subr_pool.c revision 1.190.2.4 1 1.190.2.4 yamt /* $NetBSD: subr_pool.c,v 1.190.2.4 2014/05/22 11:41:03 yamt Exp $ */
2 1.1 pk
3 1.1 pk /*-
4 1.183 ad * Copyright (c) 1997, 1999, 2000, 2002, 2007, 2008, 2010
5 1.183 ad * The NetBSD Foundation, Inc.
6 1.1 pk * All rights reserved.
7 1.1 pk *
8 1.1 pk * This code is derived from software contributed to The NetBSD Foundation
9 1.20 thorpej * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
10 1.134 ad * Simulation Facility, NASA Ames Research Center, and by Andrew Doran.
11 1.1 pk *
12 1.1 pk * Redistribution and use in source and binary forms, with or without
13 1.1 pk * modification, are permitted provided that the following conditions
14 1.1 pk * are met:
15 1.1 pk * 1. Redistributions of source code must retain the above copyright
16 1.1 pk * notice, this list of conditions and the following disclaimer.
17 1.1 pk * 2. Redistributions in binary form must reproduce the above copyright
18 1.1 pk * notice, this list of conditions and the following disclaimer in the
19 1.1 pk * documentation and/or other materials provided with the distribution.
20 1.1 pk *
21 1.1 pk * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22 1.1 pk * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23 1.1 pk * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24 1.1 pk * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25 1.1 pk * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 1.1 pk * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 1.1 pk * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 1.1 pk * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 1.1 pk * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 1.1 pk * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 1.1 pk * POSSIBILITY OF SUCH DAMAGE.
32 1.1 pk */
33 1.64 lukem
34 1.64 lukem #include <sys/cdefs.h>
35 1.190.2.4 yamt __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.190.2.4 2014/05/22 11:41:03 yamt Exp $");
36 1.24 scottr
37 1.141 yamt #include "opt_ddb.h"
38 1.28 thorpej #include "opt_lockdebug.h"
39 1.1 pk
40 1.1 pk #include <sys/param.h>
41 1.1 pk #include <sys/systm.h>
42 1.135 yamt #include <sys/bitops.h>
43 1.1 pk #include <sys/proc.h>
44 1.1 pk #include <sys/errno.h>
45 1.1 pk #include <sys/kernel.h>
46 1.190.2.1 yamt #include <sys/vmem.h>
47 1.1 pk #include <sys/pool.h>
48 1.20 thorpej #include <sys/syslog.h>
49 1.125 ad #include <sys/debug.h>
50 1.134 ad #include <sys/lockdebug.h>
51 1.134 ad #include <sys/xcall.h>
52 1.134 ad #include <sys/cpu.h>
53 1.145 ad #include <sys/atomic.h>
54 1.3 pk
55 1.187 uebayasi #include <uvm/uvm_extern.h>
56 1.3 pk
57 1.1 pk /*
58 1.1 pk * Pool resource management utility.
59 1.3 pk *
60 1.88 chs * Memory is allocated in pages which are split into pieces according to
61 1.88 chs * the pool item size. Each page is kept on one of three lists in the
62 1.88 chs * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
63 1.88 chs * for empty, full and partially-full pages respectively. The individual
64 1.88 chs * pool items are on a linked list headed by `ph_itemlist' in each page
65 1.88 chs * header. The memory for building the page list is either taken from
66 1.88 chs * the allocated pages themselves (for small pool items) or taken from
67 1.88 chs * an internal pool of page headers (`phpool').
68 1.1 pk */
69 1.1 pk
70 1.190.2.4 yamt /* List of all pools. Non static as needed by 'vmstat -i' */
71 1.190.2.4 yamt TAILQ_HEAD(, pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
72 1.134 ad
73 1.3 pk /* Private pool for page header structures */
74 1.97 yamt #define PHPOOL_MAX 8
75 1.97 yamt static struct pool phpool[PHPOOL_MAX];
76 1.135 yamt #define PHPOOL_FREELIST_NELEM(idx) \
77 1.135 yamt (((idx) == 0) ? 0 : BITMAP_SIZE * (1 << (idx)))
78 1.3 pk
79 1.62 bjh21 #ifdef POOL_SUBPAGE
80 1.62 bjh21 /* Pool of subpages for use by normal pools. */
81 1.62 bjh21 static struct pool psppool;
82 1.62 bjh21 #endif
83 1.62 bjh21
84 1.98 yamt static void *pool_page_alloc_meta(struct pool *, int);
85 1.98 yamt static void pool_page_free_meta(struct pool *, void *);
86 1.98 yamt
87 1.98 yamt /* allocator for pool metadata */
88 1.134 ad struct pool_allocator pool_allocator_meta = {
89 1.190.2.1 yamt .pa_alloc = pool_page_alloc_meta,
90 1.190.2.1 yamt .pa_free = pool_page_free_meta,
91 1.190.2.1 yamt .pa_pagesz = 0
92 1.98 yamt };
93 1.98 yamt
94 1.3 pk /* # of seconds to retain page after last use */
95 1.3 pk int pool_inactive_time = 10;
96 1.3 pk
97 1.3 pk /* Next candidate for drainage (see pool_drain()) */
98 1.23 thorpej static struct pool *drainpp;
99 1.23 thorpej
100 1.134 ad /* This lock protects both pool_head and drainpp. */
101 1.134 ad static kmutex_t pool_head_lock;
102 1.134 ad static kcondvar_t pool_busy;
103 1.3 pk
104 1.178 elad /* This lock protects initialization of a potentially shared pool allocator */
105 1.178 elad static kmutex_t pool_allocator_lock;
106 1.178 elad
107 1.135 yamt typedef uint32_t pool_item_bitmap_t;
108 1.135 yamt #define BITMAP_SIZE (CHAR_BIT * sizeof(pool_item_bitmap_t))
109 1.135 yamt #define BITMAP_MASK (BITMAP_SIZE - 1)
110 1.99 yamt
111 1.3 pk struct pool_item_header {
112 1.3 pk /* Page headers */
113 1.88 chs LIST_ENTRY(pool_item_header)
114 1.3 pk ph_pagelist; /* pool page list */
115 1.88 chs SPLAY_ENTRY(pool_item_header)
116 1.88 chs ph_node; /* Off-page page headers */
117 1.128 christos void * ph_page; /* this page's address */
118 1.151 yamt uint32_t ph_time; /* last referenced */
119 1.135 yamt uint16_t ph_nmissing; /* # of chunks in use */
120 1.141 yamt uint16_t ph_off; /* start offset in page */
121 1.97 yamt union {
122 1.97 yamt /* !PR_NOTOUCH */
123 1.97 yamt struct {
124 1.102 chs LIST_HEAD(, pool_item)
125 1.97 yamt phu_itemlist; /* chunk list for this page */
126 1.97 yamt } phu_normal;
127 1.97 yamt /* PR_NOTOUCH */
128 1.97 yamt struct {
129 1.141 yamt pool_item_bitmap_t phu_bitmap[1];
130 1.97 yamt } phu_notouch;
131 1.97 yamt } ph_u;
132 1.3 pk };
133 1.97 yamt #define ph_itemlist ph_u.phu_normal.phu_itemlist
134 1.135 yamt #define ph_bitmap ph_u.phu_notouch.phu_bitmap
135 1.3 pk
136 1.1 pk struct pool_item {
137 1.3 pk #ifdef DIAGNOSTIC
138 1.82 thorpej u_int pi_magic;
139 1.33 chs #endif
140 1.134 ad #define PI_MAGIC 0xdeaddeadU
141 1.3 pk /* Other entries use only this list entry */
142 1.102 chs LIST_ENTRY(pool_item) pi_list;
143 1.3 pk };
144 1.3 pk
145 1.53 thorpej #define POOL_NEEDS_CATCHUP(pp) \
146 1.53 thorpej ((pp)->pr_nitems < (pp)->pr_minitems)
147 1.53 thorpej
148 1.43 thorpej /*
149 1.43 thorpej * Pool cache management.
150 1.43 thorpej *
151 1.43 thorpej * Pool caches provide a way for constructed objects to be cached by the
152 1.43 thorpej * pool subsystem. This can lead to performance improvements by avoiding
153 1.43 thorpej * needless object construction/destruction; it is deferred until absolutely
154 1.43 thorpej * necessary.
155 1.43 thorpej *
156 1.134 ad * Caches are grouped into cache groups. Each cache group references up
157 1.134 ad * to PCG_NUMOBJECTS constructed objects. When a cache allocates an
158 1.134 ad * object from the pool, it calls the object's constructor and places it
159 1.134 ad * into a cache group. When a cache group frees an object back to the
160 1.134 ad * pool, it first calls the object's destructor. This allows the object
161 1.134 ad * to persist in constructed form while freed to the cache.
162 1.134 ad *
163 1.134 ad * The pool references each cache, so that when a pool is drained by the
164 1.134 ad * pagedaemon, it can drain each individual cache as well. Each time a
165 1.134 ad * cache is drained, the most idle cache group is freed to the pool in
166 1.134 ad * its entirety.
167 1.43 thorpej *
168 1.43 thorpej * Pool caches are layed on top of pools. By layering them, we can avoid
169 1.43 thorpej * the complexity of cache management for pools which would not benefit
170 1.43 thorpej * from it.
171 1.43 thorpej */
172 1.43 thorpej
173 1.142 ad static struct pool pcg_normal_pool;
174 1.142 ad static struct pool pcg_large_pool;
175 1.134 ad static struct pool cache_pool;
176 1.134 ad static struct pool cache_cpu_pool;
177 1.3 pk
178 1.189 pooka pool_cache_t pnbuf_cache; /* pathname buffer cache */
179 1.189 pooka
180 1.145 ad /* List of all caches. */
181 1.145 ad TAILQ_HEAD(,pool_cache) pool_cache_head =
182 1.145 ad TAILQ_HEAD_INITIALIZER(pool_cache_head);
183 1.145 ad
184 1.162 ad int pool_cache_disable; /* global disable for caching */
185 1.169 yamt static const pcg_t pcg_dummy; /* zero sized: always empty, yet always full */
186 1.145 ad
187 1.162 ad static bool pool_cache_put_slow(pool_cache_cpu_t *, int,
188 1.162 ad void *);
189 1.162 ad static bool pool_cache_get_slow(pool_cache_cpu_t *, int,
190 1.162 ad void **, paddr_t *, int);
191 1.134 ad static void pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
192 1.134 ad static void pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
193 1.175 jym static void pool_cache_invalidate_cpu(pool_cache_t, u_int);
194 1.190.2.3 yamt static void pool_cache_transfer(pool_cache_t);
195 1.3 pk
196 1.42 thorpej static int pool_catchup(struct pool *);
197 1.128 christos static void pool_prime_page(struct pool *, void *,
198 1.55 thorpej struct pool_item_header *);
199 1.88 chs static void pool_update_curpage(struct pool *);
200 1.66 thorpej
201 1.113 yamt static int pool_grow(struct pool *, int);
202 1.117 yamt static void *pool_allocator_alloc(struct pool *, int);
203 1.117 yamt static void pool_allocator_free(struct pool *, void *);
204 1.3 pk
205 1.97 yamt static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
206 1.190.2.4 yamt void (*)(const char *, ...) __printflike(1, 2));
207 1.42 thorpej static void pool_print1(struct pool *, const char *,
208 1.190.2.4 yamt void (*)(const char *, ...) __printflike(1, 2));
209 1.3 pk
210 1.88 chs static int pool_chk_page(struct pool *, const char *,
211 1.88 chs struct pool_item_header *);
212 1.88 chs
213 1.135 yamt static inline unsigned int
214 1.97 yamt pr_item_notouch_index(const struct pool *pp, const struct pool_item_header *ph,
215 1.97 yamt const void *v)
216 1.97 yamt {
217 1.97 yamt const char *cp = v;
218 1.135 yamt unsigned int idx;
219 1.97 yamt
220 1.97 yamt KASSERT(pp->pr_roflags & PR_NOTOUCH);
221 1.128 christos idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
222 1.97 yamt KASSERT(idx < pp->pr_itemsperpage);
223 1.97 yamt return idx;
224 1.97 yamt }
225 1.97 yamt
226 1.110 perry static inline void
227 1.97 yamt pr_item_notouch_put(const struct pool *pp, struct pool_item_header *ph,
228 1.97 yamt void *obj)
229 1.97 yamt {
230 1.135 yamt unsigned int idx = pr_item_notouch_index(pp, ph, obj);
231 1.135 yamt pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE);
232 1.135 yamt pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
233 1.97 yamt
234 1.135 yamt KASSERT((*bitmap & mask) == 0);
235 1.135 yamt *bitmap |= mask;
236 1.97 yamt }
237 1.97 yamt
238 1.110 perry static inline void *
239 1.97 yamt pr_item_notouch_get(const struct pool *pp, struct pool_item_header *ph)
240 1.97 yamt {
241 1.135 yamt pool_item_bitmap_t *bitmap = ph->ph_bitmap;
242 1.135 yamt unsigned int idx;
243 1.135 yamt int i;
244 1.97 yamt
245 1.135 yamt for (i = 0; ; i++) {
246 1.135 yamt int bit;
247 1.97 yamt
248 1.135 yamt KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage);
249 1.135 yamt bit = ffs32(bitmap[i]);
250 1.135 yamt if (bit) {
251 1.135 yamt pool_item_bitmap_t mask;
252 1.135 yamt
253 1.135 yamt bit--;
254 1.135 yamt idx = (i * BITMAP_SIZE) + bit;
255 1.135 yamt mask = 1 << bit;
256 1.135 yamt KASSERT((bitmap[i] & mask) != 0);
257 1.135 yamt bitmap[i] &= ~mask;
258 1.135 yamt break;
259 1.135 yamt }
260 1.135 yamt }
261 1.135 yamt KASSERT(idx < pp->pr_itemsperpage);
262 1.128 christos return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
263 1.97 yamt }
264 1.97 yamt
265 1.135 yamt static inline void
266 1.141 yamt pr_item_notouch_init(const struct pool *pp, struct pool_item_header *ph)
267 1.135 yamt {
268 1.135 yamt pool_item_bitmap_t *bitmap = ph->ph_bitmap;
269 1.135 yamt const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE);
270 1.135 yamt int i;
271 1.135 yamt
272 1.135 yamt for (i = 0; i < n; i++) {
273 1.135 yamt bitmap[i] = (pool_item_bitmap_t)-1;
274 1.135 yamt }
275 1.135 yamt }
276 1.135 yamt
277 1.110 perry static inline int
278 1.88 chs phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
279 1.88 chs {
280 1.121 yamt
281 1.121 yamt /*
282 1.121 yamt * we consider pool_item_header with smaller ph_page bigger.
283 1.121 yamt * (this unnatural ordering is for the benefit of pr_find_pagehead.)
284 1.121 yamt */
285 1.121 yamt
286 1.88 chs if (a->ph_page < b->ph_page)
287 1.121 yamt return (1);
288 1.121 yamt else if (a->ph_page > b->ph_page)
289 1.88 chs return (-1);
290 1.88 chs else
291 1.88 chs return (0);
292 1.88 chs }
293 1.88 chs
294 1.88 chs SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
295 1.88 chs SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
296 1.88 chs
297 1.141 yamt static inline struct pool_item_header *
298 1.141 yamt pr_find_pagehead_noalign(struct pool *pp, void *v)
299 1.141 yamt {
300 1.141 yamt struct pool_item_header *ph, tmp;
301 1.141 yamt
302 1.141 yamt tmp.ph_page = (void *)(uintptr_t)v;
303 1.141 yamt ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
304 1.141 yamt if (ph == NULL) {
305 1.141 yamt ph = SPLAY_ROOT(&pp->pr_phtree);
306 1.141 yamt if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
307 1.141 yamt ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
308 1.141 yamt }
309 1.141 yamt KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
310 1.141 yamt }
311 1.141 yamt
312 1.141 yamt return ph;
313 1.141 yamt }
314 1.141 yamt
315 1.3 pk /*
316 1.121 yamt * Return the pool page header based on item address.
317 1.3 pk */
318 1.110 perry static inline struct pool_item_header *
319 1.121 yamt pr_find_pagehead(struct pool *pp, void *v)
320 1.3 pk {
321 1.88 chs struct pool_item_header *ph, tmp;
322 1.3 pk
323 1.121 yamt if ((pp->pr_roflags & PR_NOALIGN) != 0) {
324 1.141 yamt ph = pr_find_pagehead_noalign(pp, v);
325 1.121 yamt } else {
326 1.128 christos void *page =
327 1.128 christos (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask);
328 1.121 yamt
329 1.121 yamt if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
330 1.128 christos ph = (struct pool_item_header *)((char *)page + pp->pr_phoffset);
331 1.121 yamt } else {
332 1.121 yamt tmp.ph_page = page;
333 1.121 yamt ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
334 1.121 yamt }
335 1.121 yamt }
336 1.3 pk
337 1.121 yamt KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
338 1.128 christos ((char *)ph->ph_page <= (char *)v &&
339 1.128 christos (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
340 1.88 chs return ph;
341 1.3 pk }
342 1.3 pk
343 1.101 thorpej static void
344 1.101 thorpej pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
345 1.101 thorpej {
346 1.101 thorpej struct pool_item_header *ph;
347 1.101 thorpej
348 1.101 thorpej while ((ph = LIST_FIRST(pq)) != NULL) {
349 1.101 thorpej LIST_REMOVE(ph, ph_pagelist);
350 1.101 thorpej pool_allocator_free(pp, ph->ph_page);
351 1.134 ad if ((pp->pr_roflags & PR_PHINPAGE) == 0)
352 1.101 thorpej pool_put(pp->pr_phpool, ph);
353 1.101 thorpej }
354 1.101 thorpej }
355 1.101 thorpej
356 1.3 pk /*
357 1.3 pk * Remove a page from the pool.
