lock);
   1512       1.20   thorpej }
   1513        1.3        pk 
   1514        1.3        pk /*
   1515        1.3        pk  * Release all complete pages that have not been used recently.
   1516      1.184     rmind  *
   1517      1.184     rmind  * Might be called from interrupt context.
   1518        1.3        pk  */
   1519       1.66   thorpej int
   1520       1.59   thorpej #ifdef POOL_DIAGNOSTIC
   1521       1.42   thorpej _pool_reclaim(struct pool *pp, const char *file, long line)
   1522       1.56  sommerfe #else
   1523       1.56  sommerfe pool_reclaim(struct pool *pp)
   1524       1.56  sommerfe #endif
   1525        1.3        pk {
   1526        1.3        pk 	struct pool_item_header *ph, *phnext;
   1527       1.61       chs 	struct pool_pagelist pq;
   1528      1.151      yamt 	uint32_t curtime;
   1529      1.134        ad 	bool klock;
   1530      1.134        ad 	int rv;
   1531        1.3        pk 
   1532      1.184     rmind 	if (cpu_intr_p() || cpu_softintr_p()) {
   1533      1.184     rmind 		KASSERT(pp->pr_ipl != IPL_NONE);
   1534      1.184     rmind 	}
   1535      1.184     rmind 
   1536       1.68   thorpej 	if (pp->pr_drain_hook != NULL) {
   1537       1.68   thorpej 		/*
   1538       1.68   thorpej 		 * The drain hook must be called with the pool unlocked.
   1539       1.68   thorpej 		 */
   1540       1.68   thorpej 		(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
   1541       1.68   thorpej 	}
   1542       1.68   thorpej 
   1543      1.134        ad 	/*
   1544      1.157        ad 	 * XXXSMP Because we do not want to cause non-MPSAFE code
   1545      1.157        ad 	 * to block.
   1546      1.134        ad 	 */
   1547      1.134        ad 	if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK ||
   1548      1.134        ad 	    pp->pr_ipl == IPL_SOFTSERIAL) {
   1549      1.134        ad 		KERNEL_LOCK(1, NULL);
   1550      1.134        ad 		klock = true;
   1551      1.134        ad 	} else
   1552      1.134        ad 		klock = false;
   1553      1.134        ad 
   1554      1.134        ad 	/* Reclaim items from the pool's cache (if any). */
   1555      1.134        ad 	if (pp->pr_cache != NULL)
   1556      1.134        ad 		pool_cache_invalidate(pp->pr_cache);
   1557      1.134        ad 
   1558      1.134        ad 	if (mutex_tryenter(&pp->pr_lock) == 0) {
   1559      1.134        ad 		if (klock) {
   1560      1.134        ad 			KERNEL_UNLOCK_ONE(NULL);
   1561      1.134        ad 		}
   1562       1.66   thorpej 		return (0);
   1563      1.134        ad 	}
   1564       1.25   thorpej 	pr_enter(pp, file, line);
   1565       1.68   thorpej 
   1566       1.88       chs 	LIST_INIT(&pq);
   1567       1.43   thorpej 
   1568      1.151      yamt 	curtime = time_uptime;
   1569       1.21   thorpej 
   1570       1.88       chs 	for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
   1571       1.88       chs 		phnext = LIST_NEXT(ph, ph_pagelist);
   1572        1.3        pk 
   1573        1.3        pk 		/* Check our minimum page claim */
   1574        1.3        pk 		if (pp->pr_npages <= pp->pr_minpages)
   1575        1.3        pk 			break;
   1576        1.3        pk 
   1577       1.88       chs 		KASSERT(ph->ph_nmissing == 0);
   1578  1.190.2.1      yamt 		if (curtime - ph->ph_time < pool_inactive_time)
   1579       1.88       chs 			continue;
   1580       1.21   thorpej 
   1581       1.88       chs 		/*
   1582       1.88       chs 		 * If freeing this page would put us below
   1583       1.88       chs 		 * the low water mark, stop now.
   1584       1.88       chs 		 */
   1585       1.88       chs 		if ((pp->pr_nitems - pp->pr_itemsperpage) <
   1586       1.88       chs 		    pp->pr_minitems)
   1587       1.88       chs 			break;
   1588       1.21   thorpej 
   1589       1.88       chs 		pr_rmpage(pp, ph, &pq);
   1590        1.3        pk 	}
   1591        1.3        pk 
   1592       1.25   thorpej 	pr_leave(pp);
   1593      1.134        ad 	mutex_exit(&pp->pr_lock);
   1594      1.134        ad 
   1595      1.134        ad 	if (LIST_EMPTY(&pq))
   1596      1.134        ad 		rv = 0;
   1597      1.134        ad 	else {
   1598      1.134        ad 		pr_pagelist_free(pp, &pq);
   1599      1.134        ad 		rv = 1;
   1600      1.134        ad 	}
   1601      1.134        ad 
   1602      1.134        ad 	if (klock) {
   1603      1.134        ad 		KERNEL_UNLOCK_ONE(NULL);
   1604      1.134        ad 	}
   1605       1.66   thorpej 
   1606      1.134        ad 	return (rv);
   1607        1.3        pk }
   1608        1.3        pk 
   1609        1.3        pk /*
   1610      1.134        ad  * Drain pools, one at a time.  This is a two stage process;
   1611      1.134        ad  * drain_start kicks off a cross call to drain CPU-level caches
   1612      1.134        ad  * if the pool has an associated pool_cache.  drain_end waits
   1613      1.134        ad  * for those cross calls to finish, and then drains the cache
   1614      1.134        ad  * (if any) and pool.
   1615      1.131        ad  *
   1616      1.134        ad  * Note, must never be called from interrupt context.
   1617        1.3        pk  */
   1618        1.3        pk void
   1619      1.134        ad pool_drain_start(struct pool **ppp, uint64_t *wp)
   1620        1.3        pk {
   1621        1.3        pk 	struct pool *pp;
   1622      1.134        ad 
   1623      1.145        ad 	KASSERT(!TAILQ_EMPTY(&pool_head));
   1624        1.3        pk 
   1625       1.61       chs 	pp = NULL;
   1626      1.134        ad 
   1627      1.134        ad 	/* Find next pool to drain, and add a reference. */
   1628      1.134        ad 	mutex_enter(&pool_head_lock);
   1629      1.134        ad 	do {
   1630      1.134        ad 		if (drainpp == NULL) {
   1631      1.145        ad 			drainpp = TAILQ_FIRST(&pool_head);
   1632      1.134        ad 		}
   1633      1.134        ad 		if (drainpp != NULL) {
   1634      1.134        ad 			pp = drainpp;
   1635      1.145        ad 			drainpp = TAILQ_NEXT(pp, pr_poollist);
   1636      1.134        ad 		}
   1637      1.134        ad 		/*
   1638      1.134        ad 		 * Skip completely idle pools.  We depend on at least
   1639      1.134        ad 		 * one pool in the system being active.
   1640      1.134        ad 		 */
   1641      1.134        ad 	} while (pp == NULL || pp->pr_npages == 0);
   1642      1.134        ad 	pp->pr_refcnt++;
   1643      1.134        ad 	mutex_exit(&pool_head_lock);
   1644      1.134        ad 
   1645      1.134        ad 	/* If there is a pool_cache, drain CPU level caches. */
   1646      1.134        ad 	*ppp = pp;
   1647      1.134        ad 	if (pp->pr_cache != NULL) {
   1648      1.134        ad 		*wp = xc_broadcast(0, (xcfunc_t)pool_cache_xcall,
   1649      1.134        ad 		    pp->pr_cache, NULL);
   1650      1.134        ad 	}
   1651      1.134        ad }
   1652      1.134        ad 
   1653      1.186     pooka bool
   1654      1.134        ad pool_drain_end(struct pool *pp, uint64_t where)
   1655      1.134        ad {
   1656      1.186     pooka 	bool reclaimed;
   1657      1.134        ad 
   1658      1.134        ad 	if (pp == NULL)
   1659      1.186     pooka 		return false;
   1660      1.134        ad 
   1661      1.134        ad 	KASSERT(pp->pr_refcnt > 0);
   1662      1.134        ad 
   1663      1.134        ad 	/* Wait for remote draining to complete. */
   1664      1.134        ad 	if (pp->pr_cache != NULL)
   1665      1.134        ad 		xc_wait(where);
   1666      1.134        ad 
   1667      1.134        ad 	/* Drain the cache (if any) and pool.. */
   1668      1.186     pooka 	reclaimed = pool_reclaim(pp);
   1669      1.134        ad 
   1670      1.134        ad 	/* Finally, unlock the pool. */
   1671      1.134        ad 	mutex_enter(&pool_head_lock);
   1672      1.134        ad 	pp->pr_refcnt--;
   1673      1.134        ad 	cv_broadcast(&pool_busy);
   1674      1.134        ad 	mutex_exit(&pool_head_lock);
   1675      1.186     pooka 
   1676      1.186     pooka 	return reclaimed;
   1677        1.3        pk }
   1678        1.3        pk 
   1679        1.3        pk /*
   1680        1.3        pk  * Diagnostic helpers.
   1681        1.3        pk  */
   1682        1.3        pk void
   1683       1.42   thorpej pool_print(struct pool *pp, const char *modif)
   1684       1.21   thorpej {
   1685       1.21   thorpej 
   1686       1.25   thorpej 	pool_print1(pp, modif, printf);
   1687       1.21   thorpej }
   1688       1.21   thorpej 
   1689       1.25   thorpej void
   1690      1.108      yamt pool_printall(const char *modif, void (*pr)(const char *, ...))
   1691      1.108      yamt {
   1692      1.108      yamt 	struct pool *pp;
   1693      1.108      yamt 
   1694      1.145        ad 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   1695      1.108      yamt 		pool_printit(pp, modif, pr);
   1696      1.108      yamt 	}
   1697      1.108      yamt }
   1698      1.108      yamt 
   1699      1.108      yamt void
   1700       1.42   thorpej pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1701       1.25   thorpej {
   1702       1.25   thorpej 
   1703       1.25   thorpej 	if (pp == NULL) {
   1704       1.25   thorpej 		(*pr)("Must specify a pool to print.\n");
   1705       1.25   thorpej 		return;
   1706       1.25   thorpej 	}
   1707       1.25   thorpej 
   1708       1.25   thorpej 	pool_print1(pp, modif, pr);
   1709       1.25   thorpej }
   1710       1.25   thorpej 
   1711       1.21   thorpej static void
   1712      1.124      yamt pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
   1713       1.97      yamt     void (*pr)(const char *, ...))