358 1.3 pk */
359 1.110 perry static inline void
360 1.61 chs pr_rmpage(struct pool *pp, struct pool_item_header *ph,
361 1.61 chs struct pool_pagelist *pq)
362 1.3 pk {
363 1.3 pk
364 1.134 ad KASSERT(mutex_owned(&pp->pr_lock));
365 1.91 yamt
366 1.3 pk /*
367 1.7 thorpej * If the page was idle, decrement the idle page count.
368 1.3 pk */
369 1.6 thorpej if (ph->ph_nmissing == 0) {
370 1.6 thorpej #ifdef DIAGNOSTIC
371 1.6 thorpej if (pp->pr_nidle == 0)
372 1.6 thorpej panic("pr_rmpage: nidle inconsistent");
373 1.20 thorpej if (pp->pr_nitems < pp->pr_itemsperpage)
374 1.20 thorpej panic("pr_rmpage: nitems inconsistent");
375 1.6 thorpej #endif
376 1.6 thorpej pp->pr_nidle--;
377 1.6 thorpej }
378 1.7 thorpej
379 1.20 thorpej pp->pr_nitems -= pp->pr_itemsperpage;
380 1.20 thorpej
381 1.7 thorpej /*
382 1.101 thorpej * Unlink the page from the pool and queue it for release.
383 1.7 thorpej */
384 1.88 chs LIST_REMOVE(ph, ph_pagelist);
385 1.91 yamt if ((pp->pr_roflags & PR_PHINPAGE) == 0)
386 1.91 yamt SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
387 1.101 thorpej LIST_INSERT_HEAD(pq, ph, ph_pagelist);
388 1.101 thorpej
389 1.7 thorpej pp->pr_npages--;
390 1.7 thorpej pp->pr_npagefree++;
391 1.6 thorpej
392 1.88 chs pool_update_curpage(pp);
393 1.3 pk }
394 1.3 pk
395 1.3 pk /*
396 1.94 simonb * Initialize all the pools listed in the "pools" link set.
397 1.94 simonb */
398 1.94 simonb void
399 1.117 yamt pool_subsystem_init(void)
400 1.94 simonb {
401 1.190.2.1 yamt size_t size;
402 1.190.2.1 yamt int idx;
403 1.94 simonb
404 1.134 ad mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
405 1.179 mlelstv mutex_init(&pool_allocator_lock, MUTEX_DEFAULT, IPL_NONE);
406 1.134 ad cv_init(&pool_busy, "poolbusy");
407 1.134 ad
408 1.190.2.1 yamt /*
409 1.190.2.1 yamt * Initialize private page header pool and cache magazine pool if we
410 1.190.2.1 yamt * haven't done so yet.
411 1.190.2.1 yamt */
412 1.190.2.1 yamt for (idx = 0; idx < PHPOOL_MAX; idx++) {
413 1.190.2.1 yamt static char phpool_names[PHPOOL_MAX][6+1+6+1];
414 1.190.2.1 yamt int nelem;
415 1.190.2.1 yamt size_t sz;
416 1.190.2.1 yamt
417 1.190.2.1 yamt nelem = PHPOOL_FREELIST_NELEM(idx);
418 1.190.2.1 yamt snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
419 1.190.2.1 yamt "phpool-%d", nelem);
420 1.190.2.1 yamt sz = sizeof(struct pool_item_header);
421 1.190.2.1 yamt if (nelem) {
422 1.190.2.1 yamt sz = offsetof(struct pool_item_header,
423 1.190.2.1 yamt ph_bitmap[howmany(nelem, BITMAP_SIZE)]);
424 1.190.2.1 yamt }
425 1.190.2.1 yamt pool_init(&phpool[idx], sz, 0, 0, 0,
426 1.190.2.1 yamt phpool_names[idx], &pool_allocator_meta, IPL_VM);
427 1.117 yamt }
428 1.190.2.1 yamt #ifdef POOL_SUBPAGE
429 1.190.2.1 yamt pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
430 1.190.2.1 yamt PR_RECURSIVE, "psppool", &pool_allocator_meta, IPL_VM);
431 1.190.2.1 yamt #endif
432 1.190.2.1 yamt
433 1.190.2.1 yamt size = sizeof(pcg_t) +
434 1.190.2.1 yamt (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t);
435 1.190.2.1 yamt pool_init(&pcg_normal_pool, size, coherency_unit, 0, 0,
436 1.190.2.1 yamt "pcgnormal", &pool_allocator_meta, IPL_VM);
437 1.190.2.1 yamt
438 1.190.2.1 yamt size = sizeof(pcg_t) +
439 1.190.2.1 yamt (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t);
440 1.190.2.1 yamt pool_init(&pcg_large_pool, size, coherency_unit, 0, 0,
441 1.190.2.1 yamt "pcglarge", &pool_allocator_meta, IPL_VM);
442 1.134 ad
443 1.156 ad pool_init(&cache_pool, sizeof(struct pool_cache), coherency_unit,
444 1.190.2.1 yamt 0, 0, "pcache", &pool_allocator_meta, IPL_NONE);
445 1.134 ad
446 1.156 ad pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), coherency_unit,
447 1.190.2.1 yamt 0, 0, "pcachecpu", &pool_allocator_meta, IPL_NONE);
448 1.94 simonb }
449 1.94 simonb
450 1.94 simonb /*
451 1.3 pk * Initialize the given pool resource structure.
452 1.3 pk *
453 1.3 pk * We export this routine to allow other kernel parts to declare
454 1.190.2.2 yamt * static pools that must be initialized before kmem(9) is available.
455 1.3 pk */
456 1.3 pk void
457 1.42 thorpej pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
458 1.129 ad const char *wchan, struct pool_allocator *palloc, int ipl)
459 1.3 pk {
460 1.116 simonb struct pool *pp1;
461 1.92 enami size_t trysize, phsize;
462 1.134 ad int off, slack;
463 1.3 pk
464 1.116 simonb #ifdef DEBUG
465 1.190.2.3 yamt if (__predict_true(!cold))
466 1.190.2.3 yamt mutex_enter(&pool_head_lock);
467 1.116 simonb /*
468 1.116 simonb * Check that the pool hasn't already been initialised and
469 1.116 simonb * added to the list of all pools.
470 1.116 simonb */
471 1.145 ad TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
472 1.116 simonb if (pp == pp1)
473 1.116 simonb panic("pool_init: pool %s already initialised",
474 1.116 simonb wchan);
475 1.116 simonb }
476 1.190.2.3 yamt if (__predict_true(!cold))
477 1.190.2.3 yamt mutex_exit(&pool_head_lock);
478 1.116 simonb #endif
479 1.116 simonb
480 1.66 thorpej if (palloc == NULL)
481 1.66 thorpej palloc = &pool_allocator_kmem;
482 1.112 bjh21 #ifdef POOL_SUBPAGE
483 1.112 bjh21 if (size > palloc->pa_pagesz) {
484 1.112 bjh21 if (palloc == &pool_allocator_kmem)
485 1.112 bjh21 palloc = &pool_allocator_kmem_fullpage;
486 1.112 bjh21 else if (palloc == &pool_allocator_nointr)
487 1.112 bjh21 palloc = &pool_allocator_nointr_fullpage;
488 1.112 bjh21 }
489 1.66 thorpej #endif /* POOL_SUBPAGE */
490 1.180 mlelstv if (!cold)
491 1.180 mlelstv mutex_enter(&pool_allocator_lock);
492 1.178 elad if (palloc->pa_refcnt++ == 0) {
493 1.112 bjh21 if (palloc->pa_pagesz == 0)
494 1.66 thorpej palloc->pa_pagesz = PAGE_SIZE;
495 1.66 thorpej
496 1.66 thorpej TAILQ_INIT(&palloc->pa_list);
497 1.66 thorpej
498 1.134 ad mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
499 1.66 thorpej palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
500 1.66 thorpej palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
501 1.4 thorpej }
502 1.180 mlelstv if (!cold)
503 1.180 mlelstv mutex_exit(&pool_allocator_lock);
504 1.3 pk
505 1.3 pk if (align == 0)
506 1.3 pk align = ALIGN(1);
507 1.14 thorpej
508 1.120 yamt if ((flags & PR_NOTOUCH) == 0 && size < sizeof(struct pool_item))
509 1.14 thorpej size = sizeof(struct pool_item);
510 1.3 pk
511 1.78 thorpej size = roundup(size, align);
512 1.66 thorpej #ifdef DIAGNOSTIC
513 1.66 thorpej if (size > palloc->pa_pagesz)
514 1.121 yamt panic("pool_init: pool item size (%zu) too large", size);
515 1.66 thorpej #endif
516 1.35 pk
517 1.3 pk /*
518 1.3 pk * Initialize the pool structure.
519 1.3 pk */
520 1.88 chs LIST_INIT(&pp->pr_emptypages);
521 1.88 chs LIST_INIT(&pp->pr_fullpages);
522 1.88 chs LIST_INIT(&pp->pr_partpages);
523 1.134 ad pp->pr_cache = NULL;
524 1.3 pk pp->pr_curpage = NULL;
525 1.3 pk pp->pr_npages = 0;
526 1.3 pk pp->pr_minitems = 0;
527 1.3 pk pp->pr_minpages = 0;
528 1.3 pk pp->pr_maxpages = UINT_MAX;
529 1.20 thorpej pp->pr_roflags = flags;
530 1.20 thorpej pp->pr_flags = 0;
531 1.35 pk pp->pr_size = size;
532 1.3 pk pp->pr_align = align;
533 1.3 pk pp->pr_wchan = wchan;
534 1.66 thorpej pp->pr_alloc = palloc;
535 1.20 thorpej pp->pr_nitems = 0;
536 1.20 thorpej pp->pr_nout = 0;
537 1.20 thorpej pp->pr_hardlimit = UINT_MAX;
538 1.20 thorpej pp->pr_hardlimit_warning = NULL;
539 1.31 thorpej pp->pr_hardlimit_ratecap.tv_sec = 0;
540 1.31 thorpej pp->pr_hardlimit_ratecap.tv_usec = 0;
541 1.31 thorpej pp->pr_hardlimit_warning_last.tv_sec = 0;
542 1.31 thorpej pp->pr_hardlimit_warning_last.tv_usec = 0;
543 1.68 thorpej pp->pr_drain_hook = NULL;
544 1.68 thorpej pp->pr_drain_hook_arg = NULL;
545 1.125 ad pp->pr_freecheck = NULL;
546 1.3 pk
547 1.3 pk /*
548 1.3 pk * Decide whether to put the page header off page to avoid
549 1.92 enami * wasting too large a part of the page or too big item.
550 1.92 enami * Off-page page headers go on a hash table, so we can match
551 1.92 enami * a returned item with its header based on the page address.
552 1.92 enami * We use 1/16 of the page size and about 8 times of the item
553 1.92 enami * size as the threshold (XXX: tune)
554 1.92 enami *
555 1.92 enami * However, we'll put the header into the page if we can put
556 1.92 enami * it without wasting any items.
557 1.92 enami *
558 1.92 enami * Silently enforce `0 <= ioff < align'.
559 1.3 pk */
560 1.92 enami pp->pr_itemoffset = ioff %= align;
561 1.92 enami /* See the comment below about reserved bytes. */
562 1.92 enami trysize = palloc->pa_pagesz - ((align - ioff) % align);
563 1.92 enami phsize = ALIGN(sizeof(struct pool_item_header));
564 1.190.2.4 yamt if (pp->pr_roflags & PR_PHINPAGE ||
565 1.190.2.4 yamt ((pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) == 0 &&
566 1.97 yamt (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) ||
567 1.190.2.4 yamt trysize / pp->pr_size == (trysize - phsize) / pp->pr_size))) {
568 1.3 pk /* Use the end of the page for the page header */
569 1.20 thorpej pp->pr_roflags |= PR_PHINPAGE;
570 1.92 enami pp->pr_phoffset = off = palloc->pa_pagesz - phsize;
571 1.2 pk } else {
572 1.3 pk /* The page header will be taken from our page header pool */
573 1.3 pk pp->pr_phoffset = 0;
574 1.66 thorpej off = palloc->pa_pagesz;
575 1.88 chs SPLAY_INIT(&pp->pr_phtree);
576 1.2 pk }
577 1.1 pk
578 1.3 pk /*
579 1.3 pk * Alignment is to take place at `ioff' within the item. This means
580 1.3 pk * we must reserve up to `align - 1' bytes on the page to allow
581 1.3 pk * appropriate positioning of each item.
582 1.3 pk */
583 1.3 pk pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
584 1.43 thorpej KASSERT(pp->pr_itemsperpage != 0);
585 1.97 yamt if ((pp->pr_roflags & PR_NOTOUCH)) {
586 1.97 yamt int idx;
587 1.97 yamt
588 1.97 yamt for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
589 1.97 yamt idx++) {
590 1.97 yamt /* nothing */
591 1.97 yamt }
592 1.97 yamt if (idx >= PHPOOL_MAX) {
593 1.97 yamt /*
594 1.97 yamt * if you see this panic, consider to tweak
595 1.97 yamt * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
596 1.97 yamt */
597 1.97 yamt panic("%s: too large itemsperpage(%d) for PR_NOTOUCH",
598 1.97 yamt pp->pr_wchan, pp->pr_itemsperpage);
599 1.97 yamt }
600 1.97 yamt pp->pr_phpool = &phpool[idx];
601 1.97 yamt } else if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
602 1.97 yamt pp->pr_phpool = &phpool[0];
603 1.97 yamt }
604 1.97 yamt #if defined(DIAGNOSTIC)
605 1.97 yamt else {
606 1.97 yamt pp->pr_phpool = NULL;
607 1.97 yamt }
608 1.97 yamt #endif
609 1.3 pk
610 1.3 pk /*
611 1.3 pk * Use the slack between the chunks and the page header
612 1.3 pk * for "cache coloring".
613 1.3 pk */
614 1.3 pk slack = off - pp->pr_itemsperpage * pp->pr_size;
615 1.3 pk pp->pr_maxcolor = (slack / align) * align;
616 1.3 pk pp->pr_curcolor = 0;
617 1.3 pk
618 1.3 pk pp->pr_nget = 0;
619 1.3 pk pp->pr_nfail = 0;
620 1.3 pk pp->pr_nput = 0;
621 1.3 pk pp->pr_npagealloc = 0;
622 1.3 pk pp->pr_npagefree = 0;
623 1.1 pk pp->pr_hiwat = 0;
624 1.8 thorpej pp->pr_nidle = 0;
625 1.134 ad pp->pr_refcnt = 0;
626 1.3 pk
627 1.157 ad mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
628 1.134 ad cv_init(&pp->pr_cv, wchan);
629 1.134 ad pp->pr_ipl = ipl;
630 1.1 pk
631 1.145 ad /* Insert into the list of all pools. */
632 1.181 mlelstv if (!cold)
633 1.134 ad mutex_enter(&pool_head_lock);
634 1.145 ad TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
635 1.145 ad if (strcmp(pp1->pr_wchan, pp->pr_wchan) > 0)
636 1.145 ad break;
637 1.145 ad }
638 1.145 ad if (pp1 == NULL)
639 1.145 ad TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
640 1.145 ad else
641 1.145 ad TAILQ_INSERT_BEFORE(pp1, pp, pr_poollist);
642 1.181 mlelstv if (!cold)
643 1.134 ad mutex_exit(&pool_head_lock);
644 1.134 ad
645 1.167 skrll /* Insert this into the list of pools using this allocator. */
646 1.181 mlelstv if (!cold)
647 1.134 ad mutex_enter(&palloc->pa_lock);
648 1.145 ad TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
649 1.181 mlelstv if (!cold)
650 1.134 ad mutex_exit(&palloc->pa_lock);
651 1.1 pk }
652 1.1 pk
653 1.1 pk /*
654 1.1 pk * De-commision a pool resource.