   1714       1.88       chs {
   1715       1.88       chs 	struct pool_item_header *ph;
   1716       1.88       chs #ifdef DIAGNOSTIC
   1717       1.88       chs 	struct pool_item *pi;
   1718       1.88       chs #endif
   1719       1.88       chs 
   1720       1.88       chs 	LIST_FOREACH(ph, pl, ph_pagelist) {
   1721      1.151      yamt 		(*pr)("\t\tpage %p, nmissing %d, time %" PRIu32 "\n",
   1722      1.151      yamt 		    ph->ph_page, ph->ph_nmissing, ph->ph_time);
   1723       1.88       chs #ifdef DIAGNOSTIC
   1724       1.97      yamt 		if (!(pp->pr_roflags & PR_NOTOUCH)) {
   1725      1.102       chs 			LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
   1726       1.97      yamt 				if (pi->pi_magic != PI_MAGIC) {
   1727       1.97      yamt 					(*pr)("\t\t\titem %p, magic 0x%x\n",
   1728       1.97      yamt 					    pi, pi->pi_magic);
   1729       1.97      yamt 				}
   1730       1.88       chs 			}
   1731       1.88       chs 		}
   1732       1.88       chs #endif
   1733       1.88       chs 	}
   1734       1.88       chs }
   1735       1.88       chs 
   1736       1.88       chs static void
   1737       1.42   thorpej pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1738        1.3        pk {
   1739       1.25   thorpej 	struct pool_item_header *ph;
   1740      1.134        ad 	pool_cache_t pc;
   1741      1.134        ad 	pcg_t *pcg;
   1742      1.134        ad 	pool_cache_cpu_t *cc;
   1743      1.134        ad 	uint64_t cpuhit, cpumiss;
   1744       1.44   thorpej 	int i, print_log = 0, print_pagelist = 0, print_cache = 0;
   1745       1.25   thorpej 	char c;
   1746       1.25   thorpej 
   1747       1.25   thorpej 	while ((c = *modif++) != '\0') {
   1748       1.25   thorpej 		if (c == 'l')
   1749       1.25   thorpej 			print_log = 1;
   1750       1.25   thorpej 		if (c == 'p')
   1751       1.25   thorpej 			print_pagelist = 1;
   1752       1.44   thorpej 		if (c == 'c')
   1753       1.44   thorpej 			print_cache = 1;
   1754       1.25   thorpej 	}
   1755       1.25   thorpej 
   1756      1.134        ad 	if ((pc = pp->pr_cache) != NULL) {
   1757      1.134        ad 		(*pr)("POOL CACHE");
   1758      1.134        ad 	} else {
   1759      1.134        ad 		(*pr)("POOL");
   1760      1.134        ad 	}
   1761      1.134        ad 
   1762      1.134        ad 	(*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
   1763       1.25   thorpej 	    pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
   1764       1.25   thorpej 	    pp->pr_roflags);
   1765       1.66   thorpej 	(*pr)("\talloc %p\n", pp->pr_alloc);
   1766       1.25   thorpej 	(*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
   1767       1.25   thorpej 	    pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
   1768       1.25   thorpej 	(*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
   1769       1.25   thorpej 	    pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
   1770       1.25   thorpej 
   1771      1.134        ad 	(*pr)("\tnget %lu, nfail %lu, nput %lu\n",
   1772       1.25   thorpej 	    pp->pr_nget, pp->pr_nfail, pp->pr_nput);
   1773       1.25   thorpej 	(*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
   1774       1.25   thorpej 	    pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
   1775       1.25   thorpej 
   1776       1.25   thorpej 	if (print_pagelist == 0)
   1777       1.25   thorpej 		goto skip_pagelist;
   1778       1.25   thorpej 
   1779       1.88       chs 	if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
   1780       1.88       chs 		(*pr)("\n\tempty page list:\n");
   1781       1.97      yamt 	pool_print_pagelist(pp, &pp->pr_emptypages, pr);
   1782       1.88       chs 	if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
   1783       1.88       chs 		(*pr)("\n\tfull page list:\n");
   1784       1.97      yamt 	pool_print_pagelist(pp, &pp->pr_fullpages, pr);
   1785       1.88       chs 	if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
   1786       1.88       chs 		(*pr)("\n\tpartial-page list:\n");
   1787       1.97      yamt 	pool_print_pagelist(pp, &pp->pr_partpages, pr);
   1788       1.88       chs 
   1789       1.25   thorpej 	if (pp->pr_curpage == NULL)
   1790       1.25   thorpej 		(*pr)("\tno current page\n");
   1791       1.25   thorpej 	else
   1792       1.25   thorpej 		(*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
   1793       1.25   thorpej 
   1794       1.25   thorpej  skip_pagelist:
   1795       1.25   thorpej 	if (print_log == 0)
   1796       1.25   thorpej 		goto skip_log;
   1797       1.25   thorpej 
   1798       1.25   thorpej 	(*pr)("\n");
   1799       1.25   thorpej 	if ((pp->pr_roflags & PR_LOGGING) == 0)
   1800       1.25   thorpej 		(*pr)("\tno log\n");
   1801      1.122  christos 	else {
   1802       1.25   thorpej 		pr_printlog(pp, NULL, pr);
   1803      1.122  christos 	}
   1804        1.3        pk 
   1805       1.25   thorpej  skip_log:
   1806       1.44   thorpej 
   1807      1.102       chs #define PR_GROUPLIST(pcg)						\
   1808      1.102       chs 	(*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail);		\
   1809      1.142        ad 	for (i = 0; i < pcg->pcg_size; i++) {				\
   1810      1.102       chs 		if (pcg->pcg_objects[i].pcgo_pa !=			\
   1811      1.102       chs 		    POOL_PADDR_INVALID) {				\
   1812      1.102       chs 			(*pr)("\t\t\t%p, 0x%llx\n",			\
   1813      1.102       chs 			    pcg->pcg_objects[i].pcgo_va,		\
   1814      1.102       chs 			    (unsigned long long)			\
   1815      1.102       chs 			    pcg->pcg_objects[i].pcgo_pa);		\
   1816      1.102       chs 		} else {						\
   1817      1.102       chs 			(*pr)("\t\t\t%p\n",				\
   1818      1.102       chs 			    pcg->pcg_objects[i].pcgo_va);		\
   1819      1.102       chs 		}							\
   1820      1.102       chs 	}
   1821      1.102       chs 
   1822      1.134        ad 	if (pc != NULL) {
   1823      1.134        ad 		cpuhit = 0;
   1824      1.134        ad 		cpumiss = 0;
   1825      1.183        ad 		for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
   1826      1.134        ad 			if ((cc = pc->pc_cpus[i]) == NULL)
   1827      1.134        ad 				continue;
   1828      1.134        ad 			cpuhit += cc->cc_hits;
   1829      1.134        ad 			cpumiss += cc->cc_misses;
   1830      1.134        ad 		}
   1831      1.134        ad 		(*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
   1832      1.134        ad 		(*pr)("\tcache layer hits %llu misses %llu\n",
   1833      1.134        ad 		    pc->pc_hits, pc->pc_misses);
   1834      1.134        ad 		(*pr)("\tcache layer entry uncontended %llu contended %llu\n",
   1835      1.134        ad 		    pc->pc_hits + pc->pc_misses - pc->pc_contended,
   1836      1.134        ad 		    pc->pc_contended);
   1837      1.134        ad 		(*pr)("\tcache layer empty groups %u full groups %u\n",
   1838      1.134        ad 		    pc->pc_nempty, pc->pc_nfull);
   1839      1.134        ad 		if (print_cache) {
   1840      1.134        ad 			(*pr)("\tfull cache groups:\n");
   1841      1.134        ad 			for (pcg = pc->pc_fullgroups; pcg != NULL;
   1842      1.134        ad 			    pcg = pcg->pcg_next) {
   1843      1.134        ad 				PR_GROUPLIST(pcg);
   1844      1.134        ad 			}
   1845      1.134        ad 			(*pr)("\tempty cache groups:\n");
   1846      1.134        ad 			for (pcg = pc->pc_emptygroups; pcg != NULL;
   1847      1.134        ad 			    pcg = pcg->pcg_next) {
   1848      1.134        ad 				PR_GROUPLIST(pcg);
   1849      1.134        ad 			}
   1850      1.103       chs 		}
   1851       1.44   thorpej 	}
   1852      1.102       chs #undef PR_GROUPLIST
   1853       1.44   thorpej 
   1854       1.88       chs 	pr_enter_check(pp, pr);
   1855       1.88       chs }
   1856       1.88       chs 
   1857       1.88       chs static int
   1858       1.88       chs pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
   1859       1.88       chs {
   1860       1.88       chs 	struct pool_item *pi;
   1861      1.128  christos 	void *page;
   1862       1.88       chs 	int n;
   1863       1.88       chs 
   1864      1.121      yamt 	if ((pp->pr_roflags & PR_NOALIGN) == 0) {
   1865      1.128  christos 		page = (void *)((uintptr_t)ph & pp->pr_alloc->pa_pagemask);
   1866      1.121      yamt 		if (page != ph->ph_page &&
   1867      1.121      yamt 		    (pp->pr_roflags & PR_PHINPAGE) != 0) {
   1868      1.121      yamt 			if (label != NULL)
   1869      1.121      yamt 				printf("%s: ", label);
   1870      1.121      yamt 			printf("pool(%p:%s): page inconsistency: page %p;"
   1871      1.121      yamt 			       " at page head addr %p (p %p)\n", pp,
   1872      1.121      yamt 				pp->pr_wchan, ph->ph_page,
   1873      1.121      yamt 				ph, page);
   1874      1.121      yamt 			return 1;
   1875      1.121      yamt 		}
   1876       1.88       chs 	}
   1877        1.3        pk 
   1878       1.97      yamt 	if ((pp->pr_roflags & PR_NOTOUCH) != 0)
   1879       1.97      yamt 		return 0;
   1880       1.97      yamt 
   1881      1.102       chs 	for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
   1882       1.88       chs 	     pi != NULL;
   1883      1.102       chs 	     pi = LIST_NEXT(pi,pi_list), n++) {
   1884       1.88       chs 
   1885       1.88       chs #ifdef DIAGNOSTIC
   1886       1.88       chs 		if (pi->pi_magic != PI_MAGIC) {
   1887       1.88       chs 			if (label != NULL)
   1888       1.88       chs 				printf("%s: ", label);
   1889       1.88       chs 			printf("pool(%s): free list modified: magic=%x;"
   1890      1.121      yamt 			       " page %p; item ordinal %d; addr %p\n",
   1891       1.88       chs 				pp->pr_wchan, pi->pi_magic, ph->ph_page,
   1892      1.121      yamt 				n, pi);
   1893       1.88       chs 			panic("pool");
   1894       1.88       chs 		}
   1895       1.88       chs #endif
   1896      1.121      yamt 		if ((pp->pr_roflags & PR_NOALIGN) != 0) {
   1897      1.121      yamt 			continue;
   1898      1.121      yamt 		}
   1899      1.128  christos 		page = (void *)((uintptr_t)pi & pp->pr_alloc->pa_pagemask);
   1900       1.88       chs 		if (page == ph->ph_page)
   1901       1.88       chs 			continue;
   1902       1.88       chs 
   1903       1.88       chs 		if (label != NULL)
   1904       1.88       chs 			printf("%s: ", label);
   1905       1.88       chs 		printf("pool(%p:%s): page inconsistency: page %p;"
   1906       1.88       chs 		       " item ordinal %d; addr %p (p %p)\n", pp,
   1907       1.88       chs 			pp->pr_wchan, ph->ph_page,
   1908       1.88       chs 			n, pi, page);
   1909       1.88       chs 		return 1;
   1910       1.88       chs 	}
   1911       1.88       chs 	return 0;
   1912        1.3        pk }
   1913        1.3        pk 
   1914       1.88       chs 
   1915        1.3        pk int
   1916       1.42   thorpej pool_chk(struct pool *pp, const char *label)
   1917        1.3        pk {
   1918        1.3        pk 	struct pool_item_header *ph;
   1919        1.3        pk 	int r = 0;
   1920        1.3        pk 
   1921      1.134        ad 	mutex_enter(&pp->pr_lock);
   1922       1.88       chs 	LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
   1923       1.88       chs 		r = pool_chk_page(pp, label, ph);
   1924       1.88       chs 		if (r) {
   1925       1.88       chs 			goto out;
   1926       1.88       chs 		}
   1927       1.88       chs 	}
   1928       1.88       chs 	LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
   1929       1.88       chs 		r = pool_chk_page(pp, label, ph);
   1930       1.88       chs 		if (r) {
   1931        1.3        pk 			goto out;
   1932        1.3        pk 		}
   1933       1.88       chs 	}
   1934       1.88       chs 	LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
   1935       1.88       chs 		r = pool_chk_page(pp, label, ph);
   1936       1.88       chs 		if (r) {
   1937        1.3        pk 			goto out;
   1938        1.3        pk 		}
   1939        1.3        pk 	}
   1940       1.88       chs 
   1941        1.3        pk out:
   1942      1.134        ad 	mutex_exit(&pp->pr_lock);
   1943        1.3        pk 	return (r);
   1944       1.43   thorpej }
   1945       1.43   thorpej 
   1946       1.43   thorpej /*
   1947       1.43   thorpej  * pool_cache_init:
   1948       1.43   thorpej  *
   1949       1.43   thorpej  *	Initialize a pool cache.
   1950      1.134        ad  */
   1951      1.134        ad pool_cache_t
   1952      1.134        ad pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
   1953      1.134        ad     const char *wchan, struct pool_allocator *palloc, int ipl,
   1954      1.134        ad     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
   1955      1.134        ad {
   1956      1.134        ad 	pool_cache_t pc;
   1957      1.134        ad 
   1958      1.134        ad 	pc = pool_get(&cache_pool, PR_WAITOK);
   1959      1.134        ad 	if (pc == NULL)
   1960      1.134        ad 		return NULL;
   1961      1.134        ad 
   1962      1.134        ad 	pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
   1963      1.134        ad 	   palloc, ipl, ctor, dtor, arg);
   1964      1.134        ad 
   1965      1.134        ad 	return pc;
   1966      1.134        ad }
   1967      1.134        ad 
   1968      1.134        ad /*
   1969      1.134        ad  * pool_cache_bootstrap:
   1970       1.43   thorpej  *
   1971      1.134        ad  *	Kernel-private version of pool_cache_init().  The caller
   1972      1.134        ad  *	provides initial storage.
   1973       1.43   thorpej  */
   1974       1.43   thorpej void
   1975      1.134        ad pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
   1976      1.134        ad     u_int align_offset, u_int flags, const char *wchan,
   1977      1.134        ad     struct pool_allocator *palloc, int ipl,
   1978      1.134        ad     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
   1979       1.43   thorpej     void *arg)
   1980       1.43   thorpej {
   1981      1.134        ad 	CPU_INFO_ITERATOR cii;
   1982      1.145        ad 	pool_cache_t pc1;
   1983      1.134        ad 	struct cpu_info *ci;
   1984      1.134        ad 	struct pool *pp;
   1985      1.134        ad 
   1986      1.134        ad 	pp = &pc->pc_pool;
   1987      1.134        ad 	if (palloc == NULL && ipl == IPL_NONE)
   1988      1.134        ad 		palloc = &pool_allocator_nointr;
   1989      1.134        ad 	pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl);
   1990      1.157        ad 	mutex_init(&pc->pc_lock, MUTEX_DEFAULT, ipl);
   1991       1.43   thorpej 
   1992      1.134        ad 	if (ctor == NULL) {
   1993      1.134        ad 		ctor = (int (*)(void *, void *, int))nullop;
   1994      1.134        ad 	}
   1995      1.134        ad 	if (dtor == NULL) {
   1996      1.134        ad 		dtor = (void (*)(void *, void *))nullop;
   1997      1.134        ad 	}
   1998       1.43   thorpej 
   1999      1.134        ad 	pc->pc_emptygroups = NULL;
   2000      1.134        ad 	pc->pc_fullgroups = NULL;
   2001      1.134        ad 	pc->pc_partgroups = NULL;
   2002       1.43   thorpej 	pc->pc_ctor = ctor;
   2003       1.43   thorpej 	pc->pc_dtor = dtor;
   2004       1.43   thorpej 	pc->pc_arg  = arg;
   2005      1.134        ad 	pc->pc_hits  = 0;
   2006       1.48   thorpej 	pc->pc_misses = 0;
   2007      1.134        ad 	pc->pc_nempty = 0;
   2008      1.134        ad 	pc->pc_npart = 0;
   2009      1.134        ad 	pc->pc_nfull = 0;
   2010      1.134        ad 	pc->pc_contended = 0;
   2011      1.134        ad 	pc->pc_refcnt = 0;
   2012      1.136      yamt 	pc->pc_freecheck = NULL;
   2013      1.134        ad 
   2014      1.142        ad 	if ((flags & PR_LARGECACHE) != 0) {
   2015      1.142        ad 		pc->pc_pcgsize = PCG_NOBJECTS_LARGE;
   2016      1.163        ad 		pc->pc_pcgpool = &pcg_large_pool;
   2017      1.142        ad 	} else {
   2018      1.142        ad 		pc->pc_pcgsize = PCG_NOBJECTS_NORMAL;
   2019      1.163        ad 		pc->pc_pcgpool = &pcg_normal_pool;
   2020      1.142        ad 	}
   2021      1.142        ad 
   2022      1.134        ad 	/* Allocate per-CPU caches. */
   2023      1.134        ad 	memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
   2024      1.134        ad 	pc->pc_ncpu = 0;
   2025      1.139        ad 	if (ncpu < 2) {
   2026      1.137        ad 		/* XXX For sparc: boot CPU is not attached yet. */
   2027      1.137        ad 		pool_cache_cpu_init1(curcpu(), pc);
   2028      1.137        ad 	} else {
   2029      1.137        ad 		for (CPU_INFO_FOREACH(cii, ci)) {
   2030      1.137        ad 			pool_cache_cpu_init1(ci, pc);
   2031      1.137        ad 		}
   2032      1.134        ad 	}
   2033      1.145        ad 
   2034      1.145        ad 	/* Add to list of all pools. */
   2035      1.145        ad 	if (__predict_true(!cold))
   2036      1.134        ad 		mutex_enter(&pool_head_lock);
   2037      1.145        ad 	TAILQ_FOREACH(pc1, &pool_cache_head, pc_cachelist) {
   2038      1.145        ad 		if (strcmp(pc1->pc_pool.pr_wchan, pc->pc_pool.pr_wchan) > 0)
   2039      1.145        ad 			break;
   2040      1.145        ad 	}
   2041      1.145        ad 	if (pc1 == NULL)
   2042      1.145        ad 		TAILQ_INSERT_TAIL(&pool_cache_head, pc, pc_cachelist);
   2043      1.145        ad 	else
   2044      1.145        ad 		TAILQ_INSERT_BEFORE(pc1, pc, pc_cachelist);
   2045      1.145        ad 	if (__predict_true(!cold))
   2046      1.134        ad 		mutex_exit(&pool_head_lock);
   2047      1.145        ad 
   2048      1.145        ad 	membar_sync();
   2049      1.145        ad 	pp->pr_cache = pc;
   2050       1.43   thorpej }
   2051       1.43   thorpej 
   2052       1.43   thorpej /*
   2053       1.43   thorpej  * pool_cache_destroy:
   2054       1.43   thorpej  *
   2055       1.43   thorpej  *	Destroy a pool cache.
   2056       1.43   thorpej  */
   2057       1.43   thorpej void
   2058      1.134        ad pool_cache_destroy(pool_cache_t pc)
   2059       1.43   thorpej {
   2060  1.190.2.1      yamt 
   2061  1.190.2.1      yamt 	pool_cache_bootstrap_destroy(pc);
   2062  1.190.2.1      yamt 	pool_put(&cache_pool, pc);
   2063  1.190.2.1      yamt }
   2064  1.190.2.1      yamt 
   2065  1.190.2.1      yamt /*
   2066  1.190.2.1      yamt  * pool_cache_bootstrap_destroy:
   2067  1.190.2.1      yamt  *
   2068  1.190.2.1      yamt  *	Destroy a pool cache.