655 1.1 pk */
656 1.1 pk void
657 1.42 thorpej pool_destroy(struct pool *pp)
658 1.1 pk {
659 1.101 thorpej struct pool_pagelist pq;
660 1.3 pk struct pool_item_header *ph;
661 1.43 thorpej
662 1.101 thorpej /* Remove from global pool list */
663 1.134 ad mutex_enter(&pool_head_lock);
664 1.134 ad while (pp->pr_refcnt != 0)
665 1.134 ad cv_wait(&pool_busy, &pool_head_lock);
666 1.145 ad TAILQ_REMOVE(&pool_head, pp, pr_poollist);
667 1.101 thorpej if (drainpp == pp)
668 1.101 thorpej drainpp = NULL;
669 1.134 ad mutex_exit(&pool_head_lock);
670 1.101 thorpej
671 1.101 thorpej /* Remove this pool from its allocator's list of pools. */
672 1.134 ad mutex_enter(&pp->pr_alloc->pa_lock);
673 1.66 thorpej TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
674 1.134 ad mutex_exit(&pp->pr_alloc->pa_lock);
675 1.66 thorpej
676 1.178 elad mutex_enter(&pool_allocator_lock);
677 1.178 elad if (--pp->pr_alloc->pa_refcnt == 0)
678 1.178 elad mutex_destroy(&pp->pr_alloc->pa_lock);
679 1.178 elad mutex_exit(&pool_allocator_lock);
680 1.178 elad
681 1.134 ad mutex_enter(&pp->pr_lock);
682 1.101 thorpej
683 1.134 ad KASSERT(pp->pr_cache == NULL);
684 1.3 pk
685 1.3 pk #ifdef DIAGNOSTIC
686 1.20 thorpej if (pp->pr_nout != 0) {
687 1.80 provos panic("pool_destroy: pool busy: still out: %u",
688 1.20 thorpej pp->pr_nout);
689 1.3 pk }
690 1.3 pk #endif
691 1.1 pk
692 1.101 thorpej KASSERT(LIST_EMPTY(&pp->pr_fullpages));
693 1.101 thorpej KASSERT(LIST_EMPTY(&pp->pr_partpages));
694 1.101 thorpej
695 1.3 pk /* Remove all pages */
696 1.101 thorpej LIST_INIT(&pq);
697 1.88 chs while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
698 1.101 thorpej pr_rmpage(pp, ph, &pq);
699 1.101 thorpej
700 1.134 ad mutex_exit(&pp->pr_lock);
701 1.3 pk
702 1.101 thorpej pr_pagelist_free(pp, &pq);
703 1.134 ad cv_destroy(&pp->pr_cv);
704 1.134 ad mutex_destroy(&pp->pr_lock);
705 1.1 pk }
706 1.1 pk
707 1.68 thorpej void
708 1.68 thorpej pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
709 1.68 thorpej {
710 1.68 thorpej
711 1.68 thorpej /* XXX no locking -- must be used just after pool_init() */
712 1.68 thorpej #ifdef DIAGNOSTIC
713 1.68 thorpej if (pp->pr_drain_hook != NULL)
714 1.68 thorpej panic("pool_set_drain_hook(%s): already set", pp->pr_wchan);
715 1.68 thorpej #endif
716 1.68 thorpej pp->pr_drain_hook = fn;
717 1.68 thorpej pp->pr_drain_hook_arg = arg;
718 1.68 thorpej }
719 1.68 thorpej
720 1.88 chs static struct pool_item_header *
721 1.128 christos pool_alloc_item_header(struct pool *pp, void *storage, int flags)
722 1.55 thorpej {
723 1.55 thorpej struct pool_item_header *ph;
724 1.55 thorpej
725 1.55 thorpej if ((pp->pr_roflags & PR_PHINPAGE) != 0)
726 1.128 christos ph = (struct pool_item_header *) ((char *)storage + pp->pr_phoffset);
727 1.134 ad else
728 1.97 yamt ph = pool_get(pp->pr_phpool, flags);
729 1.55 thorpej
730 1.55 thorpej return (ph);
731 1.55 thorpej }
732 1.1 pk
733 1.1 pk /*
734 1.134 ad * Grab an item from the pool.
735 1.1 pk */
736 1.3 pk void *
737 1.56 sommerfe pool_get(struct pool *pp, int flags)
738 1.1 pk {
739 1.1 pk struct pool_item *pi;
740 1.3 pk struct pool_item_header *ph;
741 1.55 thorpej void *v;
742 1.1 pk
743 1.2 pk #ifdef DIAGNOSTIC
744 1.184 rmind if (pp->pr_itemsperpage == 0)
745 1.184 rmind panic("pool_get: pool '%s': pr_itemsperpage is zero, "
746 1.184 rmind "pool not initialized?", pp->pr_wchan);
747 1.185 rmind if ((cpu_intr_p() || cpu_softintr_p()) && pp->pr_ipl == IPL_NONE &&
748 1.185 rmind !cold && panicstr == NULL)
749 1.184 rmind panic("pool '%s' is IPL_NONE, but called from "
750 1.184 rmind "interrupt context\n", pp->pr_wchan);
751 1.184 rmind #endif
752 1.155 ad if (flags & PR_WAITOK) {
753 1.154 yamt ASSERT_SLEEPABLE();
754 1.155 ad }
755 1.1 pk
756 1.134 ad mutex_enter(&pp->pr_lock);
757 1.20 thorpej startover:
758 1.20 thorpej /*
759 1.20 thorpej * Check to see if we've reached the hard limit. If we have,
760 1.20 thorpej * and we can wait, then wait until an item has been returned to
761 1.20 thorpej * the pool.
762 1.20 thorpej */
763 1.20 thorpej #ifdef DIAGNOSTIC
764 1.34 thorpej if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
765 1.134 ad mutex_exit(&pp->pr_lock);
766 1.20 thorpej panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
767 1.20 thorpej }
768 1.20 thorpej #endif
769 1.34 thorpej if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
770 1.68 thorpej if (pp->pr_drain_hook != NULL) {
771 1.68 thorpej /*
772 1.68 thorpej * Since the drain hook is going to free things
773 1.68 thorpej * back to the pool, unlock, call the hook, re-lock,
774 1.68 thorpej * and check the hardlimit condition again.
775 1.68 thorpej */
776 1.134 ad mutex_exit(&pp->pr_lock);
777 1.68 thorpej (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
778 1.134 ad mutex_enter(&pp->pr_lock);
779 1.68 thorpej if (pp->pr_nout < pp->pr_hardlimit)
780 1.68 thorpej goto startover;
781 1.68 thorpej }
782 1.68 thorpej
783 1.29 sommerfe if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
784 1.20 thorpej /*
785 1.20 thorpej * XXX: A warning isn't logged in this case. Should
786 1.20 thorpej * it be?
787 1.20 thorpej */
788 1.20 thorpej pp->pr_flags |= PR_WANTED;
789 1.134 ad cv_wait(&pp->pr_cv, &pp->pr_lock);
790 1.20 thorpej goto startover;
791 1.20 thorpej }
792 1.31 thorpej
793 1.31 thorpej /*
794 1.31 thorpej * Log a message that the hard limit has been hit.
795 1.31 thorpej */
796 1.31 thorpej if (pp->pr_hardlimit_warning != NULL &&
797 1.31 thorpej ratecheck(&pp->pr_hardlimit_warning_last,
798 1.31 thorpej &pp->pr_hardlimit_ratecap))
799 1.31 thorpej log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
800 1.21 thorpej
801 1.21 thorpej pp->pr_nfail++;
802 1.21 thorpej
803 1.134 ad mutex_exit(&pp->pr_lock);
804 1.20 thorpej return (NULL);
805 1.20 thorpej }
806 1.20 thorpej
807 1.3 pk /*
808 1.3 pk * The convention we use is that if `curpage' is not NULL, then
809 1.3 pk * it points at a non-empty bucket. In particular, `curpage'
810 1.3 pk * never points at a page header which has PR_PHINPAGE set and
811 1.3 pk * has no items in its bucket.
812 1.3 pk */
813 1.20 thorpej if ((ph = pp->pr_curpage) == NULL) {
814 1.113 yamt int error;
815 1.113 yamt
816 1.20 thorpej #ifdef DIAGNOSTIC
817 1.20 thorpej if (pp->pr_nitems != 0) {
818 1.134 ad mutex_exit(&pp->pr_lock);
819 1.20 thorpej printf("pool_get: %s: curpage NULL, nitems %u\n",
820 1.20 thorpej pp->pr_wchan, pp->pr_nitems);
821 1.80 provos panic("pool_get: nitems inconsistent");
822 1.20 thorpej }
823 1.20 thorpej #endif
824 1.20 thorpej
825 1.21 thorpej /*
826 1.21 thorpej * Call the back-end page allocator for more memory.
827 1.21 thorpej * Release the pool lock, as the back-end page allocator
828 1.21 thorpej * may block.
829 1.21 thorpej */
830 1.113 yamt error = pool_grow(pp, flags);
831 1.113 yamt if (error != 0) {
832 1.21 thorpej /*
833 1.55 thorpej * We were unable to allocate a page or item
834 1.55 thorpej * header, but we released the lock during
835 1.55 thorpej * allocation, so perhaps items were freed
836 1.55 thorpej * back to the pool. Check for this case.
837 1.21 thorpej */
838 1.21 thorpej if (pp->pr_curpage != NULL)
839 1.21 thorpej goto startover;
840 1.15 pk
841 1.117 yamt pp->pr_nfail++;
842 1.134 ad mutex_exit(&pp->pr_lock);
843 1.117 yamt return (NULL);
844 1.1 pk }
845 1.3 pk
846 1.20 thorpej /* Start the allocation process over. */
847 1.20 thorpej goto startover;
848 1.3 pk }
849 1.97 yamt if (pp->pr_roflags & PR_NOTOUCH) {
850 1.97 yamt #ifdef DIAGNOSTIC
851 1.97 yamt if (__predict_false(ph->ph_nmissing == pp->pr_itemsperpage)) {
852 1.134 ad mutex_exit(&pp->pr_lock);
853 1.97 yamt panic("pool_get: %s: page empty", pp->pr_wchan);
854 1.97 yamt }
855 1.97 yamt #endif
856 1.97 yamt v = pr_item_notouch_get(pp, ph);
857 1.97 yamt } else {
858 1.102 chs v = pi = LIST_FIRST(&ph->ph_itemlist);
859 1.97 yamt if (__predict_false(v == NULL)) {
860 1.134 ad mutex_exit(&pp->pr_lock);
861 1.97 yamt panic("pool_get: %s: page empty", pp->pr_wchan);
862 1.97 yamt }
863 1.20 thorpej #ifdef DIAGNOSTIC
864 1.97 yamt if (__predict_false(pp->pr_nitems == 0)) {
865 1.134 ad mutex_exit(&pp->pr_lock);
866 1.97 yamt printf("pool_get: %s: items on itemlist, nitems %u\n",
867 1.97 yamt pp->pr_wchan, pp->pr_nitems);
868 1.97 yamt panic("pool_get: nitems inconsistent");
869 1.97 yamt }
870 1.65 enami #endif
871 1.56 sommerfe
872 1.65 enami #ifdef DIAGNOSTIC
873 1.97 yamt if (__predict_false(pi->pi_magic != PI_MAGIC)) {
874 1.97 yamt panic("pool_get(%s): free list modified: "
875 1.97 yamt "magic=%x; page %p; item addr %p\n",
876 1.97 yamt pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
877 1.97 yamt }
878 1.3 pk #endif
879 1.3 pk
880 1.97 yamt /*
881 1.97 yamt * Remove from item list.
882 1.97 yamt */
883 1.102 chs LIST_REMOVE(pi, pi_list);
884 1.97 yamt }
885 1.20 thorpej pp->pr_nitems--;
886 1.20 thorpej pp->pr_nout++;
887 1.6 thorpej if (ph->ph_nmissing == 0) {
888 1.6 thorpej #ifdef DIAGNOSTIC
889 1.34 thorpej if (__predict_false(pp->pr_nidle == 0))
890 1.6 thorpej panic("pool_get: nidle inconsistent");
891 1.6 thorpej #endif
892 1.6 thorpej pp->pr_nidle--;
893 1.88 chs
894 1.88 chs /*
895 1.88 chs * This page was previously empty. Move it to the list of
896 1.88 chs * partially-full pages. This page is already curpage.
897 1.88 chs */
898 1.88 chs LIST_REMOVE(ph, ph_pagelist);
899 1.88 chs LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
900 1.6 thorpej }
901 1.3 pk ph->ph_nmissing++;
902 1.97 yamt if (ph->ph_nmissing == pp->pr_itemsperpage) {
903 1.21 thorpej #ifdef DIAGNOSTIC
904 1.97 yamt if (__predict_false((pp->pr_roflags & PR_NOTOUCH) == 0 &&
905 1.102 chs !LIST_EMPTY(&ph->ph_itemlist))) {
906 1.134 ad mutex_exit(&pp->pr_lock);
907 1.21 thorpej panic("pool_get: %s: nmissing inconsistent",
908 1.21 thorpej pp->pr_wchan);
909 1.21 thorpej }
910 1.21 thorpej #endif
911 1.3 pk /*
912 1.88 chs * This page is now full. Move it to the full list
913 1.88 chs * and select a new current page.
914 1.3 pk */
915 1.88 chs LIST_REMOVE(ph, ph_pagelist);
916 1.88 chs LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
917 1.88 chs pool_update_curpage(pp);
918 1.1 pk }
919 1.3 pk
920 1.3 pk pp->pr_nget++;
921 1.20 thorpej
922 1.20 thorpej /*
923 1.20 thorpej * If we have a low water mark and we are now below that low
924 1.20 thorpej * water mark, add more items to the pool.
925 1.20 thorpej */
926 1.53 thorpej if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
927 1.20 thorpej /*
928 1.20 thorpej * XXX: Should we log a warning? Should we set up a timeout
929 1.20 thorpej * to try again in a second or so? The latter could break
930 1.20 thorpej * a caller's assumptions about interrupt protection, etc.
931 1.20 thorpej */
932 1.20 thorpej }
933 1.20 thorpej
934 1.134 ad mutex_exit(&pp->pr_lock);
935 1.125 ad KASSERT((((vaddr_t)v + pp->pr_itemoffset) & (pp->pr_align - 1)) == 0);
936 1.125 ad FREECHECK_OUT(&pp->pr_freecheck, v);
937 1.1 pk return (v);
938 1.1 pk }
939 1.1 pk
940 1.1 pk /*
941 1.43 thorpej * Internal version of pool_put(). Pool is already locked/entered.
942 1.1 pk */
943 1.43 thorpej static void
944 1.101 thorpej pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
945 1.1 pk {
946 1.1 pk struct pool_item *pi = v;
947 1.3 pk struct pool_item_header *ph;
948 1.3 pk
949 1.134 ad KASSERT(mutex_owned(&pp->pr_lock));
950 1.125 ad FREECHECK_IN(&pp->pr_freecheck, v);
951 1.134 ad LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
952 1.61 chs
953 1.30 thorpej #ifdef DIAGNOSTIC
954 1.34 thorpej if (__predict_false(pp->pr_nout == 0)) {
955 1.30 thorpej printf("pool %s: putting with none out\n",
956 1.30 thorpej pp->pr_wchan);
957 1.30 thorpej panic("pool_put");
958 1.30 thorpej }
959 1.30 thorpej #endif
960 1.3 pk
961 1.121 yamt if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
962 1.3 pk panic("pool_put: %s: page header missing", pp->pr_wchan);
963 1.3 pk }
964 1.28 thorpej
965 1.3 pk /*
966 1.3 pk * Return to item list.
967 1.3 pk */
968 1.97 yamt if (pp->pr_roflags & PR_NOTOUCH) {
969 1.97 yamt pr_item_notouch_put(pp, ph, v);
970 1.97 yamt } else {
971 1.2 pk #ifdef DIAGNOSTIC
972 1.97 yamt pi->pi_magic = PI_MAGIC;
973 1.3 pk #endif
974 1.32 chs #ifdef DEBUG
975 1.97 yamt {
976 1.97 yamt int i, *ip = v;
977 1.32 chs
978 1.97 yamt for (i = 0; i < pp->pr_size / sizeof(int); i++) {
979 1.97 yamt *ip++ = PI_MAGIC;
980 1.97 yamt }
981 1.32 chs }
982 1.32 chs #endif
983 1.32 chs
984 1.102 chs LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
985 1.97 yamt }
986 1.79 thorpej KDASSERT(ph->ph_nmissing != 0);
987 1.3 pk ph->ph_nmissing--;
988 1.3 pk pp->pr_nput++;
989 1.20 thorpej pp->pr_nitems++;
990 1.20 thorpej pp->pr_nout--;
991 1.3 pk
992 1.3 pk /* Cancel "pool empty" condition if it exists */
993 1.3 pk if (pp->pr_curpage == NULL)
994 1.3 pk pp->pr_curpage = ph;
995 1.3 pk
996 1.3 pk if (pp->pr_flags & PR_WANTED) {
997 1.3 pk pp->pr_flags &= ~PR_WANTED;
998 1.134 ad cv_broadcast(&pp->pr_cv);
999 1.3 pk }
1000 1.3 pk
1001 1.3 pk /*
1002 1.88 chs * If this page is now empty, do one of two things:
1003 1.21 thorpej *
1004 1.88 chs * (1) If we have more pages than the page high water mark,
1005 1.96 thorpej * free the page back to the system. ONLY CONSIDER
1006 1.90 thorpej * FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
1007 1.90 thorpej * CLAIM.
1008 1.21 thorpej *
1009 1.88 chs * (2) Otherwise, move the page to the empty page list.