   2069  1.190.2.1      yamt  */
   2070  1.190.2.1      yamt void
   2071  1.190.2.1      yamt pool_cache_bootstrap_destroy(pool_cache_t pc)
   2072  1.190.2.1      yamt {
   2073      1.134        ad 	struct pool *pp = &pc->pc_pool;
   2074      1.175       jym 	u_int i;
   2075      1.134        ad 
   2076      1.134        ad 	/* Remove it from the global list. */
   2077      1.134        ad 	mutex_enter(&pool_head_lock);
   2078      1.134        ad 	while (pc->pc_refcnt != 0)
   2079      1.134        ad 		cv_wait(&pool_busy, &pool_head_lock);
   2080      1.145        ad 	TAILQ_REMOVE(&pool_cache_head, pc, pc_cachelist);
   2081      1.134        ad 	mutex_exit(&pool_head_lock);
   2082       1.43   thorpej 
   2083       1.43   thorpej 	/* First, invalidate the entire cache. */
   2084       1.43   thorpej 	pool_cache_invalidate(pc);
   2085       1.43   thorpej 
   2086      1.134        ad 	/* Disassociate it from the pool. */
   2087      1.134        ad 	mutex_enter(&pp->pr_lock);
   2088      1.134        ad 	pp->pr_cache = NULL;
   2089      1.134        ad 	mutex_exit(&pp->pr_lock);
   2090      1.134        ad 
   2091      1.134        ad 	/* Destroy per-CPU data */
   2092      1.183        ad 	for (i = 0; i < __arraycount(pc->pc_cpus); i++)
   2093      1.175       jym 		pool_cache_invalidate_cpu(pc, i);
   2094      1.134        ad 
   2095      1.134        ad 	/* Finally, destroy it. */
   2096      1.134        ad 	mutex_destroy(&pc->pc_lock);
   2097      1.134        ad 	pool_destroy(pp);
   2098      1.134        ad }
   2099      1.134        ad 
   2100      1.134        ad /*
   2101      1.134        ad  * pool_cache_cpu_init1:
   2102      1.134        ad  *
   2103      1.134        ad  *	Called for each pool_cache whenever a new CPU is attached.
   2104      1.134        ad  */
   2105      1.134        ad static void
   2106      1.134        ad pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
   2107      1.134        ad {
   2108      1.134        ad 	pool_cache_cpu_t *cc;
   2109      1.137        ad 	int index;
   2110      1.134        ad 
   2111      1.137        ad 	index = ci->ci_index;
   2112      1.137        ad 
   2113      1.183        ad 	KASSERT(index < __arraycount(pc->pc_cpus));
   2114      1.134        ad 
   2115      1.137        ad 	if ((cc = pc->pc_cpus[index]) != NULL) {
   2116      1.137        ad 		KASSERT(cc->cc_cpuindex == index);
   2117      1.134        ad 		return;
   2118      1.134        ad 	}
   2119      1.134        ad 
   2120      1.134        ad 	/*
   2121      1.134        ad 	 * The first CPU is 'free'.  This needs to be the case for
   2122      1.134        ad 	 * bootstrap - we may not be able to allocate yet.
   2123      1.134        ad 	 */
   2124      1.134        ad 	if (pc->pc_ncpu == 0) {
   2125      1.134        ad 		cc = &pc->pc_cpu0;
   2126      1.134        ad 		pc->pc_ncpu = 1;
   2127      1.134        ad 	} else {
   2128      1.134        ad 		mutex_enter(&pc->pc_lock);
   2129      1.134        ad 		pc->pc_ncpu++;
   2130      1.134        ad 		mutex_exit(&pc->pc_lock);
   2131      1.134        ad 		cc = pool_get(&cache_cpu_pool, PR_WAITOK);
   2132      1.134        ad 	}
   2133      1.134        ad 
   2134      1.134        ad 	cc->cc_ipl = pc->pc_pool.pr_ipl;
   2135      1.134        ad 	cc->cc_iplcookie = makeiplcookie(cc->cc_ipl);
   2136      1.134        ad 	cc->cc_cache = pc;
   2137      1.137        ad 	cc->cc_cpuindex = index;
   2138      1.134        ad 	cc->cc_hits = 0;
   2139      1.134        ad 	cc->cc_misses = 0;
   2140      1.169      yamt 	cc->cc_current = __UNCONST(&pcg_dummy);
   2141      1.169      yamt 	cc->cc_previous = __UNCONST(&pcg_dummy);
   2142      1.134        ad 
   2143      1.137        ad 	pc->pc_cpus[index] = cc;
   2144       1.43   thorpej }
   2145       1.43   thorpej 
   2146      1.134        ad /*
   2147      1.134        ad  * pool_cache_cpu_init:
   2148      1.134        ad  *
   2149      1.134        ad  *	Called whenever a new CPU is attached.
   2150      1.134        ad  */
   2151      1.134        ad void
   2152      1.134        ad pool_cache_cpu_init(struct cpu_info *ci)
   2153       1.43   thorpej {
   2154      1.134        ad 	pool_cache_t pc;
   2155      1.134        ad 
   2156      1.134        ad 	mutex_enter(&pool_head_lock);
   2157      1.145        ad 	TAILQ_FOREACH(pc, &pool_cache_head, pc_cachelist) {
   2158      1.134        ad 		pc->pc_refcnt++;
   2159      1.134        ad 		mutex_exit(&pool_head_lock);
   2160       1.43   thorpej 
   2161      1.134        ad 		pool_cache_cpu_init1(ci, pc);
   2162       1.43   thorpej 
   2163      1.134        ad 		mutex_enter(&pool_head_lock);
   2164      1.134        ad 		pc->pc_refcnt--;
   2165      1.134        ad 		cv_broadcast(&pool_busy);
   2166      1.134        ad 	}
   2167      1.134        ad 	mutex_exit(&pool_head_lock);
   2168       1.43   thorpej }
   2169       1.43   thorpej 
   2170      1.134        ad /*
   2171      1.134        ad  * pool_cache_reclaim:
   2172      1.134        ad  *
   2173      1.134        ad  *	Reclaim memory from a pool cache.
   2174      1.134        ad  */
   2175      1.134        ad bool
   2176      1.134        ad pool_cache_reclaim(pool_cache_t pc)
   2177       1.43   thorpej {
   2178       1.43   thorpej 
   2179      1.134        ad 	return pool_reclaim(&pc->pc_pool);
   2180      1.134        ad }
   2181       1.43   thorpej 
   2182      1.136      yamt static void
   2183      1.136      yamt pool_cache_destruct_object1(pool_cache_t pc, void *object)
   2184      1.136      yamt {
   2185      1.136      yamt 
   2186      1.136      yamt 	(*pc->pc_dtor)(pc->pc_arg, object);
   2187      1.136      yamt 	pool_put(&pc->pc_pool, object);
   2188      1.136      yamt }
   2189      1.136      yamt 
   2190      1.134        ad /*
   2191      1.134        ad  * pool_cache_destruct_object:
   2192      1.134        ad  *
   2193      1.134        ad  *	Force destruction of an object and its release back into
   2194      1.134        ad  *	the pool.
   2195      1.134        ad  */
   2196      1.134        ad void
   2197      1.134        ad pool_cache_destruct_object(pool_cache_t pc, void *object)
   2198      1.134        ad {
   2199      1.134        ad 
   2200      1.136      yamt 	FREECHECK_IN(&pc->pc_freecheck, object);
   2201      1.136      yamt 
   2202      1.136      yamt 	pool_cache_destruct_object1(pc, object);
   2203       1.43   thorpej }
   2204       1.43   thorpej 
   2205      1.134        ad /*
   2206      1.134        ad  * pool_cache_invalidate_groups:
   2207      1.134        ad  *
   2208      1.134        ad  *	Invalidate a chain of groups and destruct all objects.
   2209      1.134        ad  */
   2210      1.102       chs static void
   2211      1.134        ad pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
   2212      1.102       chs {
   2213      1.134        ad 	void *object;
   2214      1.134        ad 	pcg_t *next;
   2215      1.134        ad 	int i;
   2216      1.134        ad 
   2217      1.134        ad 	for (; pcg != NULL; pcg = next) {
   2218      1.134        ad 		next = pcg->pcg_next;
   2219      1.134        ad 
   2220      1.134        ad 		for (i = 0; i < pcg->pcg_avail; i++) {
   2221      1.134        ad 			object = pcg->pcg_objects[i].pcgo_va;
   2222      1.136      yamt 			pool_cache_destruct_object1(pc, object);
   2223      1.134        ad 		}
   2224      1.102       chs 
   2225      1.142        ad 		if (pcg->pcg_size == PCG_NOBJECTS_LARGE) {
   2226      1.142        ad 			pool_put(&pcg_large_pool, pcg);
   2227      1.142        ad 		} else {
   2228      1.142        ad 			KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL);
   2229      1.142        ad 			pool_put(&pcg_normal_pool, pcg);
   2230      1.142        ad 		}
   2231      1.102       chs 	}
   2232      1.102       chs }
   2233      1.102       chs 
   2234       1.43   thorpej /*
   2235      1.134        ad  * pool_cache_invalidate:
   2236       1.43   thorpej  *
   2237      1.134        ad  *	Invalidate a pool cache (destruct and release all of the
   2238      1.134        ad  *	cached objects).  Does not reclaim objects from the pool.
   2239      1.176   thorpej  *
   2240      1.176   thorpej  *	Note: For pool caches that provide constructed objects, there
   2241      1.176   thorpej  *	is an assumption that another level of synchronization is occurring
   2242      1.176   thorpej  *	between the input to the constructor and the cache invalidation.
   2243       1.43   thorpej  */
   2244      1.134        ad void
   2245      1.134        ad pool_cache_invalidate(pool_cache_t pc)
   2246      1.134        ad {
   2247      1.134        ad 	pcg_t *full, *empty, *part;
   2248      1.182     rmind #if 0
   2249      1.176   thorpej 	uint64_t where;
   2250      1.176   thorpej 
   2251      1.177       jym 	if (ncpu < 2 || !mp_online) {
   2252      1.176   thorpej 		/*
   2253      1.176   thorpej 		 * We might be called early enough in the boot process
   2254      1.176   thorpej 		 * for the CPU data structures to not be fully initialized.
   2255      1.176   thorpej 		 * In this case, simply gather the local CPU's cache now
   2256      1.176   thorpej 		 * since it will be the only one running.
   2257      1.176   thorpej 		 */
   2258      1.176   thorpej 		pool_cache_xcall(pc);
   2259      1.176   thorpej 	} else {
   2260      1.176   thorpej 		/*
   2261      1.176   thorpej 		 * Gather all of the CPU-specific caches into the
   2262      1.176   thorpej 		 * global cache.
   2263      1.176   thorpej 		 */
   2264      1.176   thorpej 		where = xc_broadcast(0, (xcfunc_t)pool_cache_xcall, pc, NULL);
   2265      1.176   thorpej 		xc_wait(where);
   2266      1.176   thorpej 	}
   2267      1.182     rmind #endif
   2268      1.134        ad 	mutex_enter(&pc->pc_lock);
   2269      1.134        ad 	full = pc->pc_fullgroups;
   2270      1.134        ad 	empty = pc->pc_emptygroups;
   2271      1.134        ad 	part = pc->pc_partgroups;
   2272      1.134        ad 	pc->pc_fullgroups = NULL;
   2273      1.134        ad 	pc->pc_emptygroups = NULL;
   2274      1.134        ad 	pc->pc_partgroups = NULL;
   2275      1.134        ad 	pc->pc_nfull = 0;
   2276      1.134        ad 	pc->pc_nempty = 0;
   2277      1.134        ad 	pc->pc_npart = 0;
   2278      1.134        ad 	mutex_exit(&pc->pc_lock);
   2279      1.134        ad 
   2280      1.134        ad 	pool_cache_invalidate_groups(pc, full);
   2281      1.134        ad 	pool_cache_invalidate_groups(pc, empty);
   2282      1.134        ad 	pool_cache_invalidate_groups(pc, part);
   2283      1.134        ad }
   2284      1.134        ad 
   2285      1.175       jym /*
   2286      1.175       jym  * pool_cache_invalidate_cpu:
   2287      1.175       jym  *
   2288      1.175       jym  *	Invalidate all CPU-bound cached objects in pool cache, the CPU being
   2289      1.175       jym  *	identified by its associated index.
   2290      1.175       jym  *	It is caller's responsibility to ensure that no operation is
   2291      1.175       jym  *	taking place on this pool cache while doing this invalidation.
   2292      1.175       jym  *	WARNING: as no inter-CPU locking is enforced, trying to invalidate
   2293      1.175       jym  *	pool cached objects from a CPU different from the one currently running
   2294      1.175       jym  *	may result in an undefined behaviour.
   2295      1.175       jym  */
   2296      1.175       jym static void
   2297      1.175       jym pool_cache_invalidate_cpu(pool_cache_t pc, u_int index)
   2298      1.175       jym {
   2299      1.175       jym 
   2300      1.175       jym 	pool_cache_cpu_t *cc;
   2301      1.175       jym 	pcg_t *pcg;
   2302      1.175       jym 
   2303      1.175       jym 	if ((cc = pc->pc_cpus[index]) == NULL)
   2304      1.175       jym 		return;
   2305      1.175       jym 
   2306      1.175       jym 	if ((pcg = cc->cc_current) != &pcg_dummy) {
   2307      1.175       jym 		pcg->pcg_next = NULL;
   2308      1.175       jym 		pool_cache_invalidate_groups(pc, pcg);
   2309      1.175       jym 	}
   2310      1.175       jym 	if ((pcg = cc->cc_previous) != &pcg_dummy) {
   2311      1.175       jym 		pcg->pcg_next = NULL;
   2312      1.175       jym 		pool_cache_invalidate_groups(pc, pcg);
   2313      1.175       jym 	}
   2314      1.175       jym 	if (cc != &pc->pc_cpu0)
   2315      1.175       jym 		pool_put(&cache_cpu_pool, cc);
   2316      1.175       jym 
   2317      1.175       jym }
   2318      1.175       jym 
   2319      1.134        ad void
   2320      1.134        ad pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
   2321      1.134        ad {
   2322      1.134        ad 
   2323      1.134        ad 	pool_set_drain_hook(&pc->pc_pool, fn, arg);
   2324      1.134        ad }
   2325      1.134        ad 
   2326      1.134        ad void
   2327      1.134        ad pool_cache_setlowat(pool_cache_t pc, int n)
   2328      1.134        ad {
   2329      1.134        ad 
   2330      1.134        ad 	pool_setlowat(&pc->pc_pool, n);
   2331      1.134        ad }
   2332      1.134        ad 
   2333      1.134        ad void
   2334      1.134        ad pool_cache_sethiwat(pool_cache_t pc, int n)
   2335      1.134        ad {
   2336      1.134        ad 
   2337      1.134        ad 	pool_sethiwat(&pc->pc_pool, n);
   2338      1.134        ad }
   2339      1.134        ad 
   2340      1.134        ad void
   2341      1.134        ad pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
   2342      1.134        ad {
   2343      1.134        ad 
   2344      1.134        ad 	pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
   2345      1.134        ad }
   2346      1.134        ad 
   2347      1.162        ad static bool __noinline
   2348      1.162        ad pool_cache_get_slow(pool_cache_cpu_t *cc, int s, void **objectp,
   2349      1.134        ad 		    paddr_t *pap, int flags)
   2350       1.43   thorpej {
   2351      1.134        ad 	pcg_t *pcg, *cur;
   2352      1.134        ad 	uint64_t ncsw;
   2353      1.134        ad 	pool_cache_t pc;
   2354       1.43   thorpej 	void *object;
   2355       1.58   thorpej 
   2356      1.168      yamt 	KASSERT(cc->cc_current->pcg_avail == 0);
   2357      1.168      yamt 	KASSERT(cc->cc_previous->pcg_avail == 0);
   2358      1.168      yamt 
   2359      1.134        ad 	pc = cc->cc_cache;
   2360      1.134        ad 	cc->cc_misses++;
   2361       1.43   thorpej 
   2362      1.134        ad 	/*
   2363      1.134        ad 	 * Nothing was available locally.  Try and grab a group
   2364      1.134        ad 	 * from the cache.
   2365      1.134        ad 	 */
   2366      1.162        ad 	if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
   2367      1.134        ad 		ncsw = curlwp->l_ncsw;
   2368      1.134        ad 		mutex_enter(&pc->pc_lock);
   2369      1.134        ad 		pc->pc_contended++;
   2370       1.43   thorpej 
   2371      1.134        ad 		/*
   2372      1.134        ad 		 * If we context switched while locking, then
   2373      1.134        ad 		 * our view of the per-CPU data is invalid:
   2374      1.134        ad 		 * retry.
   2375      1.134        ad 		 */
   2376      1.134        ad 		if (curlwp->l_ncsw != ncsw) {
   2377      1.134        ad 			mutex_exit(&pc->pc_lock);
   2378      1.162        ad 			return true;
   2379       1.43   thorpej 		}
   2380      1.102       chs 	}
   2381       1.43   thorpej 
   2382      1.162        ad 	if (__predict_true((pcg = pc->pc_fullgroups) != NULL)) {
   2383       1.43   thorpej 		/*
   2384      1.134        ad 		 * If there's a full group, release our empty
   2385      1.134        ad 		 * group back to the cache.  Install the full
   2386      1.134        ad 		 * group as cc_current and return.
   2387       1.43   thorpej 		 */
   2388      1.162        ad 		if (__predict_true((cur = cc->cc_current) != &pcg_dummy)) {
   2389      1.134        ad 			KASSERT(cur->pcg_avail == 0);
   2390      1.134        ad 			cur->pcg_next = pc->pc_emptygroups;
   2391      1.134        ad 			pc->pc_emptygroups = cur;
   2392      1.134        ad 			pc->pc_nempty++;
   2393       1.87   thorpej 		}
   2394      1.142        ad 		KASSERT(pcg->pcg_avail == pcg->pcg_size);
   2395      1.134        ad 		cc->cc_current = pcg;
   2396      1.134        ad 		pc->pc_fullgroups = pcg->pcg_next;
   2397      1.134        ad 		pc->pc_hits++;
   2398      1.134        ad 		pc->pc_nfull--;
   2399      1.134        ad 		mutex_exit(&pc->pc_lock);
   2400      1.162        ad 		return true;
   2401      1.134        ad 	}
   2402      1.134        ad 
   2403      1.134        ad 	/*
   2404      1.134        ad 	 * Nothing available locally or in cache.  Take the slow
   2405      1.134        ad 	 * path: fetch a new object from the pool and construct
   2406      1.134        ad 	 * it.
   2407      1.134        ad 	 */
   2408      1.134        ad 	pc->pc_misses++;
   2409      1.134        ad 	mutex_exit(&pc->pc_lock);
   2410      1.162        ad 	splx(s);
   2411      1.134        ad 
   2412      1.134        ad 	object = pool_get(&pc->pc_pool, flags);
   2413      1.134        ad 	*objectp = object;
   2414      1.162        ad 	if (__predict_false(object == NULL))
   2415      1.162        ad 		return false;
   2416      1.125        ad 
   2417      1.162        ad 	if (__predict_false((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0)) {
   2418      1.134        ad 		pool_put(&pc->pc_pool, object);
   2419      1.134        ad 		*objectp = NULL;
   2420      1.162        ad 		return false;
   2421       1.43   thorpej 	}
   2422       1.43   thorpej 
   2423      1.134        ad 	KASSERT((((vaddr_t)object + pc->pc_pool.pr_itemoffset) &
   2424      1.134        ad 	    (pc->pc_pool.pr_align - 1)) == 0);
   2425       1.43   thorpej 
   2426      1.134        ad 	if (pap != NULL) {
   2427      1.134        ad #ifdef POOL_VTOPHYS
   2428      1.134        ad 		*pap = POOL_VTOPHYS(object);
   2429      1.134        ad #else
   2430      1.134        ad 		*pap = POOL_PADDR_INVALID;
   2431      1.134        ad #endif
   2432      1.102       chs 	}
   2433       1.43   thorpej 
   2434      1.125        ad 	FREECHECK_OUT(&pc->pc_freecheck, object);
   2435      1.162        ad 	return false;
   2436       1.43   thorpej }
   2437       1.43   thorpej 
   2438       1.43   thorpej /*
   2439      1.134        ad  * pool_cache_get{,_paddr}:
   2440       1.43   thorpej  *
   2441      1.134        ad  *	Get an object from a pool cache (optionally returning
   2442      1.134        ad  *	the physical address of the object).