1010 1.88 chs *
1011 1.88 chs * Either way, select a new current page (so we use a partially-full
1012 1.88 chs * page if one is available).
1013 1.3 pk */
1014 1.3 pk if (ph->ph_nmissing == 0) {
1015 1.6 thorpej pp->pr_nidle++;
1016 1.90 thorpej if (pp->pr_npages > pp->pr_minpages &&
1017 1.152 yamt pp->pr_npages > pp->pr_maxpages) {
1018 1.101 thorpej pr_rmpage(pp, ph, pq);
1019 1.3 pk } else {
1020 1.88 chs LIST_REMOVE(ph, ph_pagelist);
1021 1.88 chs LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1022 1.3 pk
1023 1.21 thorpej /*
1024 1.21 thorpej * Update the timestamp on the page. A page must
1025 1.21 thorpej * be idle for some period of time before it can
1026 1.21 thorpej * be reclaimed by the pagedaemon. This minimizes
1027 1.21 thorpej * ping-pong'ing for memory.
1028 1.151 yamt *
1029 1.151 yamt * note for 64-bit time_t: truncating to 32-bit is not
1030 1.151 yamt * a problem for our usage.
1031 1.21 thorpej */
1032 1.151 yamt ph->ph_time = time_uptime;
1033 1.1 pk }
1034 1.88 chs pool_update_curpage(pp);
1035 1.1 pk }
1036 1.88 chs
1037 1.21 thorpej /*
1038 1.88 chs * If the page was previously completely full, move it to the
1039 1.88 chs * partially-full list and make it the current page. The next
1040 1.88 chs * allocation will get the item from this page, instead of
1041 1.88 chs * further fragmenting the pool.
1042 1.21 thorpej */
1043 1.21 thorpej else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
1044 1.88 chs LIST_REMOVE(ph, ph_pagelist);
1045 1.88 chs LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1046 1.21 thorpej pp->pr_curpage = ph;
1047 1.21 thorpej }
1048 1.43 thorpej }
1049 1.43 thorpej
1050 1.56 sommerfe void
1051 1.56 sommerfe pool_put(struct pool *pp, void *v)
1052 1.56 sommerfe {
1053 1.101 thorpej struct pool_pagelist pq;
1054 1.101 thorpej
1055 1.101 thorpej LIST_INIT(&pq);
1056 1.56 sommerfe
1057 1.134 ad mutex_enter(&pp->pr_lock);
1058 1.101 thorpej pool_do_put(pp, v, &pq);
1059 1.134 ad mutex_exit(&pp->pr_lock);
1060 1.56 sommerfe
1061 1.102 chs pr_pagelist_free(pp, &pq);
1062 1.56 sommerfe }
1063 1.57 sommerfe
1064 1.74 thorpej /*
1065 1.113 yamt * pool_grow: grow a pool by a page.
1066 1.113 yamt *
1067 1.113 yamt * => called with pool locked.
1068 1.113 yamt * => unlock and relock the pool.
1069 1.113 yamt * => return with pool locked.
1070 1.113 yamt */
1071 1.113 yamt
1072 1.113 yamt static int
1073 1.113 yamt pool_grow(struct pool *pp, int flags)
1074 1.113 yamt {
1075 1.113 yamt struct pool_item_header *ph = NULL;
1076 1.113 yamt char *cp;
1077 1.113 yamt
1078 1.134 ad mutex_exit(&pp->pr_lock);
1079 1.113 yamt cp = pool_allocator_alloc(pp, flags);
1080 1.113 yamt if (__predict_true(cp != NULL)) {
1081 1.113 yamt ph = pool_alloc_item_header(pp, cp, flags);
1082 1.113 yamt }
1083 1.113 yamt if (__predict_false(cp == NULL || ph == NULL)) {
1084 1.113 yamt if (cp != NULL) {
1085 1.113 yamt pool_allocator_free(pp, cp);
1086 1.113 yamt }
1087 1.134 ad mutex_enter(&pp->pr_lock);
1088 1.113 yamt return ENOMEM;
1089 1.113 yamt }
1090 1.113 yamt
1091 1.134 ad mutex_enter(&pp->pr_lock);
1092 1.113 yamt pool_prime_page(pp, cp, ph);
1093 1.113 yamt pp->pr_npagealloc++;
1094 1.113 yamt return 0;
1095 1.113 yamt }
1096 1.113 yamt
1097 1.113 yamt /*
1098 1.74 thorpej * Add N items to the pool.
1099 1.74 thorpej */
1100 1.74 thorpej int
1101 1.74 thorpej pool_prime(struct pool *pp, int n)
1102 1.74 thorpej {
1103 1.75 simonb int newpages;
1104 1.113 yamt int error = 0;
1105 1.74 thorpej
1106 1.134 ad mutex_enter(&pp->pr_lock);
1107 1.74 thorpej
1108 1.74 thorpej newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1109 1.74 thorpej
1110 1.74 thorpej while (newpages-- > 0) {
1111 1.113 yamt error = pool_grow(pp, PR_NOWAIT);
1112 1.113 yamt if (error) {
1113 1.74 thorpej break;
1114 1.74 thorpej }
1115 1.74 thorpej pp->pr_minpages++;
1116 1.74 thorpej }
1117 1.74 thorpej
1118 1.74 thorpej if (pp->pr_minpages >= pp->pr_maxpages)
1119 1.74 thorpej pp->pr_maxpages = pp->pr_minpages + 1; /* XXX */
1120 1.74 thorpej
1121 1.134 ad mutex_exit(&pp->pr_lock);
1122 1.113 yamt return error;
1123 1.74 thorpej }
1124 1.55 thorpej
1125 1.55 thorpej /*
1126 1.3 pk * Add a page worth of items to the pool.
1127 1.21 thorpej *
1128 1.21 thorpej * Note, we must be called with the pool descriptor LOCKED.
1129 1.3 pk */
1130 1.55 thorpej static void
1131 1.128 christos pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
1132 1.3 pk {
1133 1.3 pk struct pool_item *pi;
1134 1.128 christos void *cp = storage;
1135 1.125 ad const unsigned int align = pp->pr_align;
1136 1.125 ad const unsigned int ioff = pp->pr_itemoffset;
1137 1.55 thorpej int n;
1138 1.36 pk
1139 1.134 ad KASSERT(mutex_owned(&pp->pr_lock));
1140 1.91 yamt
1141 1.66 thorpej #ifdef DIAGNOSTIC
1142 1.121 yamt if ((pp->pr_roflags & PR_NOALIGN) == 0 &&
1143 1.150 skrll ((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) != 0)
1144 1.36 pk panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
1145 1.66 thorpej #endif
1146 1.3 pk
1147 1.3 pk /*
1148 1.3 pk * Insert page header.
1149 1.3 pk */
1150 1.88 chs LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1151 1.102 chs LIST_INIT(&ph->ph_itemlist);
1152 1.3 pk ph->ph_page = storage;
1153 1.3 pk ph->ph_nmissing = 0;
1154 1.151 yamt ph->ph_time = time_uptime;
1155 1.88 chs if ((pp->pr_roflags & PR_PHINPAGE) == 0)
1156 1.88 chs SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
1157 1.3 pk
1158 1.6 thorpej pp->pr_nidle++;
1159 1.6 thorpej
1160 1.3 pk /*
1161 1.3 pk * Color this page.
1162 1.3 pk */
1163 1.141 yamt ph->ph_off = pp->pr_curcolor;
1164 1.141 yamt cp = (char *)cp + ph->ph_off;
1165 1.3 pk if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
1166 1.3 pk pp->pr_curcolor = 0;
1167 1.3 pk
1168 1.3 pk /*
1169 1.3 pk * Adjust storage to apply aligment to `pr_itemoffset' in each item.
1170 1.3 pk */
1171 1.3 pk if (ioff != 0)
1172 1.128 christos cp = (char *)cp + align - ioff;
1173 1.3 pk
1174 1.125 ad KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
1175 1.125 ad
1176 1.3 pk /*
1177 1.3 pk * Insert remaining chunks on the bucket list.
1178 1.3 pk */
1179 1.3 pk n = pp->pr_itemsperpage;
1180 1.20 thorpej pp->pr_nitems += n;
1181 1.3 pk
1182 1.97 yamt if (pp->pr_roflags & PR_NOTOUCH) {
1183 1.141 yamt pr_item_notouch_init(pp, ph);
1184 1.97 yamt } else {
1185 1.97 yamt while (n--) {
1186 1.97 yamt pi = (struct pool_item *)cp;
1187 1.78 thorpej
1188 1.97 yamt KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0);
1189 1.3 pk
1190 1.97 yamt /* Insert on page list */
1191 1.102 chs LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1192 1.3 pk #ifdef DIAGNOSTIC
1193 1.97 yamt pi->pi_magic = PI_MAGIC;
1194 1.3 pk #endif
1195 1.128 christos cp = (char *)cp + pp->pr_size;
1196 1.125 ad
1197 1.125 ad KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
1198 1.97 yamt }
1199 1.3 pk }
1200 1.3 pk
1201 1.3 pk /*
1202 1.3 pk * If the pool was depleted, point at the new page.
1203 1.3 pk */
1204 1.3 pk if (pp->pr_curpage == NULL)
1205 1.3 pk pp->pr_curpage = ph;
1206 1.3 pk
1207 1.3 pk if (++pp->pr_npages > pp->pr_hiwat)
1208 1.3 pk pp->pr_hiwat = pp->pr_npages;
1209 1.3 pk }
1210 1.3 pk
1211 1.20 thorpej /*
1212 1.52 thorpej * Used by pool_get() when nitems drops below the low water mark. This
1213 1.88 chs * is used to catch up pr_nitems with the low water mark.
1214 1.20 thorpej *
1215 1.21 thorpej * Note 1, we never wait for memory here, we let the caller decide what to do.
1216 1.20 thorpej *
1217 1.73 thorpej * Note 2, we must be called with the pool already locked, and we return
1218 1.20 thorpej * with it locked.
1219 1.20 thorpej */
1220 1.20 thorpej static int
1221 1.42 thorpej pool_catchup(struct pool *pp)
1222 1.20 thorpej {
1223 1.20 thorpej int error = 0;
1224 1.20 thorpej
1225 1.54 thorpej while (POOL_NEEDS_CATCHUP(pp)) {
1226 1.113 yamt error = pool_grow(pp, PR_NOWAIT);
1227 1.113 yamt if (error) {
1228 1.20 thorpej break;
1229 1.20 thorpej }
1230 1.20 thorpej }
1231 1.113 yamt return error;
1232 1.20 thorpej }
1233 1.20 thorpej
1234 1.88 chs static void
1235 1.88 chs pool_update_curpage(struct pool *pp)
1236 1.88 chs {
1237 1.88 chs
1238 1.88 chs pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
1239 1.88 chs if (pp->pr_curpage == NULL) {
1240 1.88 chs pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
1241 1.88 chs }
1242 1.168 yamt KASSERT((pp->pr_curpage == NULL && pp->pr_nitems == 0) ||
1243 1.168 yamt (pp->pr_curpage != NULL && pp->pr_nitems > 0));
1244 1.88 chs }
1245 1.88 chs
1246 1.3 pk void
1247 1.42 thorpej pool_setlowat(struct pool *pp, int n)
1248 1.3 pk {
1249 1.15 pk
1250 1.134 ad mutex_enter(&pp->pr_lock);
1251 1.21 thorpej
1252 1.3 pk pp->pr_minitems = n;
1253 1.15 pk pp->pr_minpages = (n == 0)
1254 1.15 pk ? 0
1255 1.18 thorpej : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1256 1.20 thorpej
1257 1.20 thorpej /* Make sure we're caught up with the newly-set low water mark. */
1258 1.75 simonb if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1259 1.20 thorpej /*
1260 1.20 thorpej * XXX: Should we log a warning? Should we set up a timeout
1261 1.20 thorpej * to try again in a second or so? The latter could break
1262 1.20 thorpej * a caller's assumptions about interrupt protection, etc.
1263 1.20 thorpej */
1264 1.20 thorpej }
1265 1.21 thorpej
1266 1.134 ad mutex_exit(&pp->pr_lock);
1267 1.3 pk }
1268 1.3 pk
1269 1.3 pk void
1270 1.42 thorpej pool_sethiwat(struct pool *pp, int n)
1271 1.3 pk {
1272 1.15 pk
1273 1.134 ad mutex_enter(&pp->pr_lock);
1274 1.21 thorpej
1275 1.15 pk pp->pr_maxpages = (n == 0)
1276 1.15 pk ? 0
1277 1.18 thorpej : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1278 1.21 thorpej
1279 1.134 ad mutex_exit(&pp->pr_lock);
1280 1.3 pk }
1281 1.3 pk
1282 1.20 thorpej void
1283 1.42 thorpej pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
1284 1.20 thorpej {
1285 1.20 thorpej
1286 1.134 ad mutex_enter(&pp->pr_lock);
1287 1.20 thorpej
1288 1.20 thorpej pp->pr_hardlimit = n;
1289 1.20 thorpej pp->pr_hardlimit_warning = warnmess;
1290 1.31 thorpej pp->pr_hardlimit_ratecap.tv_sec = ratecap;
1291 1.31 thorpej pp->pr_hardlimit_warning_last.tv_sec = 0;
1292 1.31 thorpej pp->pr_hardlimit_warning_last.tv_usec = 0;
1293 1.20 thorpej
1294 1.20 thorpej /*
1295 1.21 thorpej * In-line version of pool_sethiwat(), because we don't want to
1296 1.21 thorpej * release the lock.
1297 1.20 thorpej */
1298 1.20 thorpej pp->pr_maxpages = (n == 0)
1299 1.20 thorpej ? 0
1300 1.20 thorpej : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1301 1.21 thorpej
1302 1.134 ad mutex_exit(&pp->pr_lock);
1303 1.20 thorpej }
1304 1.3 pk
1305 1.3 pk /*
1306 1.3 pk * Release all complete pages that have not been used recently.
1307 1.184 rmind *
1308 1.190.2.3 yamt * Must not be called from interrupt context.
1309 1.3 pk */
1310 1.66 thorpej int
1311 1.56 sommerfe pool_reclaim(struct pool *pp)
1312 1.3 pk {
1313 1.3 pk struct pool_item_header *ph, *phnext;
1314 1.61 chs struct pool_pagelist pq;
1315 1.151 yamt uint32_t curtime;
1316 1.134 ad bool klock;
1317 1.134 ad int rv;
1318 1.3 pk
1319 1.190.2.3 yamt KASSERT(!cpu_intr_p() && !cpu_softintr_p());
1320 1.184 rmind
1321 1.68 thorpej if (pp->pr_drain_hook != NULL) {
1322 1.68 thorpej /*
1323 1.68 thorpej * The drain hook must be called with the pool unlocked.
1324 1.68 thorpej */
1325 1.68 thorpej (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
1326 1.68 thorpej }
1327 1.68 thorpej
1328 1.134 ad /*
1329 1.157 ad * XXXSMP Because we do not want to cause non-MPSAFE code
1330 1.157 ad * to block.
1331 1.134 ad */
1332 1.134 ad if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK ||
1333 1.134 ad pp->pr_ipl == IPL_SOFTSERIAL) {
1334 1.134 ad KERNEL_LOCK(1, NULL);
1335 1.134 ad klock = true;
1336 1.134 ad } else
1337 1.134 ad klock = false;
1338 1.134 ad
1339 1.134 ad /* Reclaim items from the pool's cache (if any). */
1340 1.134 ad if (pp->pr_cache != NULL)
1341 1.134 ad pool_cache_invalidate(pp->pr_cache);
1342 1.134 ad
1343 1.134 ad if (mutex_tryenter(&pp->pr_lock) == 0) {
1344 1.134 ad if (klock) {
1345 1.134 ad KERNEL_UNLOCK_ONE(NULL);
1346 1.134 ad }
1347 1.66 thorpej return (0);
1348 1.134 ad }
1349 1.68 thorpej
1350 1.88 chs LIST_INIT(&pq);
1351 1.43 thorpej
1352 1.151 yamt curtime = time_uptime;
1353 1.21 thorpej
1354 1.88 chs for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
1355 1.88 chs phnext = LIST_NEXT(ph, ph_pagelist);
1356 1.3 pk
1357 1.3 pk /* Check our minimum page claim */
1358 1.3 pk if (pp->pr_npages <= pp->pr_minpages)
1359 1.3 pk break;
1360 1.3 pk
1361 1.88 chs KASSERT(ph->ph_nmissing == 0);
1362 1.190.2.1 yamt if (curtime - ph->ph_time < pool_inactive_time)
1363 1.88 chs continue;
1364 1.21 thorpej
1365 1.88 chs /*
1366 1.88 chs * If freeing this page would put us below
1367 1.88 chs * the low water mark, stop now.