   2443       1.43   thorpej  */
   2444      1.134        ad void *
   2445      1.134        ad pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
   2446       1.43   thorpej {
   2447      1.134        ad 	pool_cache_cpu_t *cc;
   2448      1.134        ad 	pcg_t *pcg;
   2449      1.134        ad 	void *object;
   2450       1.60   thorpej 	int s;
   2451       1.43   thorpej 
   2452      1.184     rmind 	KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()) ||
   2453      1.185     rmind 	    (pc->pc_pool.pr_ipl != IPL_NONE || cold || panicstr != NULL),
   2454      1.190       jym 	    "pool '%s' is IPL_NONE, but called from interrupt context\n",
   2455      1.190       jym 	    pc->pc_pool.pr_wchan);
   2456      1.184     rmind 
   2457      1.155        ad 	if (flags & PR_WAITOK) {
   2458      1.154      yamt 		ASSERT_SLEEPABLE();
   2459      1.155        ad 	}
   2460      1.125        ad 
   2461      1.162        ad 	/* Lock out interrupts and disable preemption. */
   2462      1.162        ad 	s = splvm();
   2463      1.165      yamt 	while (/* CONSTCOND */ true) {
   2464      1.134        ad 		/* Try and allocate an object from the current group. */
   2465      1.162        ad 		cc = pc->pc_cpus[curcpu()->ci_index];
   2466      1.162        ad 		KASSERT(cc->cc_cache == pc);
   2467      1.134        ad 	 	pcg = cc->cc_current;
   2468      1.162        ad 		if (__predict_true(pcg->pcg_avail > 0)) {
   2469      1.134        ad 			object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;
   2470      1.162        ad 			if (__predict_false(pap != NULL))
   2471      1.134        ad 				*pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa;
   2472      1.148      yamt #if defined(DIAGNOSTIC)
   2473      1.134        ad 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL;
   2474      1.163        ad 			KASSERT(pcg->pcg_avail < pcg->pcg_size);
   2475      1.134        ad 			KASSERT(object != NULL);
   2476      1.163        ad #endif
   2477      1.134        ad 			cc->cc_hits++;
   2478      1.162        ad 			splx(s);
   2479      1.134        ad 			FREECHECK_OUT(&pc->pc_freecheck, object);
   2480      1.134        ad 			return object;
   2481       1.43   thorpej 		}
   2482       1.43   thorpej 
   2483       1.43   thorpej 		/*
   2484      1.134        ad 		 * That failed.  If the previous group isn't empty, swap
   2485      1.134        ad 		 * it with the current group and allocate from there.
   2486       1.43   thorpej 		 */
   2487      1.134        ad 		pcg = cc->cc_previous;
   2488      1.162        ad 		if (__predict_true(pcg->pcg_avail > 0)) {
   2489      1.134        ad 			cc->cc_previous = cc->cc_current;
   2490      1.134        ad 			cc->cc_current = pcg;
   2491      1.134        ad 			continue;
   2492       1.43   thorpej 		}
   2493       1.43   thorpej 
   2494      1.134        ad 		/*
   2495      1.134        ad 		 * Can't allocate from either group: try the slow path.
   2496      1.134        ad 		 * If get_slow() allocated an object for us, or if
   2497      1.162        ad 		 * no more objects are available, it will return false.
   2498      1.134        ad 		 * Otherwise, we need to retry.
   2499      1.134        ad 		 */
   2500      1.165      yamt 		if (!pool_cache_get_slow(cc, s, &object, pap, flags))
   2501      1.165      yamt 			break;
   2502      1.165      yamt 	}
   2503       1.43   thorpej 
   2504      1.134        ad 	return object;
   2505       1.51   thorpej }
   2506       1.51   thorpej 
   2507      1.162        ad static bool __noinline
   2508      1.162        ad pool_cache_put_slow(pool_cache_cpu_t *cc, int s, void *object)
   2509       1.51   thorpej {
   2510      1.163        ad 	pcg_t *pcg, *cur;
   2511      1.134        ad 	uint64_t ncsw;
   2512      1.134        ad 	pool_cache_t pc;
   2513       1.51   thorpej 
   2514      1.168      yamt 	KASSERT(cc->cc_current->pcg_avail == cc->cc_current->pcg_size);
   2515      1.168      yamt 	KASSERT(cc->cc_previous->pcg_avail == cc->cc_previous->pcg_size);
   2516      1.168      yamt 
   2517      1.134        ad 	pc = cc->cc_cache;
   2518      1.171        ad 	pcg = NULL;
   2519      1.134        ad 	cc->cc_misses++;
   2520       1.43   thorpej 
   2521      1.171        ad 	/*
   2522      1.171        ad 	 * If there are no empty groups in the cache then allocate one
   2523      1.171        ad 	 * while still unlocked.
   2524      1.171        ad 	 */
   2525      1.171        ad 	if (__predict_false(pc->pc_emptygroups == NULL)) {
   2526      1.171        ad 		if (__predict_true(!pool_cache_disable)) {
   2527      1.171        ad 			pcg = pool_get(pc->pc_pcgpool, PR_NOWAIT);
   2528      1.171        ad 		}
   2529      1.171        ad 		if (__predict_true(pcg != NULL)) {
   2530      1.171        ad 			pcg->pcg_avail = 0;
   2531      1.171        ad 			pcg->pcg_size = pc->pc_pcgsize;
   2532      1.171        ad 		}
   2533      1.171        ad 	}
   2534      1.171        ad 
   2535      1.162        ad 	/* Lock the cache. */
   2536      1.162        ad 	if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
   2537      1.164        ad 		ncsw = curlwp->l_ncsw;
   2538      1.134        ad 		mutex_enter(&pc->pc_lock);
   2539      1.134        ad 		pc->pc_contended++;
   2540      1.162        ad 
   2541      1.163        ad 		/*
   2542      1.163        ad 		 * If we context switched while locking, then our view of
   2543      1.163        ad 		 * the per-CPU data is invalid: retry.
   2544      1.163        ad 		 */
   2545      1.163        ad 		if (__predict_false(curlwp->l_ncsw != ncsw)) {
   2546      1.163        ad 			mutex_exit(&pc->pc_lock);
   2547      1.171        ad 			if (pcg != NULL) {
   2548      1.171        ad 				pool_put(pc->pc_pcgpool, pcg);
   2549      1.171        ad 			}
   2550      1.163        ad 			return true;
   2551      1.163        ad 		}
   2552      1.162        ad 	}
   2553      1.102       chs 
   2554      1.163        ad 	/* If there are no empty groups in the cache then allocate one. */
   2555      1.171        ad 	if (pcg == NULL && pc->pc_emptygroups != NULL) {
   2556      1.171        ad 		pcg = pc->pc_emptygroups;
   2557      1.163        ad 		pc->pc_emptygroups = pcg->pcg_next;
   2558      1.163        ad 		pc->pc_nempty--;
   2559      1.134        ad 	}
   2560      1.130        ad 
   2561      1.162        ad 	/*
   2562      1.162        ad 	 * If there's a empty group, release our full group back
   2563      1.162        ad 	 * to the cache.  Install the empty group to the local CPU
   2564      1.162        ad 	 * and return.
   2565      1.162        ad 	 */
   2566      1.163        ad 	if (pcg != NULL) {
   2567      1.134        ad 		KASSERT(pcg->pcg_avail == 0);
   2568      1.162        ad 		if (__predict_false(cc->cc_previous == &pcg_dummy)) {
   2569      1.146        ad 			cc->cc_previous = pcg;
   2570      1.146        ad 		} else {
   2571      1.162        ad 			cur = cc->cc_current;
   2572      1.162        ad 			if (__predict_true(cur != &pcg_dummy)) {
   2573      1.163        ad 				KASSERT(cur->pcg_avail == cur->pcg_size);
   2574      1.146        ad 				cur->pcg_next = pc->pc_fullgroups;
   2575      1.146        ad 				pc->pc_fullgroups = cur;
   2576      1.146        ad 				pc->pc_nfull++;
   2577      1.146        ad 			}
   2578      1.146        ad 			cc->cc_current = pcg;
   2579      1.146        ad 		}
   2580      1.163        ad 		pc->pc_hits++;
   2581      1.134        ad 		mutex_exit(&pc->pc_lock);
   2582      1.162        ad 		return true;
   2583      1.102       chs 	}
   2584      1.105  christos 
   2585      1.134        ad 	/*
   2586      1.162        ad 	 * Nothing available locally or in cache, and we didn't
   2587      1.162        ad 	 * allocate an empty group.  Take the slow path and destroy
   2588      1.162        ad 	 * the object here and now.
   2589      1.134        ad 	 */
   2590      1.134        ad 	pc->pc_misses++;
   2591      1.134        ad 	mutex_exit(&pc->pc_lock);
   2592      1.162        ad 	splx(s);
   2593      1.162        ad 	pool_cache_destruct_object(pc, object);
   2594      1.105  christos 
   2595      1.162        ad 	return false;
   2596      1.134        ad }
   2597      1.102       chs 
   2598       1.43   thorpej /*
   2599      1.134        ad  * pool_cache_put{,_paddr}:
   2600       1.43   thorpej  *
   2601      1.134        ad  *	Put an object back to the pool cache (optionally caching the
   2602      1.134        ad  *	physical address of the object).
   2603       1.43   thorpej  */
   2604      1.101   thorpej void
   2605      1.134        ad pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
   2606       1.43   thorpej {
   2607      1.134        ad 	pool_cache_cpu_t *cc;
   2608      1.134        ad 	pcg_t *pcg;
   2609      1.134        ad 	int s;
   2610      1.101   thorpej 
   2611      1.172      yamt 	KASSERT(object != NULL);
   2612      1.134        ad 	FREECHECK_IN(&pc->pc_freecheck, object);
   2613      1.101   thorpej 
   2614      1.162        ad 	/* Lock out interrupts and disable preemption. */
   2615      1.162        ad 	s = splvm();
   2616      1.165      yamt 	while (/* CONSTCOND */ true) {
   2617      1.134        ad 		/* If the current group isn't full, release it there. */
   2618      1.162        ad 		cc = pc->pc_cpus[curcpu()->ci_index];
   2619      1.162        ad 		KASSERT(cc->cc_cache == pc);
   2620      1.134        ad 	 	pcg = cc->cc_current;
   2621      1.162        ad 		if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
   2622      1.134        ad 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object;
   2623      1.134        ad 			pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa;
   2624      1.134        ad 			pcg->pcg_avail++;
   2625      1.134        ad 			cc->cc_hits++;
   2626      1.162        ad 			splx(s);
   2627      1.134        ad 			return;
   2628      1.134        ad 		}
   2629       1.43   thorpej 
   2630      1.134        ad 		/*
   2631      1.162        ad 		 * That failed.  If the previous group isn't full, swap
   2632      1.134        ad 		 * it with the current group and try again.