1368 1.88 chs */
1369 1.88 chs if ((pp->pr_nitems - pp->pr_itemsperpage) <
1370 1.88 chs pp->pr_minitems)
1371 1.88 chs break;
1372 1.21 thorpej
1373 1.88 chs pr_rmpage(pp, ph, &pq);
1374 1.3 pk }
1375 1.3 pk
1376 1.134 ad mutex_exit(&pp->pr_lock);
1377 1.134 ad
1378 1.134 ad if (LIST_EMPTY(&pq))
1379 1.134 ad rv = 0;
1380 1.134 ad else {
1381 1.134 ad pr_pagelist_free(pp, &pq);
1382 1.134 ad rv = 1;
1383 1.134 ad }
1384 1.134 ad
1385 1.134 ad if (klock) {
1386 1.134 ad KERNEL_UNLOCK_ONE(NULL);
1387 1.134 ad }
1388 1.66 thorpej
1389 1.134 ad return (rv);
1390 1.3 pk }
1391 1.3 pk
1392 1.3 pk /*
1393 1.190.2.3 yamt * Drain pools, one at a time. The drained pool is returned within ppp.
1394 1.131 ad *
1395 1.134 ad * Note, must never be called from interrupt context.
1396 1.3 pk */
1397 1.190.2.3 yamt bool
1398 1.190.2.3 yamt pool_drain(struct pool **ppp)
1399 1.3 pk {
1400 1.190.2.3 yamt bool reclaimed;
1401 1.3 pk struct pool *pp;
1402 1.134 ad
1403 1.145 ad KASSERT(!TAILQ_EMPTY(&pool_head));
1404 1.3 pk
1405 1.61 chs pp = NULL;
1406 1.134 ad
1407 1.134 ad /* Find next pool to drain, and add a reference. */
1408 1.134 ad mutex_enter(&pool_head_lock);
1409 1.134 ad do {
1410 1.134 ad if (drainpp == NULL) {
1411 1.145 ad drainpp = TAILQ_FIRST(&pool_head);
1412 1.134 ad }
1413 1.134 ad if (drainpp != NULL) {
1414 1.134 ad pp = drainpp;
1415 1.145 ad drainpp = TAILQ_NEXT(pp, pr_poollist);
1416 1.134 ad }
1417 1.134 ad /*
1418 1.134 ad * Skip completely idle pools. We depend on at least
1419 1.134 ad * one pool in the system being active.
1420 1.134 ad */
1421 1.134 ad } while (pp == NULL || pp->pr_npages == 0);
1422 1.134 ad pp->pr_refcnt++;
1423 1.134 ad mutex_exit(&pool_head_lock);
1424 1.134 ad
1425 1.134 ad /* Drain the cache (if any) and pool.. */
1426 1.186 pooka reclaimed = pool_reclaim(pp);
1427 1.134 ad
1428 1.134 ad /* Finally, unlock the pool. */
1429 1.134 ad mutex_enter(&pool_head_lock);
1430 1.134 ad pp->pr_refcnt--;
1431 1.134 ad cv_broadcast(&pool_busy);
1432 1.134 ad mutex_exit(&pool_head_lock);
1433 1.186 pooka
1434 1.190.2.3 yamt if (ppp != NULL)
1435 1.190.2.3 yamt *ppp = pp;
1436 1.190.2.3 yamt
1437 1.186 pooka return reclaimed;
1438 1.3 pk }
1439 1.3 pk
1440 1.3 pk /*
1441 1.3 pk * Diagnostic helpers.
1442 1.3 pk */
1443 1.21 thorpej
1444 1.25 thorpej void
1445 1.108 yamt pool_printall(const char *modif, void (*pr)(const char *, ...))
1446 1.108 yamt {
1447 1.108 yamt struct pool *pp;
1448 1.108 yamt
1449 1.145 ad TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
1450 1.108 yamt pool_printit(pp, modif, pr);
1451 1.108 yamt }
1452 1.108 yamt }
1453 1.108 yamt
1454 1.108 yamt void
1455 1.42 thorpej pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1456 1.25 thorpej {
1457 1.25 thorpej
1458 1.25 thorpej if (pp == NULL) {
1459 1.25 thorpej (*pr)("Must specify a pool to print.\n");
1460 1.25 thorpej return;
1461 1.25 thorpej }
1462 1.25 thorpej
1463 1.25 thorpej pool_print1(pp, modif, pr);
1464 1.25 thorpej }
1465 1.25 thorpej
1466 1.21 thorpej static void
1467 1.124 yamt pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
1468 1.97 yamt void (*pr)(const char *, ...))
1469 1.88 chs {
1470 1.88 chs struct pool_item_header *ph;
1471 1.88 chs #ifdef DIAGNOSTIC
1472 1.88 chs struct pool_item *pi;
1473 1.88 chs #endif
1474 1.88 chs
1475 1.88 chs LIST_FOREACH(ph, pl, ph_pagelist) {
1476 1.151 yamt (*pr)("\t\tpage %p, nmissing %d, time %" PRIu32 "\n",
1477 1.151 yamt ph->ph_page, ph->ph_nmissing, ph->ph_time);
1478 1.88 chs #ifdef DIAGNOSTIC
1479 1.97 yamt if (!(pp->pr_roflags & PR_NOTOUCH)) {
1480 1.102 chs LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
1481 1.97 yamt if (pi->pi_magic != PI_MAGIC) {
1482 1.97 yamt (*pr)("\t\t\titem %p, magic 0x%x\n",
1483 1.97 yamt pi, pi->pi_magic);
1484 1.97 yamt }
1485 1.88 chs }
1486 1.88 chs }
1487 1.88 chs #endif
1488 1.88 chs }
1489 1.88 chs }
1490 1.88 chs
1491 1.88 chs static void
1492 1.42 thorpej pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1493 1.3 pk {
1494 1.25 thorpej struct pool_item_header *ph;
1495 1.134 ad pool_cache_t pc;
1496 1.134 ad pcg_t *pcg;
1497 1.134 ad pool_cache_cpu_t *cc;
1498 1.134 ad uint64_t cpuhit, cpumiss;
1499 1.44 thorpej int i, print_log = 0, print_pagelist = 0, print_cache = 0;
1500 1.25 thorpej char c;
1501 1.25 thorpej
1502 1.25 thorpej while ((c = *modif++) != '\0') {
1503 1.25 thorpej if (c == 'l')
1504 1.25 thorpej print_log = 1;
1505 1.25 thorpej if (c == 'p')
1506 1.25 thorpej print_pagelist = 1;
1507 1.44 thorpej if (c == 'c')
1508 1.44 thorpej print_cache = 1;
1509 1.25 thorpej }
1510 1.25 thorpej
1511 1.134 ad if ((pc = pp->pr_cache) != NULL) {
1512 1.134 ad (*pr)("POOL CACHE");
1513 1.134 ad } else {
1514 1.134 ad (*pr)("POOL");
1515 1.134 ad }
1516 1.134 ad
1517 1.134 ad (*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
1518 1.25 thorpej pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
1519 1.25 thorpej pp->pr_roflags);
1520 1.66 thorpej (*pr)("\talloc %p\n", pp->pr_alloc);
1521 1.25 thorpej (*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
1522 1.25 thorpej pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
1523 1.25 thorpej (*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
1524 1.25 thorpej pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
1525 1.25 thorpej
1526 1.134 ad (*pr)("\tnget %lu, nfail %lu, nput %lu\n",
1527 1.25 thorpej pp->pr_nget, pp->pr_nfail, pp->pr_nput);
1528 1.25 thorpej (*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
1529 1.25 thorpej pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
1530 1.25 thorpej
1531 1.25 thorpej if (print_pagelist == 0)
1532 1.25 thorpej goto skip_pagelist;
1533 1.25 thorpej
1534 1.88 chs if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
1535 1.88 chs (*pr)("\n\tempty page list:\n");
1536 1.97 yamt pool_print_pagelist(pp, &pp->pr_emptypages, pr);
1537 1.88 chs if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
1538 1.88 chs (*pr)("\n\tfull page list:\n");
1539 1.97 yamt pool_print_pagelist(pp, &pp->pr_fullpages, pr);
1540 1.88 chs if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
1541 1.88 chs (*pr)("\n\tpartial-page list:\n");
1542 1.97 yamt pool_print_pagelist(pp, &pp->pr_partpages, pr);
1543 1.88 chs
1544 1.25 thorpej if (pp->pr_curpage == NULL)
1545 1.25 thorpej (*pr)("\tno current page\n");
1546 1.25 thorpej else
1547 1.25 thorpej (*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
1548 1.25 thorpej
1549 1.25 thorpej skip_pagelist:
1550 1.25 thorpej if (print_log == 0)
1551 1.25 thorpej goto skip_log;
1552 1.25 thorpej
1553 1.25 thorpej (*pr)("\n");
1554 1.3 pk
1555 1.25 thorpej skip_log:
1556 1.44 thorpej
1557 1.102 chs #define PR_GROUPLIST(pcg) \
1558 1.102 chs (*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail); \
1559 1.142 ad for (i = 0; i < pcg->pcg_size; i++) { \
1560 1.102 chs if (pcg->pcg_objects[i].pcgo_pa != \
1561 1.102 chs POOL_PADDR_INVALID) { \
1562 1.102 chs (*pr)("\t\t\t%p, 0x%llx\n", \
1563 1.102 chs pcg->pcg_objects[i].pcgo_va, \
1564 1.102 chs (unsigned long long) \
1565 1.102 chs pcg->pcg_objects[i].pcgo_pa); \
1566 1.102 chs } else { \
1567 1.102 chs (*pr)("\t\t\t%p\n", \
1568 1.102 chs pcg->pcg_objects[i].pcgo_va); \
1569 1.102 chs } \
1570 1.102 chs }
1571 1.102 chs
1572 1.134 ad if (pc != NULL) {
1573 1.134 ad cpuhit = 0;
1574 1.134 ad cpumiss = 0;
1575 1.183 ad for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
1576 1.134 ad if ((cc = pc->pc_cpus[i]) == NULL)
1577 1.134 ad continue;
1578 1.134 ad cpuhit += cc->cc_hits;
1579 1.134 ad cpumiss += cc->cc_misses;
1580 1.134 ad }
1581 1.134 ad (*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
1582 1.134 ad (*pr)("\tcache layer hits %llu misses %llu\n",
1583 1.134 ad pc->pc_hits, pc->pc_misses);
1584 1.134 ad (*pr)("\tcache layer entry uncontended %llu contended %llu\n",
1585 1.134 ad pc->pc_hits + pc->pc_misses - pc->pc_contended,
1586 1.134 ad pc->pc_contended);
1587 1.134 ad (*pr)("\tcache layer empty groups %u full groups %u\n",
1588 1.134 ad pc->pc_nempty, pc->pc_nfull);
1589 1.134 ad if (print_cache) {
1590 1.134 ad (*pr)("\tfull cache groups:\n");
1591 1.134 ad for (pcg = pc->pc_fullgroups; pcg != NULL;
1592 1.134 ad pcg = pcg->pcg_next) {
1593 1.134 ad PR_GROUPLIST(pcg);
1594 1.134 ad }
1595 1.134 ad (*pr)("\tempty cache groups:\n");
1596 1.134 ad for (pcg = pc->pc_emptygroups; pcg != NULL;
1597 1.134 ad pcg = pcg->pcg_next) {
1598 1.134 ad PR_GROUPLIST(pcg);
1599 1.134 ad }
1600 1.103 chs }
1601 1.44 thorpej }
1602 1.102 chs #undef PR_GROUPLIST
1603 1.88 chs }
1604 1.88 chs
1605 1.88 chs static int
1606 1.88 chs pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
1607 1.88 chs {
1608 1.88 chs struct pool_item *pi;
1609 1.128 christos void *page;
1610 1.88 chs int n;
1611 1.88 chs
1612 1.121 yamt if ((pp->pr_roflags & PR_NOALIGN) == 0) {
1613 1.128 christos page = (void *)((uintptr_t)ph & pp->pr_alloc->pa_pagemask);
1614 1.121 yamt if (page != ph->ph_page &&
1615 1.121 yamt (pp->pr_roflags & PR_PHINPAGE) != 0) {
1616 1.121 yamt if (label != NULL)
1617 1.121 yamt printf("%s: ", label);
1618 1.121 yamt printf("pool(%p:%s): page inconsistency: page %p;"
1619 1.121 yamt " at page head addr %p (p %p)\n", pp,
1620 1.121 yamt pp->pr_wchan, ph->ph_page,
1621 1.121 yamt ph, page);
1622 1.121 yamt return 1;
1623 1.121 yamt }
1624 1.88 chs }
1625 1.3 pk
1626 1.97 yamt if ((pp->pr_roflags & PR_NOTOUCH) != 0)
1627 1.97 yamt return 0;
1628 1.97 yamt
1629 1.102 chs for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
1630 1.88 chs pi != NULL;
1631 1.102 chs pi = LIST_NEXT(pi,pi_list), n++) {
1632 1.88 chs
1633 1.88 chs #ifdef DIAGNOSTIC
1634 1.88 chs if (pi->pi_magic != PI_MAGIC) {
1635 1.88 chs if (label != NULL)
1636 1.88 chs printf("%s: ", label);
1637 1.88 chs printf("pool(%s): free list modified: magic=%x;"
1638 1.121 yamt " page %p; item ordinal %d; addr %p\n",
1639 1.88 chs pp->pr_wchan, pi->pi_magic, ph->ph_page,
1640 1.121 yamt n, pi);
1641 1.88 chs panic("pool");
1642 1.88 chs }
1643 1.88 chs #endif
1644 1.121 yamt if ((pp->pr_roflags & PR_NOALIGN) != 0) {
1645 1.121 yamt continue;
1646 1.121 yamt }
1647 1.128 christos page = (void *)((uintptr_t)pi & pp->pr_alloc->pa_pagemask);
1648 1.88 chs if (page == ph->ph_page)
1649 1.88 chs continue;
1650 1.88 chs
1651 1.88 chs if (label != NULL)
1652 1.88 chs printf("%s: ", label);
1653 1.88 chs printf("pool(%p:%s): page inconsistency: page %p;"
1654 1.88 chs " item ordinal %d; addr %p (p %p)\n", pp,
1655 1.88 chs pp->pr_wchan, ph->ph_page,
1656 1.88 chs n, pi, page);
1657 1.88 chs return 1;
1658 1.88 chs }
1659 1.88 chs return 0;
1660 1.3 pk }
1661 1.3 pk
1662 1.88 chs
1663 1.3 pk int
1664 1.42 thorpej pool_chk(struct pool *pp, const char *label)
1665 1.3 pk {
1666 1.3 pk struct pool_item_header *ph;
1667 1.3 pk int r = 0;
1668 1.3 pk
1669 1.134 ad mutex_enter(&pp->pr_lock);
1670 1.88 chs LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
1671 1.88 chs r = pool_chk_page(pp, label, ph);
1672 1.88 chs if (r) {
1673 1.88 chs goto out;
1674 1.88 chs }
1675 1.88 chs }
1676 1.88 chs LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
1677 1.88 chs r = pool_chk_page(pp, label, ph);
1678 1.88 chs if (r) {
1679 1.3 pk goto out;
1680 1.3 pk }
1681 1.88 chs }
1682 1.88 chs LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
1683 1.88 chs r = pool_chk_page(pp, label, ph);
1684 1.88 chs if (r) {
1685 1.3 pk goto out;
1686 1.3 pk }
1687 1.3 pk }
1688 1.88 chs
1689 1.3 pk out:
1690 1.134 ad mutex_exit(&pp->pr_lock);
1691 1.3 pk return (r);
1692 1.43 thorpej }
1693 1.43 thorpej
1694 1.43 thorpej /*
1695 1.43 thorpej * pool_cache_init:
1696 1.43 thorpej *
1697 1.43 thorpej * Initialize a pool cache.
1698 1.134 ad */
1699 1.134 ad pool_cache_t
1700 1.134 ad pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
1701 1.134 ad const char *wchan, struct pool_allocator *palloc, int ipl,
1702 1.134 ad int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
1703 1.134 ad {
1704 1.134 ad pool_cache_t pc;
1705 1.134 ad
1706 1.134 ad pc = pool_get(&cache_pool, PR_WAITOK);
1707 1.134 ad if (pc == NULL)
1708 1.134 ad return NULL;
1709 1.134 ad
1710 1.134 ad pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
1711 1.134 ad palloc, ipl, ctor, dtor, arg);
1712 1.134 ad
1713 1.134 ad return pc;
1714 1.134 ad }
1715 1.134 ad
1716 1.134 ad /*
1717 1.134 ad * pool_cache_bootstrap:
1718 1.43 thorpej *
1719 1.134 ad * Kernel-private version of pool_cache_init(). The caller
1720 1.134 ad * provides initial storage.
1721 1.43 thorpej */
1722 1.43 thorpej void
1723 1.134 ad pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
1724 1.134 ad u_int align_offset, u_int flags, const char *wchan,
1725 1.134 ad struct pool_allocator *palloc, int ipl,
1726 1.134 ad int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
1727 1.43 thorpej void *arg)
1728 1.43 thorpej {
1729 1.134 ad CPU_INFO_ITERATOR cii;
1730 1.145 ad pool_cache_t pc1;
1731 1.134 ad struct cpu_info *ci;
1732 1.134 ad struct pool *pp;
1733 1.134 ad
1734 1.134 ad pp = &pc->pc_pool;
1735 1.134 ad if (palloc == NULL && ipl == IPL_NONE)
1736 1.134 ad palloc = &pool_allocator_nointr;
1737 1.134 ad pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl);
1738 1.157 ad mutex_init(&pc->pc_lock, MUTEX_DEFAULT, ipl);
1739 1.43 thorpej
1740 1.134 ad if (ctor == NULL) {
1741 1.134 ad ctor = (int (*)(void *, void *, int))nullop;
1742 1.134 ad }
1743 1.134 ad if (dtor == NULL) {
1744 1.134 ad dtor = (void (*)(void *, void *))nullop;
1745 1.134 ad }
1746 1.43 thorpej
1747 1.134 ad pc->pc_emptygroups = NULL;
1748 1.134 ad pc->pc_fullgroups = NULL;
1749 1.134 ad pc->pc_partgroups = NULL;
1750 1.43 thorpej pc->pc_ctor = ctor;
1751 1.43 thorpej pc->pc_dtor = dtor;
1752 1.43 thorpej pc->pc_arg = arg;
1753 1.134 ad pc->pc_hits = 0;
1754 1.48 thorpej pc->pc_misses = 0;
1755 1.134 ad pc->pc_nempty = 0;
1756 1.134 ad pc->pc_npart = 0;
1757 1.134 ad pc->pc_nfull = 0;
1758 1.134 ad pc->pc_contended = 0;
1759 1.134 ad pc->pc_refcnt = 0;
1760 1.136 yamt pc->pc_freecheck = NULL;
1761 1.134 ad
1762 1.142 ad if ((flags & PR_LARGECACHE) != 0) {
1763 1.142 ad pc->pc_pcgsize = PCG_NOBJECTS_LARGE;
1764 1.163 ad pc->pc_pcgpool = &pcg_large_pool;
1765 1.142 ad } else {
1766 1.142 ad pc->pc_pcgsize = PCG_NOBJECTS_NORMAL;
1767 1.163 ad pc->pc_pcgpool = &pcg_normal_pool;
1768 1.142 ad }
1769 1.142 ad
1770 1.134 ad /* Allocate per-CPU caches. */
1771 1.134 ad memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
1772 1.134 ad pc->pc_ncpu = 0;
1773 1.139 ad if (ncpu < 2) {
1774 1.137 ad /* XXX For sparc: boot CPU is not attached yet. */
1775 1.137 ad pool_cache_cpu_init1(curcpu(), pc);
1776 1.137 ad } else {
1777 1.137 ad for (CPU_INFO_FOREACH(cii, ci)) {
1778 1.137 ad pool_cache_cpu_init1(ci, pc);
1779 1.137 ad }
1780 1.134 ad }
1781 1.145 ad
1782 1.145 ad /* Add to list of all pools. */
1783 1.145 ad if (__predict_true(!cold))
1784 1.134 ad mutex_enter(&pool_head_lock);
1785 1.145 ad TAILQ_FOREACH(pc1, &pool_cache_head, pc_cachelist) {
1786 1.145 ad if (strcmp(pc1->pc_pool.pr_wchan, pc->pc_pool.pr_wchan) > 0)
1787 1.145 ad break;
1788 1.145 ad }
1789 1.145 ad if (pc1 == NULL)
1790 1.145 ad TAILQ_INSERT_TAIL(&pool_cache_head, pc, pc_cachelist);
1791 1.145 ad else
1792 1.145 ad TAILQ_INSERT_BEFORE(pc1, pc, pc_cachelist);
1793 1.145 ad if (__predict_true(!cold))
1794 1.134 ad mutex_exit(&pool_head_lock);
1795 1.145 ad
1796 1.145 ad membar_sync();
1797 1.145 ad pp->pr_cache = pc;
1798 1.43 thorpej }
1799 1.43 thorpej
1800 1.43 thorpej /*
1801 1.43 thorpej * pool_cache_destroy:
1802 1.43 thorpej *
1803 1.43 thorpej * Destroy a pool cache.
1804 1.43 thorpej */
1805 1.43 thorpej void
1806 1.134 ad pool_cache_destroy(pool_cache_t pc)
1807 1.43 thorpej {
1808 1.190.2.1 yamt
1809 1.190.2.1 yamt pool_cache_bootstrap_destroy(pc);
1810 1.190.2.1 yamt pool_put(&cache_pool, pc);
1811 1.190.2.1 yamt }
1812 1.190.2.1 yamt
1813 1.190.2.1 yamt /*
1814 1.190.2.1 yamt * pool_cache_bootstrap_destroy:
1815 1.190.2.1 yamt *
1816 1.190.2.1 yamt * Destroy a pool cache.
1817 1.190.2.1 yamt */
1818 1.190.2.1 yamt void
1819 1.190.2.1 yamt pool_cache_bootstrap_destroy(pool_cache_t pc)
1820 1.190.2.1 yamt {
1821 1.134 ad struct pool *pp = &pc->pc_pool;
1822 1.175 jym u_int i;
1823 1.134 ad
1824 1.134 ad /* Remove it from the global list. */
1825 1.134 ad mutex_enter(&pool_head_lock);
1826 1.134 ad while (pc->pc_refcnt != 0)
1827 1.134 ad cv_wait(&pool_busy, &pool_head_lock);
1828 1.145 ad TAILQ_REMOVE(&pool_cache_head, pc, pc_cachelist);
1829 1.134 ad mutex_exit(&pool_head_lock);
1830 1.43 thorpej
1831 1.43 thorpej /* First, invalidate the entire cache. */
1832 1.43 thorpej pool_cache_invalidate(pc);
1833 1.43 thorpej
1834 1.134 ad /* Disassociate it from the pool. */
1835 1.134 ad mutex_enter(&pp->pr_lock);
1836 1.134 ad pp->pr_cache = NULL;
1837 1.134 ad mutex_exit(&pp->pr_lock);
1838 1.134 ad
1839 1.134 ad /* Destroy per-CPU data */
1840 1.183 ad for (i = 0; i < __arraycount(pc->pc_cpus); i++)
1841 1.175 jym pool_cache_invalidate_cpu(pc, i);
1842 1.134 ad
1843 1.134 ad /* Finally, destroy it. */
1844 1.134 ad mutex_destroy(&pc->pc_lock);
1845 1.134 ad pool_destroy(pp);
1846 1.134 ad }
1847 1.134 ad
1848 1.134 ad /*
1849 1.134 ad * pool_cache_cpu_init1:
1850 1.134 ad *
1851 1.134 ad * Called for each pool_cache whenever a new CPU is attached.
1852 1.134 ad */
1853 1.134 ad static void
1854 1.134 ad pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
1855 1.134 ad {
1856 1.134 ad pool_cache_cpu_t *cc;
1857 1.137 ad int index;
1858 1.134 ad
1859 1.137 ad index = ci->ci_index;
1860 1.137 ad
1861 1.183 ad KASSERT(index < __arraycount(pc->pc_cpus));
1862 1.134 ad
1863 1.137 ad if ((cc = pc->pc_cpus[index]) != NULL) {
1864 1.137 ad KASSERT(cc->cc_cpuindex == index);
1865 1.134 ad return;
1866 1.134 ad }
1867 1.134 ad
1868 1.134 ad /*
1869 1.134 ad * The first CPU is 'free'. This needs to be the case for
1870 1.134 ad * bootstrap - we may not be able to allocate yet.
1871 1.134 ad */
1872 1.134 ad if (pc->pc_ncpu == 0) {
1873 1.134 ad cc = &pc->pc_cpu0;
1874 1.134 ad pc->pc_ncpu = 1;
1875 1.134 ad } else {
1876 1.134 ad mutex_enter(&pc->pc_lock);
1877 1.134 ad pc->pc_ncpu++;
1878 1.134 ad mutex_exit(&pc->pc_lock);
1879 1.134 ad cc = pool_get(&cache_cpu_pool, PR_WAITOK);
1880 1.134 ad }
1881 1.134 ad
1882 1.134 ad cc->cc_ipl = pc->pc_pool.pr_ipl;
1883 1.134 ad cc->cc_iplcookie = makeiplcookie(cc->cc_ipl);
1884 1.134 ad cc->cc_cache = pc;
1885 1.137 ad cc->cc_cpuindex = index;
1886 1.134 ad cc->cc_hits = 0;
1887 1.134 ad cc->cc_misses = 0;
1888 1.169 yamt cc->cc_current = __UNCONST(&pcg_dummy);
1889 1.169 yamt cc->cc_previous = __UNCONST(&pcg_dummy);
1890 1.134 ad
1891 1.137 ad pc->pc_cpus[index] = cc;
1892 1.43 thorpej }
1893 1.43 thorpej
1894 1.134 ad /*
1895 1.134 ad * pool_cache_cpu_init:
1896 1.134 ad *
1897 1.134 ad * Called whenever a new CPU is attached.
1898 1.134 ad */
1899 1.134 ad void
1900 1.134 ad pool_cache_cpu_init(struct cpu_info *ci)
1901 1.43 thorpej {
1902 1.134 ad pool_cache_t pc;
1903 1.134 ad
1904 1.134 ad mutex_enter(&pool_head_lock);
1905 1.145 ad TAILQ_FOREACH(pc, &pool_cache_head, pc_cachelist) {
1906 1.134 ad pc->pc_refcnt++;
1907 1.134 ad mutex_exit(&pool_head_lock);
1908 1.43 thorpej
1909 1.134 ad pool_cache_cpu_init1(ci, pc);
1910 1.43 thorpej
1911 1.134 ad mutex_enter(&pool_head_lock);
1912 1.134 ad pc->pc_refcnt--;
1913 1.134 ad cv_broadcast(&pool_busy);
1914 1.134 ad }
1915 1.134 ad mutex_exit(&pool_head_lock);
1916 1.43 thorpej }
1917 1.43 thorpej
1918 1.134 ad /*
1919 1.134 ad * pool_cache_reclaim:
1920 1.134 ad *
1921 1.134 ad * Reclaim memory from a pool cache.
1922 1.134 ad */
1923 1.134 ad bool
1924 1.134 ad pool_cache_reclaim(pool_cache_t pc)
1925 1.43 thorpej {
1926 1.43 thorpej
1927 1.134 ad return pool_reclaim(&pc->pc_pool);
1928 1.134 ad }
1929 1.43 thorpej
1930 1.136 yamt static void
1931 1.136 yamt pool_cache_destruct_object1(pool_cache_t pc, void *object)
1932 1.136 yamt {
1933 1.136 yamt
1934 1.136 yamt (*pc->pc_dtor)(pc->pc_arg, object);
1935 1.136 yamt pool_put(&pc->pc_pool, object);
1936 1.136 yamt }
1937 1.136 yamt
1938 1.134 ad /*
1939 1.134 ad * pool_cache_destruct_object:
1940 1.134 ad *
1941 1.134 ad * Force destruction of an object and its release back into
1942 1.134 ad * the pool.
1943 1.134 ad */
1944 1.134 ad void
1945 1.134 ad pool_cache_destruct_object(pool_cache_t pc, void *object)
1946 1.134 ad {
1947 1.134 ad
1948 1.136 yamt FREECHECK_IN(&pc->pc_freecheck, object);
1949 1.136 yamt
1950 1.136 yamt pool_cache_destruct_object1(pc, object);
1951 1.43 thorpej }
1952 1.43 thorpej
1953 1.134 ad /*
1954 1.134 ad * pool_cache_invalidate_groups:
1955 1.134 ad *
1956 1.134 ad * Invalidate a chain of groups and destruct all objects.
1957 1.134 ad */
1958 1.102 chs static void
1959 1.134 ad pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
1960 1.102 chs {
1961 1.134 ad void *object;
1962 1.134 ad pcg_t *next;
1963 1.134 ad int i;
1964 1.134 ad
1965 1.134 ad for (; pcg != NULL; pcg = next) {
1966 1.134 ad next = pcg->pcg_next;
1967 1.134 ad
1968 1.134 ad for (i = 0; i < pcg->pcg_avail; i++) {
1969 1.134 ad object = pcg->pcg_objects[i].pcgo_va;
1970 1.136 yamt pool_cache_destruct_object1(pc, object);
1971 1.134 ad }
1972 1.102 chs
1973 1.142 ad if (pcg->pcg_size == PCG_NOBJECTS_LARGE) {
1974 1.142 ad pool_put(&pcg_large_pool, pcg);
1975 1.142 ad } else {
1976 1.142 ad KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL);
1977 1.142 ad pool_put(&pcg_normal_pool, pcg);
1978 1.142 ad }
1979 1.102 chs }
1980 1.102 chs }
1981 1.102 chs
1982 1.43 thorpej /*
1983 1.134 ad * pool_cache_invalidate:
1984 1.43 thorpej *
1985 1.134 ad * Invalidate a pool cache (destruct and release all of the
1986 1.134 ad * cached objects). Does not reclaim objects from the pool.
1987 1.176 thorpej *
1988 1.176 thorpej * Note: For pool caches that provide constructed objects, there
1989 1.176 thorpej * is an assumption that another level of synchronization is occurring
1990 1.176 thorpej * between the input to the constructor and the cache invalidation.
1991 1.190.2.3 yamt *
1992 1.190.2.3 yamt * Invalidation is a costly process and should not be called from
1993 1.190.2.3 yamt * interrupt context.
1994 1.43 thorpej */
1995 1.134 ad void
1996 1.134 ad pool_cache_invalidate(pool_cache_t pc)
1997 1.134 ad {
1998 1.176 thorpej uint64_t where;
1999 1.190.2.3 yamt pcg_t *full, *empty, *part;
2000 1.190.2.3 yamt
2001 1.190.2.3 yamt KASSERT(!cpu_intr_p() && !cpu_softintr_p());
2002 1.176 thorpej
2003 1.177 jym if (ncpu < 2 || !mp_online) {
2004 1.176 thorpej /*
2005 1.176 thorpej * We might be called early enough in the boot process
2006 1.176 thorpej * for the CPU data structures to not be fully initialized.
2007 1.190.2.3 yamt * In this case, transfer the content of the local CPU's
2008 1.190.2.3 yamt * cache back into global cache as only this CPU is currently
2009 1.190.2.3 yamt * running.
2010 1.176 thorpej */
2011 1.190.2.3 yamt pool_cache_transfer(pc);
2012 1.176 thorpej } else {
2013 1.176 thorpej /*
2014 1.190.2.3 yamt * Signal all CPUs that they must transfer their local
2015 1.190.2.3 yamt * cache back to the global pool then wait for the xcall to
2016 1.190.2.3 yamt * complete.
2017 1.176 thorpej */
2018 1.190.2.3 yamt where = xc_broadcast(0, (xcfunc_t)pool_cache_transfer,
2019 1.190.2.3 yamt pc, NULL);
2020 1.176 thorpej xc_wait(where);
2021 1.176 thorpej }
2022 1.190.2.3 yamt
2023 1.190.2.3 yamt /* Empty pool caches, then invalidate objects */
2024 1.134 ad mutex_enter(&pc->pc_lock);
2025 1.134 ad full = pc->pc_fullgroups;
2026 1.134 ad empty = pc->pc_emptygroups;
2027 1.134 ad part = pc->pc_partgroups;
2028 1.134 ad pc->pc_fullgroups = NULL;
2029 1.134 ad pc->pc_emptygroups = NULL;
2030 1.134 ad pc->pc_partgroups = NULL;
2031 1.134 ad pc->pc_nfull = 0;
2032 1.134 ad pc->pc_nempty = 0;
2033 1.134 ad pc->pc_npart = 0;
2034 1.134 ad mutex_exit(&pc->pc_lock);
2035 1.134 ad
2036 1.134 ad pool_cache_invalidate_groups(pc, full);
2037 1.134 ad pool_cache_invalidate_groups(pc, empty);
2038 1.134 ad pool_cache_invalidate_groups(pc, part);
2039 1.134 ad }
2040 1.134 ad
2041 1.175 jym /*
2042 1.175 jym * pool_cache_invalidate_cpu:
2043 1.175 jym *
2044 1.175 jym * Invalidate all CPU-bound cached objects in pool cache, the CPU being
2045 1.175 jym * identified by its associated index.
2046 1.175 jym * It is caller's responsibility to ensure that no operation is
2047 1.175 jym * taking place on this pool cache while doing this invalidation.
2048 1.175 jym * WARNING: as no inter-CPU locking is enforced, trying to invalidate
2049 1.175 jym * pool cached objects from a CPU different from the one currently running
2050 1.175 jym * may result in an undefined behaviour.