   2633      1.134        ad 		 */
   2634      1.134        ad 		pcg = cc->cc_previous;
   2635      1.162        ad 		if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
   2636      1.134        ad 			cc->cc_previous = cc->cc_current;
   2637      1.134        ad 			cc->cc_current = pcg;
   2638      1.134        ad 			continue;
   2639      1.134        ad 		}
   2640       1.43   thorpej 
   2641      1.134        ad 		/*
   2642      1.134        ad 		 * Can't free to either group: try the slow path.
   2643      1.134        ad 		 * If put_slow() releases the object for us, it
   2644      1.162        ad 		 * will return false.  Otherwise we need to retry.
   2645      1.134        ad 		 */
   2646      1.165      yamt 		if (!pool_cache_put_slow(cc, s, object))
   2647      1.165      yamt 			break;
   2648      1.165      yamt 	}
   2649       1.43   thorpej }
   2650       1.43   thorpej 
   2651       1.43   thorpej /*
   2652      1.134        ad  * pool_cache_xcall:
   2653       1.43   thorpej  *
   2654      1.134        ad  *	Transfer objects from the per-CPU cache to the global cache.
   2655      1.134        ad  *	Run within a cross-call thread.
   2656       1.43   thorpej  */
   2657       1.43   thorpej static void
   2658      1.134        ad pool_cache_xcall(pool_cache_t pc)
   2659       1.43   thorpej {
   2660      1.134        ad 	pool_cache_cpu_t *cc;
   2661      1.134        ad 	pcg_t *prev, *cur, **list;
   2662      1.162        ad 	int s;
   2663      1.134        ad 
   2664      1.162        ad 	s = splvm();
   2665      1.162        ad 	mutex_enter(&pc->pc_lock);
   2666      1.162        ad 	cc = pc->pc_cpus[curcpu()->ci_index];
   2667      1.134        ad 	cur = cc->cc_current;
   2668      1.169      yamt 	cc->cc_current = __UNCONST(&pcg_dummy);
   2669      1.134        ad 	prev = cc->cc_previous;
   2670      1.169      yamt 	cc->cc_previous = __UNCONST(&pcg_dummy);
   2671      1.162        ad 	if (cur != &pcg_dummy) {
   2672      1.142        ad 		if (cur->pcg_avail == cur->pcg_size) {
   2673      1.134        ad 			list = &pc->pc_fullgroups;
   2674      1.134        ad 			pc->pc_nfull++;
   2675      1.134        ad 		} else if (cur->pcg_avail == 0) {
   2676      1.134        ad 			list = &pc->pc_emptygroups;
   2677      1.134        ad 			pc->pc_nempty++;
   2678      1.134        ad 		} else {
   2679      1.134        ad 			list = &pc->pc_partgroups;
   2680      1.134        ad 			pc->pc_npart++;
   2681      1.134        ad 		}
   2682      1.134        ad 		cur->pcg_next = *list;
   2683      1.134        ad 		*list = cur;
   2684      1.134        ad 	}
   2685      1.162        ad 	if (prev != &pcg_dummy) {
   2686      1.142        ad 		if (prev->pcg_avail == prev->pcg_size) {
   2687      1.134        ad 			list = &pc->pc_fullgroups;
   2688      1.134        ad 			pc->pc_nfull++;
   2689      1.134        ad 		} else if (prev->pcg_avail == 0) {
   2690      1.134        ad 			list = &pc->pc_emptygroups;
   2691      1.134        ad 			pc->pc_nempty++;
   2692      1.134        ad 		} else {
   2693      1.134        ad 			list = &pc->pc_partgroups;
   2694      1.134        ad 			pc->pc_npart++;
   2695      1.134        ad 		}
   2696      1.134        ad 		prev->pcg_next = *list;
   2697      1.134        ad 		*list = prev;
   2698      1.134        ad 	}
   2699      1.134        ad 	mutex_exit(&pc->pc_lock);
   2700      1.134        ad 	splx(s);
   2701        1.3        pk }
   2702       1.66   thorpej 
   2703       1.66   thorpej /*
   2704       1.66   thorpej  * Pool backend allocators.
   2705       1.66   thorpej  *
   2706       1.66   thorpej  * Each pool has a backend allocator that handles allocation, deallocation,
   2707       1.66   thorpej  * and any additional draining that might be needed.
   2708       1.66   thorpej  *
   2709       1.66   thorpej  * We provide two standard allocators:
   2710       1.66   thorpej  *
   2711       1.66   thorpej  *	pool_allocator_kmem - the default when no allocator is specified
   2712       1.66   thorpej  *
   2713       1.66   thorpej  *	pool_allocator_nointr - used for pools that will not be accessed
   2714       1.66   thorpej  *	in interrupt context.
   2715       1.66   thorpej  */
   2716       1.66   thorpej void	*pool_page_alloc(struct pool *, int);
   2717       1.66   thorpej void	pool_page_free(struct pool *, void *);
   2718       1.66   thorpej 
   2719      1.112     bjh21 #ifdef POOL_SUBPAGE
   2720      1.112     bjh21 struct pool_allocator pool_allocator_kmem_fullpage = {
   2721  1.190.2.1      yamt 	.pa_alloc = pool_page_alloc,
   2722  1.190.2.1      yamt 	.pa_free = pool_page_free,
   2723  1.190.2.1      yamt 	.pa_pagesz = 0
   2724      1.112     bjh21 };
   2725      1.112     bjh21 #else
   2726       1.66   thorpej struct pool_allocator pool_allocator_kmem = {
   2727  1.190.2.1      yamt 	.pa_alloc = pool_page_alloc,
   2728  1.190.2.1      yamt 	.pa_free = pool_page_free,
   2729  1.190.2.1      yamt 	.pa_pagesz = 0
   2730       1.66   thorpej };
   2731      1.112     bjh21 #endif
   2732       1.66   thorpej 
   2733      1.112     bjh21 #ifdef POOL_SUBPAGE
   2734      1.112     bjh21 struct pool_allocator pool_allocator_nointr_fullpage = {
   2735  1.190.2.1      yamt 	.pa_alloc = pool_page_alloc,
   2736  1.190.2.1      yamt 	.pa_free = pool_page_free,
   2737  1.190.2.1      yamt 	.pa_pagesz = 0
   2738      1.112     bjh21 };
   2739      1.112     bjh21 #else
   2740       1.66   thorpej struct pool_allocator pool_allocator_nointr = {
   2741  1.190.2.1      yamt 	.pa_alloc = pool_page_alloc,
   2742  1.190.2.1      yamt 	.pa_free = pool_page_free,
   2743  1.190.2.1      yamt 	.pa_pagesz = 0
   2744       1.66   thorpej };
   2745      1.112     bjh21 #endif
   2746       1.66   thorpej 
   2747       1.66   thorpej #ifdef POOL_SUBPAGE
   2748       1.66   thorpej void	*pool_subpage_alloc(struct pool *, int);
   2749       1.66   thorpej void	pool_subpage_free(struct pool *, void *);
   2750       1.66   thorpej 
   2751      1.112     bjh21 struct pool_allocator pool_allocator_kmem = {
   2752  1.190.2.1      yamt 	.pa_alloc = pool_subpage_alloc,
   2753  1.190.2.1      yamt 	.pa_free = pool_subpage_free,
   2754  1.190.2.1      yamt 	.pa_pagesz = POOL_SUBPAGE
   2755      1.112     bjh21 };
   2756      1.112     bjh21 
   2757      1.112     bjh21 struct pool_allocator pool_allocator_nointr = {
   2758  1.190.2.1      yamt 	.pa_alloc = pool_subpage_alloc,
   2759  1.190.2.1      yamt 	.pa_free = pool_subpage_free,
   2760  1.190.2.1      yamt 	.pa_pagesz = POOL_SUBPAGE
   2761       1.66   thorpej };
   2762       1.66   thorpej #endif /* POOL_SUBPAGE */
   2763       1.66   thorpej 
   2764      1.117      yamt static void *
   2765      1.117      yamt pool_allocator_alloc(struct pool *pp, int flags)
   2766       1.66   thorpej {
   2767      1.117      yamt 	struct pool_allocator *pa = pp->pr_alloc;
   2768       1.66   thorpej 	void *res;
   2769       1.66   thorpej 
   2770      1.117      yamt 	res = (*pa->pa_alloc)(pp, flags);
   2771      1.117      yamt 	if (res == NULL && (flags & PR_WAITOK) == 0) {
   2772       1.66   thorpej 		/*
   2773      1.117      yamt 		 * We only run the drain hook here if PR_NOWAIT.
   2774      1.117      yamt 		 * In other cases, the hook will be run in
   2775      1.117      yamt 		 * pool_reclaim().