2051 1.175 jym */
2052 1.175 jym static void
2053 1.175 jym pool_cache_invalidate_cpu(pool_cache_t pc, u_int index)
2054 1.175 jym {
2055 1.175 jym pool_cache_cpu_t *cc;
2056 1.175 jym pcg_t *pcg;
2057 1.175 jym
2058 1.175 jym if ((cc = pc->pc_cpus[index]) == NULL)
2059 1.175 jym return;
2060 1.175 jym
2061 1.175 jym if ((pcg = cc->cc_current) != &pcg_dummy) {
2062 1.175 jym pcg->pcg_next = NULL;
2063 1.175 jym pool_cache_invalidate_groups(pc, pcg);
2064 1.175 jym }
2065 1.175 jym if ((pcg = cc->cc_previous) != &pcg_dummy) {
2066 1.175 jym pcg->pcg_next = NULL;
2067 1.175 jym pool_cache_invalidate_groups(pc, pcg);
2068 1.175 jym }
2069 1.175 jym if (cc != &pc->pc_cpu0)
2070 1.175 jym pool_put(&cache_cpu_pool, cc);
2071 1.175 jym
2072 1.175 jym }
2073 1.175 jym
2074 1.134 ad void
2075 1.134 ad pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
2076 1.134 ad {
2077 1.134 ad
2078 1.134 ad pool_set_drain_hook(&pc->pc_pool, fn, arg);
2079 1.134 ad }
2080 1.134 ad
2081 1.134 ad void
2082 1.134 ad pool_cache_setlowat(pool_cache_t pc, int n)
2083 1.134 ad {
2084 1.134 ad
2085 1.134 ad pool_setlowat(&pc->pc_pool, n);
2086 1.134 ad }
2087 1.134 ad
2088 1.134 ad void
2089 1.134 ad pool_cache_sethiwat(pool_cache_t pc, int n)
2090 1.134 ad {
2091 1.134 ad
2092 1.134 ad pool_sethiwat(&pc->pc_pool, n);
2093 1.134 ad }
2094 1.134 ad
2095 1.134 ad void
2096 1.134 ad pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
2097 1.134 ad {
2098 1.134 ad
2099 1.134 ad pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
2100 1.134 ad }
2101 1.134 ad
2102 1.162 ad static bool __noinline
2103 1.162 ad pool_cache_get_slow(pool_cache_cpu_t *cc, int s, void **objectp,
2104 1.134 ad paddr_t *pap, int flags)
2105 1.43 thorpej {
2106 1.134 ad pcg_t *pcg, *cur;
2107 1.134 ad uint64_t ncsw;
2108 1.134 ad pool_cache_t pc;
2109 1.43 thorpej void *object;
2110 1.58 thorpej
2111 1.168 yamt KASSERT(cc->cc_current->pcg_avail == 0);
2112 1.168 yamt KASSERT(cc->cc_previous->pcg_avail == 0);
2113 1.168 yamt
2114 1.134 ad pc = cc->cc_cache;
2115 1.134 ad cc->cc_misses++;
2116 1.43 thorpej
2117 1.134 ad /*
2118 1.134 ad * Nothing was available locally. Try and grab a group
2119 1.134 ad * from the cache.
2120 1.134 ad */
2121 1.162 ad if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
2122 1.134 ad ncsw = curlwp->l_ncsw;
2123 1.134 ad mutex_enter(&pc->pc_lock);
2124 1.134 ad pc->pc_contended++;
2125 1.43 thorpej
2126 1.134 ad /*
2127 1.134 ad * If we context switched while locking, then
2128 1.134 ad * our view of the per-CPU data is invalid:
2129 1.134 ad * retry.
2130 1.134 ad */
2131 1.134 ad if (curlwp->l_ncsw != ncsw) {
2132 1.134 ad mutex_exit(&pc->pc_lock);
2133 1.162 ad return true;
2134 1.43 thorpej }
2135 1.102 chs }
2136 1.43 thorpej
2137 1.162 ad if (__predict_true((pcg = pc->pc_fullgroups) != NULL)) {
2138 1.43 thorpej /*
2139 1.134 ad * If there's a full group, release our empty
2140 1.134 ad * group back to the cache. Install the full
2141 1.134 ad * group as cc_current and return.
2142 1.43 thorpej */
2143 1.162 ad if (__predict_true((cur = cc->cc_current) != &pcg_dummy)) {
2144 1.134 ad KASSERT(cur->pcg_avail == 0);
2145 1.134 ad cur->pcg_next = pc->pc_emptygroups;
2146 1.134 ad pc->pc_emptygroups = cur;
2147 1.134 ad pc->pc_nempty++;
2148 1.87 thorpej }
2149 1.142 ad KASSERT(pcg->pcg_avail == pcg->pcg_size);
2150 1.134 ad cc->cc_current = pcg;
2151 1.134 ad pc->pc_fullgroups = pcg->pcg_next;
2152 1.134 ad pc->pc_hits++;
2153 1.134 ad pc->pc_nfull--;
2154 1.134 ad mutex_exit(&pc->pc_lock);
2155 1.162 ad return true;
2156 1.134 ad }
2157 1.134 ad
2158 1.134 ad /*
2159 1.134 ad * Nothing available locally or in cache. Take the slow
2160 1.134 ad * path: fetch a new object from the pool and construct
2161 1.134 ad * it.
2162 1.134 ad */
2163 1.134 ad pc->pc_misses++;
2164 1.134 ad mutex_exit(&pc->pc_lock);
2165 1.162 ad splx(s);
2166 1.134 ad
2167 1.134 ad object = pool_get(&pc->pc_pool, flags);
2168 1.134 ad *objectp = object;
2169 1.162 ad if (__predict_false(object == NULL))
2170 1.162 ad return false;
2171 1.125 ad
2172 1.162 ad if (__predict_false((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0)) {
2173 1.134 ad pool_put(&pc->pc_pool, object);
2174 1.134 ad *objectp = NULL;
2175 1.162 ad return false;
2176 1.43 thorpej }
2177 1.43 thorpej
2178 1.134 ad KASSERT((((vaddr_t)object + pc->pc_pool.pr_itemoffset) &
2179 1.134 ad (pc->pc_pool.pr_align - 1)) == 0);
2180 1.43 thorpej
2181 1.134 ad if (pap != NULL) {
2182 1.134 ad #ifdef POOL_VTOPHYS
2183 1.134 ad *pap = POOL_VTOPHYS(object);
2184 1.134 ad #else
2185 1.134 ad *pap = POOL_PADDR_INVALID;
2186 1.134 ad #endif
2187 1.102 chs }
2188 1.43 thorpej
2189 1.125 ad FREECHECK_OUT(&pc->pc_freecheck, object);
2190 1.162 ad return false;
2191 1.43 thorpej }
2192 1.43 thorpej
2193 1.43 thorpej /*
2194 1.134 ad * pool_cache_get{,_paddr}:
2195 1.43 thorpej *
2196 1.134 ad * Get an object from a pool cache (optionally returning
2197 1.134 ad * the physical address of the object).
2198 1.43 thorpej */
2199 1.134 ad void *
2200 1.134 ad pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
2201 1.43 thorpej {
2202 1.134 ad pool_cache_cpu_t *cc;
2203 1.134 ad pcg_t *pcg;
2204 1.134 ad void *object;
2205 1.60 thorpej int s;
2206 1.43 thorpej
2207 1.184 rmind KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()) ||
2208 1.185 rmind (pc->pc_pool.pr_ipl != IPL_NONE || cold || panicstr != NULL),
2209 1.190 jym "pool '%s' is IPL_NONE, but called from interrupt context\n",
2210 1.190 jym pc->pc_pool.pr_wchan);
2211 1.184 rmind
2212 1.155 ad if (flags & PR_WAITOK) {
2213 1.154 yamt ASSERT_SLEEPABLE();
2214 1.155 ad }
2215 1.125 ad
2216 1.162 ad /* Lock out interrupts and disable preemption. */
2217 1.162 ad s = splvm();
2218 1.165 yamt while (/* CONSTCOND */ true) {
2219 1.134 ad /* Try and allocate an object from the current group. */
2220 1.162 ad cc = pc->pc_cpus[curcpu()->ci_index];
2221 1.162 ad KASSERT(cc->cc_cache == pc);
2222 1.134 ad pcg = cc->cc_current;
2223 1.162 ad if (__predict_true(pcg->pcg_avail > 0)) {
2224 1.134 ad object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;
2225 1.162 ad if (__predict_false(pap != NULL))
2226 1.134 ad *pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa;
2227 1.148 yamt #if defined(DIAGNOSTIC)
2228 1.134 ad pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL;
2229 1.163 ad KASSERT(pcg->pcg_avail < pcg->pcg_size);
2230 1.134 ad KASSERT(object != NULL);
2231 1.163 ad #endif
2232 1.134 ad cc->cc_hits++;
2233 1.162 ad splx(s);
2234 1.134 ad FREECHECK_OUT(&pc->pc_freecheck, object);
2235 1.134 ad return object;
2236 1.43 thorpej }
2237 1.43 thorpej
2238 1.43 thorpej /*
2239 1.134 ad * That failed. If the previous group isn't empty, swap
2240 1.134 ad * it with the current group and allocate from there.
2241 1.43 thorpej */
2242 1.134 ad pcg = cc->cc_previous;
2243 1.162 ad if (__predict_true(pcg->pcg_avail > 0)) {
2244 1.134 ad cc->cc_previous = cc->cc_current;
2245 1.134 ad cc->cc_current = pcg;
2246 1.134 ad continue;
2247 1.43 thorpej }
2248 1.43 thorpej
2249 1.134 ad /*
2250 1.134 ad * Can't allocate from either group: try the slow path.
2251 1.134 ad * If get_slow() allocated an object for us, or if
2252 1.162 ad * no more objects are available, it will return false.
2253 1.134 ad * Otherwise, we need to retry.
2254 1.134 ad */
2255 1.165 yamt if (!pool_cache_get_slow(cc, s, &object, pap, flags))
2256 1.165 yamt break;
2257 1.165 yamt }
2258 1.43 thorpej
2259 1.134 ad return object;
2260 1.51 thorpej }
2261 1.51 thorpej
2262 1.162 ad static bool __noinline
2263 1.162 ad pool_cache_put_slow(pool_cache_cpu_t *cc, int s, void *object)
2264 1.51 thorpej {
2265 1.190.2.4 yamt struct lwp *l = curlwp;
2266 1.163 ad pcg_t *pcg, *cur;
2267 1.134 ad uint64_t ncsw;
2268 1.134 ad pool_cache_t pc;
2269 1.51 thorpej
2270 1.168 yamt KASSERT(cc->cc_current->pcg_avail == cc->cc_current->pcg_size);
2271 1.168 yamt KASSERT(cc->cc_previous->pcg_avail == cc->cc_previous->pcg_size);
2272 1.168 yamt
2273 1.134 ad pc = cc->cc_cache;
2274 1.171 ad pcg = NULL;
2275 1.134 ad cc->cc_misses++;
2276 1.190.2.4 yamt ncsw = l->l_ncsw;
2277 1.43 thorpej
2278 1.171 ad /*
2279 1.171 ad * If there are no empty groups in the cache then allocate one
2280 1.171 ad * while still unlocked.
2281 1.171 ad */
2282 1.171 ad if (__predict_false(pc->pc_emptygroups == NULL)) {
2283 1.171 ad if (__predict_true(!pool_cache_disable)) {
2284 1.171 ad pcg = pool_get(pc->pc_pcgpool, PR_NOWAIT);
2285 1.171 ad }
2286 1.190.2.4 yamt /*
2287 1.190.2.4 yamt * If pool_get() blocked, then our view of
2288 1.190.2.4 yamt * the per-CPU data is invalid: retry.
2289 1.190.2.4 yamt */
2290 1.190.2.4 yamt if (__predict_false(l->l_ncsw != ncsw)) {
2291 1.190.2.4 yamt if (pcg != NULL) {
2292 1.190.2.4 yamt pool_put(pc->pc_pcgpool, pcg);
2293 1.190.2.4 yamt }
2294 1.190.2.4 yamt return true;
2295 1.190.2.4 yamt }
2296 1.171 ad if (__predict_true(pcg != NULL)) {
2297 1.171 ad pcg->pcg_avail = 0;
2298 1.171 ad pcg->pcg_size = pc->pc_pcgsize;
2299 1.171 ad }
2300 1.171 ad }
2301 1.171 ad
2302 1.162 ad /* Lock the cache. */
2303 1.162 ad if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
2304 1.134 ad mutex_enter(&pc->pc_lock);
2305 1.134 ad pc->pc_contended++;
2306 1.162 ad
2307 1.163 ad /*
2308 1.163 ad * If we context switched while locking, then our view of
2309 1.163 ad * the per-CPU data is invalid: retry.
2310 1.163 ad */
2311 1.190.2.4 yamt if (__predict_false(l->l_ncsw != ncsw)) {
2312 1.163 ad mutex_exit(&pc->pc_lock);
2313 1.171 ad if (pcg != NULL) {
2314 1.171 ad pool_put(pc->pc_pcgpool, pcg);
2315 1.171 ad }
2316 1.163 ad return true;
2317 1.163 ad }
2318 1.162 ad }
2319 1.102 chs
2320 1.163 ad /* If there are no empty groups in the cache then allocate one. */
2321 1.171 ad if (pcg == NULL && pc->pc_emptygroups != NULL) {
2322 1.171 ad pcg = pc->pc_emptygroups;
2323 1.163 ad pc->pc_emptygroups = pcg->pcg_next;
2324 1.163 ad pc->pc_nempty--;
2325 1.134 ad }
2326 1.130 ad
2327 1.162 ad /*
2328 1.162 ad * If there's a empty group, release our full group back
2329 1.162 ad * to the cache. Install the empty group to the local CPU
2330 1.162 ad * and return.
2331 1.162 ad */
2332 1.163 ad if (pcg != NULL) {
2333 1.134 ad KASSERT(pcg->pcg_avail == 0);
2334 1.162 ad if (__predict_false(cc->cc_previous == &pcg_dummy)) {
2335 1.146 ad cc->cc_previous = pcg;
2336 1.146 ad } else {
2337 1.162 ad cur = cc->cc_current;
2338 1.162 ad if (__predict_true(cur != &pcg_dummy)) {
2339 1.163 ad KASSERT(cur->pcg_avail == cur->pcg_size);
2340 1.146 ad cur->pcg_next = pc->pc_fullgroups;
2341 1.146 ad pc->pc_fullgroups = cur;
2342 1.146 ad pc->pc_nfull++;
2343 1.146 ad }
2344 1.146 ad cc->cc_current = pcg;
2345 1.146 ad }
2346 1.163 ad pc->pc_hits++;
2347 1.134 ad mutex_exit(&pc->pc_lock);
2348 1.162 ad return true;
2349 1.102 chs }
2350 1.105 christos
2351 1.134 ad /*
2352 1.162 ad * Nothing available locally or in cache, and we didn't
2353 1.162 ad * allocate an empty group. Take the slow path and destroy
2354 1.162 ad * the object here and now.
2355 1.134 ad */
2356 1.134 ad pc->pc_misses++;
2357 1.134 ad mutex_exit(&pc->pc_lock);
2358 1.162 ad splx(s);
2359 1.162 ad pool_cache_destruct_object(pc, object);
2360 1.105 christos
2361 1.162 ad return false;
2362 1.134 ad }
2363 1.102 chs
2364 1.43 thorpej /*
2365 1.134 ad * pool_cache_put{,_paddr}:
2366 1.43 thorpej *
2367 1.134 ad * Put an object back to the pool cache (optionally caching the
2368 1.134 ad * physical address of the object).
2369 1.43 thorpej */
2370 1.101 thorpej void
2371 1.134 ad pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
2372 1.43 thorpej {
2373 1.134 ad pool_cache_cpu_t *cc;
2374 1.134 ad pcg_t *pcg;
2375 1.134 ad int s;
2376 1.101 thorpej
2377 1.172 yamt KASSERT(object != NULL);
2378 1.134 ad FREECHECK_IN(&pc->pc_freecheck, object);
2379 1.101 thorpej
2380 1.162 ad /* Lock out interrupts and disable preemption. */
2381 1.162 ad s = splvm();
2382 1.165 yamt while (/* CONSTCOND */ true) {
2383 1.134 ad /* If the current group isn't full, release it there. */
2384 1.162 ad cc = pc->pc_cpus[curcpu()->ci_index];
2385 1.162 ad KASSERT(cc->cc_cache == pc);
2386 1.134 ad pcg = cc->cc_current;
2387 1.162 ad if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
2388 1.134 ad pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object;
2389 1.134 ad pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa;
2390 1.134 ad pcg->pcg_avail++;
2391 1.134 ad cc->cc_hits++;
2392 1.162 ad splx(s);
2393 1.134 ad return;
2394 1.134 ad }
2395 1.43 thorpej
2396 1.134 ad /*
2397 1.162 ad * That failed. If the previous group isn't full, swap
2398 1.134 ad * it with the current group and try again.
2399 1.134 ad */
2400 1.134 ad pcg = cc->cc_previous;
2401 1.162 ad if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
2402 1.134 ad cc->cc_previous = cc->cc_current;
2403 1.134 ad cc->cc_current = pcg;
2404 1.134 ad continue;
2405 1.134 ad }
2406 1.43 thorpej
2407 1.134 ad /*
2408 1.134 ad * Can't free to either group: try the slow path.
2409 1.134 ad * If put_slow() releases the object for us, it
2410 1.162 ad * will return false. Otherwise we need to retry.
2411 1.134 ad */
2412 1.165 yamt if (!pool_cache_put_slow(cc, s, object))
2413 1.165 yamt break;
2414 1.165 yamt }
2415 1.43 thorpej }
2416 1.43 thorpej
2417 1.43 thorpej /*
2418 1.190.2.3 yamt * pool_cache_transfer:
2419 1.43 thorpej *
2420 1.134 ad * Transfer objects from the per-CPU cache to the global cache.
2421 1.134 ad * Run within a cross-call thread.
2422 1.43 thorpej */
2423 1.43 thorpej static void
2424 1.190.2.3 yamt pool_cache_transfer(pool_cache_t pc)
2425 1.43 thorpej {
2426 1.134 ad pool_cache_cpu_t *cc;
2427 1.134 ad pcg_t *prev, *cur, **list;
2428 1.162 ad int s;
2429 1.134 ad
2430 1.162 ad s = splvm();
2431 1.162 ad mutex_enter(&pc->pc_lock);
2432 1.162 ad cc = pc->pc_cpus[curcpu()->ci_index];
2433 1.134 ad cur = cc->cc_current;
2434 1.169 yamt cc->cc_current = __UNCONST(&pcg_dummy);
2435 1.134 ad prev = cc->cc_previous;
2436 1.169 yamt cc->cc_previous = __UNCONST(&pcg_dummy);
2437 1.162 ad if (cur != &pcg_dummy) {
2438 1.142 ad if (cur->pcg_avail == cur->pcg_size) {
2439 1.134 ad list = &pc->pc_fullgroups;
2440 1.134 ad pc->pc_nfull++;
2441 1.134 ad } else if (cur->pcg_avail == 0) {
2442 1.134 ad list = &pc->pc_emptygroups;
2443 1.134 ad pc->pc_nempty++;
2444 1.134 ad } else {
2445 1.134 ad list = &pc->pc_partgroups;
2446 1.134 ad pc->pc_npart++;
2447 1.134 ad }
2448 1.134 ad cur->pcg_next = *list;
2449 1.134 ad *list = cur;
2450 1.134 ad }
2451 1.162 ad if (prev != &pcg_dummy) {
2452 1.142 ad if (prev->pcg_avail == prev->pcg_size) {
2453 1.134 ad list = &pc->pc_fullgroups;
2454 1.134 ad pc->pc_nfull++;
2455 1.134 ad } else if (prev->pcg_avail == 0) {
2456 1.134 ad list = &pc->pc_emptygroups;
2457 1.134 ad pc->pc_nempty++;
2458 1.134 ad } else {
2459 1.134 ad list = &pc->pc_partgroups;
2460 1.134 ad pc->pc_npart++;
2461 1.134 ad }
2462 1.134 ad prev->pcg_next = *list;
2463 1.134 ad *list = prev;
2464 1.134 ad }
2465 1.134 ad mutex_exit(&pc->pc_lock);
2466 1.134 ad splx(s);
2467 1.3 pk }
2468 1.66 thorpej
2469 1.66 thorpej /*
2470 1.66 thorpej * Pool backend allocators.
2471 1.66 thorpej *
2472 1.66 thorpej * Each pool has a backend allocator that handles allocation, deallocation,
2473 1.66 thorpej * and any additional draining that might be needed.
2474 1.66 thorpej *
2475 1.66 thorpej * We provide two standard allocators:
2476 1.66 thorpej *
2477 1.66 thorpej * pool_allocator_kmem - the default when no allocator is specified
2478 1.66 thorpej *
2479 1.66 thorpej * pool_allocator_nointr - used for pools that will not be accessed
2480 1.66 thorpej * in interrupt context.
2481 1.66 thorpej */
2482 1.66 thorpej void *pool_page_alloc(struct pool *, int);
2483 1.66 thorpej void pool_page_free(struct pool *, void *);
2484 1.66 thorpej
2485 1.112 bjh21 #ifdef POOL_SUBPAGE
2486 1.112 bjh21 struct pool_allocator pool_allocator_kmem_fullpage = {
2487 1.190.2.1 yamt .pa_alloc = pool_page_alloc,
2488 1.190.2.1 yamt .pa_free = pool_page_free,
2489 1.190.2.1 yamt .pa_pagesz = 0
2490 1.112 bjh21 };
2491 1.112 bjh21 #else
2492 1.66 thorpej struct pool_allocator pool_allocator_kmem = {
2493 1.190.2.1 yamt .pa_alloc = pool_page_alloc,
2494 1.190.2.1 yamt .pa_free = pool_page_free,
2495 1.190.2.1 yamt .pa_pagesz = 0
2496 1.66 thorpej };
2497 1.112 bjh21 #endif
2498 1.66 thorpej
2499 1.112 bjh21 #ifdef POOL_SUBPAGE
2500 1.112 bjh21 struct pool_allocator pool_allocator_nointr_fullpage = {
2501 1.190.2.1 yamt .pa_alloc = pool_page_alloc,
2502 1.190.2.1 yamt .pa_free = pool_page_free,
2503 1.190.2.1 yamt .pa_pagesz = 0
2504 1.112 bjh21 };
2505 1.112 bjh21 #else
2506 1.66 thorpej struct pool_allocator pool_allocator_nointr = {
2507 1.190.2.1 yamt .pa_alloc = pool_page_alloc,
2508 1.190.2.1 yamt .pa_free = pool_page_free,
2509 1.190.2.1 yamt .pa_pagesz = 0
2510 1.66 thorpej };
2511 1.112 bjh21 #endif
2512 1.66 thorpej
2513 1.66 thorpej #ifdef POOL_SUBPAGE
2514 1.66 thorpej void *pool_subpage_alloc(struct pool *, int);
2515 1.66 thorpej void pool_subpage_free(struct pool *, void *);
2516 1.66 thorpej
2517 1.112 bjh21 struct pool_allocator pool_allocator_kmem = {
2518 1.190.2.1 yamt .pa_alloc = pool_subpage_alloc,
2519 1.190.2.1 yamt .pa_free = pool_subpage_free,
2520 1.190.2.1 yamt .pa_pagesz = POOL_SUBPAGE
2521 1.112 bjh21 };
2522 1.112 bjh21
2523 1.112 bjh21 struct pool_allocator pool_allocator_nointr = {
2524 1.190.2.1 yamt .pa_alloc = pool_subpage_alloc,
2525 1.190.2.1 yamt .pa_free = pool_subpage_free,
2526 1.190.2.1 yamt .pa_pagesz = POOL_SUBPAGE
2527 1.66 thorpej };
2528 1.66 thorpej #endif /* POOL_SUBPAGE */
2529 1.66 thorpej
2530 1.117 yamt static void *
2531 1.117 yamt pool_allocator_alloc(struct pool *pp, int flags)
2532 1.66 thorpej {
2533 1.117 yamt struct pool_allocator *pa = pp->pr_alloc;
2534 1.66 thorpej void *res;
2535 1.66 thorpej
2536 1.117 yamt res = (*pa->pa_alloc)(pp, flags);
2537 1.117 yamt if (res == NULL && (flags & PR_WAITOK) == 0) {
2538 1.66 thorpej /*
2539 1.117 yamt * We only run the drain hook here if PR_NOWAIT.
2540 1.117 yamt * In other cases, the hook will be run in
2541 1.117 yamt * pool_reclaim().
2542 1.66 thorpej */
2543 1.117 yamt if (pp->pr_drain_hook != NULL) {
2544 1.117 yamt (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
2545 1.117 yamt res = (*pa->pa_alloc)(pp, flags);
2546 1.66 thorpej }
2547 1.117 yamt }
2548 1.117 yamt return res;
2549 1.66 thorpej }
2550 1.66 thorpej
2551 1.117 yamt static void
2552 1.66 thorpej pool_allocator_free(struct pool *pp, void *v)
2553 1.66 thorpej {
2554 1.66 thorpej struct pool_allocator *pa = pp->pr_alloc;
2555 1.66 thorpej
2556 1.66 thorpej (*pa->pa_free)(pp, v);
2557 1.66 thorpej }
2558 1.66 thorpej
2559 1.66 thorpej void *
2560 1.124 yamt pool_page_alloc(struct pool *pp, int flags)
2561 1.66 thorpej {
2562 1.190.2.1 yamt const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
2563 1.190.2.1 yamt vmem_addr_t va;
2564 1.190.2.1 yamt int ret;
2565 1.190.2.1 yamt
2566 1.190.2.1 yamt ret = uvm_km_kmem_alloc(kmem_va_arena, pp->pr_alloc->pa_pagesz,
2567 1.190.2.1 yamt vflags | VM_INSTANTFIT, &va);
2568 1.66 thorpej
2569 1.190.2.1 yamt return ret ? NULL : (void *)va;
2570 1.66 thorpej }
2571 1.66 thorpej
2572 1.66 thorpej void
2573 1.124 yamt pool_page_free(struct pool *pp, void *v)
2574 1.66 thorpej {
2575 1.66 thorpej
2576 1.190.2.1 yamt uvm_km_kmem_free(kmem_va_arena, (vaddr_t)v, pp->pr_alloc->pa_pagesz);
2577 1.98 yamt }
2578 1.98 yamt
2579 1.98 yamt static void *
2580 1.124 yamt pool_page_alloc_meta(struct pool *pp, int flags)
2581 1.98 yamt {
2582 1.190.2.1 yamt const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
2583 1.190.2.1 yamt vmem_addr_t va;
2584 1.190.2.1 yamt int ret;
2585 1.98 yamt
2586 1.190.2.1 yamt ret = vmem_alloc(kmem_meta_arena, pp->pr_alloc->pa_pagesz,
2587 1.190.2.1 yamt vflags | VM_INSTANTFIT, &va);
2588 1.190.2.1 yamt
2589 1.190.2.1 yamt return ret ? NULL : (void *)va;
2590 1.98 yamt }
2591 1.98 yamt
2592 1.98 yamt static void
2593 1.124 yamt pool_page_free_meta(struct pool *pp, void *v)
2594 1.98 yamt {
2595 1.98 yamt
2596 1.190.2.1 yamt vmem_free(kmem_meta_arena, (vmem_addr_t)v, pp->pr_alloc->pa_pagesz);
2597 1.66 thorpej }
2598 1.66 thorpej
2599 1.66 thorpej #ifdef POOL_SUBPAGE
2600 1.66 thorpej /* Sub-page allocator, for machines with large hardware pages. */
2601 1.66 thorpej void *
2602 1.66 thorpej pool_subpage_alloc(struct pool *pp, int flags)
2603 1.66 thorpej {
2604 1.134 ad return pool_get(&psppool, flags);
2605 1.66 thorpej }
2606 1.66 thorpej
2607 1.66 thorpej void
2608 1.66 thorpej pool_subpage_free(struct pool *pp, void *v)
2609 1.66 thorpej {
2610 1.66 thorpej pool_put(&psppool, v);
2611 1.66 thorpej }
2612 1.66 thorpej
2613 1.112 bjh21 #endif /* POOL_SUBPAGE */
2614 1.141 yamt
2615 1.141 yamt #if defined(DDB)
2616 1.141 yamt static bool
2617 1.141 yamt pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
2618 1.141 yamt {
2619 1.141 yamt
2620 1.141 yamt return (uintptr_t)ph->ph_page <= addr &&
2621 1.141 yamt addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz;
2622 1.141 yamt }
2623 1.141 yamt
2624 1.143 yamt static bool
2625 1.143 yamt pool_in_item(struct pool *pp, void *item, uintptr_t addr)
2626 1.143 yamt {
2627 1.143 yamt
2628 1.143 yamt return (uintptr_t)item <= addr && addr < (uintptr_t)item + pp->pr_size;
2629 1.143 yamt }
2630 1.143 yamt
2631 1.143 yamt static bool
2632 1.143 yamt pool_in_cg(struct pool *pp, struct pool_cache_group *pcg, uintptr_t addr)
2633 1.143 yamt {
2634 1.143 yamt int i;
2635 1.143 yamt
2636 1.143 yamt if (pcg == NULL) {
2637 1.143 yamt return false;
2638 1.143 yamt }
2639 1.144 yamt for (i = 0; i < pcg->pcg_avail; i++) {
2640 1.143 yamt if (pool_in_item(pp, pcg->pcg_objects[i].pcgo_va, addr)) {
2641 1.143 yamt return true;
2642 1.143 yamt }
2643 1.143 yamt }
2644 1.143 yamt return false;
2645 1.143 yamt }
2646 1.143 yamt
2647 1.143 yamt static bool
2648 1.143 yamt pool_allocated(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
2649 1.143 yamt {
2650 1.143 yamt
2651 1.143 yamt if ((pp->pr_roflags & PR_NOTOUCH) != 0) {
2652 1.143 yamt unsigned int idx = pr_item_notouch_index(pp, ph, (void *)addr);
2653 1.143 yamt pool_item_bitmap_t *bitmap =
2654 1.143 yamt ph->ph_bitmap + (idx / BITMAP_SIZE);
2655 1.143 yamt pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
2656 1.143 yamt
2657 1.143 yamt return (*bitmap & mask) == 0;
2658 1.143 yamt } else {
2659 1.143 yamt struct pool_item *pi;
2660 1.143 yamt
2661 1.143 yamt LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
2662 1.143 yamt if (pool_in_item(pp, pi, addr)) {
2663 1.143 yamt return false;
2664 1.143 yamt }
2665 1.143 yamt }
2666 1.143 yamt return true;
2667 1.143 yamt }
2668 1.143 yamt }
2669 1.143 yamt
2670 1.141 yamt void
2671 1.141 yamt pool_whatis(uintptr_t addr, void (*pr)(const char *, ...))
2672 1.141 yamt {
2673 1.141 yamt struct pool *pp;
2674 1.141 yamt
2675 1.145 ad TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
2676 1.141 yamt struct pool_item_header *ph;
2677 1.141 yamt uintptr_t item;
2678 1.143 yamt bool allocated = true;
2679 1.143 yamt bool incache = false;
2680 1.143 yamt bool incpucache = false;
2681 1.143 yamt char cpucachestr[32];
2682 1.141 yamt
2683 1.141 yamt if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
2684 1.141 yamt LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
2685 1.141 yamt if (pool_in_page(pp, ph, addr)) {
2686 1.141 yamt goto found;
2687 1.141 yamt }
2688 1.141 yamt }
2689 1.141 yamt LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
2690 1.141 yamt if (pool_in_page(pp, ph, addr)) {
2691 1.143 yamt allocated =
2692 1.143 yamt pool_allocated(pp, ph, addr);
2693 1.143 yamt goto found;
2694 1.143 yamt }
2695 1.143 yamt }
2696 1.143 yamt LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
2697 1.143 yamt if (pool_in_page(pp, ph, addr)) {
2698 1.143 yamt allocated = false;
2699 1.141 yamt goto found;
2700 1.141 yamt }
2701 1.141 yamt }
2702 1.141 yamt continue;
2703 1.141 yamt } else {
2704 1.141 yamt ph = pr_find_pagehead_noalign(pp, (void *)addr);
2705 1.141 yamt if (ph == NULL || !pool_in_page(pp, ph, addr)) {
2706 1.141 yamt continue;
2707 1.141 yamt }
2708 1.143 yamt allocated = pool_allocated(pp, ph, addr);
2709 1.141 yamt }
2710 1.141 yamt found:
2711 1.143 yamt if (allocated && pp->pr_cache) {
2712 1.143 yamt pool_cache_t pc = pp->pr_cache;
2713 1.143 yamt struct pool_cache_group *pcg;
2714 1.143 yamt int i;
2715 1.143 yamt
2716 1.143 yamt for (pcg = pc->pc_fullgroups; pcg != NULL;
2717 1.143 yamt pcg = pcg->pcg_next) {
2718 1.143 yamt if (pool_in_cg(pp, pcg, addr)) {
2719 1.143 yamt incache = true;
2720 1.143 yamt goto print;
2721 1.143 yamt }
2722 1.143 yamt }
2723 1.183 ad for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
2724 1.143 yamt pool_cache_cpu_t *cc;
2725 1.143 yamt
2726 1.143 yamt if ((cc = pc->pc_cpus[i]) == NULL) {
2727 1.143 yamt continue;
2728 1.143 yamt }
2729 1.143 yamt if (pool_in_cg(pp, cc->cc_current, addr) ||
2730 1.143 yamt pool_in_cg(pp, cc->cc_previous, addr)) {
2731 1.143 yamt struct cpu_info *ci =
2732 1.170 ad cpu_lookup(i);
2733 1.143 yamt
2734 1.143 yamt incpucache = true;
2735 1.143 yamt snprintf(cpucachestr,
2736 1.143 yamt sizeof(cpucachestr),
2737 1.143 yamt "cached by CPU %u",
2738 1.153 martin ci->ci_index);
2739 1.143 yamt goto print;
2740 1.143 yamt }
2741 1.143 yamt }
2742 1.143 yamt }
2743 1.143 yamt print:
2744 1.141 yamt item = (uintptr_t)ph->ph_page + ph->ph_off;
2745 1.141 yamt item = item + rounddown(addr - item, pp->pr_size);
2746 1.143 yamt (*pr)("%p is %p+%zu in POOL '%s' (%s)\n",
2747 1.141 yamt (void *)addr, item, (size_t)(addr - item),
2748 1.143 yamt pp->pr_wchan,
2749 1.143 yamt incpucache ? cpucachestr :
2750 1.143 yamt incache ? "cached" : allocated ? "allocated" : "free");
2751 1.141 yamt }
2752 1.141 yamt }
2753 1.141 yamt #endif /* defined(DDB) */
2754