   2776       1.66   thorpej 		 */
   2777      1.117      yamt 		if (pp->pr_drain_hook != NULL) {
   2778      1.117      yamt 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
   2779      1.117      yamt 			res = (*pa->pa_alloc)(pp, flags);
   2780       1.66   thorpej 		}
   2781      1.117      yamt 	}
   2782      1.117      yamt 	return res;
   2783       1.66   thorpej }
   2784       1.66   thorpej 
   2785      1.117      yamt static void
   2786       1.66   thorpej pool_allocator_free(struct pool *pp, void *v)
   2787       1.66   thorpej {
   2788       1.66   thorpej 	struct pool_allocator *pa = pp->pr_alloc;
   2789       1.66   thorpej 
   2790       1.66   thorpej 	(*pa->pa_free)(pp, v);
   2791       1.66   thorpej }
   2792       1.66   thorpej 
   2793       1.66   thorpej void *
   2794      1.124      yamt pool_page_alloc(struct pool *pp, int flags)
   2795       1.66   thorpej {
   2796  1.190.2.1      yamt 	const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
   2797  1.190.2.1      yamt 	vmem_addr_t va;
   2798  1.190.2.1      yamt 	int ret;
   2799  1.190.2.1      yamt 
   2800  1.190.2.1      yamt 	ret = uvm_km_kmem_alloc(kmem_va_arena, pp->pr_alloc->pa_pagesz,
   2801  1.190.2.1      yamt 	    vflags | VM_INSTANTFIT, &va);
   2802       1.66   thorpej 
   2803  1.190.2.1      yamt 	return ret ? NULL : (void *)va;
   2804       1.66   thorpej }
   2805       1.66   thorpej 
   2806       1.66   thorpej void
   2807      1.124      yamt pool_page_free(struct pool *pp, void *v)
   2808       1.66   thorpej {
   2809       1.66   thorpej 
   2810  1.190.2.1      yamt 	uvm_km_kmem_free(kmem_va_arena, (vaddr_t)v, pp->pr_alloc->pa_pagesz);
   2811       1.98      yamt }
   2812       1.98      yamt 
   2813       1.98      yamt static void *
   2814      1.124      yamt pool_page_alloc_meta(struct pool *pp, int flags)
   2815       1.98      yamt {
   2816  1.190.2.1      yamt 	const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
   2817  1.190.2.1      yamt 	vmem_addr_t va;
   2818  1.190.2.1      yamt 	int ret;
   2819       1.98      yamt 
   2820  1.190.2.1      yamt 	ret = vmem_alloc(kmem_meta_arena, pp->pr_alloc->pa_pagesz,
   2821  1.190.2.1      yamt 	    vflags | VM_INSTANTFIT, &va);
   2822  1.190.2.1      yamt 
   2823  1.190.2.1      yamt 	return ret ? NULL : (void *)va;
   2824       1.98      yamt }
   2825       1.98      yamt 
   2826       1.98      yamt static void
   2827      1.124      yamt pool_page_free_meta(struct pool *pp, void *v)
   2828       1.98      yamt {
   2829       1.98      yamt 
   2830  1.190.2.1      yamt 	vmem_free(kmem_meta_arena, (vmem_addr_t)v, pp->pr_alloc->pa_pagesz);
   2831       1.66   thorpej }
   2832       1.66   thorpej 
   2833       1.66   thorpej #ifdef POOL_SUBPAGE
   2834       1.66   thorpej /* Sub-page allocator, for machines with large hardware pages. */
   2835       1.66   thorpej void *
   2836       1.66   thorpej pool_subpage_alloc(struct pool *pp, int flags)
   2837       1.66   thorpej {
   2838      1.134        ad 	return pool_get(&psppool, flags);
   2839       1.66   thorpej }
   2840       1.66   thorpej 
   2841       1.66   thorpej void
   2842       1.66   thorpej pool_subpage_free(struct pool *pp, void *v)
   2843       1.66   thorpej {
   2844       1.66   thorpej 	pool_put(&psppool, v);
   2845       1.66   thorpej }
   2846       1.66   thorpej 
   2847      1.112     bjh21 #endif /* POOL_SUBPAGE */
   2848      1.141      yamt 
   2849      1.141      yamt #if defined(DDB)
   2850      1.141      yamt static bool
   2851      1.141      yamt pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
   2852      1.141      yamt {
   2853      1.141      yamt 
   2854      1.141      yamt 	return (uintptr_t)ph->ph_page <= addr &&
   2855      1.141      yamt 	    addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz;
   2856      1.141      yamt }
   2857      1.141      yamt 
   2858      1.143      yamt static bool
   2859      1.143      yamt pool_in_item(struct pool *pp, void *item, uintptr_t addr)
   2860      1.143      yamt {
   2861      1.143      yamt 
   2862      1.143      yamt 	return (uintptr_t)item <= addr && addr < (uintptr_t)item + pp->pr_size;
   2863      1.143      yamt }
   2864      1.143      yamt 
   2865      1.143      yamt static bool
   2866      1.143      yamt pool_in_cg(struct pool *pp, struct pool_cache_group *pcg, uintptr_t addr)
   2867      1.143      yamt {
   2868      1.143      yamt 	int i;
   2869      1.143      yamt 
   2870      1.143      yamt 	if (pcg == NULL) {
   2871      1.143      yamt 		return false;
   2872      1.143      yamt 	}
   2873      1.144      yamt 	for (i = 0; i < pcg->pcg_avail; i++) {
   2874      1.143      yamt 		if (pool_in_item(pp, pcg->pcg_objects[i].pcgo_va, addr)) {
   2875      1.143      yamt 			return true;
   2876      1.143      yamt 		}
   2877      1.143      yamt 	}
   2878      1.143      yamt 	return false;
   2879      1.143      yamt }
   2880      1.143      yamt 
   2881      1.143      yamt static bool
   2882      1.143      yamt pool_allocated(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
   2883      1.143      yamt {
   2884      1.143      yamt 
   2885      1.143      yamt 	if ((pp->pr_roflags & PR_NOTOUCH) != 0) {
   2886      1.143      yamt 		unsigned int idx = pr_item_notouch_index(pp, ph, (void *)addr);
   2887      1.143      yamt 		pool_item_bitmap_t *bitmap =
   2888      1.143      yamt 		    ph->ph_bitmap + (idx / BITMAP_SIZE);
   2889      1.143      yamt 		pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
   2890      1.143      yamt 
   2891      1.143      yamt 		return (*bitmap & mask) == 0;
   2892      1.143      yamt 	} else {
   2893      1.143      yamt 		struct pool_item *pi;
   2894      1.143      yamt 
   2895      1.143      yamt 		LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
   2896      1.143      yamt 			if (pool_in_item(pp, pi, addr)) {
   2897      1.143      yamt 				return false;
   2898      1.143      yamt 			}
   2899      1.143      yamt 		}
   2900      1.143      yamt 		return true;
   2901      1.143      yamt 	}
   2902      1.143      yamt }
   2903      1.143      yamt 
   2904      1.141      yamt void
   2905      1.141      yamt pool_whatis(uintptr_t addr, void (*pr)(const char *, ...))
   2906      1.141      yamt {
   2907      1.141      yamt 	struct pool *pp;
   2908      1.141      yamt 
   2909      1.145        ad 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   2910      1.141      yamt 		struct pool_item_header *ph;
   2911      1.141      yamt 		uintptr_t item;
   2912      1.143      yamt 		bool allocated = true;
   2913      1.143      yamt 		bool incache = false;
   2914      1.143      yamt 		bool incpucache = false;
   2915      1.143      yamt 		char cpucachestr[32];
   2916      1.141      yamt 
   2917      1.141      yamt 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
   2918      1.141      yamt 			LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
   2919      1.141      yamt 				if (pool_in_page(pp, ph, addr)) {
   2920      1.141      yamt 					goto found;
   2921      1.141      yamt 				}
   2922      1.141      yamt 			}
   2923      1.141      yamt 			LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
   2924      1.141      yamt 				if (pool_in_page(pp, ph, addr)) {
   2925      1.143      yamt 					allocated =
   2926      1.143      yamt 					    pool_allocated(pp, ph, addr);
   2927      1.143      yamt 					goto found;
   2928      1.143      yamt 				}
   2929      1.143      yamt 			}
   2930      1.143      yamt 			LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
   2931      1.143      yamt 				if (pool_in_page(pp, ph, addr)) {
   2932      1.143      yamt 					allocated = false;
   2933      1.141      yamt 					goto found;
   2934      1.141      yamt 				}
   2935      1.141      yamt 			}
   2936      1.141      yamt 			continue;
   2937      1.141      yamt 		} else {
   2938      1.141      yamt 			ph = pr_find_pagehead_noalign(pp, (void *)addr);
   2939      1.141      yamt 			if (ph == NULL || !pool_in_page(pp, ph, addr)) {
   2940      1.141      yamt 				continue;
   2941      1.141      yamt 			}
   2942      1.143      yamt 			allocated = pool_allocated(pp, ph, addr);
   2943      1.141      yamt 		}
   2944      1.141      yamt found:
   2945      1.143      yamt 		if (allocated && pp->pr_cache) {
   2946      1.143      yamt 			pool_cache_t pc = pp->pr_cache;
   2947      1.143      yamt 			struct pool_cache_group *pcg;
   2948      1.143      yamt 			int i;
   2949      1.143      yamt 
   2950      1.143      yamt 			for (pcg = pc->pc_fullgroups; pcg != NULL;
   2951      1.143      yamt 			    pcg = pcg->pcg_next) {
   2952      1.143      yamt 				if (pool_in_cg(pp, pcg, addr)) {
   2953      1.143      yamt 					incache = true;
   2954      1.143      yamt 					goto print;
   2955      1.143      yamt 				}
   2956      1.143      yamt 			}
   2957      1.183        ad 			for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
   2958      1.143      yamt 				pool_cache_cpu_t *cc;
   2959      1.143      yamt 
   2960      1.143      yamt 				if ((cc = pc->pc_cpus[i]) == NULL) {
   2961      1.143      yamt 					continue;
   2962      1.143      yamt 				}
   2963      1.143      yamt 				if (pool_in_cg(pp, cc->cc_current, addr) ||
   2964      1.143      yamt 				    pool_in_cg(pp, cc->cc_previous, addr)) {
   2965      1.143      yamt 					struct cpu_info *ci =
   2966      1.170        ad 					    cpu_lookup(i);
   2967      1.143      yamt 
   2968      1.143      yamt 					incpucache = true;
   2969      1.143      yamt 					snprintf(cpucachestr,
   2970      1.143      yamt 					    sizeof(cpucachestr),
   2971      1.143      yamt 					    "cached by CPU %u",
   2972      1.153    martin 					    ci->ci_index);
   2973      1.143      yamt 					goto print;
   2974      1.143      yamt 				}
   2975      1.143      yamt 			}
   2976      1.143      yamt 		}
   2977      1.143      yamt print:
   2978      1.141      yamt 		item = (uintptr_t)ph->ph_page + ph->ph_off;
   2979      1.141      yamt 		item = item + rounddown(addr - item, pp->pr_size);
   2980      1.143      yamt 		(*pr)("%p is %p+%zu in POOL '%s' (%s)\n",
   2981      1.141      yamt 		    (void *)addr, item, (size_t)(addr - item),
   2982      1.143      yamt 		    pp->pr_wchan,
   2983      1.143      yamt 		    incpucache ? cpucachestr :
   2984      1.143      yamt 		    incache ? "cached" : allocated ? "allocated" : "free");
   2985      1.141      yamt 	}
   2986      1.141      yamt }
   2987      1.141      yamt #endif /* defined(DDB) */
   2988